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1 Introduction

A rational 2d conformal field theory has a finite set of holomorphic characters χi(τ) and a
partition function of the form:

Z(τ, τ̄) =
n−1∑
i,j=0

Mij χi(τ̄)χj(τ) (1.1)

For our purposes, as explained below, it will be sufficient to consider the case where
Mij = δij , for which the above can be rewritten:

Z(τ, τ̄) = |χ0|2 +
n−1∑
i=1

Yi|χi|2 (1.2)
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Here the integer n is the number of linearly independent characters, which is less than
or equal to the number of independent primaries, which we denote by p and refer to as
the “rank”. It is possible for multiple primaries to have the same character.1 The positive
integers Yi in eq. (1.1) are the multiplicities of the characters, and the number of primaries
is given in terms of these by p = 1 + ∑n−1

i=1 Yi. When n = 1, the only character is the
identity character, and since the vacuum state is unique and real we also have p = 1. In
this case we will refer to the resulting theory as a meromorphic CFT.2

A classification programme initiated in [1–3] and pursued by both mathematicians and
physicists in more recent times [4–36], is based on the fact that characters are vector-valued
modular forms (VVMF) of weight 0:

χi(γτ) =
n=1∑
j=0

%ij(γ)χj(τ) (1.3)

where:
γ =

(
a b

c d

)
∈ SL(2,Z), γτ ≡ aτ + b

cτ + d
, τ ∈ H (1.4)

and H = {τ ∈ C | Im(τ) > 0} is the upper half plane.
For the partition function in eq. (1.1) to be modular invariant, we must have:

%†diag(1, Yi)% = diag(1, Yi) (1.5)

Characters that transform in this way under the modular transformations can be shown
to solve modular linear differential equations (MLDE) [2, 3]. Such equations have finitely
many parameters and these can be varied to scan for solutions that satisfy the basic criteria
to be those of a conformal field theory. These criteria correspond to the fact that each
character is holomorphic in q = e2πiτ (except as q → 0), and have an expansion of the form:

χi(τ) = qαi

∞∑
s≥0

ai,s q
s, s ∈ Z (1.6)

If the VVMF correspond to a genuine CFT then these critical exponents, αis, can be
identified with the central charge and (chiral) conformal dimensions as:

αi = − c

24 + hi (1.7)

with h0 = 0→ α0 = − c
24 corresponding to the identity character of the CFT.

The coefficients ai,s, s ≥ 1 should be non-negative integers for some choice of positive
integer ai,0 that provides the overall normalisation of each character. To satisfy the axioms
of CFT we must choose a0,0 = 1 (non-degeneracy of the vacuum), while for each i 6= 0

1This occurs in particular whenever a primary is complex, since its complex conjugate has the same
character, but there are also more general cases of this phenomenon.

2Some authors restrict the word “meromorphic” to those CFT whose character is exactly modular
invariant without a phase, and hence c is a multiple of 24. However in this work we will use the term for all
one-character CFT, whose central charges can be any positive integral multiple of 8.
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we define the integer Di = ai,0. Since the MLDE from which characters are obtained is
homogeneous, the degeneracies are not uniquely determined without some additional input.
One tentatively chooses the minimum integral Di that make the coefficients ai,s, s ≥ 1, of
each character, non-negative integers and then checks for consistency. We discuss this point
in some detail in section 2.

In [23] VVMFs with the above properties were called “admissible”. For any admissible
VVMF, we define m1 = a0,1, the degeneracy of the first excited state in the identity
character χ0. For a CFT, this corresponds to the number of spin-1 generators in the chiral
algebra. The integers m1, Di, Yi will be important in what follows.

In general, admissible characters do not correspond to a CFT, as we discuss in detail
below. While much of the literature cited above has focused on classifying admissible
characters, from the CFT point of view the result should be interpreted as a “superset”
of candidates of which actual CFTs form a subset. The problem of identifying this subset
has been addressed in varying degrees of detail, for small numbers of characters, in [3, 17,
18, 20, 24, 27, 28, 35–39]. In the present work we take this goal forward by completing the
classification of three-character CFT with vanishing Wronskian index (explained below)
for any central charge, but excluding central charge = 8, 16 where the classification of
admissible characters is itself problematic [21, 33–35]. The significance of our result is
that we decisively rule in, or out, every admissible character as being a CFT by making
an exhaustive list of bilinear pairings. In a different context, some recent work where the
distinction between consistent partition functions and actual CFTs is highlighted is [40, 41].

An important quantity in the classification procedure is the number of zeroes of the
Wronskian determinant of the characters in moduli space. Because the torus moduli space
has cusps, the number of zeroes can be fractional in units of 1

6 . Hence we define the
Wronskian index ` [2] to be an integer such that the number of zeroes is `

6 . Certain values
of ` can be ruled out — we have ` 6= 1 in general, ` even for n = 2 [4], ` a multiple of 3 for
n = 3, and again ` even for n = 4 [33].

Our focus in this work is on admissible characters with (n, `) = (3, 0). Progress
in classifying these was made in [3, 10, 17, 28] and more recently in three independent
works: [33–35] which all found a set of seven new solutions that had previously been
missed. Of these, the work of Kaidi, Lin and Parra-Martinez [33] was able to complete the
classification of admissible characters using a method based on [42]. In view of their proof,
the classification in [34] (originally restricted to c ≤ 96) is likewise complete. In the rest of
this work we will closely follow the notation of this paper. There is one caveat to the above
statements: there are infinitely many admissible (3, 0) characters at c = 8, 16 [27, 33–35]
that are harder to classify and would need to be considered separately.

In the present work we start with the complete set of admissible characters (excluding
those with c = 8 and 16) and make use of the coset construction [17, 43, 44] to complete
the classification of (n, `) = (3, 0) CFT. The cosets we consider are in the spirit of [17]
where the numerator is a meromorphic CFT with c = 8N with N ∈ N. However we go
far beyond this work by exhaustively tabulating all possible bilinear pairings with a total
central charge of c = 8, 16, 24, 32, 40. Notably, even at c = 24 we find interesting classes of
pairings that were not considered in [17].
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A significant spinoff of our coset pairings is that we can use them to predict several
non-lattice meromorphic CFT at arbitrary high values of c = 8N . The results have been
presented in [45] and here they are placed in a larger context. Moreover we will also rule
out certain classes of meromorphic theories at c = 32, 40.

Returning to the three-character case, the restriction on Wronskian index makes this
in one sense a weaker classification than that of [39] for two primaries, where there was no
restriction on the Wronskian index, but in one sense also stronger since the present work
has no restriction on the central charge. This should finally bring closure to a programme
for the “simplest” three-character theories (those with vanishing Wronskian index) that
was initiated over three decades ago in [3]. By contrast, the analogous problem for two
characters and vanishing Wronskian index was simple enough to solve in a single paper [2]
with completeness being rigorously proved more recently [21].

Apart from the fact that we restrict the Wronskian index but not the central charge,
the approach in the present work has some other important differences from [39]. Here
we start from a given finite set of admissible characters, then look for bilinear coset-type
relations for them based on their q-expansion. Thereafter we use embedding techniques
to identify one of these as a CFT if the other one is known, We also allow any number of
primaries as long as the number of characters (dimension of the VVMF) is three, while the
rank (number of primaries or “simple modules”) can be larger. We do not impose unitarity,
but always work with the unitary presentation of the characters (the most singular term is
treated as defining the central charge).

In section 2 we start by describing the methodology used and provide a list of VVMFs
that potentially describe three-character CFTs but were so far uncharacterised. Thereafter
we summarise some relevant facts about embeddings, extensions of chiral algebras and
bilinear or “gluing” relations. We also review a class of admissible characters that have
formally negative fusion rules (as computed from the Verlinde formula [46], after extending
if necessary the modular S-matrix to have the same rank as the number of primaries). Some
of these have been identified as “Intermediate Vertex Operator Algebras” [14]. Section 3 is
devoted to the detailed presentation of our results, with tables detailing the coset pairs at
the level of VVMFs and descriptions of the tables that explain how individual entries are
either identified with definite CFTs or ruled out. We summarise our results and discuss
significant general features of our classification in section 4. At the very end we abstract a
complete table of unitary CFTs with three characters and zero Wronskian index (excluding
c = 8, 16 as mentioned above). The reader who is only interested in the results may skip
directly to section 4.

While this work was in progress we came to know of [36] which has significant overlap
with table 8 of our paper which positively identifies 6 of the 41 previously uncharacterised
solutions. However, in the present work we are also able to unambiguously categorise all
the remaining 35 solutions, separating them into 20 that are of IVOA type and 15 that we
can rule out as CFTs, completing the classification process. This process makes use of most
of the remaining 20 tables in subsections 3.1–3.5. Also, as mentioned above, we find both
positive and negative predictions for classes of meromorphic theories at c > 24.
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2 Methodology and background

2.1 MLDE and coset construction

As explained in the Introduction, the starting point of the classification procedure in
which we are working is the construction of admissible characters using MLDEs. Here
we explain some important subtleties in this construction and then go on to discuss the
coset construction which we employ in the present work to characterise which admissible
characters correspond to CFTs.

Below eq. (1.7) we defined the degeneracy Di of each non-identity character χi as the
minimum integer such that the q-series for the corresponding character has non-negative
integral coefficients. This assigns a tentative normalisation to each non-identity character.
As explained in [3], the test of having found correct degeneracies Di is that the S-matrix
in a basis of primaries is unitary. Note also that for an affine theory (WZW model), the
degeneracy Di for a given χi is the dimension of the representation of the finite-dimensional
Lie algebra in which the ith primary transforms, so in this case it is uniquely determined.

In view of these observations, at some stage it may be needed to change the degeneracy
of a primary from the initially determined one to a multiple of itself. However the possibility
of such a change is subject to a constraint. Suppose we have a solution to a given MLDE
where the degeneracies Di as well as the multiplicities Yi have been tentatively determined
(the Yis can be computed for MLDE solutions using the procedure given in [3]). If we
redefine the Di by multiplying by an integer factor, the Yi will also change in such a way
that the product YiD2

i remains fixed. This can be seen by writing the partition function as:

Z(τ, τ̄) = |χ0|2 +
n−1∑
i=1

YiD
2
i

∣∣∣∣∣
(

1 + ai,1
ai,0

q + ai,2
ai,0

q2 + . . .

)∣∣∣∣∣
2

, (2.1)

where everything except YiD2
i is uniquely determined by the MLDE. Then modular

invariance uniquely determines the YiD2
i for each i. Thus the change Di → δiDi leads to

the scaling Yi → Yi

δ2
i
. The new Yi will be integer only if the old one was divisible by δ2

i . This
is a stringent constraint — for any given pair Yi, Di, rescaling of Di is only allowed if the
original Yi are divisible by the square of an integer. This point is illustrated in considerable
detail in the discussion of table 8.

In fact there are MLDE solutions for which both Di and Yi cannot simultaneously be
made integral. These cannot be CFTs and are marked with a “strikethrough” in table 1
(thus they appear as III or V). We note that none of these solutions appears in [33], who
presumably eliminated them at the outset for the above reasons, however some of them do
appear in [35]. Interestingly even these VVMFs satisfy bilinear relations, and for complete-
ness we display these in our subsequent tables where they continue to be marked with a
“strikethrough”. Though they are inconsistent as CFTs, it is still striking that they satisfy
bilinear pairings at all, and this might prove useful for the general understanding of VVMFs.

Next we describe one of our main tools, the coset construction [43, 44, 47]. This is a
general class of relations among CFTs, and we will only use the class of cosets where the
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numerator factor of the coset is a meromorphic CFT, as we explain below.3 Pick a set of
admissible characters χi, i = 0, 1, . . . n− 1 and collectively denote it by W. Suppose this
set has Wronskian index `, central charge c and conformal dimensions hi, i = 1, 2, · · ·n− 1.
W will be said to have a “bilinear relation” with another set of admissible characters χ̃i,
collectively denoted W̃ , with i running over the same range and having Wronskian index ˜̀,
central charge c̃ and conformal dimensions h̃i if the following holomorphic identity holds:

χ0(τ)χ̃0(τ) +
n−1∑
i=1

di χi(τ)χ̃i(τ) = χH(τ) (2.2)

where χH(τ) is a polynomial in the Klein j-invariant times possible factors of j(q) 1
3 or j(q) 2

3 ,
such that the result has non-negative integral coefficients in a power series in q ≡ e2πiτ .
Such a relation can only hold if χ̃i(τ) transforms the same way as the complex conjugate
χi(τ̄) under modular transformations. Then the di are positive integers satisfying:

%†diag(1, di)% = diag(1, di) (2.3)

where ρ is the representation under which the χi transform.
From its properties, χH(τ) is also an admissible character. It may potentially correspond

to a meromorphic CFT of central charge c+ c̃, but it is not necessary that such a CFT exists.
For example at c+ c̃ = 24 we have an infinite family of admissible characters but only a
finite number correspond to CFT’s [37]. Bilinear pairings are also known to hold for quasi-
characters [23, 30] which are integral but not admissible due to negativity of some coefficients.

Comparing eq. (2.3) with eq. (1.5) we see that we must have di = Yi. Physically this
is because on the one hand the modular transformations of W,W are conjugate to each
other (where W is the complex conjugate VVMF to W with characters χi(τ̄)), so that the
partition function is invariant. On the other hand the modular transformations of W, W̃
are also mutually conjugate, so that the bilinear relation is modular invariant — A slight
subtlety here is that the bilinear relation can acquire a phase under modular transformations
if cH = 24n+8, 24n+16 with n a non-negative integer. However this phase can be absorbed
into the transformations of χ̃ and it is still true that di = Yi.

Note that if the degeneracies of one of the members of the pair (Di or D̃i) are not the
correct ones then we may not find di = Yi. This will be a useful diagnostic in what follows.
However there is another condition under which it is possible to have (d1, d2) 6= (Y1, Y2),
that arises when the dual pair is made up of affine theories of the type D4n,1. In such cases
the representation of SL(2,Z) on the characters is reducible (see v1 of [28]) and as a result
there are multiple ways to combine the characters into a modular invariant. This will be
explained in more detail in section 2.4.

The bilinear relation eq. (2.2) does not imply that any of χ(τ), χ̃(τ), χH(τ) correspond
to a genuine CFT. However, if χ, χ̃ and H are all CFTs, denoted C, C̃ and H respectively,
then the bilinear relation is equivalent to the coset relation:

C̃ = H
C

(2.4)

3This is the form studied in the physics literature in [17, 18, 36, 39] and in the mathematics literature in,
for example, [48–50].
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This means that the chiral algebra of C̃ is the commutant of the embedding of the chiral
algebra of C in that of H. The representations of the commutant algebra also follow from
this embedding, hence the coset completely defines a CFT.

If both C and H correspond to CFT’s whose stress tensor is given by the Sugawara
construction in terms of Kac-Moody currents, then by embedding the currents of C in those
of H one defines the stress tensor of the coset theory C̃. This will provide a relatively easy
way to prove the existence of a coset relation [17]. However it is also possible for eq. (2.2)
to be satisfied when H does not have any Kac-Moody currents (an example is the Monster
Module [51, 52]). In this case the coset construction of [43, 47] does not strictly apply, but
the more general one of [44] does. In these cases it is easier to verify the bilinear relation
rather than compute the commutant of C in H. One such example, studied in the context
of MLDE and holomorphic bilinear relations [18] arises when C is the Ising model and C̃ is
the Baby Monster CFT [49].

The existence of bilinear relations between an admissible solutionW , another admissible
solution W̃ and an invariant (up to a phase) character χH provides us a number of ways
to decide whether given admissible characters do or do not correspond to CFT. These are
as follows:

• When W and χH are both known CFTs C,H, the bilinear relation suggests that W̃
may correspond to one or more CFTs C̃. This can then be accurately confirmed by
checking for the existence of one or more suitable embeddings of C in H that would
define C̃.

• When W, W̃ are both known CFTs C, C̃, we may conclude that the character χH
corresponds to a CFT H that can be called the “gluing” of C, C̃.4 Several new
meromorphic CFT were recently discovered in this way in [45].5

• When a bilinear relation exists and W is a CFT C, but the character χH is known not
to correspond to a CFT, the bilinear partner W̃ cannot be a CFT. For if it were, then
the bilinear relation would predict that χH is a CFT, resulting in a contradiction.

• When a bilinear relation holds and W corresponds to a CFT C but W̃ is known not
to correspond to any CFT, it can sometimes be argued that χH does not describe a
CFT. The naive reasoning is that if χH were a CFT H, then by taking the coset H/C
we would define a CFT C̃ corresponding to the admissible character W̃ , resulting in a
contradiction. However a certain condition needs to be satisfied in this case, so we
will explain the statement more precisely in the discussion on table 16 where it is
implemented for the first time.

We see that the bilinear relation is a powerful diagnostic tool for relating admissible
characters to CFT or ruling them out as being CFT.

4Rigorously this is true for CFTs with up to 4 primaries, for which the Modular Tensor Category is
unique given the modular transformations of the characters [53].

