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1 Introduction

A rational 2d conformal field theory has a finite set of holomorphic characters x;(7) and a
partition function of the form:

n—1
Z(r,7) =Y Mix:(7)x;(7) (1.1)
4,7=0

For our purposes, as explained below, it will be sufficient to consider the case where
M;; = 05, for which the above can be rewritten:

n—1
Z(r,7) = [xol* + Y_ Yilxl® (1.2)
i=1



Here the integer n is the number of linearly independent characters, which is less than
or equal to the number of independent primaries, which we denote by p and refer to as
the “rank”. It is possible for multiple primaries to have the same character.! The positive
integers Y; in eq. (1.1) are the multiplicities of the characters, and the number of primaries
is given in terms of these by p = 1 + Z?;ll Y;. When n = 1, the only character is the
identity character, and since the vacuum state is unique and real we also have p = 1. In
this case we will refer to the resulting theory as a meromorphic CFT.?

A classification programme initiated in [1-3] and pursued by both mathematicians and
physicists in more recent times [4-36], is based on the fact that characters are vector-valued
modular forms (VVMF) of weight 0:

n=1
xi(vm) = 0i(7)x;(7) (1.3)
=0
where:
ab ar+b
= L(2,Z = — H 1.4

and H = {7 € C | Im(7) > 0} is the upper half plane.
For the partition function in eq. (1.1) to be modular invariant, we must have:

o'diag(1,Y;)e = diag(1, Yi) (1.5)

Characters that transform in this way under the modular transformations can be shown
to solve modular linear differential equations (MLDE) [2, 3]. Such equations have finitely
many parameters and these can be varied to scan for solutions that satisfy the basic criteria
to be those of a conformal field theory. These criteria correspond to the fact that each

character is holomorphic in ¢ = e>™ (except as ¢ — 0), and have an expansion of the form:
o0

Xi(1) =q* ) aicq®, sEL (1.6)
s>0

If the VVMEF correspond to a genuine CFT then these critical exponents, «;s, can be
identified with the central charge and (chiral) conformal dimensions as:

c
P = — hl 1.
« 24—1— (1.7)

with hg = 0 — a9 = —5; corresponding to the identity character of the CFT.
The coefficients a; 5, s > 1 should be non-negative integers for some choice of positive
integer a; o that provides the overall normalisation of each character. To satisfy the axioms

of CFT we must choose apo = 1 (non-degeneracy of the vacuum), while for each i # 0

'This occurs in particular whenever a primary is complex, since its complex conjugate has the same
character, but there are also more general cases of this phenomenon.

2Some authors restrict the word “meromorphic” to those CFT whose character is exactly modular
invariant without a phase, and hence c is a multiple of 24. However in this work we will use the term for all
one-character CFT, whose central charges can be any positive integral multiple of 8.



we define the integer D; = a;o. Since the MLDE from which characters are obtained is
homogeneous, the degeneracies are not uniquely determined without some additional input.
One tentatively chooses the minimum integral D; that make the coefficients a; s, s > 1, of
each character, non-negative integers and then checks for consistency. We discuss this point
in some detail in section 2.

In [23] VVMFs with the above properties were called “admissible”. For any admissible
VVMF, we define m1 = ag,1, the degeneracy of the first excited state in the identity
character xg. For a CF'T, this corresponds to the number of spin-1 generators in the chiral
algebra. The integers m1, D;, Y; will be important in what follows.

In general, admissible characters do not correspond to a CF'T, as we discuss in detail
below. While much of the literature cited above has focused on classifying admissible
characters, from the CFT point of view the result should be interpreted as a “superset”
of candidates of which actual CFTs form a subset. The problem of identifying this subset
has been addressed in varying degrees of detail, for small numbers of characters, in [3, 17,
18, 20, 24, 27, 28, 35-39]. In the present work we take this goal forward by completing the
classification of three-character CF'T with vanishing Wronskian index (explained below)
for any central charge, but excluding central charge = 8,16 where the classification of
admissible characters is itself problematic [21, 33-35]. The significance of our result is
that we decisively rule in, or out, every admissible character as being a CFT by making
an exhaustive list of bilinear pairings. In a different context, some recent work where the
distinction between consistent partition functions and actual CFTs is highlighted is [40, 41].

An important quantity in the classification procedure is the number of zeroes of the
Wronskian determinant of the characters in moduli space. Because the torus moduli space
has cusps, the number of zeroes can be fractional in units of %. Hence we define the
Wronskian index ¢ [2] to be an integer such that the number of zeroes is g. Certain values
of ¢ can be ruled out — we have £ # 1 in general, £ even for n = 2 [4], £ a multiple of 3 for
n =3, and again ¢ even for n = 4 [33].

Our focus in this work is on admissible characters with (n,¢) = (3,0). Progress
in classifying these was made in [3, 10, 17, 28] and more recently in three independent
works: [33-35] which all found a set of seven new solutions that had previously been
missed. Of these, the work of Kaidi, Lin and Parra-Martinez [33] was able to complete the
classification of admissible characters using a method based on [42]. In view of their proof,
the classification in [34] (originally restricted to ¢ < 96) is likewise complete. In the rest of
this work we will closely follow the notation of this paper. There is one caveat to the above
statements: there are infinitely many admissible (3,0) characters at ¢ = 8,16 [27, 33-35]
that are harder to classify and would need to be considered separately.

In the present work we start with the complete set of admissible characters (excluding
those with ¢ = 8 and 16) and make use of the coset construction [17, 43, 44] to complete
the classification of (n,¢) = (3,0) CFT. The cosets we consider are in the spirit of [17]
where the numerator is a meromorphic CFT with ¢ = 8N with N € N. However we go
far beyond this work by exhaustively tabulating all possible bilinear pairings with a total
central charge of ¢ = 8,16, 24, 32,40. Notably, even at ¢ = 24 we find interesting classes of
pairings that were not considered in [17].



A significant spinoff of our coset pairings is that we can use them to predict several
non-lattice meromorphic CFT at arbitrary high values of ¢ = 8 N. The results have been
presented in [45] and here they are placed in a larger context. Moreover we will also rule
out certain classes of meromorphic theories at ¢ = 32, 40.

Returning to the three-character case, the restriction on Wronskian index makes this
in one sense a weaker classification than that of [39] for two primaries, where there was no
restriction on the Wronskian index, but in one sense also stronger since the present work
has no restriction on the central charge. This should finally bring closure to a programme
for the “simplest” three-character theories (those with vanishing Wronskian index) that
was initiated over three decades ago in [3]. By contrast, the analogous problem for two
characters and vanishing Wronskian index was simple enough to solve in a single paper [2]
with completeness being rigorously proved more recently [21].

Apart from the fact that we restrict the Wronskian index but not the central charge,
the approach in the present work has some other important differences from [39]. Here
we start from a given finite set of admissible characters, then look for bilinear coset-type
relations for them based on their g-expansion. Thereafter we use embedding techniques
to identify one of these as a CF'T if the other one is known, We also allow any number of
primaries as long as the number of characters (dimension of the VVMF) is three, while the
rank (number of primaries or “simple modules”) can be larger. We do not impose unitarity,
but always work with the unitary presentation of the characters (the most singular term is
treated as defining the central charge).

In section 2 we start by describing the methodology used and provide a list of VVMFs
that potentially describe three-character CFTs but were so far uncharacterised. Thereafter
we summarise some relevant facts about embeddings, extensions of chiral algebras and
bilinear or “gluing” relations. We also review a class of admissible characters that have
formally negative fusion rules (as computed from the Verlinde formula [46], after extending
if necessary the modular S-matrix to have the same rank as the number of primaries). Some
of these have been identified as “Intermediate Vertex Operator Algebras” [14]. Section 3 is
devoted to the detailed presentation of our results, with tables detailing the coset pairs at
the level of VVMFs and descriptions of the tables that explain how individual entries are
either identified with definite CF'Ts or ruled out. We summarise our results and discuss
significant general features of our classification in section 4. At the very end we abstract a
complete table of unitary CFTs with three characters and zero Wronskian index (excluding
¢ = 8,16 as mentioned above). The reader who is only interested in the results may skip
directly to section 4.

While this work was in progress we came to know of [36] which has significant overlap
with table 8 of our paper which positively identifies 6 of the 41 previously uncharacterised
solutions. However, in the present work we are also able to unambiguously categorise all
the remaining 35 solutions, separating them into 20 that are of IVOA type and 15 that we
can rule out as CFTs, completing the classification process. This process makes use of most
of the remaining 20 tables in subsections 3.1-3.5. Also, as mentioned above, we find both
positive and negative predictions for classes of meromorphic theories at ¢ > 24.



2 Methodology and background

2.1 MLDE and coset construction

As explained in the Introduction, the starting point of the classification procedure in
which we are working is the construction of admissible characters using MLDEs. Here
we explain some important subtleties in this construction and then go on to discuss the
coset construction which we employ in the present work to characterise which admissible
characters correspond to CFTs.

Below eq. (1.7) we defined the degeneracy D; of each non-identity character x; as the
minimum integer such that the g-series for the corresponding character has non-negative
integral coefficients. This assigns a tentative normalisation to each non-identity character.
As explained in [3], the test of having found correct degeneracies D; is that the S-matrix
in a basis of primaries is unitary. Note also that for an affine theory (WZW model), the
degeneracy D; for a given x; is the dimension of the representation of the finite-dimensional
Lie algebra in which the i primary transforms, so in this case it is uniquely determined.

In view of these observations, at some stage it may be needed to change the degeneracy
of a primary from the initially determined one to a multiple of itself. However the possibility
of such a change is subject to a constraint. Suppose we have a solution to a given MLDE
where the degeneracies D; as well as the multiplicities Y; have been tentatively determined
(the Y;s can be computed for MLDE solutions using the procedure given in [3]). If we
redefine the D; by multiplying by an integer factor, the Y; will also change in such a way
that the product Y;D? remains fixed. This can be seen by writing the partition function as:

2

n—1
Z(r,7) = Ixol* + >_ YiD} , (2.1)

a; a;
<1+”1q+1’2q2+...>

where everything except Y;D? is uniquely determined by the MLDE. Then modular
invariance uniquely determines the Y;Di2 for each ¢. Thus the change D; — 0;D; leads to
the scaling Y; — 3;—5 The new Y; will be integer only if the old one was divisible by 62. This
is a stringent constraint — for any given pair Y;, D;, rescaling of D; is only allowed if the
original Y; are divisible by the square of an integer. This point is illustrated in considerable
detail in the discussion of table 8.

In fact there are MLDE solutions for which both D; and Y; cannot simultaneously be
made integral. These cannot be CFTs and are marked with a “strikethrough” in table 1
(thus they appear as HH or V). We note that none of these solutions appears in [33], who
presumably eliminated them at the outset for the above reasons, however some of them do
appear in [35]. Interestingly even these VVMFs satisfy bilinear relations, and for complete-
ness we display these in our subsequent tables where they continue to be marked with a
“strikethrough”. Though they are inconsistent as CFTs, it is still striking that they satisfy
bilinear pairings at all, and this might prove useful for the general understanding of VVMFs.

Next we describe one of our main tools, the coset construction [43, 44, 47]. This is a
general class of relations among CFTs, and we will only use the class of cosets where the



numerator factor of the coset is a meromorphic CFT, as we explain below.? Pick a set of
admissible characters x;,7 = 0,1,...n — 1 and collectively denote it by WW. Suppose this
set has Wronskian index /¢, central charge ¢ and conformal dimensions h;,i =1,2,---n — 1.
W will be said to have a “bilinear relation” with another set of admissible characters x;,
collectively denoted W, with ¢ running over the same range and having Wronskian index /,
central charge ¢ and conformal dimensions h; if the following holomorphic identity holds:

n—1
Xo(T)%o(T) + Y dixi(r)%a(7) = X (7) (2.2)
i=1

where x*(7) is a polynomial in the Klein j-invariant times possible factors of j(q)% or j(q)g,
such that the result has non-negative integral coefficients in a power series in ¢ = €2™".
Such a relation can only hold if x;(7) transforms the same way as the complex conjugate

X;(7) under modular transformations. Then the d; are positive integers satisfying:

where p is the representation under which the x; transform.

From its properties, x*(7) is also an admissible character. It may potentially correspond
to a meromorphic CFT of central charge ¢+ ¢, but it is not necessary that such a CFT exists.
For example at ¢ + ¢ = 24 we have an infinite family of admissible characters but only a
finite number correspond to CFT’s [37]. Bilinear pairings are also known to hold for quasi-
characters [23, 30] which are integral but not admissible due to negativity of some coefficients.

Comparing eq. (2.3) with eq. (1.5) we see that we must have d; = Y;. Physically this
is because on the one hand the modular transformations of W, W are conjugate to each
other (where W is the complex conjugate VVMF to W with characters ;(7)), so that the
partition function is invariant. On the other hand the modular transformations of W, w
are also mutually conjugate, so that the bilinear relation is modular invariant — A slight
subtlety here is that the bilinear relation can acquire a phase under modular transformations
if ¢ = 24n +8,24n + 16 with n a non-negative integer. However this phase can be absorbed
into the transformations of x and it is still true that d; = Y;.

Note that if the degeneracies of one of the members of the pair (D; or D;) are not the
correct ones then we may not find d; = Y;. This will be a useful diagnostic in what follows.
However there is another condition under which it is possible to have (di,d2) # (Y1,Y3),
that arises when the dual pair is made up of affine theories of the type Dy, 1. In such cases
the representation of SL(2,Z) on the characters is reducible (see v1 of [28]) and as a result
there are multiple ways to combine the characters into a modular invariant. This will be
explained in more detail in section 2.4.

The bilinear relation eq. (2.2) does not imply that any of x(7), X(7), x’*(7) correspond
to a genuine CFT. However, if x, ¥ and H are all CFTs, denoted C,C and H respectively,
then the bilinear relation is equivalent to the coset relation:

. H
C=7% (2.4)

3This is the form studied in the physics literature in [17, 18, 36, 39] and in the mathematics literature in,

for example, [48-50].



This means that the chiral algebra of C is the commutant of the embedding of the chiral
algebra of C in that of . The representations of the commutant algebra also follow from
this embedding, hence the coset completely defines a CFT.

If both C and H correspond to CFT’s whose stress tensor is given by the Sugawara
construction in terms of Kac-Moody currents, then by embedding the currents of C in those
of H one defines the stress tensor of the coset theory C. This will provide a relatively easy
way to prove the existence of a coset relation [17]. However it is also possible for eq. (2.2)
to be satisfied when H does not have any Kac-Moody currents (an example is the Monster
Module [51, 52]). In this case the coset construction of [43, 47] does not strictly apply, but
the more general one of [44] does. In these cases it is easier to verify the bilinear relation
rather than compute the commutant of C in H. One such example, studied in the context
of MLDE and holomorphic bilinear relations [18] arises when C is the Ising model and C is
the Baby Monster CFT [49].

The existence of bilinear relations between an admissible solution W, another admissible
solution W and an invariant (up to a phase) character x** provides us a number of ways
to decide whether given admissible characters do or do not correspond to CFT. These are
as follows:

e When W and x™ are both known CFTs C,H, the bilinear relation suggests that w
may correspond to one or more CFTs C. This can then be accurately confirmed by

checking for the existence of one or more suitable embeddings of C in H that would
define C.

e When W, W are both known CFTs C,C, we may conclude that the character y*
corresponds to a CFT H that can be called the “gluing” of C,C.* Several new
meromorphic CFT were recently discovered in this way in [45].5

o When a bilinear relation exists and W is a CFT C, but the character x™ is known not
to correspond to a CFT, the bilinear partner ¥V cannot be a CFT. For if it were, then
the bilinear relation would predict that x* is a CFT, resulting in a contradiction.

¢ When a bilinear relation holds and W corresponds to a CFT C but W is known not
to correspond to any CFT, it can sometimes be argued that x” does not describe a
CFT. The naive reasoning is that if x* were a CFT H, then by taking the coset H/C
we would define a CFT C corresponding to the admissible character W, resulting in a
contradiction. However a certain condition needs to be satisfied in this case, so we
will explain the statement more precisely in the discussion on table 16 where it is
implemented for the first time.

We see that the bilinear relation is a powerful diagnostic tool for relating admissible
characters to CF'T or ruling them out as being CFT.

4Rigorously this is true for CFTs with up to 4 primaries, for which the Modular Tensor Category is
unique given the modular transformations of the characters [53].

SHowever, again for cases involving Dan 1, there can be ways to pair C, C that do not lead to a meromorphic
theory because the coefficients d; in the pairing are not integral. We will remark on these as they are
encountered.



Let us note here that the recent work [36] also makes use of the coset construction
to identify some admissible three-character solutions as CFT, however there are some
differences in the criteria used. We will comment on the cases of overlap as we go along.

In [17] the following relation between the data of characters x; and their coset dual y;
was derived:

~ n—1
K—l—g—nQ—i—(C+C—1)n—62(hi+ﬁi) (2.5)
4 i=1
Here we are interested in the case n = 3. Because ¢ + ¢ must be a multiple of 8, we write
it as 8N where N is an integer.® Since the right hand side of the bilinear relation is a
character with integer dimensions (up to an overall power of ¢), we must have h; + h; = n;,
an integer > 1, for each i. Thus the above relation can be written:

€+l7:6<N+1nzlni> (2.6)

i=1
As both ¢, ¢ > 0 we have the bound:

n—1

> ni<N+1 (2.7)

i=1
If this bound is saturated it means £ = £ = 0 and we have the possibility of dual (3,0)
pairs. Thus we will proceed by listing all possible values n; that saturate the bound for
each NV, and then classifying dual pairs with these n;. This technical point is of importance
because it seems to have been missed in much of the previous literature, starting with [17]
that only considered a special sub-class of cosets where each n; > 2. More general cosets of
meromorphic theories were studied recently, and apparently for the first time, in [39] in the
context of theories with exactly two primaries.