5However, again for cases involving D4n,1, there can be ways to pair C, C̃ that do not lead to a meromorphic
theory because the coefficients di in the pairing are not integral. We will remark on these as they are
encountered.
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Let us note here that the recent work [36] also makes use of the coset construction
to identify some admissible three-character solutions as CFT, however there are some
differences in the criteria used. We will comment on the cases of overlap as we go along.

In [17] the following relation between the data of characters χi and their coset dual χ̃i
was derived:

`+ ˜̀= n2 +
(
c+ c̃

4 − 1
)
n− 6

n−1∑
i=1

(hi + h̃i) (2.5)

Here we are interested in the case n = 3. Because c+ c̃ must be a multiple of 8, we write
it as 8N where N is an integer.6 Since the right hand side of the bilinear relation is a
character with integer dimensions (up to an overall power of q), we must have hi + h̃i = ni,
an integer ≥ 1, for each i. Thus the above relation can be written:

`+ ˜̀= 6
(
N + 1−

n−1∑
i=1

ni

)
(2.6)

As both `, ˜̀≥ 0 we have the bound:
n−1∑
i=1

ni ≤ N + 1 (2.7)

If this bound is saturated it means ` = ˜̀ = 0 and we have the possibility of dual (3, 0)
pairs. Thus we will proceed by listing all possible values ni that saturate the bound for
each N , and then classifying dual pairs with these ni. This technical point is of importance
because it seems to have been missed in much of the previous literature, starting with [17]
that only considered a special sub-class of cosets where each ni ≥ 2. More general cosets of
meromorphic theories were studied recently, and apparently for the first time, in [39] in the
context of theories with exactly two primaries.

The values of ni have considerable significance for the structure of the bilinear pair,
which we now explain. Suppose a bilinear relation holds between CFTs C, C̃ with Kac-Moody
algebras h, h̃, and they pair up to a CFT H with Kac-Moody algebra g. Then h̃ must be
the commutant of h in g. Now suppose that for any of i = 1, 2 we have ni = 1. This means
that some spin-1 currents in the theory H arise as “composites” of primaries in C, C̃. This
in turn means the total number of spin-1 currents of C, C̃ is strictly smaller than that of
H, in other words dim h + dim h̃ < dim g, so the embedding of h in g is a non-trivial one —
typically h is embedded into a simple factor of g. Such cases were discussed for the case of
two primaries in [39]. On the other hand whenever all ni ≥ 2, no currents of H can arise as
composites of primaries of C, C̃. Therefore we have dim h + dim h̃ = dim g. This can only
happen if g is non-simple and h corresponds to one or more of its simple factors. Such
cases were first studied in [17], and they are simpler because the coset merely “deletes” the
simple factors of g corresponding to h leaving behind the remaining simple factors as the
chiral algebra h̃ of the coset theory.

At this point it is useful to briefly describe how the concept of “fusion rules” applies to
VVMFs even before they are identified with CFT. In the MLDE approach to classification

6In [17] the convention was to write c + c̃ = 24N where N is a multiple of 1
3 .
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of RCFT, one first finds admissible character solutions that transform covariantly under
SL(2,Z) and only later addresses their identification with CFT. Thus we can calculate
their modular S and T matrices at the outset. Inserting the S-matrix into the Verlinde
formula [46] one can then compute the following quantities:7

Nk
ij =

∑
l

SilSjlS
−1
kl

S0l
(2.8)

As long as the Sij are only a property of admissible characters, the quantities Nk
ij have no

particular physical meaning. But once the characters are identified with CFTs then these
quantities necessarily become the fusion rules of that theory. Hence by abuse of notation
we will refer to Nk

ij as “fusion rules” even when no CFT interpretation has so far been
assigned to the corresponding characters. An important point that will come up below
is that sometimes one or more of the Nk

ij is a negative, rather than positive, integer. We
refer to such characters as being of Intermediate Vertex Operator Algebra (IVOA) type,
following [14].

We now give a short summary of the complete classification of admissible VVMF’s with
three characters and ` = 0 (the characters are extracted from the most recent papers [33–35]
and expressed in the notation of [34]), referring the reader to the original references for
more details. The admissible character sets fall into five categories, labelled I, II, . . . ,V.
Let us briefly review what the various categories mean.

Category I. The admissible VVMFs belonging to this category are all 3-character theories
that are affine or tensor products of affine theories, together with the Ising CFT M(4, 3)
and the unitary presentations8 ofM(7, 2) andM(5, 2)⊗2.

Category II. Most of these are admissible 2-character solutions together with an “unsta-
ble” character (or sometimes an admissible 1-character solution together with two “unstable”
characters). By unstable, we mean that this character has rational coefficients in its q-series
that cannot be made integral by any choice of normalisation. Such a case was first discussed
in [2] and more general examples were found in [34]. There are also some type II cases
where the conformal dimensions degenerate — two of them become equal — and in this
case the MLDE has a logarithmic solution. Due to these reasons, type-II VVMFs are not
genuine 3-character solutions and we do not explore them further.

Category III. The admissible VVMFs belonging to this category are those solutions
of the (3,0) MLDE which appeared in [28] but not in [17] and hence were not previously
categorised as CFT. In this category, there exists special infinite sets of solutions, at c = 8
and c = 16 that we explain in appendix B. We will not attempt to include these in our
classification, though some of the known cases will appear in our tables.

7This can only be done once a unitary S-matrix has been found. In general S does not come out to be
unitary, this problem arises when multiple primaries have the same character. In that case the space of
primaries has to be manually enlarged and the S-matrix recomputed in that space, as explained in [3].

8By unitary presentation we mean the choice of the most singular character as the identity. However,
this does not imply there is a unitary theory.
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Category IV. The admissible VVMFs belonging to this category are those solutions of
the (3,0) MLDE which appeared in [17, 18] where they were precisely characterised as CFTs
via the coset construction.

Category V. There are seven admissible VVMFs in this category, these were indepen-
dently discovered in [33–35] and not known previously.

We see that all entries in categories I, II, IV have already been identified as CFT’s or
else shown to be inconsistent [34]. Thus we need to focus on the characterisation of classes
III and V which so far have not been identified as CFTs. To characterise them, we will
study their bilinear relations with solutions in category I and IV (and amongst themselves).

In table 1 we have listed all solutions in categories III,9 (except for the infinite sets
having c = 8 and c = 16 noted above) and V. The subscripts label the set in order of
increasing central charge, thus for example V18 (c = 12) lies between III17 (c = 12) and
III19 (c = 25

2 ). As explained below eq. (1.6), the integer m1 is the dimension of the weight-1
space in the identity character, while Di, i = 1, 2 are the ground-state degeneracies of the
non-identity characters.

Note from this table that none of the entries contains a primary with integer conformal
dimension, or a pair that differ in dimension by an integer. For this reason it is not possible
to make a non-diagonal modular invariant from the characters, justifying our choice in
eq. (1.2) to consider only diagonal invariants.

In the last column of table 1, labelled “sign(fusion)”, we list the signature of the fusion
coefficients of the concerned VVMF, computed using eq. (2.8). However we do not bother
to compute these for solutions of III, V type. Also, as noted earlier this computation
requires us to enlarge the matrix in cases where there are more than three primaries, and
this rapidly becomes tedious. So we restrict this calculation to solutions that have at most
four primaries. The notation ‘· · · ’ in the last column of the table denotes that we did not
compute the fusion coefficients of these solutions for one of the reasons above. Fortunately
these will also not be needed. In the remaining cases a ‘+’ sign in the last column denotes
that all the fusion coefficients are non-negative while a ‘−’ sign denotes that at least one
coefficient is negative. The latter will be called IVOA-type solutions, and we discuss them
in more detail in section 2.5.

In table 2, we list the category III infinite sets of admissible character solutions at
c = 8 and c = 16. More details on these infinite sets are in appendix B.

As mentioned above, the tables in the following sections will include the III and V
entries in table 1 even though they are already ruled out from being CFTs. For completeness,
our tables will also include some already characterised theories from [34], as their bilinear
pairings are interesting and could be useful for subsequent work.

9Note that III27 in table 1 is actually E⊗2
7.5 and was identified in [34] as a category I solution. However it

has a negative fusion rule and therefore is of IVOA type. Here we include it in category III as it will pair
up with other IVOA-type characters in this category.
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# c (h1, h2) m1 (D1, D2) (Y1, Y2) sign(fusion)
III1

12
7 ( 2

7 ,
3
7 ) 6 (3, 2) (1,1) −

III2
12
5 ( 1

5 ,
3
5 ) 3 (3, 5) (1,2) +

III3
44
7 ( 4

7 ,
5
7 ) 88 (11, 44) (1,1) −

III4
36
5 ( 3

5 ,
4
5 ) 144 (12, 45) (1,2) −

III5
52
7 ( 4

7 ,
6
7 ) 156 (13, 78) (1,1) −

III6
17
2 ( 1

16 ,
3
2 ) 255 (17, 221) ( 1

256 , 1) · · ·
III7

60
7 ( 3

7 ,
8
7 ) 210 (10, 285) (1,1) −

III8
44
5 ( 2

5 ,
6
5 ) 220 (11, 275) (1,2) −

III9
44
5 ( 1

5 ,
7
5 ) 253 (11, 242) ( 1

50 , 1) · · ·
III10 9 ( 1

8 ,
3
2 ) 261 (9, 456) ( 1

32 , 1) · · ·
III11

19
2 ( 3

16 ,
3
2 ) 266 (19, 703) ( 1

64 , 1) · · ·
III12

68
7 ( 3

7 ,
9
7 ) 221 (17, 782) (1,1) −

III13 10 ( 1
4 ,

3
2 ) 270 (5, 960) ( 1

2 , 1) · · ·
III14

21
2 ( 5

16 ,
3
2 ) 273 (21, 1225) ( 1

16 , 1) · · ·
III15 11 ( 3

8 ,
3
2 ) 275 (11, 1496) ( 1

2 , 1) · · ·
III16

23
2 ( 7

16 ,
3
2 ) 276 (23, 1771) ( 1

4 , 1) · · ·
III17 12 ( 3

5 ,
7
5 ) 222 (25, 1275) (2, 2) · · ·

V18 12 ( 1
3 ,

5
3 ) 318 (9, 4374) (1, 1) · · ·

III19
25
2 ( 9

16 ,
3
2 ) 275 (25, 2325) (1,1) +

III20 13 ( 5
8 ,

3
2 ) 273 (26, 2600) (2,1) +

III21
27
2 ( 11

16 ,
3
2 ) 270 (54, 2871) (1,1) +

III22
68
5 ( 4

5 ,
7
5 ) 136 (119, 1700) (1,2) +

III23
68
5 ( 2

5 ,
9
5 ) 374 (119, 12138) ( 1

50 , 1) · · ·
III24

100
7 ( 5

7 ,
11
7 ) 325 (55, 2925) (1,1) −

III25
100

7 ( 4
7 ,

12
7 ) 380 (55, 11495) (1,1) −

III26
29
2 ( 13

16 ,
3
2 ) 261 (116, 3393) (1,1) +

III27
76
5 ( 4

5 ,
8
5 ) 380 (57, 3249) (2,1) −

III28
76
5 ( 3

5 ,
9
5 ) 437 (57, 11875) (1, 2) −

III29
108

7 ( 6
7 ,

11
7 ) 378 (117, 3510) (1,1) −

III30
108

7 ( 4
7 ,

13
7 ) 456 (39, 20424) (1,1) −

III31
33
2 ( 17

16 ,
3
2 ) 231 (528, 4301) (1,1) +

III32
116

7 ( 8
7 ,

10
7 ) 348 (725, 1972) (1,1) −

III33
84
5 ( 6

5 ,
7
5 ) 336 (770, 1452) (2,1) −

III34
84
5 ( 1

5 ,
12
5 ) 534 (33, 55924) ( 2

625 , 1) · · ·
III35

124
7 ( 9

7 ,
10
7 ) 248 (2108, 2108) (1,1) −

III36 18 ( 1
4 ,

5
2 ) 598 (25, 221 · 210) ( 1

32 , 1) · · ·
III37

92
5 ( 6

5 ,
8
5 ) 92 (1196, 7475) (1,2) +

III38
92
5 ( 3

5 ,
11
5 ) 690 (299, 178802) ( 2

25 , 1) · · ·
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V39 20 ( 4
3 ,

5
3 ) 80 (2430, 17496) (1, 1) · · ·

V40 20 ( 1
3 ,

8
3 ) 728 (12, 2 · 312) (1, 1) · · ·

V41 20 ( 2
3 ,

7
3 ) 890 (135, 10 · 2 · 39) (1, 1) · · ·

III42
108

5 ( 7
5 ,

9
5 ) 27 (2295, 42483) (2,1) +

III43
108

5 ( 2
5 ,

14
5 ) 860 (833, 3015426) ( 1

1250 , 1) · · ·
III44

108
5 ( 4

5 ,
12
5 ) 1404 (459, 153 · 55) (1, 2) +

III45 22 ( 3
2 ,

7
4 ) 66 (77 · 26, 11 · 211) (1, 2) +

III46 22 ( 3
4 ,

5
2 ) 1298 (154, 847 · 210) (2, 1) +

III47
156

7 ( 11
7 ,

12
7 ) 78 (5070, 27170) (1,1) −

III48
156

7 ( 5
7 ,

18
7 ) 1248 (130, 799500) (1,1) −

III49
45
2 ( 13

16 ,
5
2 ) 1640 (1595, 956449) ( 1

16 , 1) · · ·
III50 23 ( 3

2 ,
15
8 ) 23 (4600, 23 · 211) (1, 2) +

III51 23 ( 7
8 ,

5
2 ) 2323 (575, 32683 ∗ 32) (2, 1) +

III52
116

5 ( 8
5 ,

9
5 ) 58 (4959, 27550) (1, 2) −

III53
116

5 ( 4
5 ,

13
5 ) 1711 (1653, 910803) ( 1

50 , 1) · · ·
III54

164
7 ( 11

7 ,
13
7 ) 41 (4797, 50922) (1, 1) −

III55
47
2 ( 15

16 ,
5
2 ) 4371 (4371, 1135003) ( 1

4 , 1) · · ·
III56 26 ( 1

4 ,
7
2 ) 1118 (117, 3315 · 214) ( 1

512 , 1) · · ·
III57

132
5 ( 3

5 ,
16
5 ) 1536 (2392, 47018049) ( 2

625 , 1) · · ·
V58 28 ( 2

3 ,
10
3 ) 1948 (225, 11 · 2 · 314) (1, 1) · · ·

III59 30 ( 3
4 ,

7
2 ) 2778 (539, 14421 · 214) ( 1

2 , 1) · · ·
III60

61
2 ( 13

16 ,
7
2 ) 3599 (47763, 264580485) ( 1

212 , 1) · · ·
III61 31 ( 7

8 ,
7
2 ) 5239 (9269, 2295147 · 27) ( 1

32 , 1) · · ·
III62

156
5 ( 4

5 ,
18
5 ) 3612 (14877, 250774426) ( 1

1250 , 1) · · ·
V63 36 ( 2

3 ,
13
3 ) 3384 (324, 8 · 320) (1, 1) · · ·

V64 44 ( 1
3 ,

17
3 ) 3146 (13, 19 · 325) ( 9

4 , 1) · · ·
III65

276
5 ( 4

5 ,
33
5 ) 13110 (12971091, 4897835680923668) ( 2

244140625 , 1) · · ·

Table 1. Previously uncharacterized admissible character solutions to the (3, 0) MLDE. The ones of
type III and V have Yi that are fractional and cannot be made integer by rescaling the degeneracies.

# c (h1, h2) m1 (D1, D2)
III′ 8 (1

2 , 1) N \ {248} (1, 1)
III′′ 16 (1, 3

2) N \ {496} (1, 1)

Table 2. Previously uncharacterized infinite familes of admissible character solutions to the (3, 0)
MLDE with c = 8, 16.
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One of the intriguing features that will come up is that Virasoro minimal models with
c < 1 appear in the coset pairings, thus making it clear that the coset construction is more
general than pairings of theories with Kac-Moody symmetry. This feature was already
foreseen in the mathematics literature in [44, 48] and a few examples have appeared in the
physics literature in [18, 39, 45].

2.2 Embeddings of Lie algebras

In this section, we gather facts from Lie algebras, affine Lie algebras etc that we will need to
understand coset relations. Typically, the CFTs of H and C (2.4) have chiral algebras which
contain affine Lie-subalgebras, whose Lie algebras are such that the Lie algebra associated
with C is a subalgebra of that of H. Denote by h ↪→ g the corresponding embedding. Here
both the subalgebra h as well as the embedding map are crucial data. The same subalgebra
can be embedded in multiple ways and can potentially result in different cosets; we will see
examples of this phenomenon in the next section.