The values of n; have considerable significance for the structure of the bilinear pair,
which we now explain. Suppose a bilinear relation holds between CFTs C,C with Kac-Moody
algebras b, b, and they pair up to a CFT H with Kac-Moody algebra g. Then h must be
the commutant of § in g. Now suppose that for any of ¢ = 1,2 we have n; = 1. This means
that some spin-1 currents in the theory # arise as “composites” of primaries in C,C. This
in turn means the total number of spin-1 currents of C,C is strictly smaller than that of
#, in other words dim b + dim h < dim g, so the embedding of h in g is a non-trivial one —
typically § is embedded into a simple factor of g. Such cases were discussed for the case of
two primaries in [39]. On the other hand whenever all n; > 2, no currents of A can arise as
composites of primaries of C,C. Therefore we have dim § + dim h = dim g. This can only
happen if g is non-simple and h corresponds to one or more of its simple factors. Such
cases were first studied in [17], and they are simpler because the coset merely “deletes” the
simple factors of g corresponding to b leaving behind the remaining simple factors as the
chiral algebra b of the coset theory.

At this point it is useful to briefly describe how the concept of “fusion rules” applies to
VVMFs even before they are identified with CFT. In the MLDE approach to classification

®In [17] the convention was to write ¢ + & = 24N where N is a multiple of 1.



of RCF'T, one first finds admissible character solutions that transform covariantly under
SL(2,Z) and only later addresses their identification with CFT. Thus we can calculate
their modular S and T" matrices at the outset. Inserting the S-matrix into the Verlinde

formula [46] one can then compute the following quantities:”
SuSjiSi!
k il9l1P Kl
N = E S0, (2.8)

l

As long as the S;; are only a property of admissible characters, the quantities Ni’; have no
particular physical meaning. But once the characters are identified with CFTs then these
quantities necessarily become the fusion rules of that theory. Hence by abuse of notation
we will refer to NZ-]; as “fusion rules” even when no CFT interpretation has so far been
assigned to the corresponding characters. An important point that will come up below
is that sometimes one or more of the N{; is a negative, rather than positive, integer. We
refer to such characters as being of Intermediate Vertex Operator Algebra (IVOA) type,
following [14].

We now give a short summary of the complete classification of admissible VVME’s with
three characters and ¢ = 0 (the characters are extracted from the most recent papers [33-35]
and expressed in the notation of [34]), referring the reader to the original references for
more details. The admissible character sets fall into five categories, labelled I,1I,...,V.
Let us briefly review what the various categories mean.

Category I. The admissible VVMFs belonging to this category are all 3-character theories
that are affine or tensor products of affine theories, together with the Ising CFT M (4,3)
and the unitary presentations® of M(7,2) and M(5,2)%2.

Category II. Most of these are admissible 2-character solutions together with an “unsta-
ble” character (or sometimes an admissible 1-character solution together with two “unstable”
characters). By unstable, we mean that this character has rational coefficients in its g-series
that cannot be made integral by any choice of normalisation. Such a case was first discussed
in [2] and more general examples were found in [34]. There are also some type II cases
where the conformal dimensions degenerate — two of them become equal — and in this
case the MLDE has a logarithmic solution. Due to these reasons, type-II VVMFs are not
genuine 3-character solutions and we do not explore them further.

Category III. The admissible VVMFs belonging to this category are those solutions
of the (3,0) MLDE which appeared in [28] but not in [17] and hence were not previously
categorised as CFT. In this category, there exists special infinite sets of solutions, at ¢ = 8
and ¢ = 16 that we explain in appendix B. We will not attempt to include these in our
classification, though some of the known cases will appear in our tables.

"This can only be done once a unitary S-matrix has been found. In general S does not come out to be
unitary, this problem arises when multiple primaries have the same character. In that case the space of
primaries has to be manually enlarged and the S-matrix recomputed in that space, as explained in [3].

8By unitary presentation we mean the choice of the most singular character as the identity. However,
this does not imply there is a unitary theory.



Category IV. The admissible VVMFs belonging to this category are those solutions of
the (3,0) MLDE which appeared in [17, 18] where they were precisely characterised as CFTs
via the coset construction.

Category V. There are seven admissible VVMFs in this category, these were indepen-
dently discovered in [33-35] and not known previously.

We see that all entries in categories I, II, IV have already been identified as CFT’s or
else shown to be inconsistent [34]. Thus we need to focus on the characterisation of classes
IIT and V which so far have not been identified as CF'Ts. To characterise them, we will
study their bilinear relations with solutions in category I and IV (and amongst themselves).

In table 1 we have listed all solutions in categories IIL,” (except for the infinite sets
having ¢ = 8 and ¢ = 16 noted above) and V. The subscripts label the set in order of
increasing central charge, thus for example Vig (¢ = 12) lies between IIl;7 (¢ = 12) and
Il (c = 22). As explained below eq. (1.6), the integer my is the dimension of the weight-1
space in the identity character, while D;,7 = 1,2 are the ground-state degeneracies of the

non-identity characters.

Note from this table that none of the entries contains a primary with integer conformal
dimension, or a pair that differ in dimension by an integer. For this reason it is not possible
to make a non-diagonal modular invariant from the characters, justifying our choice in
eq. (1.2) to consider only diagonal invariants.

In the last column of table 1, labelled “sign(fusion)”, we list the signature of the fusion
coefficients of the concerned VVMF, computed using eq. (2.8). However we do not bother
to compute these for solutions of HHE, M type. Also, as noted earlier this computation
requires us to enlarge the matrix in cases where there are more than three primaries, and
this rapidly becomes tedious. So we restrict this calculation to solutions that have at most
four primaries. The notation ‘- - -’ in the last column of the table denotes that we did not
compute the fusion coefficients of these solutions for one of the reasons above. Fortunately
these will also not be needed. In the remaining cases a ‘4’ sign in the last column denotes
that all the fusion coeflicients are non-negative while a ‘—’ sign denotes that at least one
coefficient is negative. The latter will be called IVOA-type solutions, and we discuss them

in more detail in section 2.5.

In table 2, we list the category III infinite sets of admissible character solutions at
c =8 and ¢ = 16. More details on these infinite sets are in appendix B.

As mentioned above, the tables in the following sections will include the HF and W
entries in table 1 even though they are already ruled out from being CFTs. For completeness,
our tables will also include some already characterised theories from [34], as their bilinear
pairings are interesting and could be useful for subsequent work.

9Note that ITIs7 in table 1 is actually E?? and was identified in [34] as a category I solution. However it
has a negative fusion rule and therefore is of IVOA type. Here we include it in category III as it will pair
up with other IVOA-type characters in this category.
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" ¢ (h,hs) m (D1, Dy) (Y1,Y3) sign(fusion)
I, | 22 (2,3 (3,2) (1,1) -
I, | 2 (L3 (3,5) (1.2) +
oL, | 4 (43 88 (11,44) (1,1) -
I, | 3 (34 144 (12,45) (1.2) -
M | 2 (4,9 156 (13,78) (1,1) -
HE | U (L.3) 255 (17,221) (351

oI, | 9 (3,8 210 (10, 285) (1,1) -
Iy | £ (2,8 22 (11,275) (1,2) -
oI, | 4 (L) 253 (11,242) (5. 1)

Hig | 9 (%) 261 (9,456) (33, 1)

Hip | 2 (3.3) 266 (19,703) (55> 1)

L, | € (2,2) 221 (17,782) (1,1) -
Hig | 10 (L3 210 (5,960) (3.1)

Hig | 2 (3,3 273 (21,1225) (15, 1)

His | 11 (3,3) 275 (11,1496) (3, 1)

Hig | 2 (1,3 276 (23,1771) (1)

MLy | 12 (3,D) 222 (25,1275) (2,2)

Vis | 12 (3,3) 318 (9,4374) (1,1)

I, | £ (2,3 275 (25, 2325) (1,1) +
M | 13 (5,%) 273 (26,2600) (2,1) +
L | £ (2,3 270 (54,2871) (1,1) +
M, | @ (41 136 (119, 1700) (1,2) +
Hiz | 8 (2,2) 374 (119,12138) (55, 1)

M, | 10 (2,4) 325 (55,2925) (1,1) -
Il | 190 (4,12) 380 (55,11495) (1,1) -
e | 2 (2,3 26 (116,3393) (1,1) +
M,y | 2 (4,8) 380 (57,3249) (2,1) -
Mg | B (3,2) 437 (57,11875) (1,2) -
Il | 1% (8, 1) 378 (117,3510) (1,1) -
Il | 18 (4,13) 456 (39,20424) L1) -
s, | 32 (4,3) 231 (528,4301) (1,1) +
I3, | 16 (8,10) 348 (725,1972) (1,1) -
s | 2 (S,1) 336 (770, 1452) (2,1) -
Hi; | 8 (L,2) 534 (33,55924) (=5 )

M5 | 12 (2,19 248 (2108, 2108) (1,1) -
Hip | 18 (L3) 598 (25,221 - 21°) (3, 1)

Ml | 2 (85) 92 (1196, 7475) (1,2) +
Hig | 2 (1) 690 (299, 178802) (%,1)
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Vo | 20 (3,2) 80 (2430, 17496) (1,1)

Vi | 20 (3,3) 728 (12,2 - 31%) (1,1)

Var | 20 (2D 890 (135,102 - 3%) (1,1)

L, | 28 (1,9 27 (2295, 42483) (2,1) +
Hig |18 (2 1) g6 (833,3015426) (1355 1)

My | 18 (4,12) 1404 (459,153 - 5°) (1,2) +
I | 22 (3,9) 66 (77-26,11-211) (1,2) +
IMe | 22 (3,3) 1298 (154,847 - 210) (2,1) +
I, | 126 (&, 12) 78 (5070, 27170) (1,1) -
Il | 136 (3,18) 1248 (130, 799500) (L,1) -
Hig | 5 (3,3) 1640 (1595, 956449) (16:1)

5 | 23 (3,12) 23 (4600, 23 - 211) (1,2) +
IIs, | 23 (L,3) 2323 (575, 32683 * 32) (2,1) +
I, | 110 (5,2) 58 (4959, 27550) (1,2) -
Hiy | U6 (4,13) 1711 (1653,910803) (25,1)

I, | 18 (L33 41 (4797, 50922) (1,1) -
Hiy | 4 (123) 4371 (4371, 1135003) (1:1)

Hig | 26 (LD) 1118 (117,3315 - 214) (513-1)

Hir | 122 (215 1536 (2392, 47018049) (535+ 1)

Vss | 28 (3,12) 1948 (225,11 -2 - 314) (1,1)

Hig | 30 (3,1) 2778 (539,14421 - 24) (3:1)

Higp | & (8,1) 3599 (47763, 264580485) (3tz,1)

I | 31 (L) 5239 (9269, 2295147 - 27) (35,1)

Mgy | 126 (4,18 3612 (14877, 250774426) (= 1)

Ves | 36 (2,2) 3334 (324,8 - 3%0) (1,1)

Ver | 44 (L,1) 3146 (13,19 - 3%%) (3,1)

Higs | 25 (£,3) 13110 (12971091,4897835680923668)  (3rragess- 1)

Table 1. Previously uncharacterized admissible character solutions to the (3,0) MLDE. The ones of
type HE and M have Y; that are fractional and cannot be made integer by rescaling the degeneracies.

# | ¢ (hi,h2) my (D1, Ds)
or | 8 (3,1)  N\{248} (1,1)

1

III" |16 (1,3) N\{496} (1,1)

Table 2. Previously uncharacterized infinite familes of admissible character solutions to the (3,0)
MLDE with ¢ = 8, 16.
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One of the intriguing features that will come up is that Virasoro minimal models with
c < 1 appear in the coset pairings, thus making it clear that the coset construction is more
general than pairings of theories with Kac-Moody symmetry. This feature was already
foreseen in the mathematics literature in [44, 48] and a few examples have appeared in the
physics literature in [18, 39, 45].

2.2 Embeddings of Lie algebras

In this section, we gather facts from Lie algebras, affine Lie algebras etc that we will need to
understand coset relations. Typically, the CFTs of H and C (2.4) have chiral algebras which
contain affine Lie-subalgebras, whose Lie algebras are such that the Lie algebra associated
with C is a subalgebra of that of H. Denote by h — g the corresponding embedding. Here
both the subalgebra h as well as the embedding map are crucial data. The same subalgebra
can be embedded in multiple ways and can potentially result in different cosets; we will see
examples of this phenomenon in the next section.

First we study maximal embeddings; when there is no Lie-subalgebra of g that properly
contains . There are two kinds of maximal embeddings: regular (R) and special (S). The
rank of b is equal to that of g in a regular embedding and is smaller in a special embedding.
One can obtain the regular and special embeddings of simple Lie algebras readily from the
literature; we use the LieArt 2.0 package (see [54]) in Mathematica to obtain all possible
maximal embeddings of a given Lie algebra. For example Fg has five regular maximal
embeddings, namely Dg, Ay ® Ay, g ® Ao, E7 ® Ay and Ag and six special embeddings,
namely Go ® Fy, A1 ® As, Co, Ay, A1 and Ay. The last three correspond to A; embedded
into Fg in three different ways; one way to characterize this difference is via the embedding
index, which we discuss below. After having understood maximal embeddings, one studies
non-maximal embeddings as follows. Let [ < § and h — g be maximal embeddings. By
composing the two embedding maps, one obtains a non-maximal embedding [ — g and all
non-maximal embeddings are obtained in this manner, in steps of maximal embeddings.

Now given an embedding b — g, maximal or non-maximal, there exists an important
quantity called the embedding index x. € N which can be computed as follows. Pick any
non-trivial irrep of g say A9 and consider its branching

A9 = @; AP, (2.9)
where A?s are irreps of h. The embedding index is then computed using the formula:
4 (ah)
Te = W, (2.10)

where £ (Af) denotes the Dynkin index of the irrep A?. Note that even if z. is computed
in (2.10) using a particular irrep and its branching (2.9), one obtains the same answer for
any finite-dimensional irrep. For example, the embedding indices of the various subalgebras
(occuring in the maximal embeddings) of Eg are given below in superscript. For regular
embeddings we have Dél), Afll) EBAS), Eél) EBAS), Eél) @Agl) and Aél) and for special embed-
dings we have Ggl) ® F4(1), Aglﬁ) ® A§6), 512), A§520)’ A§760) and A§1240). Computations of
branching rules, Dynkin indices, embedding indices etc are performed using LieArt 2.0 ([54]).
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The relationship between the affine Lie algebras associated with the CFTs of H and C
in (2.4) can now be made explicit. For affine embeddings of the form, b; — g, the levels
follow the rule (see section 14.7 of [55]):

k=kz.. (2.11)

Thus, for example, when H = FEg 1, some possibilities for C are Dg 1, A41, Fe1, Er1, A1,
Az, Ga, Fy.

Convention. Throughout this paper, we think of the Ising CFT M(4,3) as By 1, A2 as
B, Ca1 as By, U(1) (with the appropriate radius) as D 1, A%% as Dy and A3 as D3 ;.

2.3 Extension of a chiral algebra

Consider an affine theory based on a (not necessarily simple) Kac-Moody algebra gj. Its
n-character extension, denoted by &,[gk], is a new theory where the chiral algebra has been
extended by adding new generators. The theories based on g and &,[gi] have the same c.
The characters of the extension are linear combinations of characters of the original theory
that differ in dimension by integers and as a result the extension will have fewer characters
than the original affine theory. It also has a different Wronskian index in general. Note
that a given affine theory may have more than one extension.

One can also consider extensions of more general chiral algebras. For example, a direct
product of Kac-Moody and ¢ < 1 Virasoro minimal models can be extended in the same
way. If there is a single minimal model module of central charge ¢, we will denote the
extension by &,[g ® L(c)] and similarly for the more general case. Such extensions have
arisen in [39, 45] and will also arise in the cases we consider.

2.4 More about coset relations

As we saw above, coset relations between a pair of CFTs (C and C) or admissible characters
(W and W) are bilinear relations between characters of the form:

2

X" =xo%0 + Y dixiXi- (2.12)
i=1

Here, x0, X1, X2 are the characters of W and xg, X1, X2 are the characters of W. (dy1,ds) are
positive integers. X%" is the character of a meromorphic CFT. Sometimes we have the situa-
tion of “self-cosets” when the same CFT/admissible character solution is both W as well as
W. Also sometimes (as we will see this happens when Dy, 1 are involved) there may be more
than one pairing of the same sets of characters: one with xo = X0, X1 = X1, X2 = X2, Which
results in a standard bilinear relation as in (2.12) with a pair of positive integers (dj,d2),
and one or more distinct ones when the characters are paired differently as described below.

In eq. (2.12), the characters y; and y; are understood to be properly normalised with
integral ground-state degeneracies and multiplicities that have been determined. Let the
multiplicities of x;, X; be Y;,Y;. Since the standard coset pairing is a pairing at the level
of primaries these two multiplicities must be the same for each i. Moreover, by modular
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invariance it follows that the integers d; in the bilinear relation are also equal to these
multiplicities, thus d; = Y; = }7@ Hence from now on, we use d; to denote both Y; and }7;
whenever the pairing is of standard type. We will comment on the non-standard pairings
as and when they arise.

We now describe in detail three infinite families of coset pairs of CFTs and compute
their (di,ds) values. Members of these families will occur often amongst the many coset
relations between (3,0) admissible characters that we compute and tabulate in the next
section. In one of the families below the non-standard pairings will also be illustrated.

Example 1. We start with the case where the meromorphic CFT is the Eg; CFT and the
coset pairs are B3 1 and By 1. Fg contains a regular maximal sub-algebra Dg which contains
a special maximal sub-algebra Bs ® Bsy. Thus By ® By — FEg constitutes a non-maximal
embedding. One finds that the commutant of B3 in Eg is B4 and vice versa. This then
means that if B3 is taken to be the Lie algebra associated to the denominator theory C
n (2.4), then the Lie algebra associated to the coset theory C would be By. After computing
embedding indices and levels, this means that the coset of Eg by B3 is B41 CFT, and
vice versa.
The characters of B3 1 and By satisfy a bilinear relation with XM = j%:
j% =xoXo+d1 X1 X1 +daxzXa (2.13)
2 2 16 16

We can compute the (d1, ds) values for this relation using Lie algebra representation theory.
For this, let us count spin-1 currents on both sides. On the L.h.s. we have the 248 currents
of Eg spanning the adjoint representation. This representation decomposes as follows into
irreducible representations of Bg @ By:

248 = (21,1) & (1,36) & (7,9) & (8, 16) (2.14)

This means that on the r.h.s. of eq. (2.13), the 248 currents come from: (i) 21 spin-1 currents
of Bz 1 combined with the identity from By, (ii) 36 spin-1 currents of By combined with
the identity from Bs 1, (iii) the product of primaries in the 7 and 9 representations of B3
and By, (iv) the product of primaries in the 8 and 16 spinor representations of Bz and
By respectively. Of these, (i) and (ii) can be found in the first term of eq. (2.13), (iii) in
the second term and (iv) in the third term. Since there are no multiplicities in the above
decomposition, it follows that di = dy = 1.

This example is a special case of a more general phenomenon where the meromorphic
CFT is the one-character extension £;[D, 1] for r = 8,16,24,32,40... of which Eg is the
¢ = 8 case. The single character of each of these CFTs is the modular invariant obtained by
combining the identity character x(o (which at level-1 contains the adjoint representation
2r? —r of D,) and the character Xz for the spinor representation 2*~! of D,. We will find
several coset pairs of admissible characters that correspond to the CFTs C = B, 1 and
C= B,, 1 for r1 + 72 + 1 = r where r is a multiple of 8, that satisfy the following bilinear
relation to the above meromorphic extension of D, 1:

&1[Dr 1]
Xo i

= XoXo + dq X )2% + do lelg-l )22?;-1 (2.15)
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The relevant Lie algebra representation content of each of its terms comes from the following
two relations:

2r2 —r=(2r +ry,1) ®(1,2r3 +13) @ (2ry + 1,2r3 + 1)

21‘71 — (21‘1721‘2) (216)

Now the first two terms on the right hand side of the first line of (2.16) give rise to the
spin-1 contributions in the product of identity characters (first term of eq. (2.15)), while
the third term gives rise to the spin-1 contributions in the product of the characters in
the fundamental representations (second term of eq. (2.15)). Meanwhile the spinor of D,
decomposes into the product of spinor reprsentations of B,,, By, (second line of eq. (2.16))
and this corresponds to the last term in eq. (2.15) (note that this contribution in general
has spin % rather than 1). It follows that dy = 1,ds = 1. We also learn that the dimensions
of the spinors of the coset pair add up to g rather than 1, and this corresponds to the
integer no defined in eq. (2.6). The commutant of B,, inside D, 4r,+1 is By, (because there
is a special maximal embedding Bﬁ}) ® Bg) — Dy 4ry+1) S0 we can identify B, ; with the
denominator theory C with & [Dy,4r,+1,1] as the numerator theory H and B,, 1 as the coset

theory C. Of course one can also exchange the roles of B,, and B,,.

Example 2. Another infinite family of coset pairs is D,, 1 and D, pairing up in a
bilinear relation with a meromorphic extension & [D, 1| where r = 71 + rp is a multiple of 8.

The affine theory D, ; has three characters: the identity character xo, the vector character

x1 with conformal dimension % and the spinor and conjugate spinor (two representations

2
with the same character) Xz with conformal dimension g. The bilinear relation for the

coset pair of D, 1 and D, 1 is:

E1[Dr ~ ~ ~
Xol[ ,1] :XOXO+d1X%X%+d2X% X% (217)
and the Lie algebra representations decompose as:
2r? —r = 2r2—r,1—|— 1,21‘2—1' + (2ry, 2r
(2rf —r1,1) + (1,2r3 — r2) + (2ry, 2r3) (2.18)

251 = (2ri-1,2m27 1) 4 (2t 2raT))

The first two terms on the right hand side of the first line in (2.18) are associated with the
product of the identity characters while the third term corresponds to the product of the
characters in the fundamental representations (hence d; = 1), and these terms are associated
to spin-1 generators on both sides. The two terms on the right hand side of the second line
in (2.18) correspond to the product of the characters in the spinor representations and since
there are two terms we find do = 2. These are associated to spin-g generators. Finally we
note that the commutant of D,, inside Dy, 4., is D,, (because there is a regular maximal
embedding D,(n}) &) Dg) = Dy, 4r,) which means we can choose D,, ; for the denominator
theory C with £1[Dy,4r,,1] as the numerator theory H and get Dy, ; for the coset theory C ;
again the roles of D, , D,, can be exchanged.

Interestingly, when r1, ro are both multiples of 4 there is another way to pair them up

to a meromorphic theory that is not D, 4, 1. As an example, consider the pair D121, D121
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(both members of this pair are the same, but that is irrelevant to the discussion). The
non-trivial conformal dimensions for each factor are %, % Of these, the latter — the spinor
representation — occurs twice because of chirality. Thus (Y7, Y2) = (1,2). We find that
they have a bilinear pairing to the meromorphic theory Doy 1 as discussed in subsection 3.3.
This is consistent with the fact that:

AU — Doy (2.19)

In this pairing, the vector primaries with h = % of each D1s pair up to make (24)% = 576
spin-1 fields that, together with the 276 generators of each D12, make up the 1128 generators
of Dy4. This is a special case of the counting above. This pairing relies on the existence of
a modular-invariant extension of Dog which is a general phenomenon for all Dg,. We may
therefore consider this a “standard” or “default” pairing.
However we also find another coset pairing in which the vector representation with
h = % for each D19 combines with one of the spinors with h = % of the other as shown in
table 8. We see that this time new spin-2 generators arise, but no new spin-1 generators are
created. As a result the meromorphic theory formed by this pairing still has Kac-Moody
algebra (D121)®2. The pairing is:
Xo%o + X1 X3 + xa Xy = xPe0T = j(r) — 192 (2.20)

1
2
and corresponds to the coset:

= Dig1 (2.21)

It exists because of the special modular invariant & [(D12,1)®?] which is entry 66 of [37].
Notice that in eq. (2.20) not all primaries are used, since each spinor occurs only once
rather than twice as in the affine theory Dja;. Comparing with eq. (2.12) it seems that
we effectively have (di,d2) = (1,1), and therefore (dy, ds) # (Y1, Y2), but a better way to
think of it is that for such special pairings, (d;, d2) are not associated to multiplicities of
primaries at all.

This point becomes clearer if we consider two copies of Dig1 which pair up in two
different ways to a meromorphic ¢ = 32 theory, corresponding to the distinct cosets:

——— =D161, — = =D (2.22)

Now Dig has (hi,h2) = (3,2) and hence there seems to be only one bilinear pairing
involving the vector representation having h; = %, where it pairs with itself. The result is
easily seen to be £;[D3g1]. One may then wonder what is the other pairing leading to the
second coset. The resolution is that in the other pairing we skip the vector representation
entirely and take the modular-invariant combination (up to a phase) xo + X2 as the single

character of each factor, then multiply them. The resulting bilinear relation is:

(x0 + x2) (X0 + X2) = XoXo + XXz + X2Xo + x2X2 = xEPe)® — j(7) 4 248 (2.23)
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Thus in this example the meromorphic extension of the square is actually the square of
a meromorphic extension of each factor — and the corresponding 32-dimensional lattice
is the direct sum of two independent 16d lattices (this was not true for the two ways of
pairing Djg 1 however, where the resulting extension is not the product of extensions). In
this situation we again see that the numbers (di, d2) are not meaningful per se and should
not be compared to (Y7, Ys). Fortunately, as emphasised above, this issue arises only for
coset pairs involving affine theories of type Dy 1.

Example 3. The third and last example of an infinite family of coset relations is based on
(1)

the maximal special embedding B,”; < D,. The commutant of B,_; inside D, is trivial;
one can see this from the fact that the branching rule for the adjoint representation of D,
contains no singlets. This means that when &£;[D,, 1] is taken to be the numerator theory
‘H and B,_1,1 as the denominator theory C, then the coset theory C is a CFT with a chiral
algebra containing no Kac-Moody currents. Comparing central charges, we see that this
CFT has c = % Since it is unitary, it has to be the Ising CFT, equivalently the M (4,3)
Virasoro minimal model. We thus have the coset pair, B,_1; and M(4,3); its bilinear

relation is:

&11Dr,1 ~ ~ ~
N = xoxo + d X1X1 + da X21 Xo (2.24)
where Yo, X1, X2 are the characters of the Ising model. The Lie algebra representation
content is:

r2r-1)=(r—1)2r—-1)®2r—1 (2.25)

Additionally the spinor representation 2*~! of D, goes directly into the spinor of the
same dimension for B,_;. Matching the dimensions of the representations in (2.25) and
comparing with (2.24) we conclude that d; = 1,ds = 1. The coset pair relations amongst
(3,0) admissible characters feature this example for r = 8,16,24,32,40. This family of
examples can be subsumed under Example 1 above if we denote the Ising CF'T by By ;.
Following the standard formulae for B, ; we see that By 1 should have ¢ = %, hi1 = %, hy = %6
which is precisely the Ising model.

2.5 Intermediate Vertex Operator Algebras (IVOA)

There is an intriguing class of characters whose existence was first noted in [2, 3] and
a few of which were subsequently identified as “Intermediate Vertex Operator Algebras”
(IVOA) in [14]. For these, some of the fusion rules derived from the modular S-matrices via
the Verlinde formula [46] turned out to be negative integers. In general these cannot be
identified with unitary CFT, though in a few special cases one can exchange characters to
find a non-unitary — but otherwise genuine — CFT [3].

Such characters do share a number of good properties with RCFT and are of some
mathematical interest. Hence we include them in our classification.'® Whether these can
be precisely said to be IVOA is beyond the scope of the present work, so we will simply
identify them as “potentially of IVOA-type” and put them in separate tables.

1TVOA-type characters have also been included in the work of [33, 35].
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It is important to realise that having negative fusion rules is quite distinct from non-
unitarity. In fact IVOA’s have positive central charges with (some) negative fusion rules,
while the non-unitary ¢ < 1 minimal models have negative central charges but positive
fusion rules. Exchanging the choice of identity characters sometimes (but not always)
converts an IVOA to a consistent but non-unitary CFT. We will find several admissible
characters of IVOA type that pair up via bilinear relations into a modular invariant.'’ Our
policy when encountering such characters will be to list them separately in tables. They are
listed in our conclusions but do not appear in our final list of CFTs, table 28. Determining
whether they are consistent IVOA’s within the definitions of [14] is left for future work.

3 Coset pairs and identification of CFTs

In this section, we tabulate the bilinear relations that exist between pairs of admissible
character-like solutions and then discuss what this tells us about possible identification of
the solutions with CF'Ts. To begin with, we list all pairs W < W which satisfy ¢ + ¢ =8N
and h; + iLi =mn; € ZVie {1,2}. Such a list a priori includes some pairs whose bilinear
relation has rational, rather than integral, d;. We then rule out such pairs as inconsistent
since they do not satisfy a valid bilinear relation even at the level of characters.

That leaves us with pairs that satisfy the bilinear relations with integral d;. In such
cases, sometimes we know that the meromorphic character to which they pair up is not a
genuine CFT. Then it follows that at least one of the pair is not a consistent CFT. If the
meromorphic theory does exist, then we perform a case-by-case analysis and try to explain
the bilinear relations from the point of view of Lie algebra embeddings. If, for a coset pair,
such an embedding exists, then we can readily find the affine subalgebra corresponding
to the new theory and show that its extension leads to the new theory by computing its
characters as linear combinations of the affine characters. Then we can declare it to be a
genuine CFT. On the other hand when there does not exist an embedding, then again one
member of the pair is not a CFT.

All the remaining cases turn out to be of “IVOA type”, namely the fusion rules computed
from the modular S matrix have at least one negative value. These are inconsistent within
the class of normal CFTs but may make sense as IVOAs, hence we list them separately.
Notably all characters of IVOA type pair up into bilinear relations only with each other.
In short, all possible admissible characters that we started with get classified into three
groups: (i) CFT, (ii) positive fusion rules but still not CFT, (iii) IVOA type.

3.1 Cosets of ¢ = 8

We first consider coset bilinear relations between (3,0) admissible character solutions with
the ¢’ = 8 meromorphic CFT viz. the Eg 1 CFT with character j%. This would correspond
to N =1and ny = 1,n2 = 1 in (2.6). Any admissible character that is potentially part
of such a coset relation has to have a central charge less than 8. Hence we consider all
admissible characters from [34] with ¢ < 8. For any of them, call it YW with central charge

HEor two characters, a bilinear pairing between IVOA-type characters of ¢ = % and ¢ = % is easily seen

from appendix B.2 of [23].
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and conformal dimensions (c, h1, hs), we ask if there is another admissible character w
with central charge and conformal dimensions (8 — ¢,1 — hj,1 — hg). For each such pair
W, W, we then ask if their characters satisfy a coset bilinear relation (2.12) and if they do,
we would have computed the values of (d;, d2) defined in these equations. We collect the
details of these coset bilinear relations in two tables, 3, 4. It is remarkable that every (3,0)
admissible character with ¢ < 8 is part of a coset relation and is featured somewhere in
these tables; this is not necessarily the case for ¢ > 8.

Comments on table 3. This table contains 10 bilinear pairings. Each of these is
consistent, as we will recount below — in other words both members of every pair are
genuine CFTs. Row 1 is a special case of Example 3 of section 2.4, namely (2.24), (2.25)
for » = 8 (note that £[Dg 1] = Es1). On general grounds, we know that (i) since the By of
the denominator theory has a trivial commutant in Ejg, the coset must have no Kac-Moody
symmetries, and (ii) the central charge of the coset must be % Unitarity then implies
that the coset theory is indeed the Ising CFT, as we also explicitly verify. We will see
more examples of this phenomenon later — that the coset H/C, where both H and C
have Kac-Moody symmetries, results in a CFT with no Kac-Moody symmetries, in this
case a minimal model. Because of the way it naturally arises as a special case of the B;.;
Kac-Moody algebras, we will often denote the Ising model by By 1 in what follows.

Rows 2, 4, 7 are special cases of Example 2 of section 2.4, namely (2.17), (2.18) for

r = 8. We thus have gill = D51 or %’i = D3 ;. The (dy,d2) values follow the predictions
from decomposing the representation as explained in section 2.4.

Rows 3, 6, 8 are special cases of Example 1 of section 2.4, hence (2.15), (2.16), for r = 8.
Note that either of the pair of CFTs can serve as the denominator while the other would be
the coset, we thus have %ﬁ = Bi1 and % = Bg,1 (this is a very general phenomenon,
though if only one member of the pair is known as a CFT then it is more useful to treat that
one as the denominator). The (d1, dz) values follow the predictions from the decomposition
of representations explained in section 2.4.

Rows 9 and 10 are coset relations between two identical CFTs, namely self-cosets.
Row 9 is a self-coset relation with d; = do = 2 and is explained by the regular maximal
embedding: Afll) & AS) — Fjg so that the commutant of each Ay is the other one. This
gives us the coset Ei’i = Ay 1. The computed value di 4 d2 = 4 can be explained from the
decomposition: 248 = (24,1) ® (1,24) @ (5,10) @ (5,10) & (10,5) @ (10,5). The first
two terms correspond to the yZ term of (2.2) while the last four terms correspond to the

X:iX: term thus giving d; = d2 = 2. Row 10 is again a self-coset relation. The embedding
behind this coset relation is obtained in two steps, each of which is a regular maximal
embedding: As ® Ay @ Ay — Eg and Eg ® As — FEg. Computing the embedding indices we
get Agl) @Aél) @Agl) @Agl) < F5. The commutant of one of the A5® As is the other A5 @ As.

Es1 ~
APT T
the decomposition: 248 = (8,1,1,1)4(1,8,1,1)® (1,1,8,1) ¢ (1,1,1,8) 4 (3,1,3,3) @
(1,3,3,3)9(3,3,1,3)%(3,1,3,3)®(1,3,3,3)9(3,3,1,3)©(3,3,3,1)®(3,3,3,1). The
first four terms correspond to the xoxo term of (2.2) while the last eight terms correspond

This gives us the coset A?ﬁ. The computed value of dy,ds can be explained from

to the x;X; terms thus giving dy = do = 4.
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All the coset relations described so far (in rows 1-10 except row 5) were between (3,0)
admissible characters corresponding to well-known CFTs namely WZW CFTs and Virasoro
minimal models. In row 5 we encounter for the first time a coset relation between a WZW
CFT namely G2 ® Gg,1 and III3, an admissible character (see table 3) which has not yet
been characterised as a CFT. Coset relations and the general theory of meromorphic cosets
will enable us to characterise IIIa as follows. We first seek a Lie algebra embedding for Ejg
which contains Gy ® Go. We find it in two steps of maximal embeddings: Go & A1 — F}y
and Go ® Fy — Fg giving Go ® Go ® A1 — FEg. This means that the commutant of Go ® G4
in Fg is A;. Further, computing the embedding indices, we have Ggl) @ G(Ql) & Ags) — FEg,
which gives the affine Lie algebra embedding G21 ® G271 ® A1 g — Eg1 (see appendix A —
Example 1,2). This implies that the coset CFT is A; g. The central charge of A is %
and m; = 3 which matches with that of III5. But A g is a nine-character CFT and cannot
as such be in a coset relation with the three-character G 1 ® Ga1. Instead, we are dealing
with a three-character extension £3[A; g].