First we study maximal embeddings; when there is no Lie-subalgebra of g that properly
contains h. There are two kinds of maximal embeddings: regular (R) and special (S). The
rank of h is equal to that of g in a regular embedding and is smaller in a special embedding.
One can obtain the regular and special embeddings of simple Lie algebras readily from the
literature; we use the LieArt 2.0 package (see [54]) in Mathematica to obtain all possible
maximal embeddings of a given Lie algebra. For example E8 has five regular maximal
embeddings, namely D8, A4 ⊕A4, E6 ⊕A2, E7 ⊕A1 and A8 and six special embeddings,
namely G2 ⊕ F4, A1 ⊕A2, C2, A1, A1 and A1. The last three correspond to A1 embedded
into E8 in three different ways; one way to characterize this difference is via the embedding
index, which we discuss below. After having understood maximal embeddings, one studies
non-maximal embeddings as follows. Let l ↪→ h and h ↪→ g be maximal embeddings. By
composing the two embedding maps, one obtains a non-maximal embedding l ↪→ g and all
non-maximal embeddings are obtained in this manner, in steps of maximal embeddings.

Now given an embedding h ↪→ g, maximal or non-maximal, there exists an important
quantity called the embedding index xe ∈ N which can be computed as follows. Pick any
non-trivial irrep of g say Λg and consider its branching

Λg = ⊕i Λhi , (2.9)

where Λhi s are irreps of h. The embedding index is then computed using the formula:

xe =

∑
i
L
(
Λhi
)

L (Λg) , (2.10)

where L
(
Λhi
)
denotes the Dynkin index of the irrep Λhi . Note that even if xe is computed

in (2.10) using a particular irrep and its branching (2.9), one obtains the same answer for
any finite-dimensional irrep. For example, the embedding indices of the various subalgebras
(occuring in the maximal embeddings) of E8 are given below in superscript. For regular
embeddings we have D(1)

8 , A(1)
4 ⊕A

(1)
4 , E(1)

6 ⊕A
(1)
2 , E(1)

7 ⊕A
(1)
1 and A(1)

8 and for special embed-
dings we have G(1)

2 ⊕ F
(1)
4 , A(16)

1 ⊕A(6)
2 , C(12)

2 , A(520)
1 , A(760)

1 and A(1240)
1 . Computations of

branching rules, Dynkin indices, embedding indices etc are performed using LieArt 2.0 ([54]).
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The relationship between the affine Lie algebras associated with the CFTs of H and C
in (2.4) can now be made explicit. For affine embeddings of the form, hk̃ ↪→ gk, the levels
follow the rule (see section 14.7 of [55]):

k̃ = k xe. (2.11)

Thus, for example, when H = E8,1, some possibilities for C are D8,1, A4,1, E6,1, E7,1, A1,1,
A2,1, G2,1, F4,1.

Convention. Throughout this paper, we think of the Ising CFTM(4, 3) as B0,1, A1,2 as
B1,1, C2,1 as B2,1, U(1) (with the appropriate radius) as D1,1, A⊗2

1,1 as D2,1 and A3,1 as D3,1.

2.3 Extension of a chiral algebra

Consider an affine theory based on a (not necessarily simple) Kac-Moody algebra gk. Its
n-character extension, denoted by En[gk], is a new theory where the chiral algebra has been
extended by adding new generators. The theories based on gk and En[gk] have the same c.
The characters of the extension are linear combinations of characters of the original theory
that differ in dimension by integers and as a result the extension will have fewer characters
than the original affine theory. It also has a different Wronskian index in general. Note
that a given affine theory may have more than one extension.

One can also consider extensions of more general chiral algebras. For example, a direct
product of Kac-Moody and c < 1 Virasoro minimal models can be extended in the same
way. If there is a single minimal model module of central charge c, we will denote the
extension by En[g ⊗ L(c)] and similarly for the more general case. Such extensions have
arisen in [39, 45] and will also arise in the cases we consider.

2.4 More about coset relations

As we saw above, coset relations between a pair of CFTs (C and C̃) or admissible characters
(W and W̃) are bilinear relations between characters of the form:

χH = χ0χ̃0 +
2∑
i=1

di χiχ̃i. (2.12)

Here, χ0, χ1, χ2 are the characters of W and χ̃0, χ̃1, χ̃2 are the characters of W̃ . (d1, d2) are
positive integers. χH0 is the character of a meromorphic CFT. Sometimes we have the situa-
tion of “self-cosets” when the same CFT/admissible character solution is both W as well as
W̃ . Also sometimes (as we will see this happens when D4n,1 are involved) there may be more
than one pairing of the same sets of characters: one with χ0 = χ̃0, χ1 = χ̃1, χ2 = χ̃2, which
results in a standard bilinear relation as in (2.12) with a pair of positive integers (d1, d2),
and one or more distinct ones when the characters are paired differently as described below.

In eq. (2.12), the characters χi and χ̃i are understood to be properly normalised with
integral ground-state degeneracies and multiplicities that have been determined. Let the
multiplicities of χi, χ̃i be Yi, Ỹi. Since the standard coset pairing is a pairing at the level
of primaries these two multiplicities must be the same for each i. Moreover, by modular
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invariance it follows that the integers di in the bilinear relation are also equal to these
multiplicities, thus di = Yi = Ỹi. Hence from now on, we use di to denote both Yi and Ỹi
whenever the pairing is of standard type. We will comment on the non-standard pairings
as and when they arise.

We now describe in detail three infinite families of coset pairs of CFTs and compute
their (d1, d2) values. Members of these families will occur often amongst the many coset
relations between (3, 0) admissible characters that we compute and tabulate in the next
section. In one of the families below the non-standard pairings will also be illustrated.

Example 1. We start with the case where the meromorphic CFT is the E8,1 CFT and the
coset pairs are B3,1 and B4,1. E8 contains a regular maximal sub-algebra D8 which contains
a special maximal sub-algebra B3 ⊕B4. Thus B3 ⊕B4 ↪→ E8 constitutes a non-maximal
embedding. One finds that the commutant of B3 in E8 is B4 and vice versa. This then
means that if B3 is taken to be the Lie algebra associated to the denominator theory C
in (2.4), then the Lie algebra associated to the coset theory C̃ would be B4. After computing
embedding indices and levels, this means that the coset of E8,1 by B3,1 is B4,1 CFT, and
vice versa.

The characters of B3,1 and B4,1 satisfy a bilinear relation with χH = j
1
3 :

j
1
3 = χ0χ̃0 + d1 χ 1

2
χ̃ 1

2
+ d2 χ 7

16
χ̃ 9

16
(2.13)

We can compute the (d1, d2) values for this relation using Lie algebra representation theory.
For this, let us count spin-1 currents on both sides. On the l.h.s. we have the 248 currents
of E8 spanning the adjoint representation. This representation decomposes as follows into
irreducible representations of B3 ⊕B4:

248 = (21,1)⊕ (1,36)⊕ (7,9)⊕ (8,16) (2.14)

This means that on the r.h.s. of eq. (2.13), the 248 currents come from: (i) 21 spin-1 currents
of B3,1 combined with the identity from B4,1, (ii) 36 spin-1 currents of B4,1 combined with
the identity from B3,1, (iii) the product of primaries in the 7 and 9 representations of B3
and B4, (iv) the product of primaries in the 8 and 16 spinor representations of B3 and
B4 respectively. Of these, (i) and (ii) can be found in the first term of eq. (2.13), (iii) in
the second term and (iv) in the third term. Since there are no multiplicities in the above
decomposition, it follows that d1 = d2 = 1.

This example is a special case of a more general phenomenon where the meromorphic
CFT is the one-character extension E1[Dr,1] for r = 8, 16, 24, 32, 40 . . . of which E8,1 is the
c = 8 case. The single character of each of these CFTs is the modular invariant obtained by
combining the identity character χ0 (which at level-1 contains the adjoint representation
2r2 − r of Dr) and the character χ r

8
for the spinor representation 2r−1 of Dr. We will find

several coset pairs of admissible characters that correspond to the CFTs C = Br1,1 and
C̃ = Br2,1 for r1 + r2 + 1 ≡ r where r is a multiple of 8, that satisfy the following bilinear
relation to the above meromorphic extension of Dr,1:

χ
E1[Dr,1]
0 = χ0χ̃0 + d1 χ 1

2
χ̃ 1

2
+ d2 χ 2r1+1

16
χ̃ 2r2+1

16
(2.15)
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The relevant Lie algebra representation content of each of its terms comes from the following
two relations:

2r2 − r = (2r2
1 + r1,1)⊕ (1,2r2

2 + r2)⊕ (2r1 + 1,2r2 + 1)
2r−1 = (2r1 ,2r2)

(2.16)

Now the first two terms on the right hand side of the first line of (2.16) give rise to the
spin-1 contributions in the product of identity characters (first term of eq. (2.15)), while
the third term gives rise to the spin-1 contributions in the product of the characters in
the fundamental representations (second term of eq. (2.15)). Meanwhile the spinor of Dr

decomposes into the product of spinor reprsentations of Br1 , Br2 (second line of eq. (2.16))
and this corresponds to the last term in eq. (2.15) (note that this contribution in general
has spin r

8 rather than 1). It follows that d1 = 1, d2 = 1. We also learn that the dimensions
of the spinors of the coset pair add up to r

8 rather than 1, and this corresponds to the
integer n2 defined in eq. (2.6). The commutant of Br1 inside Dr1+r2+1 is Br2 (because there
is a special maximal embedding B(1)

r1 ⊕B
(1)
r2 ↪→ Dr1+r2+1) so we can identify Br1,1 with the

denominator theory C with E1[Dr1+r2+1,1] as the numerator theory H and Br2,1 as the coset
theory C̃. Of course one can also exchange the roles of Br1 and Br2 .

Example 2. Another infinite family of coset pairs is Dr1,1 and Dr2,1 pairing up in a
bilinear relation with a meromorphic extension E1[Dr,1] where r = r1 + r2 is a multiple of 8.
The affine theory Dr,1 has three characters: the identity character χ0, the vector character
χ 1

2
with conformal dimension 1

2 and the spinor and conjugate spinor (two representations
with the same character) χ r

8
with conformal dimension r

8 . The bilinear relation for the
coset pair of Dr1,1 and Dr2,1 is:

χ
E1[Dr,1]
0 = χ0χ̃0 + d1 χ 1

2
χ̃ 1

2
+ d2 χ r1

8
χ̃ r2

8
(2.17)

and the Lie algebra representations decompose as:

2r2 − r = (2r2
1 − r1,1) + (1,2r2

2 − r2) + (2r1,2r2)
2r−1 = (2r1−1,2r2−1) + (2r1−1,2r2−1)

(2.18)

The first two terms on the right hand side of the first line in (2.18) are associated with the
product of the identity characters while the third term corresponds to the product of the
characters in the fundamental representations (hence d1 = 1), and these terms are associated
to spin-1 generators on both sides. The two terms on the right hand side of the second line
in (2.18) correspond to the product of the characters in the spinor representations and since
there are two terms we find d2 = 2. These are associated to spin- r8 generators. Finally we
note that the commutant of Dr1 inside Dr1+r2 is Dr2 (because there is a regular maximal
embedding D(1)

r1 ⊕D
(1)
r2 ↪→ Dr1+r2) which means we can choose Dr1,1 for the denominator

theory C with E1[Dr1+r2,1] as the numerator theory H and get Dr2,1 for the coset theory C̃;
again the roles of Dr1 , Dr2 can be exchanged.

Interestingly, when r1, r2 are both multiples of 4 there is another way to pair them up
to a meromorphic theory that is not Dr1+r2,1. As an example, consider the pair D12,1, D12,1
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(both members of this pair are the same, but that is irrelevant to the discussion). The
non-trivial conformal dimensions for each factor are 1

2 ,
3
2 . Of these, the latter — the spinor

representation — occurs twice because of chirality. Thus (Y1, Y2) = (1, 2). We find that
they have a bilinear pairing to the meromorphic theory D24,1 as discussed in subsection 3.3.
This is consistent with the fact that:

E [D24,1]
D12,1

= D12,1 (2.19)

In this pairing, the vector primaries with h = 1
2 of each D12,1 pair up to make (24)2 = 576

spin-1 fields that, together with the 276 generators of each D12, make up the 1128 generators
of D24. This is a special case of the counting above. This pairing relies on the existence of
a modular-invariant extension of D24 which is a general phenomenon for all D8n. We may
therefore consider this a “standard” or “default” pairing.

However we also find another coset pairing in which the vector representation with
h = 1

2 for each D12 combines with one of the spinors with h = 3
2 of the other as shown in

table 8. We see that this time new spin-2 generators arise, but no new spin-1 generators are
created. As a result the meromorphic theory formed by this pairing still has Kac-Moody
algebra (D12,1)⊗2. The pairing is:

χ0χ̃0 + χ 1
2
χ̃ 3

2
+ χ 3

2
χ̃ 1

2
= χE1[(D12,1)⊗2] = j(τ)− 192 (2.20)

and corresponds to the coset:
E [(D12,1)⊗2]

D12,1
= D12,1 (2.21)

It exists because of the special modular invariant E1[(D12,1)⊗2] which is entry 66 of [37].
Notice that in eq. (2.20) not all primaries are used, since each spinor occurs only once
rather than twice as in the affine theory D12,1. Comparing with eq. (2.12) it seems that
we effectively have (d1, d2) = (1, 1), and therefore (d1, d2) 6= (Y1, Y2), but a better way to
think of it is that for such special pairings, (d1, d2) are not associated to multiplicities of
primaries at all.

This point becomes clearer if we consider two copies of D16,1 which pair up in two
different ways to a meromorphic c = 32 theory, corresponding to the distinct cosets:

E1[D32,1]
D16,1

= D16,1,
E1[(D16,1)⊗2]

D16,1
= D16,1 (2.22)

Now D16,1 has (h1, h2) = (1
2 , 2) and hence there seems to be only one bilinear pairing

involving the vector representation having h1 = 1
2 , where it pairs with itself. The result is

easily seen to be E1[D32,1]. One may then wonder what is the other pairing leading to the
second coset. The resolution is that in the other pairing we skip the vector representation
entirely and take the modular-invariant combination (up to a phase) χ0 + χ2 as the single
character of each factor, then multiply them. The resulting bilinear relation is:

(χ0 + χ2)(χ̃0 + χ̃2) = χ0χ̃0 + χ0χ̃2 + χ2χ̃0 + χ2χ̃2 = χ(E1[D16,1])2 = j(τ) + 248 (2.23)
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Thus in this example the meromorphic extension of the square is actually the square of
a meromorphic extension of each factor — and the corresponding 32-dimensional lattice
is the direct sum of two independent 16d lattices (this was not true for the two ways of
pairing D12,1 however, where the resulting extension is not the product of extensions). In
this situation we again see that the numbers (d1, d2) are not meaningful per se and should
not be compared to (Y1, Y2). Fortunately, as emphasised above, this issue arises only for
coset pairs involving affine theories of type D4r,1.

Example 3. The third and last example of an infinite family of coset relations is based on
the maximal special embedding B(1)

r−1 ↪→ Dr. The commutant of Br−1 inside Dr is trivial;
one can see this from the fact that the branching rule for the adjoint representation of Dr

contains no singlets. This means that when E1[Dr, 1] is taken to be the numerator theory
H and Br−1,1 as the denominator theory C, then the coset theory C̃ is a CFT with a chiral
algebra containing no Kac-Moody currents. Comparing central charges, we see that this
CFT has c = 1

2 . Since it is unitary, it has to be the Ising CFT, equivalently the M(4, 3)
Virasoro minimal model. We thus have the coset pair, Br−1,1 and M(4, 3); its bilinear
relation is:

χ
E1[Dr,1]
0 = χ0χ̃0 + d1 χ 1

2
χ̃1 + d2 χ 2r−1

16
χ̃2 (2.24)

where χ̃0, χ̃1, χ̃2 are the characters of the Ising model. The Lie algebra representation
content is:

r(2r− 1) = (r− 1)(2r− 1)⊕ 2r− 1 (2.25)

Additionally the spinor representation 2r−1 of Dr goes directly into the spinor of the
same dimension for Br−1. Matching the dimensions of the representations in (2.25) and
comparing with (2.24) we conclude that d1 = 1, d2 = 1. The coset pair relations amongst
(3, 0) admissible characters feature this example for r = 8, 16, 24, 32, 40. This family of
examples can be subsumed under Example 1 above if we denote the Ising CFT by B0,1.
Following the standard formulae for Br,1 we see that B0,1 should have c = 1

2 , h1 = 1
2 , h2 = 1

16
which is precisely the Ising model.

2.5 Intermediate Vertex Operator Algebras (IVOA)

There is an intriguing class of characters whose existence was first noted in [2, 3] and
a few of which were subsequently identified as “Intermediate Vertex Operator Algebras”
(IVOA) in [14]. For these, some of the fusion rules derived from the modular S-matrices via
the Verlinde formula [46] turned out to be negative integers. In general these cannot be
identified with unitary CFT, though in a few special cases one can exchange characters to
find a non-unitary — but otherwise genuine — CFT [3].

Such characters do share a number of good properties with RCFT and are of some
mathematical interest. Hence we include them in our classification.10 Whether these can
be precisely said to be IVOA is beyond the scope of the present work, so we will simply
identify them as “potentially of IVOA-type” and put them in separate tables.