Let us construct this extension explicitly. Denote the three characters of IIly by

K K K K

{)ZO,X%,S%} and the nine Kac-Weyl characters of A;g by {X%f,xf%,x X%,X%,X%,X?,

1y
5

XE%’ Xg} Then £3][A; g] is given by:

Xo=x5 x5, xi=xF+xE, % (3.1)

U“"‘N
o X

=X

e
N

1
5

The explicit forms of the left hand sides of (3.1) are available from the solutions of the (3,0)
MLDE [34]. The explicit forms of the right hand sides of (3.1) are also available, from say
chapter 14 of [55]. This allows us to derive the relevant coefficients in (3.1). Further evidence
towards the fact that IIIs is the above extension is provided by the following derivation of
the (di,dz) values: 248 = (14,1,1) & (1,14,1) ¢ (1,1,3) & (7,7,3) ® (7,1,5) © (1,7, 5).
The first three representations are associated with the ygXo term in the coset relation,
the fourth representation is associated with djx1Y1 and the last two representations are
associated with doy2X2 thus giving dy = 1,ds = 2. Thus using the coset relation in row no.
10 we have completed the identification of IIIy as the three-character extension £3[A; g]
in (3.1).

Note that the modular invariant partition function one can construct from eq. (3.1) is
the following (see table 1 of [56]),

2

Xy + x5
5

5
2

9 2
z:’ngng{\ + + 2

K
X3
5

i (3.2)
2|4

= %ol +[%2

which shows that (di,d2) = (1,2). Thus, &[A; g] is a 3-character and 4-primary extension
of A;g. This is the D-type non-diagonal invariant of [56, 57].

Conclusion. From table 3 we conclude that ITIs is identified as a genuine CFT which is
Es[Ay 8]
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Table 3. CFT pairings, ¢’* = 8 with (n;,n2) = (1,1). The meromorphic theory H to which the
solutions pair up is Fyg 1.

# | ¢ (hi,he) mi1  (D1,Dy) w ¢ (ill’il?) M1 (D1.Da) W (@, d2)
LId (B8 1 e M@l |2 (54) 156 e s |
2148 (33) 2 e IME2®| ¥ (43) M4 @ IL| ey
3. | 12 (;g) 6 2 111, £z (%%) 88  ain Iz | (.1

Table 4. IVOA-type pairings, ¢’ = 8 with (ny,ns) = (1,1).

Comments on table 4. The bilinear pairings in table 4 are pairs of admissible character
solutions with central charges (2, 22), (2, 28) and (42, %). The fusion rules in all these cases
are of IVOA type, that is atleast one of the fusion coefficients is negative. In the first two
cases, one of the two members of the pair is a known IVOA — obtained by reordering
the characters of the non-unitary minimal model M(7,2) in one case and the product of
non-unitary minimal models M (5,2)®? in the other. Here, the notation Z[WW)] denotes the
“unitary presentation” of W. It is quite remarkable that these pair up to give the Eg;
character though we cannot obtain this result via Lie algebra embeddings. Note how the
dimension 248 is realised by the sum 1 + 156 (spin-1 currents of the pair) added to 78 + 13
(coming from the products of primaries of the two factors and having degeneracies 78,13 due
to the second factor). Based on this we would like to claim that ITI5 and ITI4 are also IVOAs.

The last row contains the pair III; and IIlg, neither of which has previously been
characterised. As noted above, these are of IVOA type.
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Conclusion. From table 4 we conclude that III;, III3, III4 and III5 belong to the
IVOA-type class as they have negative fusion rules, and that they are paired as in the table.

3.2 Cosets of ¢ = 16

We consider coset bilinear relations between (3,0) admissible character solutions with
c" = 16 meromorphic character j 5. With reference to (2.6) this would correspond to
N = 2 and to either n; = 1,n5 = 2 or n; = 2,19 = 1. Any admissible character solution
that is potentially part of such a coset relation has to have a central charge less than 16.
Hence we consider all admissible character solutions from [34] with ¢ < 16. For any one of
them, say W with central charge and conformal dimensions (¢, hi, hs), we ask if there is
an admissible character solution W with central charge and conformal dimensions either
(16 —¢,1 —hy1,2—hg) or (16 —¢,2 — hy, 1 — hg). For every such pair (W, VNV), we then ask if
their characters satisfy a bilinear relation (2.12) and compute (di,d2). The resulting pairs
of VVMF are listed in tables 5, 6 and 7. The tables provide the details first of W, then of
W, followed by (dy, ds).

Comments on table 5. Table 5 contains 23 bilinear relations; 22 of them are such that
each member of every pair is an affine theory. There is one bilinear relation (row 8) in which
one of the pair (ITI3) has been characterised in the previous subsection and the other 11Tz
is to be characterised. The solutions of each row each pair up to a known meromorphic
theory at ¢ = 16, for which there are two choices of the theory H, namely Fg; ® Eg 1 and
&1[D16,1]. For short, we refer to these two cases in the last column of the table as E and D
respectively.

Consider rows 1 and 2. These are both coset relations that involve the Ising CFT
M(4,3) = Bp1. Starting from the central charge and conformal dimensions of the Ising
CFT (c = %, hi = %6, ho = %), one can obtain two potential coset relation partners, one with
ny1 = 1,n9 = 2 which gives By 1 and the other with ny = 2,n9 = 1 which gives Egs. Row 1

is a special case of Example 3 of section 2.4, with r = 16 and hence the meromorphic CFT

E31®0FE81 ~ Bo 1

for this coset relation is £1[Di¢,1]. Row 2 follows from the well-known coset P

where the denominator is diagonally embedded.

The coset relations in rows 3, 7, 10, 15, 18 and 20 are all special cases of Example 2
of section 2.4, corresponding to (r1,72) values (1,15), (2,14), (3,13), (5,11), (6,10) and
(7,9) respectively. All these rows thus have d; = 1,ds = 2 and D (standing for & [D1¢.1]) as
the entry in the last column. For row 7, notice that A%’% is identical to Do 1. Note that all
possible (71, 72) pairs with 71 4+ ro = 16 are realised.

Next we consider row 4. In fact the bilinear relations in rows 3 and 4 involve the same
D1 factor, but the Lie algebra embedding is different. In the former case, Dy is embedded
via the regular maximal embedding: D; — D; ® D15 < Dig while in the latter case it
is embedded via a different regular maximal embedding: Dy — D; ® A5 < Dig (see
appendix A — Example 4). This suggests a coset relation (after considering embedding
indices) between D; 1 and Ajs1; but since the latter is a nine-character theory one should
expect the coset relation to involve a three-character (and four-primary) extension of it,
E3[Ais,1). There is a ¢ = 24 meromorphic CFT, the Schellekens CFT #63 whose affine
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sub-algebra is Dg 1 A1s,1, indicating a coset relation between the three-character Dg 1 CFT
and a three-character extension of A5, which is in row 4 here. This extension was first
found, in precisely this way, in [17] and hence we denote this here by £3[A15,1] = GHMys5.12

The coset relations in rows 5, 9, 11, 14, 16, 19 and 21 are all special cases of Example 1
of section 2.4, corresponding to ri, 79 values (1,14), (2,13), (3,12), (4,11), (5,10), (6,9)
and (7,8) respectively. All these rows thus have dy = 1,d2 = 1 and D as the entry in the
last column. Notice that in row 5, A; 9 is identical to By and in row 9, C 1 is identical to
By 1. Also note that all possible (71, 72) pairs with 71 + o = 15 are realised.

We will study rows 6, 12, 17, 23 together. In row 6, we have the folllowing identification:
Dy = A%% Now each of the three-character bilinear relations in these rows is derived from
two-character bilinear relations involving the pairs (A; 1, E71), (421, E61), (Go,1, Fu,1) and
(D41, D4,1) which form coset pairs with Eg; with d = 1,2, 1, 3 respectively [34]. The last
one is a self-coset relation. Denote any of these pairs by (g1, g1) with central charge and
conformal dimensions (c, h) and (¢, E), related by c+¢ = 8, h+h = 1. Now consider the pair
of three-character CFTs, (g1 ® g1, 81 ® g1) whose central charges and conformal dimensions
are given by (2c, h,2h), (25,%,2?1). We have 2¢ 4+ 2¢ = 16 and h+ h = 1,2h + 2h = 2,
corresponding to the pairings in this table. If we denote the characters of g; by xo, x1
and those of g1 by Yo, X1 and the two-character coset relation by xoXo + dx1X1 = J 3
then the characters of g1 ® g1 are X2, xox1, X3 and those of g1 ® g1 are X2, XoX1, X3- A
three-character coset relation is obtained by simply squaring the two-character coset relation:
X2 X2 + 2d xox1XoX1 + A2 X3X? = j% We can read off the (di,dy) values for the three-
character relation to be di = 2d, dy = d?. Finally, we identify the meromorphic CFT in the
three-character coset relation to be the Eg 1 ® Fg 1 CFT. In terms of Lie algebra embeddings,
each factor of g @ g is embedded into a corresponding factor of g ® Fg. The commutant
of g ® g inside Fg ® Fyg is the direct sum of two copies of the commutant of g in FEg, i.e.
g @ g. All aspects of the coset relations in rows 6, 12, 17 and 23 are thus explained from
two-character coset relations.

One may ask what happens if we embed g ® g into Fg @ Eg with both copies embedded
into the same copy of Eg It turns out that such embeddings, when they are possible, are
relations between CFTS with £ = 0 and £ = 6 (recall that ¢ is the Wronskian index). When
g1 = Dy 1, we do not get anything because D41 ® D41 has a central charge of 8 and its
commutant is trivial. For g; = Ay 1, after recognizing that A1 ® A; 1 = Da 1, from the
coset relation in row 3 of table 3, we can conclude that the coset would be D¢ ® Eg 1
which is a three-character CF'T whose characters are j 3 times the characters of Dg 1. This
then means that it is an £ = 6 CFT. This is one example of the more general rule that,
for n characters, the tensor product of an ¢ = 0 CFT with Eg; is an £ = 2n CFT. For
g1 = Az, we invoke the coset relation in row 8 of table 3 and obtain the coset to be
A?E ® Eg 1, another (3,6) CFT. Finally for g; = G2, we invoke the coset relation in row
9 of table 3 to conclude that the coset CFT is £3[A1 8] ® Eg 1, an £ = 6 CFT. We have thus

12We remind the reader that “GHM” indicates that the coset was discovered in [17], and the subscript
is the dimension of the algebra listed there. IIl,,, V., indicates that the pair is taken from [34} and it is
labelled following the conventions used there.
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anticipated three coset relations between ¢ = 0 and £ = 6 CFTs, which would be part of a
more thorough study of all such coset relations [58].

In row 8 we find a pairing between IIIs and ITlz2. The first of these characters was
identified from table 3 above to be £3[A; g]. We find there is an embedding A; < D16 with
embedding index 8, whose commutant is Cyg (see appendix A — Example 5). It follows that
ITIy; is the three-character extension £3[Cy 1]. Below we will find independent confirmation
of this fact from another embedding.

In row 13, we pair Dy (two characters, four primaries) with Dqa; (three characters,
four primaries). This is a slightly unusual example where the two elements of the pair do
not have the same number of characters. They do, however, have the same number of
primaries and the coset relation is straightforward if we just pair the primaries with unit

coefficient for each term. The three non-trivial primaries of Dy all have h = %, while one
of the non-trivial primaries of D121 has h= % and the other two have h = % Thus the
bilinear relation is:
2 - - -
X# =J(T)3 = XxoXo + X1X1 +Xx1X3 + X1X3
2 2 2 2 2 2 (33)

Row 22 is another self-coset relation. It is a special case of Example 2 of section 2.4
with 7 = 7o = 8 and r = 16. The meromorphic CFT is thus & [D1s,1] CFT which is
reflected in the last column. The d; = 1,dy = 2 values are also thereby explained.

Conclusion. From table 5 we have found that the character IIIa5 should be identified
with £3[Cs1]. The remaining entries in the table correspond to known CFTs.

Comments on table 6. This table contains 9 pairs that are all of IVOA type, by which
we mean some of their fusion rules as computed from the modular S-matrix are negative.
The third row of table 6 displays a dual pair of IVOAs. This pair is inherited from the
simpler pair with two characters that combine to give Eg1. Rows 1,2,4 contain bilinear
pairs that combine to the character j% and one of which in each case is a known IVOA.
We would therefore claim that the duals, ITIag, ITIgg, ITIog are also IVOAs. However the
remaining rows 5 — 9 contain pairs where neither member is a known CFT or IVOA. In
terms of fusion rules (deduced from the modular S-matrix) these are all of IVOA type, but
we cannot say more about them. In some of these cases, one member of the pair already
appeared in table 4, so if one is able to characterise that one using the ¢’ = 8 duality then
it would provide evidence for existence of its partner as an IVOA.

Conclusion. From table 6 we conclude that 111, I1Ig, 1112, I1Io4, I11o5, 1112, I11og
and IlI3g are of IVOA-type as these have negative fusion rules and that they are paired as
in the table.

Comments on table 7. As for the two previous cases, the two sets of characters in each
2

line of table 7 satisfy a bilinear pairing to the character j3. We now argue that all the

previously uncharacterised solutions that appear in this table are inconsistent as CFTs. For
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Table 5. CFT pairings, ¢ = 16 with (n1,72) = (1,2). The meromorphic theory H in the last
column is Fs1 ® Eg 1, denoted E, or & [D1,1], denoted D.
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Table 6. IVOA-type pairings, ¢ = 16 with (ny,n2) = (1,2). The two sets of characters pair up
to j%.

short, we refer to these as “inconsistent pairings”. This means that, though the VVMFs do
pair up into a modular invariant, these are not coset pairs of CFTs.

In rows 1, 2, 4-7 we find known CFT in the left column paired with the characters
11l56, 11121, 11120, ITI1g, V1g, 11117 in the right column. In the first five of these cases,
the CFTs in the first column also appear in a coset pair in table 5, in lines 5, 9-12
respectively, where they are paired with known CFTs. However here these theories are
paired differently and their partners are previously uncharacterised admissible characters.
For the sixth case, A41 does not appear in table 5 but only in table 7. The details of
the bilinear relation in row 7 suggests that for IIIy7 to be a CFT, it must be based on
a Lie subalgebra, b, of D1g,'® which has dimension 222 and that there must exist a (246
dimensional) embedding A4 x h < D1g. We listed embeddings of Dig in decreasing order
of dimensions (496,384, 380...) till a little beyond 246 and we did not find any with a Ay
factor (there is a 256 dimensional embedding A4 x D11 x Dj.) We thus conclude that the
character I1l17 does not correspond to a CFT. We will independently confirm this in a
slightly simpler way when we come to ¢’ = 24, in table 7. This story for row 7 repeats for
each of rows 1, 2, 4, 5 and 6.

There is another way to rule out solution Vg in row 6 of table 7. A%’E is known to have
nine primaries and three characters; one primary corresponding to the identity character and
each of the other two characters correspond to four primaries each. Thus the multiplicities
in the partition function are Y7 =4, Yo = 4. Any CFT which forms a coset relation with
A?ﬁ is also expected to have the same partition function multiplicities Y7 = 4, Y3 = 4 and
the multiplicities in the bilinear identity are expected to be dy = 4,ds = 4. The MLDE
analysis [34] for the admissible character Vig gives the degeneracies D=1, Dy =1

BAn embedding of Fg x Eg that contains a A4 factor will result in a CFT with Wronskian index 6.
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which results in partition function multiplicities ¥; = 3%, Y, = 22. 3. A reassignment
of degeneracies and multiplicities is allowed as long as Y}D; is kept fixed. There is
no reassignment with ¥; = 4 simply because 371D~12 = 81 does not have 4 as a factor.
Another inconsistency comes from the details of the bilinear identity given in row no. 6. A
reassignment of degeneracies and multiplicities (d1, dz) is allowed as long as d;D; is kept
fixed. But there is no reassignment with d; = 4 simply because d; D; = 18 does not have 4
as a factor. Due to all these details, we conclude that the admissible character Vig does
not correspond to a CFT. This agrees with the conclusion based on embeddings.

Rows 3 and rows 8-15 of table 7 are inconsistent since every W in these rows has
fractional Y7, Yo values. These are the entries of type HE, V.

Row 16 is interesting because both members of the pair are known affine theories.
However this is not a consistent bilinear pairing since the coefficient d; in the bilinear
relation is fractional. This enables us to rule it out without even computing do. There is an
important consistency test that explains why this pairing failed. Had it succeeded, there
would have been a meromorphic theory at ¢ = 16 involving an extension of DE%D&l with a
total of 120 4 56 4 128 = 304 Kac-Moody generators. Such an extension is known not to
exist (since there are just two ¢ = 16 meromorphic theories, both having 496 Kac-Moody
generators) which is why the pairing also should not exist.

Conclusion. From table 7 we conclude that 11117, Vg, I1l g, I1l3g, I1I2; and Illog
are not valid CFTs.!4

3.3 Cosets of ¢ = 24

With ¢ = 24, and considering that we are working throughout with Wronskian index ¢ = 0,
eq. (2.5) gives us the constraint n; + ng = 4. This can be satisfied in two ways, with
(n1,n2) = (2,2) or (1,3). Each choice leads to a distinct set of bilinear pairings. We address
each class in turn.

The character of the meromorphic theory to which the two entries in each row pair up,
can be written x(7) = j(7) — 744 + N. In this way of writing it, A/ is the dimension of the
Kac-Moody algebra of the meromophic theory, if any. Below, wherever relevant we provide
the serial number(s) in the list of [37] which specifies the meromorphic CFT(s) with that N.

(n1,m2) = (2,2). This set comprises tables 8, 9 and 10. We discuss each one in turn.
There is some overlap between this section and the papers [35, 36]. The main focus of the
former is fermionic CFT and of the latter, Hecke relations, and both references present some
bilinear pairs of admissible three-character VVMFs. However these references mostly restrict
to pairings with total central charge ¢’ = 24, and moreover the sub-case (n1,n2) = (2,2)
that we consider in this subsection. In some of these cases the bilinear pairing was used to
identify admissible characters as CF'Ts. Thus there is some overlap between the results of
these references and our table 8, which we will point out below.

H1n [36] it is claimed that III;7 is a CFT, however we disagree with this.
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Table 7. Inconsistent pairings, ¢ = 16 with (n1,n2) = (1,2). The two sets of characters pair up
.2
to g3.

Comments on table 8. In this table we will go into considerable detail to illustrate the
way to correctly choose the degeneracies D; for the type III and V characters which, since
they were discovered via MLDE, did not automatically come with a fixed normalisation.
We will not be so detailed about this point in the remaining tables.

All cosets in this table are of the form explained in the discussion below eq. (2.7), where
the coset simply “deletes” simple factors (at most two) from a Schellekens theory and leaves
behind the remaining simple factors. These cases are labelled as follows: “GHM” indicates
that the coset was discovered in [17], and the subscript is the dimension of the algebra
listed there. III,,, V,, indicates that the pair is taken from [34] and it is labelled following
the conventions used there and reviewed here in section 2 and in table 1. Rows 22, 23, 18,
20 were for some reason missed in both these references. Interestingly the first two are
“self-cosets” where C,C are the same theory. This implies that C is actually an affine theory
rather than an extension of one. The table provides the correct degeneracies for both the

non-trivial primaries of W.
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In table 8 (and in other tables of this paper) we have arranged the coset relations in an
increasing order of central charge for the admissible character solution in the left column, so
that, naturally the solution on the right has a decreasing central charge, and the self-cosets
(if any) are at the bottom of the table. But it makes sense to discuss the coset relations in a
slightly different order. We discuss first the batch of rows 1,3,5,7,10,12, 15,18, all of which
have a B, 1 CFT in the left column. Then we discuss the batch of rows 2,4, 6,11, 14,16, 19, 20
all of which have a D,.; CFT in the left column. Then we discuss row 9 which is a sporadic
case. After that we take up the batch of rows 8,13,17,21,23 where the CFT in the left
column is a tensor product CFT. This then leaves us with row 22 which is a self-coset relation.

The case of row 1 is different from the others: here b, g, and consequently also h, are
empty. This is the coset pairing of the Ising model, here denoted M (4, 3), with the Baby
Monster CFT [49]. This bilinear pairing was previously studied in [18]. The latter character
was obtained as an admissible character in [34] with degeneracies Dy = 4371, Dy = 47 which
then results in the multiplicities in the partition function as Y; = 1, Y, = 222, Requiring
that }N/Z-D~i2 is unchanged we can redefine: D, = 4371, Dy =47 -2 and Y; = 1, Y, = 1.
These new degeneracies then enter into the computation of the bilinear identity to give the
multiplicities there as d; = 1, do = 1. We thus have a consistent coset relation between to
three-primary CFTs.

In row 3, we have four pairs of coset relations. Each of the theories C have a common
set of characters which were obtained by solving the MLDE in [34]. The degeneracies of
the characters as obtained from the MLDE, for conformal dimensions % (x %) and % (x 20 )

are D; = 4785 and Dy = 45 respectively. The multiplicities in the partition function were
then computed to be Y} =1, Y = 220, With these degeneracies the bilinear identity then
gives multiplicities of d; = 1 and dy = 1024 respectively. If we redefine our degeneracies
to be D; = 4785 and Dy = 45 x 20, then the multiplicities would be d; = 1 and dy = 1
respectively (which is what we display in the table). With this assignment of degeneracies
and multiplicities, we have the interpretation for the coset relation as between two three-
primary CFTs. We can justify the above redefinition, for the first of the four theories of
row 3, where it can be realised as a three-character extension of A%? Let us denote the
characters of A2 to be xo, X 1 and y 3 and note that they have degeneracies of 3 and 2
respectively. It turns out that the leading term of ¥ 3 is given by 35)(5%(% + 15)(8)(8% from
1

which it follows that the degeneracy is 35 x 33 + 15 x 28 = 4785. Similarly the leading
term of Y20 is given by 120xJx" x1 which gives it a degeneracy of 120 x 27 x 3 which is
16 16 2

210 5 45. Thus, at least for one of the theories of row 3, we have derived the

also equal to
degeneracies that will make the multiplicities to be each equal to 1. We expect this to hold
for the other theories in row 3 as well. Furthermore, the new degeneracies implies that the
multiplicities in the partition function are now Y; = 1, Ya = 1, which is consistent with
di=1,dy =1.

For the three coset relations in row 5 the degeneracies of the characters obtained from
the MLDE are D; = 5031 and Dy = 43 respectively. The multiplicities in the partition
function was then computed to be Y] = 1, Y5 = 218, With these degeneracies the bilinear

identity then gives multiplicities of d; = 1 and dy = 512 respectively. If we redefine our

— 30 —



degeneracies to be ﬁl = 5031 and 152 = 43 x 29, then the multiplicities would be d; = 1 and
ds = 1 respectively. Furthermore, these new degeneracies change the multiplicities in the
partition function to Y7 = 1, Yo = 1 With this assignment of degeneracies and multiplicities,
we have the interpretation for the coset relations in row no. 5 as between two three-primary
CFTs. This same phenomenon repeats itself in rows nos. 7, 10, 12 and 15. We need to
multiply the degeneracy obtained by solving the MLDE, for the character paired with the
spinor character, by 2%, 27, 26 and 25 respectively. We would then have multiplicities of 1 and
1 in each case and consequently the correct interpretation between two three-primary CFTs.

In row 18, we have a coset relation between two three-primary CFTs both of which are
WZW CFTs. The bilinear gives rise to meromorphic theory #62 in the list of [37] which is a
non-lattice theory. This case was in fact the basis for the prediction in [45] of an infinite series
of non-lattice meromorphic theories at increasing central charges, and is the m = 0 case of
entry #15 in table 3 of that reference. Similarly, the bilinear relations in rows 1, 3, 5, 7, 10, 12
and 15 were the basis for the prediction in [45] of 14 infinite series of non-lattice meromorphic
theories at increasing central charges, corresponding to entries #1 — #14 in table 3 there.

For the coset relation in row 2, the MLDE computations for the degeneracies are D =
575, Dy = 23 which gives the degeneracies in the partition function to be Y; = 64, Y, = 223
With these degeneracies the bilinear identity then gives multiplicities of di = 8, do = 4096.
The MLDE and the bilinear identity are also consistent with the following new assignment
viz. Dy = 575%8, Dy = 23x 2" and d; = 1, dy = 2. This new assignment of the degeneracies
results in the following partition function multiplicities: Y: = 1,Ys = 2. Row 2 is thus a coset
relation between two four-primary CFTs.) More significantly, we can now conclude that the
admissible character solution ITl5g corresponds to a genuine CFT, a three-character exten-
sion of D%%g. Thus the coset relation in row 2 has resulted in the discovery of a new CFT.

In row 4, we have a coset bilinear relation between D1 and Illgs. We are able to
redefine the degeneracies to obtain partition function multiplicities to be Y; =1, Y5 = 2
and the parameters in the bilinear identity to be d; = 1, d2 = 2, indicating a pairing
between two four-primary CFTs. There are six meromorphic theories, #15-#20, of [37]
with Do 1 = A%% as a factor of the affine part of their chiral algebras, which means that
11145 corresponds to six different CFTs. Each of these are three-character extensions of the
remaining factors of the affine part of the chiral algebras, viz. A%%Q, A%A%%, As3D43A1 1,
A74A11, D5 4C39 and Dgzjg? respectively. Thus, the coset relation in row 4 has resulted
in the discovery of six new CFTs. In rows 6, 11, 14, 16, 19, we have bilinear relations
between D31, D51, Dg 1, D71, Dg 1 on the left with CFTs already discovered in [17]. What
we are able to do new here is give exact details of the characters: the degeneracies of the
non-identity characters that lead to partition function multiplicities Y; = 1, Y5> = 2 and the
multiplicities in the bilinear identity to be di = 1,do = 2. Thus each of these rows describe
pairings between four-primary CFTs.

In row 20, we have a coset relation between two four-primary CFTs both of which are
WZW CFTs. The bilinear gives rise to meromorphic theory #64 in the list of [37]. This
case was in fact the basis for the prediction in [45] of an infinite series of meromorphic
theories at increasing central charge, and is the m = 0 case of entry #33 in table 3 of that
reference. Similarly, the bilinear relations in rows 2, 4, 6, 11, 14, 16, and 19 were the basis
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for the prediction in [45] of 17 infinite series of meromorphic theories at increasing central
charges, corresponding to entries #16 — #32 in table 3 there.

Row 9 is a bilinear relation between A4 ; and a CFT already discovered in [17]. Again
what we do new here is to give exact details of the characters: the degeneracies Dy, Do that
lead to partition function multiplicities Y7 = 2, Y5 = 2 and the multiplicities in the bilinear
identity to be dy = 2, do = 2. This establishes a pairing between two five-primary CFTs.

We now study bilinear relations where one of the solutions is the three-character CF'T
obtained from a tensor product of two copies of two-character CFTs. There are 7 such
CFTs viz. A%%, Ag%, Gg%, fof, Ff?f, Eé@f and E§®12 The first has been studied in row 4
(as Dg 1) and the last one in row 20. The remaining five are in rows 8, 13, 17, 21 and 23
and for some reason these were missed out in [17].

In row 8, we have a bilinear relation between Agﬁ and Vgg. The former is a nine-
primary theory with multiplicities Y1 = 4, Y5 = 4. We are able to obtain an assignment
of degeneracies for the latter so the partition function multiplicities are Y; = 4, Yy = 4
and the multiplicities in the bilinear identity are d; = 4, do = 4, so that we have a pairing
between two nine-primary CFTs. Furthermore we find three meromorphic CFTs in [37]
viz. #24, #26 and #27 that contain a factor of A?ﬁ, giving rise to three new CFTs that
are the three-character extensions of the remaining factors viz. A%O, A?%CQJ and Ag3
respectively. Thus the coset relation in row 8 has enabled us to characterize the MLDE
solution Vgg as corresponding to three CFTs.

In row 13, we have a bilinear relation between G% and IIIg7. The former is a four-
primary theory with multiplicities Y7 = 2, Y2 = 1. We are able to obtain an assignment
of degeneracies for the latter so the partition function multiplicities are Y; = 2, Yo = 1
and the multiplicities in the bilinear identity are d; = 2, do = 1, so that we have a pairing
between two four-primary CFTs. Furthermore we find a meromorphic CFT in [37] viz. #32
that contains a factor of G?ﬁ, giving rise to a new CFT that is a three-character extension
of the remaining factors, namely Fg3G2 1. Thus the coset relation in row 13 has enabled us
to characterize the MLDE solution IIIg7 as corresponding to a genuine CFT.

Row 17 is a bilinear relation between fof and an admissible character solution that
is one of the infinite family of solutions given in table 2 viz. III” with m; = 112. The
former is a sixteen-primary theory with multiplicities Y7 = 6, Yo = 9. We are able to
obtain an assignment of degeneracies for the latter so the partition function multiplicities
are Y = 0, Y, = 9 and the multiplicities in the bilinear identity are di = 5, ds = 9, so that
we have a pairing between two sixteen-primary CFTs. Furthermore we find a meromorphic
CFT in [37] namely #42 that contains a factor of Df%, giving rise to a new CFT that is
a three-character extension of the remaining factor D%f Thus the coset relation in row
17 has enabled us to characterise the MLDE solution III” with m; = 112 of table 2 as
a sixteen-primary CFT, denoted 53[DS§“11]. This is the CFT with the largest number of
primaries but just three characters in this paper that is not a tensor product theory (of
course D%% has the same properties, but it is a tensor product).

In row 21 we find a coset relation involving F42,1. The unique meromorphic theory with
this factor at ¢ = 24 is #52 of [37] with Kac-Moody algebra F},Cg 1. This proves that
ITIy; is equivalent to £3[Cy 1], confirming the result obtained from table 5.
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In row 23 we find a self-coset relation for Eg?f. This is a pairing between nine-primary
CFTs. This comes about because of the existence of a meromorphic theory in [37] namely
#58 which is the extension &; [Eg?f‘].

Row 22 is a self-coset relation involving D9 1; the meromorphic theory is #66 of [37]
which is the extension &; [D%Q’l]. Even though the Djg; is a four-primary theory, the
pairing of characters is not the usual one which gives the bilinear identity parameters
(di,d2) = (1,2) or (2,1). Instead we have (d;,d2) = (1,1). This has been explained in the
discussion around eq. (2.20). This unusual coset pairing will appear in our future tables
between Dy, 1 theories with odd k, at c" > 24 and whenever ni, ns # 1.

Conclusion. From table 8 we have deduced the following new identifications for type III

and V solutions:

III37 = &3[E63Ga2,]
Vo = &[451°], E3[AF5C1], ElAss]
ILy5 = &[ATT), E3[AFSATT), Es[A53DasA1 1), Es[A74A11], E3[D54C5), E3Des)
II50 = &3 [Diefg]
I (my = 112) = &[DF] S

We also confirm the conclusion from table 5 that IIIgs is identified with £3[Cg1]. We note
here that the above identifications, with the exception of III”(m; = 112), have been made
in [36].

Let us briefly comment on the three-character extension £3 [D%‘ﬂ at ¢ = 16. Though
we had excluded ¢ = 8, 16 solutions from the classification at the outset, we felt it worth
noting the existence of this one at ¢ = 16, since it is of the “GHM” type [17].

Comments on table 9. This table has several bilinear pairs that we have shown to be
of IVOA type. However in a number of cases (rows 1, 5-9) the pairing does not lead to
a valid meromorphic CFT as it does not correspond to any entry in [37]. In three cases,
however, the pairing does reproduce a meromorphic theory — these are rows 2, 3,4. These
examples appear more favourable for identification of the pair as some variant of CFTs.

Conclusion. From table 9 we conclude that ITIs7, 11132, 11133, 11135, IT147, 11152 and
I1T54 belong to the IVOA category. These have at least one negative fusion rule, and the
above pairings are always between two such solutions.

Comments on table 10. This table lists all the pairs where one can rule out at least
one member being a CFT, or in several cases both members. For rows 1, 4-11, 13-16, the
solution in the second column should arise as the commutant of some embedding of the
known algebra in the first column in a meromorphic theory. However there is no candidate
meromorphic theory for these cases, since the value of the integer denoting the constant
term in the meromorphic character x(7) = j(7) — 744 + N does not appear in any entry of
the table in [37]. This immediately rules out the solution in the right column of every case
from being a CFT.
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(h1,he) mi (p1,Ds) C ¢ (hl,ilg) my (D1, Da) c (d1,d2) | S#

C
1. % (%,%) 0 (1,1) Bo1 42—7 (%,%) 0 (4371, 47 - 211) BM (1,1) 0

3. % (%,1%) 3 (3,2) B 42—5 (%,%) 45 (a7s5,45-219  GHMys | @, 1) 5

(3,21) 86  (sos1.43-2%) GHMg

45 o169 D51 |19 (%,%) 171 (s016,19-27) GHM;j71 | .2

J2) 92 (ra7s,106) 1115,

% (%,%) 78 as,ee) Bga % (%,%) 210  (4655,35-2% GHMa1g | ,1)

56 @en  DFT |16 (3,1) 112 @ E[DYY] | .9

153 (s,256) Dgq | 15 (%,%) (3640, 120) GHMoas5 | (1,2
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21. % (%,g) 104 (26, 262) Ff)f %8 (%,%) 136 (1700, 119) 1§} PY (2,1) | 52
22.112 (3,2) 276 a2y Digp |12 (3,1) 276 (129 Diaq | a1 | 66
23112 (2,3) 156 erem) EST |12 (3,2) 156 @r2en E$T | @ |58

Table 8. CFT pairings, ¢ = 24 with (ny,n2) = (2,2). The entry in the last column identifies the
meromorphic theory by its row number in the table of [37].

#| ¢ (h,ha) mi oy W ¢ (hhy) 1 by W | @ N S#
L1 &3 wn M) |18 (B 41l Gessaren IIsg | oy 42 —
2132 3 2 ey mme2e | M0 (28) B8 emwase Ilsz | ey 60 12-14
3.2 (33 6 o III, 126 (2 4y 78 ennseo Iy | an 84 22-23
4. |% (3,2 8 ww III5 28 (109) 248 (aos.20s) IIgs | ) 336 60
5028 (3,1 144w 111, 8 (L% 336 awamo IMlzz | a2 480 —
6. |2 (3% 156 s III5 L0 (2,8) 348 qomzrs Iga | an 504  —
709 (2,5 210 aooss III, 08 (8 378 @soun e | an 588 —
8. 1% (3% 220 e IIIg B (8,%) 380 @uesny IMlpr | a2 600 —
9. [ & (2,2) 221 anmy Iy |20 (H3) 325 @esssy  Iag | ) 546 —

Table 9. IVOA-type pairings, ¢ = 24 with (n1,n2) = (2,2). Wherever present, the entry in the
last column identifies the meromorphic theory by its row number in the table of [40].