10IVOA-type characters have also been included in the work of [33, 35].
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It is important to realise that having negative fusion rules is quite distinct from non-
unitarity. In fact IVOA’s have positive central charges with (some) negative fusion rules,
while the non-unitary c < 1 minimal models have negative central charges but positive
fusion rules. Exchanging the choice of identity characters sometimes (but not always)
converts an IVOA to a consistent but non-unitary CFT. We will find several admissible
characters of IVOA type that pair up via bilinear relations into a modular invariant.11 Our
policy when encountering such characters will be to list them separately in tables. They are
listed in our conclusions but do not appear in our final list of CFTs, table 28. Determining
whether they are consistent IVOA’s within the definitions of [14] is left for future work.

3 Coset pairs and identification of CFTs

In this section, we tabulate the bilinear relations that exist between pairs of admissible
character-like solutions and then discuss what this tells us about possible identification of
the solutions with CFTs. To begin with, we list all pairs W ↔ W̃ which satisfy c+ c̃ = 8N
and hi + h̃i = ni ∈ Z ∀ i ∈ {1, 2}. Such a list a priori includes some pairs whose bilinear
relation has rational, rather than integral, di. We then rule out such pairs as inconsistent
since they do not satisfy a valid bilinear relation even at the level of characters.

That leaves us with pairs that satisfy the bilinear relations with integral di. In such
cases, sometimes we know that the meromorphic character to which they pair up is not a
genuine CFT. Then it follows that at least one of the pair is not a consistent CFT. If the
meromorphic theory does exist, then we perform a case-by-case analysis and try to explain
the bilinear relations from the point of view of Lie algebra embeddings. If, for a coset pair,
such an embedding exists, then we can readily find the affine subalgebra corresponding
to the new theory and show that its extension leads to the new theory by computing its
characters as linear combinations of the affine characters. Then we can declare it to be a
genuine CFT. On the other hand when there does not exist an embedding, then again one
member of the pair is not a CFT.

All the remaining cases turn out to be of “IVOA type”, namely the fusion rules computed
from the modular S matrix have at least one negative value. These are inconsistent within
the class of normal CFTs but may make sense as IVOAs, hence we list them separately.
Notably all characters of IVOA type pair up into bilinear relations only with each other.
In short, all possible admissible characters that we started with get classified into three
groups: (i) CFT, (ii) positive fusion rules but still not CFT, (iii) IVOA type.

3.1 Cosets of cH = 8

We first consider coset bilinear relations between (3, 0) admissible character solutions with
the cH = 8 meromorphic CFT viz. the E8,1 CFT with character j 1

3 . This would correspond
to N = 1 and n1 = 1, n2 = 1 in (2.6). Any admissible character that is potentially part
of such a coset relation has to have a central charge less than 8. Hence we consider all
admissible characters from [34] with c < 8. For any of them, call it W with central charge

11For two characters, a bilinear pairing between IVOA-type characters of c = 2
5 and c = 118

5 is easily seen
from appendix B.2 of [23].
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and conformal dimensions (c, h1, h2), we ask if there is another admissible character W̃
with central charge and conformal dimensions (8 − c, 1 − h1, 1 − h2). For each such pair
W, W̃ , we then ask if their characters satisfy a coset bilinear relation (2.12) and if they do,
we would have computed the values of (d1, d2) defined in these equations. We collect the
details of these coset bilinear relations in two tables, 3, 4. It is remarkable that every (3, 0)
admissible character with c < 8 is part of a coset relation and is featured somewhere in
these tables; this is not necessarily the case for c > 8.

Comments on table 3. This table contains 10 bilinear pairings. Each of these is
consistent, as we will recount below — in other words both members of every pair are
genuine CFTs. Row 1 is a special case of Example 3 of section 2.4, namely (2.24), (2.25)
for r = 8 (note that E1[D8,1] = E8,1). On general grounds, we know that (i) since the B7 of
the denominator theory has a trivial commutant in E8, the coset must have no Kac-Moody
symmetries, and (ii) the central charge of the coset must be 1

2 . Unitarity then implies
that the coset theory is indeed the Ising CFT, as we also explicitly verify. We will see
more examples of this phenomenon later — that the coset H/C, where both H and C
have Kac-Moody symmetries, results in a CFT with no Kac-Moody symmetries, in this
case a minimal model. Because of the way it naturally arises as a special case of the Br,1
Kac-Moody algebras, we will often denote the Ising model by B0,1 in what follows.

Rows 2, 4, 7 are special cases of Example 2 of section 2.4, namely (2.17), (2.18) for
r = 8. We thus have E8,1

D3,1
∼= D5,1 or E8,1

D5,1
∼= D3,1. The (d1, d2) values follow the predictions

from decomposing the representation as explained in section 2.4.
Rows 3, 6, 8 are special cases of Example 1 of section 2.4, hence (2.15), (2.16), for r = 8.

Note that either of the pair of CFTs can serve as the denominator while the other would be
the coset, we thus have E8,1

B6,1
∼= B1,1 and E8,1

B1,1
∼= B6,1 (this is a very general phenomenon,

though if only one member of the pair is known as a CFT then it is more useful to treat that
one as the denominator). The (d1, d2) values follow the predictions from the decomposition
of representations explained in section 2.4.

Rows 9 and 10 are coset relations between two identical CFTs, namely self-cosets.
Row 9 is a self-coset relation with d1 = d2 = 2 and is explained by the regular maximal
embedding: A(1)

4 ⊕ A
(1)
4 ↪→ E8 so that the commutant of each A4 is the other one. This

gives us the coset E8,1
A4,1
∼= A4,1. The computed value d1 + d2 = 4 can be explained from the

decomposition: 248 = (24,1) ⊕ (1,24) ⊕ (5,10) ⊕ (5,10) ⊕ (10,5) ⊕ (10,5). The first
two terms correspond to the χ2

0 term of (2.2) while the last four terms correspond to the
χiχ̃i term thus giving d1 = d2 = 2. Row 10 is again a self-coset relation. The embedding
behind this coset relation is obtained in two steps, each of which is a regular maximal
embedding: A2⊕A2⊕A2 ↪→ E6 and E6⊕A2 ↪→ E8. Computing the embedding indices we
get A(1)

2 ⊕A
(1)
2 ⊕A

(1)
2 ⊕A

(1)
2 ↪→ E8. The commutant of one of the A2⊕A2 is the other A2⊕A2.

This gives us the coset E8,1
A⊗2

2,1

∼= A⊗2
2,1. The computed value of d1, d2 can be explained from

the decomposition: 248 = (8,1,1,1)⊕ (1,8,1,1)⊕ (1,1,8,1)⊕ (1,1,1,8)⊕ (3,1,3,3)⊕
(1,3,3,3)⊕ (3,3,1,3)⊕ (3,1,3,3)⊕ (1,3,3,3)⊕ (3,3,1,3)⊕ (3,3,3,1)⊕ (3,3,3,1). The
first four terms correspond to the χ0χ̃0 term of (2.2) while the last eight terms correspond
to the χiχ̃i terms thus giving d1 = d2 = 4.
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All the coset relations described so far (in rows 1–10 except row 5) were between (3, 0)
admissible characters corresponding to well-known CFTs namely WZW CFTs and Virasoro
minimal models. In row 5 we encounter for the first time a coset relation between a WZW
CFT namely G2,1 ⊗G2,1 and III2, an admissible character (see table 3) which has not yet
been characterised as a CFT. Coset relations and the general theory of meromorphic cosets
will enable us to characterise III2 as follows. We first seek a Lie algebra embedding for E8
which contains G2 ⊕G2. We find it in two steps of maximal embeddings: G2 ⊕A1 ↪→ F4
and G2⊕F4 ↪→ E8 giving G2⊕G2⊕A1 ↪→ E8. This means that the commutant of G2⊕G2
in E8 is A1. Further, computing the embedding indices, we have G(1)

2 ⊕G
(1)
2 ⊕A

(8)
1 ↪→ E8,

which gives the affine Lie algebra embedding G2,1 ⊗G2,1 ⊗A1,8 ↪→ E8,1 (see appendix A —
Example 1,2). This implies that the coset CFT is A1,8. The central charge of A1,8 is 12

5
and m1 = 3 which matches with that of III2. But A1,8 is a nine-character CFT and cannot
as such be in a coset relation with the three-character G2,1 ⊗G2,1. Instead, we are dealing
with a three-character extension E3[A1,8].

Let us construct this extension explicitly. Denote the three characters of III2 by
{χ̃0, χ̃ 1

5
, χ̃ 3

5
} and the nine Kac-Weyl characters of A1,8 by

{
χK

0 , χ
K
3

40
, χK

1
5
, χK

3
8
, χK

3
5
, χK

7
8
, χK

6
5
,

χK
63
40
, χK

2

}
. Then E3[A1,8] is given by:

χ̃0 = χK
0 + χK

2 , χ̃ 1
5

= χK
1
5

+ χK
6
5
, χ̃ 3

5
= χK

3
5
. (3.1)

The explicit forms of the left hand sides of (3.1) are available from the solutions of the (3, 0)
MLDE [34]. The explicit forms of the right hand sides of (3.1) are also available, from say
chapter 14 of [55]. This allows us to derive the relevant coefficients in (3.1). Further evidence
towards the fact that III2 is the above extension is provided by the following derivation of
the (d1, d2) values: 248 = (14,1,1)⊕ (1,14,1)⊕ (1,1,3)⊕ (7,7,3)⊕ (7,1,5)⊕ (1,7,5).
The first three representations are associated with the χ0χ̃0 term in the coset relation,
the fourth representation is associated with d1χ1χ̃1 and the last two representations are
associated with d2χ2χ̃2 thus giving d1 = 1, d2 = 2. Thus using the coset relation in row no.
10 we have completed the identification of III2 as the three-character extension E3[A1,8]
in (3.1).

Note that the modular invariant partition function one can construct from eq. (3.1) is
the following (see table 1 of [56]),

Z =
∣∣∣χK

0 + χK
2

∣∣∣2 +
∣∣∣∣χK

1
5

+ χK
6
5

∣∣∣∣2 + 2
∣∣∣∣χK

3
5

∣∣∣∣2
= |χ̃0|2 +

∣∣∣χ̃ 1
5

∣∣∣2 + 2
∣∣∣χ̃ 3

5

∣∣∣2 (3.2)

which shows that (d1, d2) = (1, 2). Thus, E3[A1,8] is a 3-character and 4-primary extension
of A1,8. This is the D-type non-diagonal invariant of [56, 57].

Conclusion. From table 3 we conclude that III2 is identified as a genuine CFT which is
E3[A1,8].
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# c (h1, h2) m1 (D1, D2) C c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) C̃ (d1, d2)

1. 1
2

(
1
2 ,

1
16

)
0 (1,1) B0,1

15
2

(
1
2 ,

15
16

)
105 (15,27) B7,1 (1, 1)

2. 1
(

1
2 ,

1
8

)
1 (2,1) D1,1 7

(
1
2 ,

7
8

)
98 (14,64) D7,1 (1, 2)

3. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

13
2

(
13
16 ,

1
2

)
78 (64,13) B6,1 (1, 1)

4. 2
(

1
2 ,

1
4

)
6 (4,2) D2,1 6

(
1
2 ,

3
4

)
66 (32,12) D6,1 (1, 2)

5. 12
5

(
1
5 ,

3
5

)
3 (3,5) III2

28
5

(
4
5 ,

2
5

)
28 (49,7) G⊗2

2,1 (1, 2)

6. 5
2

(
5
16 ,

1
2

)
10 (4,5) B2,1

11
2

(
11
16 ,

1
2

)
55 (32,11) B5,1 (1, 1)

7. 3
(

1
2 ,

3
8

)
15 (6,4) D3,1 5

(
1
2 ,

5
8

)
45 (10,16) D5,1 (1, 2)

8. 7
2

(
7
16 ,

1
2

)
21 (8,7) B3,1

9
2

(
9
16 ,

1
2

)
36 (16,9) B4,1 (1, 1)

9. 4
(

2
5 ,

3
5

)
24 (5,10) A4,1 4

(
3
5 ,

2
5

)
24 (10,5) A4,1 (2, 2)

10. 4
(

1
3 ,

2
3

)
16 (3,9) A⊗2

2,1 4
(

2
3 ,

1
3

)
16 (9,3) A⊗2

2,1 (4, 4)

Table 3. CFT pairings, cH = 8 with (n1, n2) = (1, 1). The meromorphic theory H to which the
solutions pair up is E8,1.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2)

1. 4
7

(
1
7 ,

3
7

)
1 (1,1) I[M(7, 2)] 52

7

(
6
7 ,

4
7

)
156 (78,13) III5 (1, 1)

2. 4
5

(
1
5 ,

2
5

)
2 (2,1) I[M(5, 2)⊗2] 36

5

(
4
5 ,

3
5

)
144 (45,12) III4 (2, 1)

3. 12
7

(
2
7 ,

3
7

)
6 (3,2) III1

44
7

(
5
7 ,

4
7

)
88 (44,11) III3 (1, 1)

Table 4. IVOA-type pairings, cH = 8 with (n1, n2) = (1, 1).

Comments on table 4. The bilinear pairings in table 4 are pairs of admissible character
solutions with central charges (4

7 ,
52
7 ), (4

5 ,
36
5 ) and (12

7 ,
44
7 ). The fusion rules in all these cases

are of IVOA type, that is atleast one of the fusion coefficients is negative. In the first two
cases, one of the two members of the pair is a known IVOA — obtained by reordering
the characters of the non-unitary minimal modelM(7, 2) in one case and the product of
non-unitary minimal modelsM(5, 2)⊗2 in the other. Here, the notation I[W ] denotes the
“unitary presentation” of W. It is quite remarkable that these pair up to give the E8,1
character though we cannot obtain this result via Lie algebra embeddings. Note how the
dimension 248 is realised by the sum 1 + 156 (spin-1 currents of the pair) added to 78 + 13
(coming from the products of primaries of the two factors and having degeneracies 78, 13 due
to the second factor). Based on this we would like to claim that III5 and III4 are also IVOAs.

The last row contains the pair III1 and III3, neither of which has previously been
characterised. As noted above, these are of IVOA type.
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Conclusion. From table 4 we conclude that III1, III3, III4 and III5 belong to the
IVOA-type class as they have negative fusion rules, and that they are paired as in the table.

3.2 Cosets of cH = 16

We consider coset bilinear relations between (3, 0) admissible character solutions with
cH = 16 meromorphic character j 2

3 . With reference to (2.6) this would correspond to
N = 2 and to either n1 = 1, n2 = 2 or n1 = 2, n2 = 1. Any admissible character solution
that is potentially part of such a coset relation has to have a central charge less than 16.
Hence we consider all admissible character solutions from [34] with c < 16. For any one of
them, say W with central charge and conformal dimensions (c, h1, h2), we ask if there is
an admissible character solution W̃ with central charge and conformal dimensions either
(16− c, 1− h1, 2− h2) or (16− c, 2− h1, 1− h2). For every such pair (W, W̃), we then ask if
their characters satisfy a bilinear relation (2.12) and compute (d1, d2). The resulting pairs
of VVMF are listed in tables 5, 6 and 7. The tables provide the details first of W , then of
W̃, followed by (d1, d2).

Comments on table 5. Table 5 contains 23 bilinear relations; 22 of them are such that
each member of every pair is an affine theory. There is one bilinear relation (row 8) in which
one of the pair (III2) has been characterised in the previous subsection and the other III22
is to be characterised. The solutions of each row each pair up to a known meromorphic
theory at c = 16, for which there are two choices of the theory H, namely E8,1 ⊗ E8,1 and
E1[D16,1]. For short, we refer to these two cases in the last column of the table as E and D
respectively.

Consider rows 1 and 2. These are both coset relations that involve the Ising CFT
M(4, 3) = B0,1. Starting from the central charge and conformal dimensions of the Ising
CFT (c = 1

2 , h1 = 1
16 , h2 = 1

2), one can obtain two potential coset relation partners, one with
n1 = 1, n2 = 2 which gives B15,1 and the other with n1 = 2, n2 = 1 which gives E8,2. Row 1
is a special case of Example 3 of section 2.4, with r = 16 and hence the meromorphic CFT
for this coset relation is E1[D16,1]. Row 2 follows from the well-known coset E8,1⊗E8,1

E8,2
∼= B0,1

where the denominator is diagonally embedded.
The coset relations in rows 3, 7, 10, 15, 18 and 20 are all special cases of Example 2

of section 2.4, corresponding to (r1, r2) values (1, 15), (2, 14), (3, 13), (5, 11), (6, 10) and
(7, 9) respectively. All these rows thus have d1 = 1, d2 = 2 and D (standing for E1[D16,1]) as
the entry in the last column. For row 7, notice that A⊗2

1,1 is identical to D2,1. Note that all
possible (r1, r2) pairs with r1 + r2 = 16 are realised.