In some of these cases, namely rows 10, 11, 13-16, the entry in the right column was
already ruled out by considerations of non-integral multiplicities (dj, d2). That leaves rows
1, 4-9 where we can now rule out the solutions in the right column, namely 11142, 111,
11151, ITIsg, 11119, Vs, III17. The last six of these were already ruled out by table 7,
a nice confirmation of the internal consistency of our method. Notice that the reasons
for ruling out these six solutions are slightly different in the two tables — in table 7, the
pairings gave a sensible character j% that actually describes two distinct meromorphic CFT,
but there was no possible embedding to justify the coset relation and this ruled out the
uncharacterised solution. However in table 10, the same solutions were ruled out more
easily because the pairing produced no known theory in the (complete) classification of [37].
Meanwhile the solution ITl4s is being ruled out for the first time.

Let us move on to the three remaining cases in rows 2, 3 and 12. In row 3 we cannot
say anything about ITIsg because its partner Hly is already ruled out. Thus there are no
grounds, from this table, to decide whether IIlag is a CFT or not. Fortunately IIIag has
already been identified as being of IVOA-type in table 10. In row 12, although the pairing
is formally to an invariant that corresponds to a genuine meromorphic theory from the list
of [37], the solution in the right column was already ruled out from the beginning and we get
no new information. That leaves row 2 where the pairing gives rise to a modular invariant
J—T444+ N with the integer NV = 336. This appears in the list of [37] and has the Kac-Moody
algebra A%Zl' However we have verified that there is no embedding of B7; in the above
algebra that would give rise to the character IIlg;. It follows that I1Is; is not a CFT.
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# (hi,h2) mi @iy W ¢ (hiyha) 1 By Do) W | wmay N S#
1. % (%, ‘;) 3 (3,5) 111, &58 (%7 %) 27  (42483,2205) IIl4o (1,2) 30 —
2. %5 (%, %) 105  @s1289  Bra %3 (%, %) 231  (4301,528) IIIgq a1y 336 60
3. % (%, %) 253 (1,229 Hg ? (%, %) 437 (usws,smy IIag | (b, 690 —
4. %9 (%, %) 171 @o,5120 Bg1 279 (%, %) 261  (3303,116) IIlog wy 432 —
5. 271 (%, %) 210 (21,2%9) B1071 % (%, %) 270 (2871, 54) 11121 (1,1) 480 —
6. |11 (3, %) 231 220 Dug| 13 (3,3) 273 ez I | a2 504 —
7. % (%, %) 253 (23,2'1) B1171 % (%, %) 275 (2325, 25) IIIlg (1,1) 528 —
8 |12 (3,3) 318 ams Vig | 12 (3,3) 318 @wme  Vig | an 636 —
9. |12 (3,D) 222 (awm Iz | 12 (L,2) 222 omes Iz | @2 444 —
10. | 2 (3,2) 300 @22 By | 2 3,%) 276 amem Hhs | aph 576 —
11 13 (%, 1873) 325 (26,2'2) D1371 11 (%, %) 275 (1496, 11) I—I—IT5 (1,1) 600 —
12. [ 2 (3,25 351 ey Bigp | 2 (3,3) 273 emey Hhg| ol 624 67
13. | 14 (%, g) 378 (2823 Dig1 | 10 (%, %) 270 (960, 5) HEs | o 648 —
14. | 2 (3,8) 406 @.24) Buy | ¥ (3,3) 266 o9 Hhr| abh 672 —
15 15 (%, 18—5) 435 0,2  Disa 9 (%, %) 261 (456, 9) Hhe | 00y 696 —
16. | 3L (3,3%) 465 @25y Bisy | ¥ (3,%) 255 eman  Hg | ad) 720 —

Table 10. Inconsistent pairings, ¢’ = 24 with (ny,n2) = (2,2). Wherever present, the entry in the
last column identifies a candidate meromorphic theory by its row number in the table of [40].

Conclusion. From table 10 we concluded that III3; and III45 are not valid CFTs, and
confirmed that the same holds for 11117, Vg, I1l1g, I1I2g, 11157, ITIs¢ which were already
ruled out previously.

(n1,m2) = (1,3). We now turn to bilinear pairs of solutions with (ny,n2) = (1, 3), a class
never previously explored to our knowledge. This set consists of a list of CFT pairings as
well as tables 11 and 12. We do not need a table for the consistent CF'T pairings with these
values of ny,ng as all the pairs are cosets of the meromorphic theory &£;[Da4 1] that appears
in [37] as the final entry #71, by B, D type WZW models at level 1. Dgy has dimension
1128, so the integer N in the meromorphic character is 384 for all these cases. These
cosets are obtained through regular embeddings of B, or D, into Day 1 as discussed in
section 2.4. Thus we have pairings of (i) By, 1 and By, 1 with r; +79 =23, 0 < ry,re < 23,
(ii) Dy, 1 and Dy, 1 with r1 + 79 =24, 1 < ry,79 < 23. Recall that By is identified with
M(4,3), the Ising model.

Comments on table 11. In this table we have four pairs that are all of IVOA type. 7
of these 8 solutions have appeared in previous coset pairs where the meromorphic theory
had ¢ = 8 or 16 (tables 4 and 6). The only new one is ITI4g with ¢ = 128,

Conclusion. From table 11 we conclude that 11148 belong to the IVOA category as this
has negative fusion rules and also satisfies the above pairing.
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# | ¢ (h,he) mi by W ¢ (h,he) Ty (b1, b2) W | @ N

L2 (33) 6 e» I |1 (33) 1248 s IMlag | o 1644
2.1 %2 (48) 210 s ML |18 (43) 456  @eses Illzo | oy 1056
304 (29 20 wan TIg | B (32) 437 ero TMs | an 1056
4 1% (3,9) 21 ame Il |10 (42) 380 @ow I | an 1536

Table 11. IVOA-type pairings, ¢’* = 24 with (ny,n2) = (1,3). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j — 744 + .

Comments on table 12. In this table, rows 1, 2, 4, 7, 10-12, 14-16, 18, 19 are pairings
of solutions of HH type with consistent CFTs (we used the fact that IIIy was identified as a
CFT in table 3). These pairings mostly give us fractional values of A/ in the meromorphic
character, so we do not learn anything from them. In a few cases we get integer values of
N but these too do not feature in [37].

In row 17 both solutions were previously ruled out. This leaves rows 3, 5, 6, 8, 9, 13,
where we can hope to get new information. In all these cases except row 13, the solutions
1115, 11146, 11144, V41, V40 are paired with known CF'Ts. However the result of the pairing
is not a meromorphic CFT as one readily sees from [37]. That means these five solutions
are ruled out as corresponding to CFTs.

Conclusion. From table 12 we conclude that Vg, V41, I1l44, IT1I46 and 11151 are not
valid CFTs.

3.4 Cosets of ¢ = 32

Now we move on to list coset pairs for ¢* = 32. The meromorphic character in this case
can be written:

X(1) = ()5 (j(7) =992+ N) ~ ¢ 5 (1 + Ng +---) (3.5)

so that N is the dimension of its Kac-Moody algebra.

Since we have (p,¢) = (3,0), we get n1 + ng = 5 from eq. (2.5). This again implies that
we have two sub-cases: (ni,n2) = (1,4) or (2, 3) that lead to distinct sets of coset theories.
We address each one in turn.

(n1,n2) = (1,4). Here any admissible character solution that is potentially part of a
coset relation has to have a central charge less than 32. Hence we consider all admissible
character solutions from [34] with ¢ < 32. The consistent cosets all turn out to arise through
regular embeddings of B, 1 or D, into D3y as discussed in section 2.4. Thus we have
pairings of (i) By, 1 and By, 1 with 1 +79 =31, 0 <r,rp <31, (ii) Dy, 1 and D,, ; with
ri+1ry =32, 1 < ry,ry < 31. It turns out there are no IVOA-type bilinear pairs with
(n1,n2) = (1,4) so we go on directly to the table of inconsistent pairings in table 13.
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23. (12 (3,4) 156 e B |12 (L,3) 318 wwm Vis | @2 960

Table 12. Inconsistent pairings, ¢’ = 24 with (n1,n2) = (1,3). The integer A in the last column
gives the total number of dimension-1 states in the meromorphic character j — 744 + N.

Comments on table 13. All the pairs (W < W) listed in table 13 satisfy a bilincar
relation to a potential ¢ = 32 character of the form in eq. (3.5). However the relation is prob-
lematic in one or more ways. In rows 14, 6, 7, 14, 18, 19 we have theories that were found to
be inconsistent at the outset, paired with a known CFT. There is nothing left to determine
in these cases. Next, in rows 9, 10, 12, 17 both members of the pair are already ruled out.

Rows 5, 8, 15 seem more promising as the pairings lead to integer values of A as seen
in the last column of the table. However in these cases N is greater than 2016, which is the
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Table 13. Inconsistent pairings, ¢ = 32 with (n1,m2) = (1,4). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j (j — 992 + ).

dimension of Dss. It can be shown that the dimension of the Kac-Moody algebra for all
meromorphic theories at ¢ = 8N is less than or equal to the dimension of Dgy, we do this
in appendix C. For rows 5 and 15 this means the bilinear pairing in these cases does not
produce a valid meromorphic theory at ¢ = 32. In turn, this rules out Vg in row 5 since
it is paired with a valid theory. However in row 15 we have already ruled out Vig so we
cannot say anything definite about V47. Fortunately this was ruled out in table 12. And in
row 8 both partners in the pairing are consistent, it is the pairing which is inconsistent as
shown by the fractional values of dy, ds.

This leaves rows 11, 13, 16. Rows 11 and 13 are inconclusive since the solution in the
first column is inconsistent. Fortunately, again the solutions IIl5; and ITI4 in the second
column were already ruled out by table 12. Row 16 is inconclusive for a different reason:
we do not know if a meromorphic theory with N' = 1532 exists. However again V49 was
also ruled out in table 12.
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Conclusion. From table 13 we obtain the new information that Vgg is not a valid CFT.
We also predict that there is no meromorphic theory at ¢ = 32 of the form &; [D%%DQgLJ].

(n1,m2) = (2,3). We go on to consider bilinear pairings to meromorphic characters of
¢ = 32 where the integers (n1,n2) = (2,3). In this category we find consistent, IVOA-type
and inconsistent solutions that are listed in tables 14, 15 and 16 respectively.

Comments on table 14. This table has 22 bilinear pairs, all of which we will argue to
be consistent CFTs. In row 1 the Baby Monster CFT with ¢ = % makes its first appearance
in which it is not paired with the Ising model M(4,3), being paired instead with Bg .
This has previously appeared as one in a family of pairings in [45] (entry 1 of table 2)
where it was argued that, since the existence of B, 1 as well as the Baby Monster CFT are
established, the pairing actually predicts a non-lattice CFT at ¢ = 32.

The pairings in rows 3, 57, 10-13, 15, 17-19, 21 all involve the pairing of an affine
theory with a CFT that was explicitly constructed as a coset in [17]. Row 20 is slightly
different, being a pairing between two theories from [17], a phenomenon we are seeing for
the first time. All these theories already made an appearance in our table 8 which is the
context in which they were originally discovered in [17]. Their re-appearance illustrates a
phenomenon that was highlighted in [45]: once a new CFT appears as a coset, it appears
repeatedly in distinct coset pairings at higher total central charge.

Rows 9, 16, 22 are pairings between affine theories. Even though these are known
theories, the pairings merit some discussion. Row 9 is a case that was analysed in Example
2 of section 2.4, and involves a pairing of D121 and Doyg 1 that is distinct from the standard
pairing to D3z 1. In the present case the pairing gives rise to the ¢ = 32 lattice theory
&1[D12,1D20,1] without an enhancement of the Kac-Moody algebra. This is a known Kervaire
lattice [59]. Row 16 pairs E?f with Djg 1 to a meromorphic character whose Kac-Moody
algebra has dimension 896. From this pairing one would be led to predict the existence
of a meromorphic theory at ¢ = 32 with Kac-Moody algebra &; [E%lDl&l] of rank 32 and
dimension 896. Because this algebra has only simply-laced factors at level 1, and its rank
equals the central charge, it must be a lattice theory. And indeed, this is again a known
Kervaire lattice [59]. Row 22 pairs Eg o with Big 1 and predicts a new meromorphic theory at
¢ = 32 that must be a non-lattice theory (given that the rank is less than maximal, one factor
has a level greater than 1, and one factor is non-simply-laced). This is again part of an infinite
family in [45], corresponding to the m = 1 case of entry #15 of table 3 in that reference.

Next we turn to the remaining cases in rows 2,4,8,14. For row 2, the dual of Dy ; is ITlsg
which was previously identified from table 8 as the three-character extension &3 [D%?’l] Here
we see it paired to give a meromorphic theory at ¢ = 32 with a total of 176 generators. Of
these, Dg 1 contributes 153 generators and a central charge 9, leaving 23 residual generators
and a residual central charge of 23. These two conditions can only be met by U(1)23. Thus
we predict a lattice theory at ¢ = 32 with Kac-Moody algebra Do ;U(1)*. Comparing
with [60], we see that there is indeed a lattice with 144 roots (plus 32 Cartan generators)
having a Dg 1 factor. This verifies the prediction following from our coset pairing and the
fact that I1I5¢ was previously characterised. Note that this is not a Kervaire lattice, since
apart from Dy the remaining symmetries are all Abelian.
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Moving on to row 4, the dual ITI45 of Dy 1 has been identified in eq. (3.4) as one of six
possible three-character extensions. This means the pairing in the present table predicts six
meromorphic theories at ¢ = 32. Only one of these corresponds to a lattice, with algebra
D1071A%?1 and this indeed exists — it is a Kervaire lattice [59] with 224 roots. For the
remaining five cases one has a prediction for new meromorphic theories at ¢ = 32, and this
is again part of the infinite series of predictions in [45] where they correspond to the m =1
case for entries 18-22 in table 3.

Row 8 pairs Eg)f with Vgg which was identified in eq. (3.4) with three distinct three-
character extensions. Thus again we have predictions for three meromorphic theories at
¢ = 32. One is a lattice theory with algebra Eg,lA%?l that corresponds to a Kervaire
lattice [59] and the other two are non-lattice theories that were predicted in entries 2,3 of
table 6 [45]. These theories are part of a finite, rather than infinite, collection.

Finally in row 14 we have a pairing of IIlss and IIlg7 which have been identified
previously as £3[Cg 1] and E3[Eg 3G2,1] respectively. This leads to a prediction of a new mero-
morphic theory at ¢ = 32 corresponding to & [Cs 16 3G21]. This is entry 4 of table 6 in [45].

Conclusion. From table 14 we were not able to characterise any admissible solutions as
CF'Ts or otherwise, but rather started to see several predictions of meromorphic theories at
¢ = 32. Details of these were presented in [45].

Comments on table 15. Here all the entries are of IVOA-type and all of these were

previously characterised.

Comments on table 16. This table consists entirely of inconsistent pairings. In row 1
we see such a pairing between known theories: the value of dy is fractional. This corresponds
to the non-existence of a meromorphic extension &; [Dile,ﬂ- If such an extension existed
it would be a Kervaire lattice, however this does not appear in the list of Kervaire lattices,
in agreement with the fact that the pairing is inconsistent.

In row 6 we have a pairing between Dy ; and III5q, however the result has N = 2476
which is greater than the maximum allowed value of 2016 at ¢ = 32. This means I1I5; is
not a CFT, consistent with our conclusion from table 12.

In row 14 we have a pairing between Do 1 and III4¢ with a total N = 1488. However
11146 has been ruled out, and we now argue that this implies the corresponding meromorphic
character is not a CFT. This crucially depends on the fact that the pairing has ni,ng > 1.
In such pairings, the meromorphic theory — if any — has a Kac-Moody algebra that is
the direct sum of those of the paired solutions. Thus we can conclude that there is no
meromorphic theory at ¢ = 32 with A = 1488 and a Dqp,1 factor. Similar considerations
hold for rows 15, 16, 23, 24, 27-32, 36, 37, 39, 40 where in each case we get constraints
ruling out specific possibilities for meromorphic theories at ¢ = 32. The details are a little
complicated to work out in some cases, where the valid CFT in the pairing is of GHM
type. In these cases one has to look in [17] for the definition of the theory in terms of a
meromorphic theory of Schellekens type and then read off the answer from [37]. The results
are summarised below.
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Table 14. CFT pairings, ¢’* = 32 with (n1,n2) = (2,3). The integer N in the last column gives
the total number of dimension-1 states in the meromorphic character 53 (j — 992 + A).

In rows 25, 26, both solutions are of type V. However for row 25 we have ruled out
one member, Vig, and characterised Vg in eq. (3.4), and for row 26 we have already ruled
out both members of the pair Vig (again) and V49. Note that we do not get a constraint
on meromorphic theories in these cases. All remaining rows have an entry of H¥F type, from
which we typically do not get new information.

Conclusion. From table 16 we were not able to newly rule out any solutions from being
CFTs, but instead we were able to predict the absence of meromorphic theories with the
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Table 15. IVOA-type pairings, ¢ = 32 with (n1,n2) = (2,3). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j% (5 —992 + N).

following values of N coupled with a particular factor in their Kac-Moody algebra. This
happens when either one solution in the bilinear pair is a WZW theory (or a known RCFT)
and the other solution has integral Y; values. Furthermore, these two solutions also have a
nice bilinear pairing, that is, d;s are integral. In addition to the above two conditions, the N
value of this bilinear pair must be less than or equal to 2016 which is the dimension of the
Kac-Moody algebra D3j 1. Table 17 lists the cases for which meromorphic theories at ¢ = 32
with given values of N and simple factor in their Kac-Moody algebras have been ruled out.

As a mild check of these predictions, wherever the algebra listed above is simply laced
and of level 1 one can check from [59] that there are no lattice theories with complete root
systems at ¢ = 32 having these dimensions and subalgebras.

3.5 Cosets of ¢ = 40

In this subsection we classify all bilinear pairings that add up to a central charge of 40.
From eq. (2.7) this means n; + ng = 6, from which we find the three possibilities (n1,n2) =
(1,5),(2,4) and (3,3). We consider each one in turn. The meromorphic theory has the
character Y% = j2/3 (7—1240+N') where A/ denotes the dimension of the Kac-Moody algebra.

(n1,m2) = (1,5). As we saw at ¢ = 24, 32, the consistent CFT pairings with n; =1 are
all of a standard kind, namely cosets of the ¢! = 40 meromorphic theory & [D4o,1], whose
Kac-Moody algebra has dimension 3160. Thus we have pairings of (i) By, 1 and By, 1 with
r+1e =239, 0<ry,rp <39, (ii) Dy, 1 and D,, 1 with r; +rp =40, 1 <7y, < 39. The
pairing of Dag 1 is a self-coset relation.

There are no IVOA-type pairings with (n1,n2) = (1,5) so we move on to list the
inconsistent pairings.
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Table 16. Inconsistent pairings, ¢’ = 32 with (n{,ns) = (2,3) The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j3 (j — 992 + A).

# N Factor
1L | 131 | FY
2. | 342 AR
3. | 342 | Ag2Bs;
4. | 431 | Dg2By;
5. | 431 | C§}
6. | 444 | A®iD;,
7. | 455 | EraFiq
8. | 471 | Cioa
9. | 479 | Fso
10. | 696 | Bisg
11. | 856 | Birg
12. | 936 | Bisg:
13.| 976 | Digs
14. | 1016 | Bigs
15. | 1046 | E§7
16. | 1488 | Dio1
17. | 1508 | F}

Table 17. List of meromorphic theories ruled out by table 16.

Comments on table 18. In row 1 of this table we find Vg3 which we have so far been
unable to characterise as a CFT or otherwise. It pairs with a consistent theory leading
to an invariant at ¢ = 40 with 5344 currents. This is above the bound of 3160 for a
meromorphic theory in this dimension (see appendix C), hence this is not a genuine pairing
to a meromorphic theory at the level of CFT. We conclude that Vggz is not a CFT. This
was actually the last admissible character (other than those of IVOA type) to remain
uncharacterised from our original list.
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Table 18. Inconsistent pairings, ¢ = 40 with (n1,n2) = (1,5).

In row 2 we have an inconsistent pairing, visible from the fractional value of one of the
pair (di,d2), which implies the absence of a ¢ = 40 modular invariant with an algebra of
dimension 2584. If the pairing existed then we would have a lattice theory &; [DS%D:QJ].
Hence such a theory should not exist. This is a prediction about lattices with complete
root systems in 40 dimensions, which we were unable to independently confirm.

The pair in rows 7 and 13, and also ITI4¢ in row 11, have been ruled out by tables 7, 12
and 13. All the other entries are self-evidently inconsistent.

Conclusion. From table 18 we learn for the first time that Vgg is not a CFT. With this
we have completed the characterisation of all admissible solutions appearing in table 1. We
also predict that there is no meromorphic theory at ¢ = 40 of the form &; [DjffD3271].

Conjecture. We conjecture the non-existence of meromorphic theories of the form
& [foDg(N,l)J] at ¢ = 8N, for integer N > 3.

(n1,n2) = (2,4). We move on to pairings with (n1,n2) = (2,4). In these cases (as well as
the ones to follow with (n1,n2) = (3,3)), no non-trivial embeddings of Kac-Moody algebras
can be involved, as we explained earlier. Thus they are relatively simpler to deal with.

Comments on table 19. This table is made up entirely of consistent bilinear pairings
of known theories. Note that IIl5¢ and ITI45 have previously been characterised as CFT in
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# ¢ (h1,he) my (D1, Ds) w ¢ (hi,hy) (B1, Ds) w @,a N

L1z (38) 216 enay Dy |28 (3.3) 1540 e Dosi | an 1816
2. |14 (33) 266 oo ESE |26 (3,%) 1826 e Doy | @ 1592
3. |15 (g g) 255  @ea0,1200  GHMass | 25 (%, %”) 1225 (50,27%) Dysi | o 1480
4138 (38) 248 emaw By |2 (L) 1176w Baup | an 1424
518 (3%) 528 wes By |4 (33) 0 wnewy  BM | oy 528
6. |17 (33) 221 cewew GHMpy [ 23 (3,%) 1035 s Dozi | a» 1256
7117 (L) 561 e Dy |23 (3,2) 28 weomon  Iso | a2 584
8 |2 (31) 210 wwwo GHMyyo [ £ (1,43) 990  wam Byo1 | an 1200
9. | % (38) 595 wen  Bia [ (33) 45 wwws2 GHMg | oy 640
10118 (3,9) 630 eean  Disx |22 (3,5) 66 wrosmom Il | an 696
11. | 18 (g z) 198 (52000 GHMyeg | 22 (%, %) 946 (44,271 Dyy | 1144
2. F (5,3) 666 oy By |9 (3E) 86  emws  GHMg | an 752
13| ¥ (3%) 185 wearon GHMigs | 9 (5L8) 903w Boip | w1088
14119 (5,%) 703 @2y Diog |20 (3,%) 105 eewasn  GHMigs | ax 808
15119 (3,4) 171 eosroon GHMip |21 (5,%) 861 e Doy | a» 1032
16.| 2 (3,%8) 741 @ Bt |4 (3%) 123 @ GHMig | an 864
17| % (38) 156 cwwon GHMie | 4 (531) 820 oo Bypi | avn 976
18120 (3,3) 780 w2 Dawg |20 (3,3) 140 eumosmn  GHMig | an 920

Table 19. CFT pairings, ¢’* = 40 with (ny,n2) = (2,4). The character of the meromorphic theory
is j% (j — 1240 + N') with NV given in the last column of the table.

#| ¢ (hi,ha) mi (1D 4% ¢ (hi,ha) 1 (1, D2) W | @a N
1. &74 <%,170) 248  (2108,2108) IIl35 @ (%,%) 1248 (1307995000 ITI4g (1,1) 1496

Table 20. IVOA-type pairing, ¢ = 40 with (n;,n2) = (2,4). The meromorphic character is

7% (j — 1240 + N) with A given in the last column of the table.

eq. (3.4). Hence these pairings are predictions about the existence of meromorphic theories

at ¢ = 40. More details of these predictions can be found in [45].

Conclusion.

Table 19 gives us predictions for meromorphic theories at ¢ = 40. We do

not go into detail here since we have already presented these predictions in [45].

Comments on table 20. This table has just one pair of admissible characters of IVOA

type. Both members have already been identified as such in previous tables.
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Comments on table 21. The rows without a type H¥F factor are 12-15, 18, 20, 23, 25,
27, 30, 31. All of them contain precisely one member that has been shown not to be a CFT.
As a consequence we again get a set of cases for which a meromorphic theory at ¢ = 40 is
ruled out. We list these below in table 22. The remaining rows have a type HF factor that
is paired with an affine theory in most cases, and with an inconsistent type III solution in

the remaining cases. Either way we get no new information from such pairs.

Conclusion. From table 21 we were able to predict the absence of meromorphic theories
with the following values of A/ < 3160 coupled with a particular factor in their Kac-Moody
algebra.

(nl, n2) = (3a 3)'

Comments on table 23. All entries in this table are genuine coset pairs. Several CFTs
of GHM type from [17] are paired with each other. This includes a self-coset in row 9. Rows
3 and 8 are similar, the theories ITly5, V39 were not listed in [17] but this should count as
an oversight as they properly belong in table 2 of that paper. In row 7 we see a self-pairing
of Dy 1 to a meromorphic theory at ¢ = 40 without enhancement of Kac-Moody algebra, so
the resulting theory can be written & [Dag1D20,1] (this is to be contrasted with the pairing
of the same factors in the (n1,n2) = (1,5) case, where the meromorphic theory is Dyg 1).

Comments on table 24. This table contains four pairings that all involve characters of
IVOA type. Seven of these have been encountered before, but one of the solutions in row
1, with ¢ = 2—;’6, is appearing here for the first time. This one has been previously noted
in [18] in the context of a study of three-character solutions without Kac-Moody symmetry.

Hence we denote this character as HM(7, 2).

Conclusion. In table 24 we find seven IVOA-type solutions that were previously discussed
above, and one that appears for the first time in this table but has been noted before.

Comments on table 25. This table contains 10 pairings. Rows 1-8 have one inconsistent
solution paired with a known CF'T, while rows 9 and 10 are self-pairings where both members
are known to be inconsistent. As a result, rows 1, 3, 6 and 7 lead to negative predictions for
specific types of meromorphic theories at ¢ = 40, while rows 9 and 10 do not. Meanwhile
rows 2, 4, 5 and 8 have one factor with fractional Y; values, so these also do not lead to
negative predictions for meromorphic theories.

From table 25 we were able to predict the absence of meromorphic theories with the
following values of N < 3160 coupled with a particular factor in their Kac-Moody algebra,
which we collect in table 26.

4 Discussion and conclusions

In this paper we started with a list of 65 admissible characters, listed in table 1, and found
all possible bilinear pairings involving them such that the total central charge is < 40. We
then examined them for consistency as CFTs. 24 of these were ruled out as CFTs at the
outset since they do not have integer multiplicities Y7, Ys. We then studied the remaining
41 through their bilinear pairings to modular invariants, and were able to classify all of

48 —



# ¢ (hi,he) my (D1, D2) w ¢ (~1, EQ) my (D1, D2) w aa) N
1 17 é, L 255 (221,17) Hlg 63 l, 63 1953 (63,231) Bsi1 1L,4&) 2208
2 2716 2 2716 ) 6
2. & ﬁ, 2 220 (275, 11) IIIg 156 37 18 3612  (14877,250774426) gy | 3832
5 575 5 57 5 5
3 9 2.1) 153 (256,18) Dy, 31 T 7) 5239 (9269, 2005147.27) FHgr | (3.1) 5392
872 ) 872 1
4. |9 3 1) 261 (456,9) o | 31 (%,3) 1891 (62,2%0) D311 | (11) 2152
278 27 8 ’
5 % (%7 %) 171 (29,19) By 1 % (%, %) 3599 @rreszeassosss)  Hkso | (&.1) 3770
6. | L (2,3) 266 (703,19) L | 8 (L18L) 1830 (61,20 Bso1 | (11) 2096
2 2716 2 2716 ) 8
7. 110 (2,%) 190 (29,20) Dioa 30 3 T) 2778  (seiaaz1.21t  Hsg | 1) 2068
472 ’ 472
8 |10 (31) 210wy  Hhs |30 (L1) 1770 e Dson | an 2040
9. [ 2L (3,5) 273  (esen Wy | 2 (12%2) 1t (50,229 Byg1 | (1.1) 1984
2716 2 2716 s
10. | 11 (g g) 275  qws1y  HIps | 29 (%7 %) 1653 (58.2%%) Dyo1 | an 1928
1| % (3.F) 26 wman ke | Y (531) 1596 (57.2%%) By | (11) 1872
12. |12 (4,2) 156 (o BZ 28 (2,10) 1948  (@s11.2.31  Vsg | @2 2104
373 6,1 37 3
13. % (%, %) 275 (2325,25) IIIlg 575 (%, %) 1485 (55,227) BQ7yl (1,1) 1760
14. | 13 (g g) TE Il | 27 (%, %) 1431 (54,29 Dyry | a» 1704
15 % (3.18) 270 e M | % (53) 1378 (3.2%%) Bog1 | oy 1648
16. % (%, %) 136 (1700, 119) 1115, % (%, %) 1536 (2392,47018049) 11157 (2%,, 1) 1672
17. |14 (13) 378 eeay Dus |26 (5I) 1118 st Hsg | (4.) 1496
18. % (%, %) 261 (3393, 116) II15¢ 521 (%7 %) 1275 (51,225) Bas 1 1,1) 1536
19. | 38 (L1 3) 9231 (528 4300) 1113, 40 (155) 4371 wsriiwsseosy  Hss | (31) 4602
2 167 2 2 167 2 2
20. | % (34) 281 woes My | ¥ (3,4) 1081 (17,2%9) Bysi | an 1312
21. % (g, %) 336 (770, 1452) 11135 15& (%7 %) 1711 (1653, 910803) 155 (% 1) 2047
22. % (%, %2) 534 (33,55924) Hlz4 % (%, %) 58 (27550, 4959) 11155 (2%, 1) 592
23. | 17 (%7 %) 221 (sa4,561-2%) GHMao | 23 (%7 %) 2323 (575, 32683 - 25) 1115, (2,1) 2544
24. % (%, %) 210  (35-25,4655) GHMaqg 475 (%, %) 1640 (1595,956449) Hlg (%,1) 1850
25. |18 (2,2) 198 (9.27,75.25) GHMjgg | 22 35) 1298 (sasar.20)  IIlgg | 21 1496
472 472
26. | 18 (%, %) 598 (25,221 .219) Hlze 22 (%, %) 66 (11 - 211,77 . 26) 11145 (%1) 664
o7 |2 (85) 92 awemm Mgy |18 (412) 1404 weoss  TMlag | 0o 1496
28. | & §, © 92 (7475, 1196) 11137 Aok 2, i 860 (833,3015426) Hlg | (4.1 952
5 55 5 575 25
29. % (%, %) 690  (200,178802) 13s 15)@ (%, %) 27 (2295, 42483) 1114 (% 1) 717
30. | 20 (%, g) 80 (2430, 17496) V3o 20 (%, %) 890 (135,20 - 39) Va1 (1,1) 970
31. | 20 (% %) 80 (17496, 2430) Vso 20 (%7 %) 728 (12,2 - 3'2) Vo (1,1 808

Table 21. Inconsistent pairings, ¢’ = 40 with (n;,n2) = (2,4). The meromorphic character is
7% (j — 1240 + N) with A given in the last column of the table.
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# N Factor
1. | 808 | AF}°
2. | 808 | Af3C
3. | 808 Ags
4. | 970 | A
5. | 970 | AP3Ch,
6. | 970 Ag3
7. | 1312 |  Basgs
8. | 1496 | Egs3Ga:1
9. | 1496 | D§}
10. | 1496 AZ?
11. | 1536 |  Basy
12. | 1648 |  Bagy
13. | 1704 |  Dory
14. | 1760 |  Barg
15. | 2104 E¢Y
16. | 2544 | A111 Feq

Table 22. List of meromorphic theories ruled out by table 21.
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Table 23. CFT pairings, ¢’ = 40 with (n1,n2) = (3,3). H with x® = j2/3(j + Nj) where
Ny > —1240. The meromorphic character is j3 (j — 1240 + N') with A given in the last column of
the table.
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#| ¢ (h,he) mi ooy W ¢ (hi,hy) My (D1, D2) w @) N
L% (42) 88 wan ML |20 (LI8) 0 uesenows HM(T,2) | an 88
2. [ U0 (5,40) 348 muom Iy |90 (1) 41 comaen  Ilss | an 389
3.0 % (87) 336 oo Ilgg |40 (2%) 58 emwaw  Ilsy | @y 304
4112 (310) 248 Guosay IlIgs [ 12 (2,U) 78 Gnwsog Iy | 0y 326

Table 24. IVOA-type pairings, ¢ = 40 with (ny,n2) = (3,3). The meromorphic character is
j3(j — 1240 + N) with A given in the last column of the table.
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Table 25. Inconsistent pairings, ¢ = 40 with (n,n2) = (3,3). The meromorphic character is
73 (j — 1240 + N) with A given in the last column of the table.

#1| N Factor
1. | 119 | Eg5Gay
2. | 231 BM
3. | 1928 | Disy
4. | 2884 | Dirs

Table 26. List of meromorphic theories ruled out by table 25.
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# | ¢ (hi,he) my W  Chiral Algebra

L2 (1,3 6 | IIIy &[A)]

2. |8 (3D 136 | IIx &[Cs ]

302 (88 92 | Iy &(Es3Ga]

4120 (3.3) 80 | Vsg &[AT)Y], E[AF5Cs1], E3]Ass]

5122 (3,5) 66 | Il  &[ATT], E3[A5ATT], E3[As3D43A1,],
E3[A74A11], E3[Ds54C52], E3[De 5]

6. |23 (3,4) 23|Il &[DPY]

Table 27. Consistent CFTs of type III and V.

them into three groups: (i) 6 consistent CFTs, for which we have found the Kac-Moody
algebra, (ii) 20 candidates for Intermediate Vertex Operator Algebras, whose fusion rules
are not all positive, (iii) 15 admissible characters that cannot correspond to any CFT.

4.1 Our results

Table 27 lists the cases from among the admissible characters listed in table 1 that have
been classified as CFTs. We note that cases 2-5 are most easily understood as cosets of
Schellekens theories by the square of MMS [2] theories.!> These are of the same form as
the cosets in [17] in that (nq,n2) = (2,2) and the Kac-Moody algebra of the coset is simply
obtained by deleting a factor from the meromorphic theory. Case 1, however, first arises as
the coset of Eg; by G?ﬁ and subsequently as a coset of £;[D1¢.1] by £3[Cs1]. On the other
hand case 6 is a coset of the unique theory in [37] having Abelian factors, by U(1) ~ Dy ;.
We see that in some cases there are multiple CFTs corresponding to a single set of admissible
characters, as was already seen in [17]. All entries of this table were identified by [36].

Next we list the cases that were in our table 1, other than those already eliminated at
the outset (namely type HF and W), which we have shown in the present work cannot be
identified as consistent CFTs. These fall into two classes: the first are those of IVOA type:
II1,, I11g, 1114, 1115, 1117, IQ1g, I11;5, I11oy, I11s5, I11o7, I1Iog, I11og, I1I3g, 1113,
11133, 11135, 11147, I114s, 11155, 11154, while the second have sensible fusion rules but are
nonetheless inconsistent: 11117, V18, IIIlg, III20, IIIzl, 11126, III31, V40, V41, III42,
11144, 11146, 11151, Vs, Vs (recall that the (¢, hi, he) and my values of these are listed
in table 1). From the inconsistent list, the ten type-III solutions were first discovered as
admissible characters in [28] while the five type-V solutions are among the seven that were
newly found last year in [33-35].