Next we consider row 4. In fact the bilinear relations in rows 3 and 4 involve the same
D1,1 factor, but the Lie algebra embedding is different. In the former case, D1 is embedded
via the regular maximal embedding: D1 ↪→ D1 ⊗ D15 ↪→ D16 while in the latter case it
is embedded via a different regular maximal embedding: D1 ↪→ D1 ⊗ A15 ↪→ D16 (see
appendix A — Example 4). This suggests a coset relation (after considering embedding
indices) between D1,1 and A15,1; but since the latter is a nine-character theory one should
expect the coset relation to involve a three-character (and four-primary) extension of it,
E3[A15,1]. There is a cH = 24 meromorphic CFT, the Schellekens CFT #63 whose affine

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

sub-algebra is D9,1A15,1, indicating a coset relation between the three-character D9,1 CFT
and a three-character extension of A15,1, which is in row 4 here. This extension was first
found, in precisely this way, in [17] and hence we denote this here by E3[A15,1] = GHM255.12

The coset relations in rows 5, 9, 11, 14, 16, 19 and 21 are all special cases of Example 1
of section 2.4, corresponding to r1, r2 values (1, 14), (2, 13), (3, 12), (4, 11), (5, 10), (6, 9)
and (7, 8) respectively. All these rows thus have d1 = 1, d2 = 1 and D as the entry in the
last column. Notice that in row 5, A1,2 is identical to B1,1 and in row 9, C2,1 is identical to
B2,1. Also note that all possible (r1, r2) pairs with r1 + r2 = 15 are realised.

We will study rows 6, 12, 17, 23 together. In row 6, we have the folllowing identification:
D2,1 ∼= A⊗2

1,1. Now each of the three-character bilinear relations in these rows is derived from
two-character bilinear relations involving the pairs (A1,1, E7,1), (A2,1, E6,1), (G2,1, F4,1) and
(D4,1, D4,1) which form coset pairs with E8,1 with d = 1, 2, 1, 3 respectively [34]. The last
one is a self-coset relation. Denote any of these pairs by (g1, g̃1) with central charge and
conformal dimensions (c, h) and (c̃, h̃), related by c+ c̃ = 8, h+ h̃ = 1. Now consider the pair
of three-character CFTs, (g1⊗ g1, g̃1⊗ g̃1) whose central charges and conformal dimensions
are given by (2c, h, 2h), (2c̃, h̃, 2h̃). We have 2c + 2c̃ = 16 and h + h̃ = 1, 2h + 2h̃ = 2,
corresponding to the pairings in this table. If we denote the characters of g1 by χ0, χ1
and those of g̃1 by χ̃0, χ̃1 and the two-character coset relation by χ0χ̃0 + dχ1χ̃1 = j

1
3

then the characters of g1 ⊗ g1 are χ2
0, χ0χ1, χ

2
1 and those of g̃1 ⊗ g̃1 are χ̃2

0, χ̃0χ̃1, χ̃
2
1. A

three-character coset relation is obtained by simply squaring the two-character coset relation:
χ2

0 χ̃
2
0 + 2dχ0χ1χ̃0χ̃1 + d2 χ2

1χ̃
2
1 = j

2
3 . We can read off the (d1, d2) values for the three-

character relation to be d1 = 2d, d2 = d2. Finally, we identify the meromorphic CFT in the
three-character coset relation to be the E8,1⊗E8,1 CFT. In terms of Lie algebra embeddings,
each factor of g⊕ g is embedded into a corresponding factor of E8 ⊕ E8. The commutant
of g ⊗ g inside E8 ⊗ E8 is the direct sum of two copies of the commutant of g in E8, i.e.
g̃ ⊕ g̃. All aspects of the coset relations in rows 6, 12, 17 and 23 are thus explained from
two-character coset relations.

One may ask what happens if we embed g⊕g into E8⊕E8 with both copies embedded
into the same copy of E8 It turns out that such embeddings, when they are possible, are
relations between CFTS with ` = 0 and ` = 6 (recall that ` is the Wronskian index). When
g1 = D4,1, we do not get anything because D4,1 ⊗D4,1 has a central charge of 8 and its
commutant is trivial. For g1 = A1,1, after recognizing that A1,1 ⊗ A1,1 ∼= D2,1, from the
coset relation in row 3 of table 3, we can conclude that the coset would be D6,1 ⊗ E8,1
which is a three-character CFT whose characters are j 1

3 times the characters of D6,1. This
then means that it is an ` = 6 CFT. This is one example of the more general rule that,
for n characters, the tensor product of an ` = 0 CFT with E8,1 is an ` = 2n CFT. For
g1 = A2,1, we invoke the coset relation in row 8 of table 3 and obtain the coset to be
A⊗2

2,1 ⊗ E8,1, another (3, 6) CFT. Finally for g1 = G2,1, we invoke the coset relation in row
9 of table 3 to conclude that the coset CFT is E3[A1,8]⊗E8,1, an ` = 6 CFT. We have thus

12We remind the reader that “GHM” indicates that the coset was discovered in [17], and the subscript
is the dimension of the algebra listed there. IIIxx, Vxx indicates that the pair is taken from [34] and it is
labelled following the conventions used there.
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anticipated three coset relations between ` = 0 and ` = 6 CFTs, which would be part of a
more thorough study of all such coset relations [58].

In row 8 we find a pairing between III2 and III22. The first of these characters was
identified from table 3 above to be E3[A1,8]. We find there is an embedding A1 ↪→ D16 with
embedding index 8, whose commutant is C8 (see appendix A — Example 5). It follows that
III22 is the three-character extension E3[C8,1]. Below we will find independent confirmation
of this fact from another embedding.

In row 13, we pair D4,1 (two characters, four primaries) with D12,1 (three characters,
four primaries). This is a slightly unusual example where the two elements of the pair do
not have the same number of characters. They do, however, have the same number of
primaries and the coset relation is straightforward if we just pair the primaries with unit
coefficient for each term. The three non-trivial primaries of D4,1 all have h = 1

2 , while one
of the non-trivial primaries of D12,1 has h̃ = 1

2 and the other two have h̃ = 3
2 . Thus the

bilinear relation is:

χH = j(τ)
2
3 = χ0χ̃0 + χ 1

2
χ̃ 1

2
+ χ 1

2
χ̃ 3

2
+ χ 1

2
χ̃ 3

2

= χ0χ̃0 + χ 1
2
(χ̃ 1

2
+ 2χ̃ 3

2
)

(3.3)

Row 22 is another self-coset relation. It is a special case of Example 2 of section 2.4
with r1 = r2 = 8 and r = 16. The meromorphic CFT is thus E1[D16,1] CFT which is
reflected in the last column. The d1 = 1, d2 = 2 values are also thereby explained.

Conclusion. From table 5 we have found that the character III22 should be identified
with E3[C8,1]. The remaining entries in the table correspond to known CFTs.

Comments on table 6. This table contains 9 pairs that are all of IVOA type, by which
we mean some of their fusion rules as computed from the modular S-matrix are negative.
The third row of table 6 displays a dual pair of IVOAs. This pair is inherited from the
simpler pair with two characters that combine to give E8,1. Rows 1, 2, 4 contain bilinear
pairs that combine to the character j 2

3 and one of which in each case is a known IVOA.
We would therefore claim that the duals, III29, III30, III28 are also IVOAs. However the
remaining rows 5− 9 contain pairs where neither member is a known CFT or IVOA. In
terms of fusion rules (deduced from the modular S-matrix) these are all of IVOA type, but
we cannot say more about them. In some of these cases, one member of the pair already
appeared in table 4, so if one is able to characterise that one using the cH = 8 duality then
it would provide evidence for existence of its partner as an IVOA.

Conclusion. From table 6 we conclude that III7, III8, III12, III24, III25, III28, III29
and III30 are of IVOA-type as these have negative fusion rules and that they are paired as
in the table.

Comments on table 7. As for the two previous cases, the two sets of characters in each
line of table 7 satisfy a bilinear pairing to the character j 2

3 . We now argue that all the
previously uncharacterised solutions that appear in this table are inconsistent as CFTs. For
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) H

1. 1
2

(
1
2 ,

1
16

)
0 (1,1) B0,1

31
2

(
1
2 ,

31
16

)
465 (31,215) B15,1 (1, 1) D

2. 1
2

(
1
16 ,

1
2

)
0 (1,1) B0,1

31
2

(
15
16 ,

3
2

)
248 (248,3875) E8,2 (1, 1) E

3. 1
(

1
2 ,

1
8

)
1 (2,1) D1,1 15

(
1
2 ,

15
8

)
435 (30,214) D15,1 (1, 2) D

4. 1
(

1
8 ,

1
2

)
1 (1,2) D1,1 15

(
7
8 ,

3
2

)
255 (120,3640) GHM255 (2, 1) D

5. 3
2

(
1
2 ,

3
16

)
3 (3,2) B1,1

29
2

(
1
2 ,

29
16

)
406 (29,214) B14,1 (1, 1) D

6. 2
(

1
4 ,

1
2

)
6 (2,4) D2,1 14

(
3
4 ,

3
2

)
266 (56,562) E⊗2

7,1 (2, 1) E

7. 2
(

1
2 ,

1
4

)
6 (4,2) D2,1 14

(
1
2 ,

7
4

)
378 (28,213) D14,1 (1, 2) D

8. 12
5

(
1
5 ,

3
5

)
3 (3,5) III2

68
5

(
4
5 ,

7
5

)
136 (119, 68 · 25) III22 (1, 2) D

9. 5
2

(
1
2 ,

5
16

)
10 (5,4) B2,1

27
2

(
1
2 ,

27
16

)
351 (27,213) B13,1 (1, 1) D

10. 3
(

1
2 ,

3
8

)
15 (6,4) D3,1 13

(
1
2 ,

13
8

)
325 (26,212) D13,1 (1, 2) D

11. 7
2

(
1
2 ,

7
16

)
21 (7,8) B3,1

25
2

(
1
2 ,

25
16

)
300 (25,212) B12,1 (1, 1) D

12. 4
(

1
3 ,

2
3

)
16 (3,9) A⊗2

2,1 12
(

2
3 ,

4
3

)
156 (27,272) E⊗2

6,1 (4, 4) E

13. 4
(

1
2 ,

1
2

)
28 (8, 23) D4,1 12

(
1
2 ,

3
2

)
276 (24,211) D12,1 (1, 2) D

14. 9
2

(
1
2 ,

9
16

)
36 (9,16) B4,1

23
2

(
1
2 ,

23
16

)
253 (23,211) B11,1 (1, 1) D

15. 5
(

1
2 ,

5
8

)
45 (10,16) D5,1 11

(
1
2 ,

11
8

)
231 (22,1024) D11,1 (1, 2) D

16. 11
2

(
1
2 ,

11
16

)
55 (11,32) B5,1

21
2

(
1
2 ,

21
16

)
210 (21,1024) B10,1 (1, 1) D

17. 28
5

(
2
5 ,

4
5

)
28 (7,49) G⊗2

2,1
52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗2

4,1 (2, 1) E

18. 6
(

1
2 ,

3
4

)
66 (12,32) D6,1 10

(
1
2 ,

5
4

)
190 (20,512) D10,1 (1, 2) D

19. 13
2

(
1
2 ,

13
16

)
78 (13,64) B6,1

19
2

(
1
2 ,

19
16

)
171 (19,512) B9,1 (1, 1) D

20. 7
(

1
2 ,

7
8

)
91 (14,64) D7,1 9

(
1
2 ,

9
8

)
153 (18,256) D9,1 (1, 2) D

21. 15
2

(
1
2 ,

15
16

)
105 (15,128) B7,1

17
2

(
1
2 ,

17
16

)
136 (17,256) B8,1 (1, 1) D

22. 8
(

1
2 , 1
)

120 (16, 27) D8,1 8
(

1
2 , 1
)

120 (16,27) D8,1 (1, 2) D

23. 8
(

1
2 , 1
)

56 (8, 26) D⊗2
4,1 8

(
1
2 , 1
)

56 (8, 26) D⊗2
4,1 (6, 9) E

Table 5. CFT pairings, cH = 16 with (n1, n2) = (1, 2). The meromorphic theory H in the last
column is E8,1 ⊗ E8,1, denoted E, or E1[D16,1], denoted D.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2)

1. 4
7

(
1
7 ,

3
7

)
1 (1,1) I(M(7, 2)) 108

7

(
6
7 ,

11
7

)
378 (117,3510) III29 (1, 1)

2. 4
7

(
3
7 ,

1
7

)
1 (1,1) I(M(7, 2)) 108

7

(
4
7 ,

13
7

)
456 (39,20424) III30 (1, 1)

3. 4
5

(
1
5 ,

2
5

)
2 (1,1) I(M(5, 2)⊗2) 76

5

(
4
5 ,

8
5

)
380 (57,3249) E⊗2

7.5 (2, 1)

4. 4
5

(
2
5 ,

1
5

)
2 (1,1) I(M(5, 2)⊗2) 76

5

(
3
5 ,

9
5

)
437 (57, 19 · 625) III28 (1, 2)

5. 12
7

(
2
7 ,

3
7

)
6 (3,2) III1

100
7

(
5
7 ,

11
7

)
325 (55,2925) III24 (1, 1)

6. 12
7

(
3
7 ,

2
7

)
6 (2,3) III1

100
7

(
4
7 ,

12
7

)
380 (55,11495) III25 (1, 1)

7. 44
7

(
4
7 ,

5
7

)
88 (11,44) III3

68
7

(
3
7 ,

9
7

)
221 (17,782) III12 (1, 1)

8. 36
5

(
3
5 ,

4
5

)
144 (12,45) III4

44
5

(
2
5 ,

6
5

)
220 (11, 11 · 25) III8 (1, 2)

9. 52
7

(
4
7 ,

6
7

)
156 (13,78) III5

60
7

(
3
7 ,

8
7

)
210 (10,285) III7 (1, 1)

Table 6. IVOA-type pairings, cH = 16 with (n1, n2) = (1, 2). The two sets of characters pair up
to j 2

3 .

short, we refer to these as “inconsistent pairings”. This means that, though the VVMFs do
pair up into a modular invariant, these are not coset pairs of CFTs.

In rows 1, 2, 4–7 we find known CFT in the left column paired with the characters
III26, III21, III20, III19,V18, III17 in the right column. In the first five of these cases,
the CFTs in the first column also appear in a coset pair in table 5, in lines 5, 9–12
respectively, where they are paired with known CFTs. However here these theories are
paired differently and their partners are previously uncharacterised admissible characters.
For the sixth case, A4,1 does not appear in table 5 but only in table 7. The details of
the bilinear relation in row 7 suggests that for III17 to be a CFT, it must be based on
a Lie subalgebra, h, of D16,13 which has dimension 222 and that there must exist a (246
dimensional) embedding A4 × h ↪→ D16. We listed embeddings of D16 in decreasing order
of dimensions (496, 384, 380 . . .) till a little beyond 246 and we did not find any with a A4
factor (there is a 256 dimensional embedding A4 ×D11 ×D1.) We thus conclude that the
character III17 does not correspond to a CFT. We will independently confirm this in a
slightly simpler way when we come to cH = 24, in table 7. This story for row 7 repeats for
each of rows 1, 2, 4, 5 and 6.

There is another way to rule out solution V18 in row 6 of table 7. A⊗2
2,1 is known to have

nine primaries and three characters; one primary corresponding to the identity character and
each of the other two characters correspond to four primaries each. Thus the multiplicities
in the partition function are Y1 = 4, Y2 = 4. Any CFT which forms a coset relation with
A⊗2

2,1 is also expected to have the same partition function multiplicities Ỹ1 = 4, Ỹ2 = 4 and
the multiplicities in the bilinear identity are expected to be d1 = 4, d2 = 4. The MLDE
analysis [34] for the admissible character V18 gives the degeneracies D̃1 = 1, D̃2 = 1

13An embedding of E8 × E8 that contains a A4 factor will result in a CFT with Wronskian index 6.
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which results in partition function multiplicities Ỹ1 = 34, Ỹ2 = 22 · 314. A reassignment
of degeneracies and multiplicities is allowed as long as Ỹi D̃i

2 is kept fixed. There is
no reassignment with Ỹ1 = 4 simply because Ỹ1D̃1

2 = 81 does not have 4 as a factor.
Another inconsistency comes from the details of the bilinear identity given in row no. 6. A
reassignment of degeneracies and multiplicities (d1, d2) is allowed as long as diD̃i is kept
fixed. But there is no reassignment with d1 = 4 simply because d1 D̃1 = 18 does not have 4
as a factor. Due to all these details, we conclude that the admissible character V18 does
not correspond to a CFT. This agrees with the conclusion based on embeddings.

Rows 3 and rows 8–15 of table 7 are inconsistent since every W̃ in these rows has
fractional Y1, Y2 values. These are the entries of type III, V.

Row 16 is interesting because both members of the pair are known affine theories.
However this is not a consistent bilinear pairing since the coefficient d1 in the bilinear
relation is fractional. This enables us to rule it out without even computing d2. There is an
important consistency test that explains why this pairing failed. Had it succeeded, there
would have been a meromorphic theory at c = 16 involving an extension of D⊗2

4,1D8,1 with a
total of 120 + 56 + 128 = 304 Kac-Moody generators. Such an extension is known not to
exist (since there are just two c = 16 meromorphic theories, both having 496 Kac-Moody
generators) which is why the pairing also should not exist.