Our work once more highlights the intimate relation between general RCFT and
meromorphic CFT. We see that this relation, when properly applied, allows us to rule
in and also rule out characters from being CFT, and likewise gives positive and negative
predictions for the existence of meromorphic theories.

15Recall that the square of a two-character theory is a three-character theory.
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While we have not aspired to mathematical rigour in this work, we believe our con-
clusions can and should be tested at a more formal and rigorous level. Basic properties of
Modular Tensor Categories (MTC) at low numbers of primaries [53] lead us to believe that
whenever two admissible characters pair up and both are known CFTs, the pair is also a
CFT — but technically this is only known up to 4 primaries and a few of our examples have
more primaries than that, despite having only three characters. There are also possible
subtleties about linear equivalence vs equivalence of embeddings, as well as about possibly
inequivalent embeddings in different simple factors of the same algebra. Such questions were
addressed in [39] where the focus was on a rigorous classification for exactly two primaries
in a range of central charge. Something similar can surely be attempted for three primaries
(rather than three characters) in a more rigorous fashion than was done here using the
MTC data for theories with three simple objects.

On the other hand, a positive aspect of the present approach based on MLDE and
bilinear pairing of g-series is that the classification of pairings is explicit and exhaustive,
and does not rely on mathematically subtle questions. Also it raises intriguing questions
about admissible characters that are not CFT — we do not know why they nevertheless
exhibit bilinear pairings, and what this teaches us. This point may be of interest to the
community studying vector-valued modular forms.

4.2 Complete list of unitary (3,0) CFTs, except ¢ = 8,16

In this section we tabulate the complete list of unitary (3,0) CFTs (except at ¢ = 8, 16).
Here IVOA-type solutions are excluded since properly speaking they are not strict CFTs.
The last column #(primaries) denote the number of primaries of the given theory W.

# c (h1, h2) mq W Chiral Algebra | #(primaries)
Lo 2 (4,2t 20240 | 1 By 3
2. r (3,2) 2r2—r |1 D, (r # 8,16) 4
3. 2 (3,2) 6 111, E3[A1 8] 4
4, 4 (3,2) 24 |1 Agn 5
51 2 (3,9 28 |1 G331 4
6. | 2 (}9Y 104 |1 F2 4
.12 (%9 156 | I E&Y 9
8. % (%, %) 136 1115, &3]Cg1] 4
9. | 14 (3,3 266 |1 ES} 4
10.| 15 (%3 255 | GHMass  E3[A15,1] 4
1. 3 (12,3) 248 | I Eg 3
12. | 17 (8,3) 221 | GHMay &3[A111E6.1] 4
13 % (%, %) 210 GHMo19 83[010’1] 3
14. | 18 (5,3) 198 | GHMygs &3[D§]] 4
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92 1115, E3|Fs3G21]

171 | GHMypy  &[AS3Ds,)

V3o &3 [AS%%O
E3[AZ3C01]
E3[Ag 3]

GHMgs  &[C5 D53
&3 [A?EA%’E]
E3[A21E6 4]

2.0 % 35 45 | GHMys  &[ATY 3
43. &5[A57) 3
44. E3[As 6Co 3] 3
45. E3[Ds g] 3

47. 42—7 (3, %) 0 v Baby Monster 3

Table 28. Complete list of unitary (3,0) CFTs (except unitary CFTs at ¢ = 8, 16).
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# | ¢ (hi,he) my | W Chiral Algebra | #(primaries)
L8 (51) 56 |1 D3 16
2. | 8 (%, 1) 120 | 1 D 4
3116 (42) 496 |1 Dig1 4
4116 (3,1) 112 | II(my =112) &[DEY] 16

Table 29. 4 unitary (3,0) CFTs at ¢ = 8, 16.

Finally, table 29 lists four theories at ¢ = 8,16 that are well-understood. The first of
these is the tensor product of an affine theory with itself, the second and third are affine
theories and the fourth is more subtle as it is a three-character extension of the fourth power
of an affine theory. The first and the last theories have three characters but 16 primaries
each. A more complete study of the infinite set of cases at ¢ = 8,16 is left for future work.
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A Computations of some embedding indices

Example 1: Fy — Aga) X ng). Here we consider Fy — Aga) X Géb) (which is a maximal

S type embedding). We shall compute a and b which are embedding indices. For the above
embedding consider the following branching,
52=(3,1)®(5,7)®(1,14) (A.1)
now, Lf4(52)=18
LA =1 LA(3)+Tx LA (5)+14x LA(1) =1 x44+Tx20+14x 0 =144
£82 = 3% LO2(1)4+5x L2 (T)+1x £92(14) =3x04+5x2+1x8=18  (A.2)

net —
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where L9(irrep) denotes the Dynkin index of the corresponding irrep of the Lie algebra g in

Ay

2% denotes the net Dynkin index computed from the above branching and £3

question, £
has a similar meaning for the corresponding Lie algebra g.

£ 144
th — _Tmet _ ~7F _
U 0T TRi(s2) T 18
£G2 18
d h=—net  — - —1 A3
ane CFi(26) 18 (A.3)

Hence, we have: Fy — Agg) X Ggl) and in the affine case we would have: F471 — ALg X CA¥271.
Example 2: Eg — A§“) X ng) X ch). Consider the following embedding, Eg —
Aga) X Géb) X ch) (non-maximal)[Eg — IIIa x Ggl) X Ggl)].

To understand the above non-maximal embedding let us first understand the maximal
embeddings from which the above can be obtained,

By 2 G x BV (A.4)
furthermore, Fy Ags) X G;l) (A.5)
implying, By ™% Gga) X Agb) X ch). (A.6)

From the first embedding consider the following branching rule,
248 = (14,1) ® (7,26) @ (1,52) (A.7)
Now let us employ the second embedding to write the above branching rule as,

(14,1)5(7,26)®(1,52) = (14,1,1)&(7,((5,1)&(3,7))) ®(1,((3,1)®(5,7)©(1,14)))
=(14,1,1)®(7,5,1)®(7,3,7)®(1,3,1)®(1,5,7)®(1,1,14),

(A.8)

where in the second equality we are just expanding the first equality and considering that

the numbers inside a parenthesis have to be multiplied.
Now let us compute the embedding indices a, b, c,

£F5(248) = 60
L£82 =040+ 42+ 0+ 10 + 8 = 60
Lo = 1x 14X LY(1) + 1 x Tx LN(B) +7x T x £4(3) + 1 x 1 x £L41(3)

+7x1x LA(B) 414 x 1 x L4(1) = 0+ 140 + 196 + 4 + 140 + 0 = 480
£82 —8410442+0+0+40=60

£&2 60
th = Tmet
U T TEN(248) T 60
Lo 480
d b= ——het__ _ — _g
e LF5(248) 60
G2
and, Ener 60 (A.9)

= —— = — = 1
©7 1Ps(248) ~ 60
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Hence we have: Eg ™% Ggl) X Agg) X Ggl) which implies that in the affine case we would
get: E&l w GAQJ X Al,S X GAQ’l.

Example 3: non-maximal embedding. Here let us try to give an example of MMS

theory <—> MMS theory, where a non-maximal embedding is involved. Consider,
ni=1

Es 2 D 1 DY)« Dl (A.10)
implying, Fg =% L(f) X DELS), (A.11)

where m stands for a maximal embedding and n — m stands for a non-maximal embedding.

Let us compute the embedding indices, a, b, ¢, r, s, for the above three embeddings.

Eg — Déa). Now let us consider the embedding Fg — Déa) (maximal and R type). For
the above embedding consider the following branching,

248 = 120 © 128 (A.12)
now,  LF5(248) =60
£Ps(120) = 28
(

£P5(128) = 32
L£DPs(120) + £P3(128) 60
th = =—=1 A13
e L5 (248) 60 (A-13)

Hence, we have: Eg — Dél).

Eg D(a). Let us consider Dg — Dz(lb) X fo) (maximal and R type),

120:(8V78V)®(2871)@(1728) (A.14)
now, £7%(120)=28
LD =85 £P1(8,)+1x LP4(28)+28 x LP4(1) =8 x 241 x 124280 =28

LD1— 85 £P1(8,)4+28% LP1(1)4+1x LP1(28) =8x2+28x0+1x12 =28

net =

L£Di 28
th b= ——met
1 £Ds(120) 28

Lhs o8

net

= hiaz0) " 28 (A.15)

and,

Hence, we have: Dg —% Dfll) X Dfll).
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Eg — DY) X Dé(ls). Let us consider Eg — Dy) X Df) (non-maximal),

248 =1205128 = (8,,8,)@(28,1)®(1,28) 5 (8., 85) (8, 8¢) (A.16)
now, L%(248)=60
LD — 85 £P1(8,)+1x LP1(28)+28x LP1(1)+8x LP1(8)+8x LP1(8)
=8Xx24+1x12+28x04+8x24+8x2=60
LD — 85 £P1(8,)+28x LP4(1)4+1x LP1(28)+8x LP4(85)+8x LP4(8,)

net —

=8Xx2+28x04+1x1248%x248x2 =60

L D4 60

th — et _
s "7 LE(248) 60
Lbs 60

net

:7:7:1 ‘1
°T LPs(248) 60 (8.17)

and,

Hence, we have: Fg —% Dfll) X Dfll). This implies that, D4 as a sub-algebra of Eg has
commutant Dy inside Eg. This is the statement that was made in [17].

Example 4: D — Dga) X Agb5). Here we consider Dig — Dga) X Ag@ (which is a

maximal R type embedding). For the above embedding consider the following branching,

496 = (1,255) @ (1,1) + (1,120) @ (1,120) (A.18)
now,  LP16(496) = 60
LD — 955 x £P1(1) +1 x £LP1(1) +2 x 120 x £LP1(1)

net —

1
=255 x0+4+1x0+ 240 x 1:60
L415 — 1 % £415(255) + 1 x L45(1) +2 x 1 x £415(120)

net

=1x324+1x04+2x1x14=60 (A.19)

Hence, we get, for the embedding indices, a, b,

£D16(496) 60
LA15
and, b= 2t __ — 00 _y (A.20)

~ £D16(496) 60

Hence, we have: Dig — D%l) X A%) and in the affine case we would have: ﬁ1671 —
Dy x Ars1.
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Example 5: Dig — A§“) X Céb). Here we consider Djg — Aga) X Céb) (which is a
maximal S type embedding). For the above embedding consider the following branching,

496 = (1,136) © (3,1) @ (3,119) (A.21)
now,  £P19(496) = 60
LA =136 x L4(1) + 1 x £L4(3) + 119 x £L41(3)
=136 x 0+ 1 x4+ 119 x 4 = 480
L£88 =1 x £L9(136) 4+ 3 x LO5(1) + 3 x £5(119)

=1x18+3x0+3x14=60 (A.22)

Hence, we get, for the embedding indices, a, b,

LA 480
Q= = — = 8
£D16(496) 60

£ 60

net - = =1 (A.23)

d, b=__met _
e £D16(496) 60

Hence, we have: Dqig — ASS) X C’él) and in the affine case we would have: ﬁ1671 — ALg X 6’871.

B Infinite family of ¢ = 8 and ¢ = 16 for category III solutions

In this appendix, we briefly summarise the results of section 2.3 of [34] which explains, from
an MLDE perspective, why there are an infinite family of ¢ = 8 and ¢ = 16 for category
ITI solutions (this fact was previously noted in [27]). It is shown in [34] that the identity
character xo can be written in terms of the other two characters, x1, x2 as,

oo

1= _1 _1
Xo(@) = 27 Y [agn + A1 g7 T HR0T02 ay - Ay gt gy [ g", (B)
n=0

where a; ,, are the Fourier coefficients in the g-series of the character x;(¢q) and ¢ = 0,1, 2.
Now say the values of a1 and «g, for which admissible solutions, exist are such that
—% + 201 + ag and —% + a1 4 2a9 are not non-negative integers, then to get admissible
solution for xq, we have to set Ay and As to be zero. This is what happens in most examples.
However, one can imagine the following situation.
(i) If —% + 207 + a9 is a non-negative integer, then A; isn’t required to vanish. A; can
take any positive integral value and we would have an admissible solution for xg.

1
— =+ 201 + ag € Z>, A1 € Z>o

2
l—az—ag — —1i2a14as n
xi(q) = q2 > [ao,n +A1q 2 a1n| q" (B.2)
n=0

We thus have an infinite number of admissible character solutions, parametrised by Aj,
in (B.2). All members of this infinite family have the same indices and hence the same c,
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h1, he and also they have the same Wronskian. However, they are different solutions as in
they differ in the identity character.

(ii) If —% + a1 + 2a9 is a non-negative integer, then A, isn’t required to vanish. As
can take any positive integral value and we would have an admissible solution for xo.

1
—7+a1+2a26220, AQEZZO

2
1 _ai—an - —lia1+2a0 n
x1(q) = ¢ > a0+ Az g7 agn | q"- (B.3)
n=0

We thus have an infinite number of admissible character solutions, parametrised by Ao,
in (B.3). All members of this infinite family have the same indices and hence the same c,
h1, he and also they have the same Wronskian. However, they are different solutions as in
they differ in the identity character.

So, in the study of admissible solutions to [3,0] MLDEs, one encounters the above two
infinite families of CF'Ts where each family has the same ¢, hq, hs values, one following (B.2)
and another following (B.3).

Note that, foj% is a part of the infinite family of ¢ = 8 solutions with m; = 56, Dg 1
is a part of the infinite family of ¢ = 8 solutions with m; = 120 and fo is a part of the
infinite family of ¢ = 16 solution with m; = 112. The key point to note here is that, in
the notation of [34], fojf, Dg 1 and D%‘f are the only three solutions which belong to both
category I and III.

C Upper bound on N for meromorphic theories

Here we prove the following bound: for any meromorphic CFT with ¢ = 8 N, the dimension
N of its Kac-Moody algebra is bounded above by 8 N(16 N — 1). This bound is saturated
by the meromorphic theory & [Dgy].!0

To show this, let us first consider meromorphic theories with a “complete” Kac-Moody
algebra with simple factors, i.e. theories whose entire central charge comes from non-Abelian
Kac-Moody factors. This holds for 69 of 71 theories at ¢ = 24, and additional examples
come from lattice theories with “complete root systems” at higher values of ¢ such as
Kervaire lattices in 32d [59]. In this situation we have:

k,dim G,
c Ea c ¢ " (C.1)

where k, is the level, g, is the dual Coxeter number and dim G, is the dimension of the a’th
simple factor. The sum runs over all the simple factors.

Next, we note that simply-laced algebras G, satisfy the inequality, rank G, < ¢, < dim G,
where the first inequality is saturated at k, = 1 and the second as k, — oco. In fact, as one
can easily check, the same inequality is satisfied by non-simply-laced algebras, except that
the lower bound becomes strict and is never saturated.

16We are grateful to Brandon Rayhaun for suggesting this line of argument.
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Meanwhile, the total dimension of the Kac-Moody algebra is:

N =) dimg, (C.2)

Our problem then is to maximise N keeping c fixed.

Now we further restrict to complete Kac-Moody algebras with just one simple factor.
Using standard formulae for the dimensions N, and dual Coxeter numbers of the classical
compact Lie algebras (4,, B, Cy, D,) we find:

kr(r + 2

(4,0 = 2

(By) = kr(2r +1)

TR rar — 1 (3)

kr(2r +1 .

R
kr(2r —1

(Dr) = ;H(g_g

It follows that, at fixed central charge, r decreases as k increases. Thus to maximise the
rank in each family (which maximises the dimension, which is monotonic in the rank) we
must take k = 1, which gives the simpler formulae:

(A1) =r
c(Br1) =r+ %
_r(2r+1) (C.4)
c(Crp) = 12
c(Dp1)=r

Notice that ¢(B;y.1),¢(Cy1) are non-integral for all » > 2. From the above, the dimension of
the algebra at fixed c is:

Arq: N=c(c+2)
By N =c¢(2¢—1)
1
Cri: N:Z(7c+02+0\/1+14c+02)

Dpi: N =c(2¢—1)

(C.5)

It is easy to verify that for any fixed ¢ > 8, the common value of N for B,, D, is
the largest in the above set. However since B, has non-integral central charge it cannot
be a complete simple factor. Therefore D, ; has the largest possible dimension among
simple algebras at a fixed integral central charge. Moreover there is indeed a meromorphic
theory with Kac-Moody algebra Dgy 1 for every r, corresponding to the modular invariant
extension &£1[Dgy 1] (for N = 1 this is Eg 1, while for all N > 2 the extension does not
enhance the Kac-Moody algebra).
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Now we can go on to the general case: direct sums of Kac-Moody algebras, including
exceptional as well as Abelian algebras, at arbitrary levels. We also allow meromorphic
theories where the Kac-Moody algebra is not complete (for example the algebra could
contain minimal model or higher-spin modules). We argue that all these generalisations
lower the dimension of the Kac-Moody algebra, proving the bound. First, when we take
direct sums, the sum of dimensions of the factors is always less than the dimension of a
simple algebra of the same c. Since there are finitely many exceptional algebras one can
also verify explicitly that none of them “wins” over Dgy 1. Also for Abelian algebras the
dimensions are always smaller than those of non-Abelian algebras of comparable central
charge. Second, raising the level of any factor raises its central charge without changing
its dimension, and therefore lowers its dimension for fixed central charge. Finally if the
Kac-Moody algebra is not complete, its dimension will be smaller than that of a complete
algebra with the same c. This then proves the result.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP? supports
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