Conclusion. From table 7 we conclude that III17, V18, III19, III20, III21 and III26
are not valid CFTs.14

3.3 Cosets of cH = 24

With c = 24, and considering that we are working throughout with Wronskian index ` = 0,
eq. (2.5) gives us the constraint n1 + n2 = 4. This can be satisfied in two ways, with
(n1, n2) = (2, 2) or (1, 3). Each choice leads to a distinct set of bilinear pairings. We address
each class in turn.

The character of the meromorphic theory to which the two entries in each row pair up,
can be written χ(τ) = j(τ)− 744 +N . In this way of writing it, N is the dimension of the
Kac-Moody algebra of the meromophic theory, if any. Below, wherever relevant we provide
the serial number(s) in the list of [37] which specifies the meromorphic CFT(s) with that N .

(n1, n2) = (2, 2). This set comprises tables 8, 9 and 10. We discuss each one in turn.
There is some overlap between this section and the papers [35, 36]. The main focus of the
former is fermionic CFT and of the latter, Hecke relations, and both references present some
bilinear pairs of admissible three-character VVMFs. However these references mostly restrict
to pairings with total central charge cH = 24, and moreover the sub-case (n1, n2) = (2, 2)
that we consider in this subsection. In some of these cases the bilinear pairing was used to
identify admissible characters as CFTs. Thus there is some overlap between the results of
these references and our table 8, which we will point out below.

14In [36] it is claimed that III17 is a CFT, however we disagree with this.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2)

1. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

29
2

(
13
16 ,

3
2

)
261 (29 · 4, 3393) III26 (1, 1)

2. 5
2

(
5
16 ,

1
2

)
10 (4,5) B2,1

27
2

(
11
16 ,

3
2

)
270 (27 · 2, 2871) III21 (1, 1)

3. 12
5

(
3
5 ,

1
5

)
3 (5,3) III2

68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

(
1
5 , 1
)

4. 3
(

3
8 ,

1
2

)
15 (4,6) D3,1 13

(
5
8 ,

3
2

)
273 (13 · 2, 325 · 8) III20 (2, 1)

5. 7
2

(
7
16 ,

1
2

)
21 (8,7) B3,1

25
2

(
9
16 ,

3
2

)
275 (25,2325) III19 (1, 1)

6. 4
(

2
3 ,

1
3

)
16 (9,3) A⊗2

2,1 12
(

1
3 ,

5
3

)
318 (9,4374) V18 (2, 2)

7. 4
(

2
5 ,

3
5

)
24 (5,10) A4,1 12

(
3
5 ,

7
5

)
222 (1 · 25, 51 · 25) III17 (2, 2)

8. 9
2

(
9
16 ,

1
2

)
36 (16,9) B4,1

23
2

(
7
16 ,

3
2

)
276 (23,1771) III16

(
1
2 , 1
)

9. 5
(

5
8 ,

1
2

)
45 (16,10) D5,1 11

(
3
8 ,

3
2

)
275 (11,1496) III15 (1, 1)

10. 11
2

(
11
16 ,

1
2

)
55 (32,11) B5,1

21
2

(
5
16 ,

3
2

)
273 (21,1225) III14

(
1
4 , 1
)

11. 6
(

3
4 ,

1
2

)
66 (32,12) D6,1 10

(
1
4 ,

3
2

)
270 (5,960) III13 (1, 1)

12. 13
2

(
13
16 ,

1
2

)
78 (64,13) B6,1

19
2

(
3
16 ,

3
2

)
266 (19,703) III11

(
1
8 , 1
)

13. 7
(

7
8 ,

1
2

)
91 (64,14) D7,1 9

(
1
8 ,

3
2

)
261 (9,456) III10

(
1
4 , 1
)

14. 36
5

(
4
5 ,

3
5

)
144 (45,12) III4

44
5

(
1
5 ,

7
5

)
253 (11,242) III9

(
1
5 , 1
)

15. 15
2

(
15
16 ,

1
2

)
105 (128,15) B7,1

17
2

(
1
16 ,

3
2

)
255 (17,221) III6

(
1

16 , 1
)

16. 8
(

1
2 , 1
)

56 (8,64) D⊗2
4,1 8

(
1
2 , 1
)

120 (16,27) D8,1
(

5
2 , 9

2

)
Table 7. Inconsistent pairings, cH = 16 with (n1, n2) = (1, 2). The two sets of characters pair up
to j 2

3 .

Comments on table 8. In this table we will go into considerable detail to illustrate the
way to correctly choose the degeneracies Di for the type III and V characters which, since
they were discovered via MLDE, did not automatically come with a fixed normalisation.
We will not be so detailed about this point in the remaining tables.

All cosets in this table are of the form explained in the discussion below eq. (2.7), where
the coset simply “deletes” simple factors (at most two) from a Schellekens theory and leaves
behind the remaining simple factors. These cases are labelled as follows: “GHM” indicates
that the coset was discovered in [17], and the subscript is the dimension of the algebra
listed there. IIIxx,Vxx indicates that the pair is taken from [34] and it is labelled following
the conventions used there and reviewed here in section 2 and in table 1. Rows 22, 23, 18,
20 were for some reason missed in both these references. Interestingly the first two are
“self-cosets” where C, C̃ are the same theory. This implies that C̃ is actually an affine theory
rather than an extension of one. The table provides the correct degeneracies for both the
non-trivial primaries of W̃ .
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In table 8 (and in other tables of this paper) we have arranged the coset relations in an
increasing order of central charge for the admissible character solution in the left column, so
that, naturally the solution on the right has a decreasing central charge, and the self-cosets
(if any) are at the bottom of the table. But it makes sense to discuss the coset relations in a
slightly different order. We discuss first the batch of rows 1, 3, 5, 7, 10, 12, 15, 18, all of which
have a Br,1 CFT in the left column. Then we discuss the batch of rows 2, 4, 6, 11, 14, 16, 19, 20
all of which have a Dr,1 CFT in the left column. Then we discuss row 9 which is a sporadic
case. After that we take up the batch of rows 8, 13, 17, 21, 23 where the CFT in the left
column is a tensor product CFT. This then leaves us with row 22 which is a self-coset relation.

The case of row 1 is different from the others: here h, g, and consequently also h̃, are
empty. This is the coset pairing of the Ising model, here denotedM(4, 3), with the Baby
Monster CFT [49]. This bilinear pairing was previously studied in [18]. The latter character
was obtained as an admissible character in [34] with degeneracies D̃1 = 4371, D̃2 = 47 which
then results in the multiplicities in the partition function as Ỹ1 = 1, Ỹ2 = 222. Requiring
that ỸiD̃i

2 is unchanged we can redefine: D̃1 = 4371, D̃2 = 47 · 211 and Ỹ1 = 1, Ỹ2 = 1.
These new degeneracies then enter into the computation of the bilinear identity to give the
multiplicities there as d1 = 1, d2 = 1. We thus have a consistent coset relation between to
three-primary CFTs.

In row 3, we have four pairs of coset relations. Each of the theories C̃ have a common
set of characters which were obtained by solving the MLDE in [34]. The degeneracies of
the characters as obtained from the MLDE, for conformal dimensions 3

2 (χ̃ 3
2
) and 29

16 (χ̃ 29
16
)

are D̃1 = 4785 and D̃2 = 45 respectively. The multiplicities in the partition function were
then computed to be Ỹ1 = 1, Ỹ2 = 220. With these degeneracies the bilinear identity then
gives multiplicities of d1 = 1 and d2 = 1024 respectively. If we redefine our degeneracies
to be D̃1 = 4785 and D̃2 = 45 × 210, then the multiplicities would be d1 = 1 and d2 = 1
respectively (which is what we display in the table). With this assignment of degeneracies
and multiplicities, we have the interpretation for the coset relation as between two three-
primary CFTs. We can justify the above redefinition, for the first of the four theories of
row 3, where it can be realised as a three-character extension of A⊗15

1,2 . Let us denote the
characters of A1,2 to be χ0, χ 1

2
and χ 3

16
and note that they have degeneracies of 3 and 2

respectively. It turns out that the leading term of χ̃ 3
2
is given by 35χ12

0 χ
3
1
2

+ 15χ7
0χ

8
3

16
from

which it follows that the degeneracy is 35 × 33 + 15 × 28 = 4785. Similarly the leading
term of χ̃ 29

16
is given by 120χ7

0χ
7
3

16
χ 1

2
which gives it a degeneracy of 120× 27 × 3 which is

also equal to 210 × 45. Thus, at least for one of the theories of row 3, we have derived the
degeneracies that will make the multiplicities to be each equal to 1. We expect this to hold
for the other theories in row 3 as well. Furthermore, the new degeneracies implies that the
multiplicities in the partition function are now Ỹ1 = 1, Ỹ2 = 1, which is consistent with
d1 = 1, d2 = 1.

For the three coset relations in row 5 the degeneracies of the characters obtained from
the MLDE are D̃1 = 5031 and D̃2 = 43 respectively. The multiplicities in the partition
function was then computed to be Ỹ1 = 1, Ỹ2 = 218. With these degeneracies the bilinear
identity then gives multiplicities of d1 = 1 and d2 = 512 respectively. If we redefine our
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degeneracies to be D̃1 = 5031 and D̃2 = 43×29, then the multiplicities would be d1 = 1 and
d2 = 1 respectively. Furthermore, these new degeneracies change the multiplicities in the
partition function to Ỹ1 = 1, Ỹ2 = 1 With this assignment of degeneracies and multiplicities,
we have the interpretation for the coset relations in row no. 5 as between two three-primary
CFTs. This same phenomenon repeats itself in rows nos. 7, 10, 12 and 15. We need to
multiply the degeneracy obtained by solving the MLDE, for the character paired with the
spinor character, by 28, 27, 26 and 25 respectively. We would then have multiplicities of 1 and
1 in each case and consequently the correct interpretation between two three-primary CFTs.

In row 18, we have a coset relation between two three-primary CFTs both of which are
WZW CFTs. The bilinear gives rise to meromorphic theory #62 in the list of [37] which is a
non-lattice theory. This case was in fact the basis for the prediction in [45] of an infinite series
of non-lattice meromorphic theories at increasing central charges, and is the m = 0 case of
entry #15 in table 3 of that reference. Similarly, the bilinear relations in rows 1, 3, 5, 7, 10, 12
and 15 were the basis for the prediction in [45] of 14 infinite series of non-lattice meromorphic
theories at increasing central charges, corresponding to entries #1−#14 in table 3 there.

For the coset relation in row 2, the MLDE computations for the degeneracies are D̃1 =
575, D̃2 = 23 which gives the degeneracies in the partition function to be Ỹ1 = 64, Ỹ2 = 223.
With these degeneracies the bilinear identity then gives multiplicities of d1 = 8, d2 = 4096.
The MLDE and the bilinear identity are also consistent with the following new assignment
viz. D̃1 = 575×8, D̃2 = 23×211 and d1 = 1, d2 = 2. This new assignment of the degeneracies
results in the following partition function multiplicities: Ỹ1 = 1, Ỹ2 = 2. Row 2 is thus a coset
relation between two four-primary CFTs.) More significantly, we can now conclude that the
admissible character solution III50 corresponds to a genuine CFT, a three-character exten-
sion of D⊗23

1,1 . Thus the coset relation in row 2 has resulted in the discovery of a new CFT.
In row 4, we have a coset bilinear relation between D2,1 and III45. We are able to

redefine the degeneracies to obtain partition function multiplicities to be Ỹ1 = 1, Ỹ2 = 2
and the parameters in the bilinear identity to be d1 = 1, d2 = 2, indicating a pairing
between two four-primary CFTs. There are six meromorphic theories, #15–#20, of [37]
with D2,1 = A⊗2

1,1 as a factor of the affine part of their chiral algebras, which means that
III45 corresponds to six different CFTs. Each of these are three-character extensions of the
remaining factors of the affine part of the chiral algebras, viz. A⊗22

1,1 , A⊗4
3,2A

⊗2
1,1, A5,3D4,3A1,1,

A7,4A1,1, D5,4C3,2 and D⊗22
6,5 respectively. Thus, the coset relation in row 4 has resulted

in the discovery of six new CFTs. In rows 6, 11, 14, 16, 19, we have bilinear relations
between D3,1, D5,1, D6,1, D7,1, D9,1 on the left with CFTs already discovered in [17]. What
we are able to do new here is give exact details of the characters: the degeneracies of the
non-identity characters that lead to partition function multiplicities Ỹ1 = 1, Ỹ2 = 2 and the
multiplicities in the bilinear identity to be d1 = 1, d2 = 2. Thus each of these rows describe
pairings between four-primary CFTs.

In row 20, we have a coset relation between two four-primary CFTs both of which are
WZW CFTs. The bilinear gives rise to meromorphic theory #64 in the list of [37]. This
case was in fact the basis for the prediction in [45] of an infinite series of meromorphic
theories at increasing central charge, and is the m = 0 case of entry #33 in table 3 of that
reference. Similarly, the bilinear relations in rows 2, 4, 6, 11, 14, 16, and 19 were the basis
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for the prediction in [45] of 17 infinite series of meromorphic theories at increasing central
charges, corresponding to entries #16−#32 in table 3 there.

Row 9 is a bilinear relation between A4,1 and a CFT already discovered in [17]. Again
what we do new here is to give exact details of the characters: the degeneracies D̃1, D̃2 that
lead to partition function multiplicities Ỹ1 = 2, Ỹ2 = 2 and the multiplicities in the bilinear
identity to be d1 = 2, d2 = 2. This establishes a pairing between two five-primary CFTs.

We now study bilinear relations where one of the solutions is the three-character CFT
obtained from a tensor product of two copies of two-character CFTs. There are 7 such
CFTs viz. A⊗2

1,1, A⊗2
2,1, G⊗2

2,1, D⊗2
4,1, F⊗2

4,1 , E⊗2
6,1 and E⊗2

7,1 . The first has been studied in row 4
(as D2,1) and the last one in row 20. The remaining five are in rows 8, 13, 17, 21 and 23
and for some reason these were missed out in [17].

In row 8, we have a bilinear relation between A⊗2
2,1 and V39. The former is a nine-

primary theory with multiplicities Y1 = 4, Y2 = 4. We are able to obtain an assignment
of degeneracies for the latter so the partition function multiplicities are Ỹ1 = 4, Ỹ2 = 4
and the multiplicities in the bilinear identity are d1 = 4, d2 = 4, so that we have a pairing
between two nine-primary CFTs. Furthermore we find three meromorphic CFTs in [37]
viz. #24, #26 and #27 that contain a factor of A⊗2

2,1, giving rise to three new CFTs that
are the three-character extensions of the remaining factors viz. A⊗10

2,1 , A⊗2
5,2C2,1 and A8,3

respectively. Thus the coset relation in row 8 has enabled us to characterize the MLDE
solution V39 as corresponding to three CFTs.

In row 13, we have a bilinear relation between G⊗2
2,1 and III37. The former is a four-

primary theory with multiplicities Y1 = 2, Y2 = 1. We are able to obtain an assignment
of degeneracies for the latter so the partition function multiplicities are Ỹ1 = 2, Ỹ2 = 1
and the multiplicities in the bilinear identity are d1 = 2, d2 = 1, so that we have a pairing
between two four-primary CFTs. Furthermore we find a meromorphic CFT in [37] viz. #32
that contains a factor of G⊗2

2,1, giving rise to a new CFT that is a three-character extension
of the remaining factors, namely E6,3G2,1. Thus the coset relation in row 13 has enabled us
to characterize the MLDE solution III37 as corresponding to a genuine CFT.

Row 17 is a bilinear relation between D⊗2
4,1 and an admissible character solution that

is one of the infinite family of solutions given in table 2 viz. III′′ with m1 = 112. The
former is a sixteen-primary theory with multiplicities Y1 = 6, Y2 = 9. We are able to
obtain an assignment of degeneracies for the latter so the partition function multiplicities
are Ỹ1 = 6, Ỹ2 = 9 and the multiplicities in the bilinear identity are d1 = 5, d2 = 9, so that
we have a pairing between two sixteen-primary CFTs. Furthermore we find a meromorphic
CFT in [37] namely #42 that contains a factor of D⊗2

4,1, giving rise to a new CFT that is
a three-character extension of the remaining factor D⊗4

4,1. Thus the coset relation in row
17 has enabled us to characterise the MLDE solution III′′ with m1 = 112 of table 2 as
a sixteen-primary CFT, denoted E3[D⊗4

4,1]. This is the CFT with the largest number of
primaries but just three characters in this paper that is not a tensor product theory (of
course D⊗2

4,1 has the same properties, but it is a tensor product).
In row 21 we find a coset relation involving F 2

4,1. The unique meromorphic theory with
this factor at c = 24 is #52 of [37] with Kac-Moody algebra F 2

4,1C8,1. This proves that
III22 is equivalent to E3[C8,1], confirming the result obtained from table 5.
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In row 23 we find a self-coset relation for E⊗2
6,1 . This is a pairing between nine-primary

CFTs. This comes about because of the existence of a meromorphic theory in [37] namely
#58 which is the extension E1[E⊗4

6,1 ].
Row 22 is a self-coset relation involving D12,1; the meromorphic theory is #66 of [37]

which is the extension E1[D⊗2
12,1]. Even though the D12,1 is a four-primary theory, the

pairing of characters is not the usual one which gives the bilinear identity parameters
(d1, d2) = (1, 2) or (2, 1). Instead we have (d1, d2) = (1, 1). This has been explained in the
discussion around eq. (2.20). This unusual coset pairing will appear in our future tables
between D4k,1 theories with odd k, at cH > 24 and whenever n1, n2 6= 1.

Conclusion. From table 8 we have deduced the following new identifications for type III
and V solutions:

III37 = E3[E6,3G2,1]
V39 = E3[A⊗10

2,1 ], E3[A⊗2
5,2C2,1], E3[A8,3]

III45 = E3[A⊗22
1,1 ], E3[A⊗4

3,2A
⊗2
1,1], E3[A5,3D4,3A1,1], E3[A7,4A1,1], E3[D5,4C3,2], E3[D6,5]

III50 = E3[D⊗23
1,1 ]

III′′(m1 = 112) = E3[D⊗4
4,1] (3.4)

We also confirm the conclusion from table 5 that III22 is identified with E3[C8,1]. We note
here that the above identifications, with the exception of III′′(m1 = 112), have been made
in [36].

Let us briefly comment on the three-character extension E3[D⊗4
4,1] at c = 16. Though

we had excluded c = 8, 16 solutions from the classification at the outset, we felt it worth
noting the existence of this one at c = 16, since it is of the “GHM” type [17].

Comments on table 9. This table has several bilinear pairs that we have shown to be
of IVOA type. However in a number of cases (rows 1, 5–9) the pairing does not lead to
a valid meromorphic CFT as it does not correspond to any entry in [37]. In three cases,
however, the pairing does reproduce a meromorphic theory — these are rows 2, 3, 4. These
examples appear more favourable for identification of the pair as some variant of CFTs.

Conclusion. From table 9 we conclude that III27, III32, III33, III35, III47, III52 and
III54 belong to the IVOA category. These have at least one negative fusion rule, and the
above pairings are always between two such solutions.

Comments on table 10. This table lists all the pairs where one can rule out at least
one member being a CFT, or in several cases both members. For rows 1, 4–11, 13–16, the
solution in the second column should arise as the commutant of some embedding of the
known algebra in the first column in a meromorphic theory. However there is no candidate
meromorphic theory for these cases, since the value of the integer denoting the constant
term in the meromorphic character χ(τ) = j(τ)− 744 +N does not appear in any entry of
the table in [37]. This immediately rules out the solution in the right column of every case
from being a CFT.
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# c (h1, h2) m1 (D1, D2) C c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) C̃ (d1, d2) S#
1. 1

2 ( 1
2 ,

1
16 ) 0 (1, 1) B0,1

47
2 ( 3

2 ,
31
16 ) 0 (4371, 47 · 211) BM (1, 1) 0

2. 1 ( 1
2 ,

1
8 ) 1 (2, 1) D1,1 23 ( 3

2 ,
15
8 ) 23 (4600, 23 · 211) III50 (1, 2) 1

3. 3
2 ( 1

2 ,
3

16 ) 3 (3, 2) B1,1
45
2 ( 3

2 ,
29
16 ) 45 (4785, 45 · 210) GHM45 (1, 1) 5

7
8
10

4. 2 ( 1
2 ,

1
4 ) 6 (4, 2) D2,1 22 ( 3

2 ,
7
4 ) 66 (77 · 26, 11 · 211) III45 (1, 2) 15

16
17
18
19
20

5. 5
2 ( 1

2 ,
5

16 ) 10 (5, 4) B2,1
43
2 ( 3

2 ,
27
16 ) 86 (5031, 43 · 29) GHM86 (1, 1) 25

26
28

6. 3 ( 1
2 ,

3
8 ) 15 (6, 4) D3,1 21 ( 3

2 ,
13
8 ) 105 (5096, 21 · 29) GHM105 (1, 2) 30

31
33
34
35

7. 7
2 ( 1

2 ,
7

16 ) 21 (7, 8) B3,1
41
2 ( 3

2 ,
25
16 ) 123 (5125, 41 · 28) GHM123 (1, 1) 39

40
8. 4 ( 1

3 ,
2
3 ) 16 (3, 9) A⊗2

2,1 20 ( 5
3 ,

4
3 ) 80 (4 · 37, 5 · 35) V39 (4, 4) 24

26
27

9. 4 ( 2
5 ,

3
5 ) 24 (5, 10) A4,1 20 ( 8

5 ,
7
5 ) 120 (13 · 54, 4 · 54) GHM120 (2, 2) 37

10. 9
2 ( 1

2 ,
9

16 ) 36 (9, 16) B4,1
39
2 ( 3

2 ,
23
16 ) 156 (5083, 39 · 27) GHM156 (1, 1) 47

48
11. 5 ( 1

2 ,
5
8 ) 45 (10, 16) D5,1 19 ( 3

2 ,
11
8 ) 171 (5016, 19 · 27) GHM171 (1, 2) 49

12. 11
2 ( 1

2 ,
11
16 ) 55 (11, 32) B5,1

37
2 ( 3

2 ,
21
16 ) 185 (4921, 37 · 26) GHM185 (1, 1) 53

13. 28
5 ( 2

5 ,
4
5 ) 28 (7, 49) G⊗2

2,1
92
5 ( 8

5 ,
6
5 ) 92 (7475, 1196) III37 (2, 1) 32

14. 6 ( 1
2 ,

3
4 ) 66 (12, 32) D6,1 18 ( 3

2 ,
5
4 ) 198 (75 · 26, 9 · 27) GHM198 (1, 2) 54

55
15. 13

2 ( 1
2 ,

13
16 ) 78 (13, 64) B6,1

35
2 ( 3

2 ,
19
16 ) 210 (4655, 35 · 25) GHM210 (1, 1) 56

16. 7 ( 1
2 ,

7
8 ) 91 (14, 64) D7,1 17 ( 3

2 ,
9
8 ) 221 (4488, 544) GHM221 (1, 2) 59

17. 8
( 1

2 , 1
)

56 (8,64) D⊗2
4,1 16

( 3
2 , 1
)

112 (211,27) E3[D⊗4
4,1] (6, 9) 42

18. 17
2 ( 1

2 ,
17
16 ) 136 (17, 256) B8,1

31
2 ( 3

2 ,
15
16 ) 248 (3875, 248) E8,2 (1, 1) 62

19. 9 ( 1
2 ,

9
8 ) 153 (18, 256) D9,1 15 ( 3

2 ,
7
8 ) 255 (3640, 120) GHM255 (1, 2) 63

20. 10 ( 1
2 ,

5
4 ) 190 (20, 512) D10,1 14 ( 3

2 ,
3
4 ) 266 (562, 56) E⊗2

7,1 (1, 2) 64
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21. 52
5 ( 3

5 ,
6
5 ) 104 (26, 262) F⊗2

4,1
68
5 ( 7

5 ,
4
5 ) 136 (1700, 119) III22 (2, 1) 52

22. 12 ( 1
2 ,

3
2 ) 276 (24, 211) D12,1 12 ( 3

2 ,
1
2 ) 276 (211, 24) D12,1 (1, 1) 66

23. 12 ( 2
3 ,

4
3 ) 156 (27, 272) E⊗2

6,1 12 ( 4
3 ,

2
3 ) 156 (272, 27) E⊗2

6,1 (4, 4) 58

Table 8. CFT pairings, cH = 24 with (n1, n2) = (2, 2). The entry in the last column identifies the
meromorphic theory by its row number in the table of [37].

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N S#
1. 4

7 (1
7 ,

3
7) 1 (1, 1) I[M(7, 2)] 164

7 (13
7 ,

11
7 ) 41 (50922, 4797) III54 (1,1) 42 —

2. 4
5 (1

5 ,
2
5) 2 (2, 1) I[M(5, 2)⊗2] 116

5 (9
5 ,

8
5) 58 (27550, 4959) III52 (2,1) 60 12–14

3. 12
7 (2

7 ,
3
7) 6 (3, 2) III1

156
7 (12

7 ,
11
7 ) 78 (27170, 5070) III47 (1,1) 84 22–23

4. 44
7 (4

7 ,
5
7) 88 (11, 44) III3

124
7 (10

7 ,
9
7) 248 (2108, 2108) III35 (1, 1) 336 60

5. 36
5 (3

5 ,
4
5) 144 (12, 45) III4

84
5 (7

5 ,
6
5) 336 (1452, 770) III33 (1,2) 480 —

6. 52
7 (4

7 ,
6
7) 156 (13, 78) III5

116
7 (10

7 ,
8
7) 348 (1972, 725) III32 (1,1) 504 —

7. 60
7 (3

7 ,
8
7) 210 (10, 285) III7

108
7 (11

7 ,
6
7) 378 (3510, 117) III29 (1,1) 588 —

8. 44
5 (2

5 ,
6
5) 220 (11, 275) III8

76
5 (8

5 ,
4
5) 380 (3249, 57) III27 (1,2) 600 —

9. 68
7 (3

7 ,
9
7) 221 (17, 782) III12

100
7 (11

7 ,
5
7) 325 (2925, 55) III24 (1,1) 546 —

Table 9. IVOA-type pairings, cH = 24 with (n1, n2) = (2, 2). Wherever present, the entry in the
last column identifies the meromorphic theory by its row number in the table of [40].

In some of these cases, namely rows 10, 11, 13–16, the entry in the right column was
already ruled out by considerations of non-integral multiplicities (d1, d2). That leaves rows
1, 4–9 where we can now rule out the solutions in the right column, namely III42, III26,
III21, III20, III19, V18, III17. The last six of these were already ruled out by table 7,
a nice confirmation of the internal consistency of our method. Notice that the reasons
for ruling out these six solutions are slightly different in the two tables — in table 7, the
pairings gave a sensible character j 2

3 that actually describes two distinct meromorphic CFT,
but there was no possible embedding to justify the coset relation and this ruled out the
uncharacterised solution. However in table 10, the same solutions were ruled out more
easily because the pairing produced no known theory in the (complete) classification of [37].
Meanwhile the solution III42 is being ruled out for the first time.

Let us move on to the three remaining cases in rows 2, 3 and 12. In row 3 we cannot
say anything about III28 because its partner III9 is already ruled out. Thus there are no
grounds, from this table, to decide whether III28 is a CFT or not. Fortunately III28 has
already been identified as being of IVOA-type in table 10. In row 12, although the pairing
is formally to an invariant that corresponds to a genuine meromorphic theory from the list
of [37], the solution in the right column was already ruled out from the beginning and we get
no new information. That leaves row 2 where the pairing gives rise to a modular invariant
j−744+N with the integer N = 336. This appears in the list of [37] and has the Kac-Moody
algebra A2

12,1. However we have verified that there is no embedding of B7,1 in the above
algebra that would give rise to the character III31. It follows that III31 is not a CFT.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N S#
1. 12

5 (1
5 ,

3
5) 3 (3, 5) III2

108
5 (9

5 ,
7
5) 27 (42483, 2295) III42 (1,2) 30 —

2. 15
2 (1

2 ,
15
16) 105 (15, 128) B7,1

33
2 (3

2 ,
17
16) 231 (4301, 528) III31 (1,1) 336 60

3. 44
5 (1

5 ,
7
5) 253 (11, 242) III9

76
5 (9

5 ,
3
5) 437 (11875, 57) III28 ( 1

5 , 1) 690 —
4. 19

2 (1
2 ,

19
16) 171 (19, 512) B9,1

29
2 (3

2 ,
13
16) 261 (3393, 116) III26 (1,1) 432 —

5. 21
2 (1

2 ,
21
16) 210 (21, 210) B10,1

27
2 (3

2 ,
11
16) 270 (2871, 54) III21 (1,1) 480 —

6. 11 (1
2 ,

11
8 ) 231 (22, 210) D11,1 13 (3

2 ,
5
8) 273 (2600, 26) III20 (1, 2) 504 —

7. 23
2 (1

2 ,
23
16) 253 (23, 211) B11,1

25
2 (3

2 ,
9
16) 275 (2325, 25) III19 (1,1) 528 —

8. 12 (1
3 ,

5
3) 318 (9, 4374) V18 12 (5

3 ,
1
3) 318 (4374, 9) V18 (1, 1) 636 —

9. 12 (3
5 ,

7
5) 222 (25, 1275) III17 12 (7

5 ,
3
5) 222 (1275, 25) III17 (2, 2) 444 —

10. 25
2 (1

2 ,
25
16) 300 (25, 212) B12,1

23
2 (3

2 ,
7
16) 276 (1771, 23) III16 (1, 1

2 ) 576 —
11. 13 (1

2 ,
13
8 ) 325 (26, 212) D13,1 11 (3

2 ,
3
8) 275 (1496, 11) III15 (1,1) 600 —

12. 27
2 (1

2 ,
27
16) 351 (27, 213) B13,1

21
2 (3

2 ,
5
16) 273 (1225, 21) III14 (1, 1

4 ) 624 67
13. 14 (1

2 ,
7
4) 378 (28, 213) D14,1 10 (3

2 ,
1
4) 270 (960, 5) III13 (1,1) 648 —

14. 29
2 (1

2 ,
29
16) 406 (29, 214) B14,1

19
2 (3

2 ,
3
16) 266 (703, 19) III11 (1, 1

8 ) 672 —
15. 15 (1

2 ,
15
8 ) 435 (30, 214) D15,1 9 (3

2 ,
1
8) 261 (456, 9) III10 (1, 1

4 ) 696 —
16. 31

2 (1
2 ,

31
16) 465 (31, 215) B15,1

17
2 (3

2 ,
1
16) 255 (221, 17) III6 (1, 1

16 ) 720 —

Table 10. Inconsistent pairings, cH = 24 with (n1, n2) = (2, 2). Wherever present, the entry in the
last column identifies a candidate meromorphic theory by its row number in the table of [40].

Conclusion. From table 10 we concluded that III31 and III42 are not valid CFTs, and
confirmed that the same holds for III17, V18, III19, III20, III21, III26 which were already
ruled out previously.

(n1, n2) = (1, 3). We now turn to bilinear pairs of solutions with (n1, n2) = (1, 3), a class
never previously explored to our knowledge. This set consists of a list of CFT pairings as
well as tables 11 and 12. We do not need a table for the consistent CFT pairings with these
values of n1, n2 as all the pairs are cosets of the meromorphic theory E1[D24,1] that appears
in [37] as the final entry #71, by B,D type WZW models at level 1. D24 has dimension
1128, so the integer N in the meromorphic character is 384 for all these cases. These
cosets are obtained through regular embeddings of Br,1 or Dr,1 into D24,1 as discussed in
section 2.4. Thus we have pairings of (i) Br1,1 and Br2,1 with r1 + r2 = 23, 0 ≤ r1, r2 ≤ 23,
(ii) Dr1,1 and Dr2,1 with r1 + r2 = 24, 1 ≤ r1, r2 ≤ 23. Recall that B0,1 is identified with
M(4, 3), the Ising model.

Comments on table 11. In this table we have four pairs that are all of IVOA type. 7
of these 8 solutions have appeared in previous coset pairs where the meromorphic theory
had c = 8 or 16 (tables 4 and 6). The only new one is III48 with c = 156

7 .

Conclusion. From table 11 we conclude that III48 belong to the IVOA category as this
has negative fusion rules and also satisfies the above pairing.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 12
7

(
2
7 ,

3
7

)
6 (3,2) III1

156
7

(
5
7 ,

18
7

)
1248 (130,799500) III48 (1, 1) 1644

2. 60
7

(
3
7 ,

8
7

)
210 (10,285) III7

108
7

(
4
7 ,

13
7

)
456 (39,20424) III30 (1, 1) 1056

3. 44
5

(
2
5 ,

6
5

)
220 (11,11) III8

76
5

(
3
5 ,

9
5

)
437 (57,19) III28 (1, 1) 1056

4. 68
7

(
3
7 ,

9
7

)
221 (17,782) III12

100
7

(
4
7 ,

12
7

)
380 (55,11495) III25 (1, 1) 1536

Table 11. IVOA-type pairings, cH = 24 with (n1, n2) = (1, 3). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j − 744 +N .

Comments on table 12. In this table, rows 1, 2, 4, 7, 10–12, 14–16, 18, 19 are pairings
of solutions of III type with consistent CFTs (we used the fact that III2 was identified as a
CFT in table 3). These pairings mostly give us fractional values of N in the meromorphic
character, so we do not learn anything from them. In a few cases we get integer values of
N but these too do not feature in [37].

In row 17 both solutions were previously ruled out. This leaves rows 3, 5, 6, 8, 9, 13,
where we can hope to get new information. In all these cases except row 13, the solutions
III51, III46, III44,V41,V40 are paired with known CFTs. However the result of the pairing
is not a meromorphic CFT as one readily sees from [37]. That means these five solutions
are ruled out as corresponding to CFTs.

Conclusion. From table 12 we conclude that V40, V41, III44, III46 and III51 are not
valid CFTs.

3.4 Cosets of cH = 32

Now we move on to list coset pairs for cH = 32. The meromorphic character in this case
can be written:

χ(τ) = j(τ)
1
3 (j(τ)− 992 +N ) ∼ q−

4
3 (1 +N q + · · · ) (3.5)

so that N is the dimension of its Kac-Moody algebra.
Since we have (p, `) = (3, 0), we get n1 + n2 = 5 from eq. (2.5). This again implies that

we have two sub-cases: (n1, n2) = (1, 4) or (2, 3) that lead to distinct sets of coset theories.
We address each one in turn.

(n1, n2) = (1, 4). Here any admissible character solution that is potentially part of a
coset relation has to have a central charge less than 32. Hence we consider all admissible
character solutions from [34] with c < 32. The consistent cosets all turn out to arise through
regular embeddings of Br,1 or Dr,1 into D32,1 as discussed in section 2.4. Thus we have
pairings of (i) Br1,1 and Br2,1 with r1 + r2 = 31, 0 ≤ r1, r2 ≤ 31, (ii) Dr1,1 and Dr2,1 with
r1 + r2 = 32, 1 ≤ r1, r2 ≤ 31. It turns out there are no IVOA-type bilinear pairs with
(n1, n2) = (1, 4) so we go on directly to the table of inconsistent pairings in table 13.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 1
2

(
1
16 ,

1
2

)
0 (1,1) B0,1

47
2

(
15
16 ,

5
2

)
4371 (4371,1135003) III55

(
1
2 , 1
) 13113

2

2. 4
5

(
1
5 ,

2
5

)
0 (1,1) I[M(5, 2)⊗2] 116

5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1
5 , 1
) 10218

5

3. 1
(

1
8 ,

1
2

)
1 (1,2) D1,1 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51 (2, 1) 3474

4. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1
4 , 1
) 4881

2

5. 2
(

1
4 ,

1
2

)
6 (2,4) D2,1 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (2, 1) 1920

6. 12
5

(
1
5 ,

3
5

)
3 (3, 5) III2

108
5

(
4
5 ,

12
5

)
1404 (459, 153 · 55) III44 (1, 2) 2784

7. 12
5

(
3
5 ,

1
5

)
3 (5, 3) III2

108
5

(
2
5 ,

14
5

)
860 (833, 3015426) III43

(
1

25 , 1
) 5148

5

8. 4
(

1
3 ,

2
3

)
16 (3,9) A⊗2

2,1 20
(

2
3 ,

7
3

)
890 (135, 10 · 2 · 39) V41 (2, 2) 1716

9. 4
(

2
3 ,

1
3

)
16 (9, 3) A⊗2

2,1 20
(

1
3 ,

8
3

)
728 (12, 2 · 312) V40 (2, 2) 960

10. 28
5

(
2
5 ,

4
5

)
28 (7,49) G⊗2

2,1
92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

(
2
5 , 1
) 7776

5

11. 6
(

3
4 ,

1
2

)
66 (32,12) D6,1 18

(
1
4 ,

5
2

)
598 (25, 221 · 210) III36

(
1
4 , 1
) 864

12. 36
5

(
4
5 ,

3
5

)
144 (45, 12) III4

84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

(
2

25 , 1
) 3984

5

13. 8
(

1
2 , 1
)

56 (8,64) D⊗2
4,1 16

(
1
2 , 2
)

496 (32,215) D16,1
(

8
3 , 13

3

) 3704
3

14. 17
2

(
1
16 ,

3
2

)
255 (17,221) III6

31
2

(
15
16 ,

3
2

)
248 (248,3875) E8,2

(
1

16 , 1
) 1533

2

15. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

76
5

(
4
5 ,

8
5

)
380 (57,3249) E⊗2

7.5
(

1
5 , 1
) 3792

5

16. 9
(

1
8 ,

3
2

)
261 (9, 456) III10 15

(
7
8 ,

3
2

)
255 (120, 3640) E [A15,1] (

1
4 , 1
) 786

17. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

29
2

(
13
16 ,

3
2

)
261 (116, 3393) III26

(
1
8 , 1
) 1605

2

18. 10
(

1
4 ,

3
2

)
270 (5, 960) III13 14

(
3
4 ,

3
2

)
266 (56,562) E⊗2

7,1 (1, 1) 816

19. 52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗2

4,1
68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

(
1
5 , 1
) 5484

5

20. 21
2

(
5
16 ,

3
2

)
273 (21,1225) III14

27
2

(
11
16 ,

3
2

)
270 (54, 2871) III21

(
1
4 , 1
) 1653

2

21. 11
(

3
8 ,

3
2

)
275 (11, 1496) III15 13

(
5
8 ,

3
2

)
273 (26, 2600) III20 (1, 1) 834

22. 23
2

(
7
16 ,

3
2

)
276 (23,1771) III16

25
2

(
9
16 ,

3
2

)
275 (25,2325) III19

(
1
2 , 1
) 1677

2

23. 12
(

2
3 ,

4
3

)
156 (27,272) E⊗2

6,1 12
(

1
3 ,

5
3

)
318 (9, 4374) V18 (2, 2) 960

Table 12. Inconsistent pairings, cH = 24 with (n1, n2) = (1, 3). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j − 744 +N .

Comments on table 13. All the pairs (W ↔ W̃) listed in table 13 satisfy a bilinear
relation to a potential c = 32 character of the form in eq. (3.5). However the relation is prob-
lematic in one or more ways. In rows 1–4, 6, 7, 14, 18, 19 we have theories that were found to
be inconsistent at the outset, paired with a known CFT. There is nothing left to determine
in these cases. Next, in rows 9, 10, 12, 17 both members of the pair are already ruled out.

Rows 5, 8, 15 seem more promising as the pairings lead to integer values of N as seen
in the last column of the table. However in these cases N is greater than 2016, which is the
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 4
5

(
1
5 ,

2
5

)
2 (1,1) I[M(5, 2)⊗2] 156

5

(
4
5 ,

18
5

)
3612 (14877, 250774426) III62

(
1

25 , 1
) 105227

25

2. 1
(

1
8 ,

1
2

)
1 (1,2) D1,1 31

(
7
8 ,

7
2

)
5239 (9269, 2295147 · 27) III61

(
1
4 , 1
) 30229

4

3. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

61
2

(
13
16 ,

7
2

)
3599 (47763,264580485) III60

(
1

64 , 1
) 163027

32

4. 2
(

1
4 ,

1
2

)
6 (2,4) D2,1 30

(
3
4 ,

7
2

)
2778 (539, 14421 · 214) III59 (1, 1) 3862

5. 4
(

1
3 ,

2
3

)
16 (3,9) A⊗2

2,1 28
(

2
3 ,

10
3

)
1948 (225, 11 · 2 · 314) V58 (2, 2) 3314

6. 28
5

(
2
5 ,

4
5

)
28 (7,49) G⊗2

2,1
132
5

(
3
5 ,

16
5

)
1536 (2392,47018049) III57

(
2

25 , 1
) 72588

25

7. 6
(

3
4 ,

1
2

)
66 (32,12) D6,1 26

(
1
4 ,

7
2

)
1118 (117, 3315 · 214) III56

(
1

16 , 1
) 1418

8. 8
(

1
2 , 1
)

56 (8,64) D⊗2
4,1 24

(
1
2 , 3
)

1128 (48,223) D24,1
(

3, 59
16

) 2336

9. 17
2

(
1
16 ,

3
2

)
255 (17,221) III6

47
2

(
15
16 ,

5
2

)
4371 (4371,1135003) III55

(
1

32 , 1
) 222339

32

10. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

116
5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1

50 , 1
) 116383

50

11. 9
(

1
8 ,

3
2

)
261 (9, 456) III10 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51

(
1
4 , 1
) 15511

4

12. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1

32 , 1
) 91297

32

13. 10
(

1
4 ,

3
2

)
270 (5, 960) III13 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (1, 1) 2338

14. 52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗2

4,1
108
5

(
2
5 ,

14
5

)
860 (833,3015426) III43

(
1

25 , 1
) 45758

25

15. 12
(

1
3 ,

5
3

)
318 (9, 1) V18 20

(
2
3 ,

7
3

)
890 (135, 10 · 2 · 316) V41 (1, 1) 2423

16. 12
(

2
3 ,

4
3

)
156 (27,272) E⊗2

6,1 20
(

1
3 ,

8
3

)
728 (12, 2 · 312) V40 (2, 2) 1532

17. 68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

(
1

25 , 1
) 62181

25

18. 14
(

3
4 ,

3
2

)
266 (56,562) E⊗2

7,1 18
(

1
4 ,

5
2

)
598 (25, 221 · 210) III36

(
1
4 , 1
) 1214

19. 76
5

(
4
5 ,

8
5

)
380 (57,572) E⊗2

7.5
84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

(
2

25 , 1
) 26612

25

Table 13. Inconsistent pairings, cH = 32 with (n1, n2) = (1, 4). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j 2

3 (j − 992 +N ).

dimension of D32. It can be shown that the dimension of the Kac-Moody algebra for all
meromorphic theories at c = 8N is less than or equal to the dimension of D8N , we do this
in appendix C. For rows 5 and 15 this means the bilinear pairing in these cases does not
produce a valid meromorphic theory at c = 32. In turn, this rules out V58 in row 5 since
it is paired with a valid theory. However in row 15 we have already ruled out V18 so we
cannot say anything definite about V41. Fortunately this was ruled out in table 12. And in
row 8 both partners in the pairing are consistent, it is the pairing which is inconsistent as
shown by the fractional values of d1, d2.

This leaves rows 11, 13, 16. Rows 11 and 13 are inconclusive since the solution in the
first column is inconsistent. Fortunately, again the solutions III51 and III46 in the second
column were already ruled out by table 12. Row 16 is inconclusive for a different reason:
we do not know if a meromorphic theory with N = 1532 exists. However again V40 was
also ruled out in table 12.

– 39 –



J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

Conclusion. From table 13 we obtain the new information that V58 is not a valid CFT.
We also predict that there is no meromorphic theory at c = 32 of the form E1[D⊗2

4,1D24,1].

(n1, n2) = (2, 3). We go on to consider bilinear pairings to meromorphic characters of
c = 32 where the integers (n1, n2) = (2, 3). In this category we find consistent, IVOA-type
and inconsistent solutions that are listed in tables 14, 15 and 16 respectively.

Comments on table 14. This table has 22 bilinear pairs, all of which we will argue to
be consistent CFTs. In row 1 the Baby Monster CFT with c = 47

2 makes its first appearance
in which it is not paired with the Ising model M(4, 3), being paired instead with B8,1.
This has previously appeared as one in a family of pairings in [45] (entry 1 of table 2)
where it was argued that, since the existence of Br,1 as well as the Baby Monster CFT are
established, the pairing actually predicts a non-lattice CFT at c = 32.

The pairings in rows 3, 5–7, 10–13, 15, 17–19, 21 all involve the pairing of an affine
theory with a CFT that was explicitly constructed as a coset in [17]. Row 20 is slightly
different, being a pairing between two theories from [17], a phenomenon we are seeing for
the first time. All these theories already made an appearance in our table 8 which is the
context in which they were originally discovered in [17]. Their re-appearance illustrates a
phenomenon that was highlighted in [45]: once a new CFT appears as a coset, it appears
repeatedly in distinct coset pairings at higher total central charge.

Rows 9, 16, 22 are pairings between affine theories. Even though these are known
theories, the pairings merit some discussion. Row 9 is a case that was analysed in Example
2 of section 2.4, and involves a pairing of D12,1 and D20,1 that is distinct from the standard
pairing to D32,1. In the present case the pairing gives rise to the c = 32 lattice theory
E1[D12,1D20,1] without an enhancement of the Kac-Moody algebra. This is a known Kervaire
lattice [59]. Row 16 pairs E⊗2

7,1 with D18,1 to a meromorphic character whose Kac-Moody
algebra has dimension 896. From this pairing one would be led to predict the existence
of a meromorphic theory at c = 32 with Kac-Moody algebra E1[E2

7,1D18,1] of rank 32 and
dimension 896. Because this algebra has only simply-laced factors at level 1, and its rank
equals the central charge, it must be a lattice theory. And indeed, this is again a known
Kervaire lattice [59]. Row 22 pairs E8,2 with B16,1 and predicts a new meromorphic theory at
c = 32 that must be a non-lattice theory (given that the rank is less than maximal, one factor
has a level greater than 1, and one factor is non-simply-laced). This is again part of an infinite
family in [45], corresponding to the m = 1 case of entry #15 of table 3 in that reference.

Next we turn to the remaining cases in rows 2,4,8,14. For row 2, the dual of D9,1 is III50
which was previously identified from table 8 as the three-character extension E3[D23

1,1]. Here
we see it paired to give a meromorphic theory at c = 32 with a total of 176 generators. Of
these, D9,1 contributes 153 generators and a central charge 9, leaving 23 residual generators
and a residual central charge of 23. These two conditions can only be met by U(1)23. Thus
we predict a lattice theory at c = 32 with Kac-Moody algebra D9,1U(1)23. Comparing
with [60], we see that there is indeed a lattice with 144 roots (plus 32 Cartan generators)
having a D9,1 factor. This verifies the prediction following from our coset pairing and the
fact that III50 was previously characterised. Note that this is not a Kervaire lattice, since
apart from D9,1 the remaining symmetries are all Abelian.
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Moving on to row 4, the dual III45 of D10,1 has been identified in eq. (3.4) as one of six
possible three-character extensions. This means the pairing in the present table predicts six
meromorphic theories at c = 32. Only one of these corresponds to a lattice, with algebra
D10,1A

22
1,1 and this indeed exists — it is a Kervaire lattice [59] with 224 roots. For the

remaining five cases one has a prediction for new meromorphic theories at c = 32, and this
is again part of the infinite series of predictions in [45] where they correspond to the m = 1
case for entries 18–22 in table 3.

Row 8 pairs E⊗2
6,1 with V39 which was identified in eq. (3.4) with three distinct three-

character extensions. Thus again we have predictions for three meromorphic theories at
c = 32. One is a lattice theory with algebra E2

6,1A
10
2,1 that corresponds to a Kervaire

lattice [59] and the other two are non-lattice theories that were predicted in entries 2,3 of
table 6 [45]. These theories are part of a finite, rather than infinite, collection.

Finally in row 14 we have a pairing of III22 and III37 which have been identified
previously as E3[C8,1] and E3[E6,3G2,1] respectively. This leads to a prediction of a new mero-
morphic theory at c = 32 corresponding to E1[C8,1E6,3G2,1]. This is entry 4 of table 6 in [45].

Conclusion. From table 14 we were not able to characterise any admissible solutions as
CFTs or otherwise, but rather started to see several predictions of meromorphic theories at
c = 32. Details of these were presented in [45].

Comments on table 15. Here all the entries are of IVOA-type and all of these were
previously characterised.

Comments on table 16. This table consists entirely of inconsistent pairings. In row 1
we see such a pairing between known theories: the value of d1 is fractional. This corresponds
to the non-existence of a meromorphic extension E1[D2

4,1D24,1]. If such an extension existed
it would be a Kervaire lattice, however this does not appear in the list of Kervaire lattices,
in agreement with the fact that the pairing is inconsistent.

In row 6 we have a pairing between D9,1 and III51, however the result has N = 2476
which is greater than the maximum allowed value of 2016 at c = 32. This means III51 is
not a CFT, consistent with our conclusion from table 12.

In row 14 we have a pairing between D10,1 and III46 with a total N = 1488. However
III46 has been ruled out, and we now argue that this implies the corresponding meromorphic
character is not a CFT. This crucially depends on the fact that the pairing has n1, n2 > 1.
In such pairings, the meromorphic theory — if any — has a Kac-Moody algebra that is
the direct sum of those of the paired solutions. Thus we can conclude that there is no
meromorphic theory at cH = 32 with N = 1488 and a D10,1 factor. Similar considerations
hold for rows 15, 16, 23, 24, 27–32, 36, 37, 39, 40 where in each case we get constraints
ruling out specific possibilities for meromorphic theories at c = 32. The details are a little
complicated to work out in some cases, where the valid CFT in the pairing is of GHM
type. In these cases one has to look in [17] for the definition of the theory in terms of a
meromorphic theory of Schellekens type and then read off the answer from [37]. The results
are summarised below.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 17
2

(
1
2 ,

17
16

)
136 (17,256) B8,1

47
2

(
3
2 ,

31
16

)
0 (4371, 47 · 211) BM (1, 1) 136

2. 9
(

1
2 ,

9
8

)
153 (18,256) D9,1 23

(
3
2 ,

15
8

)
23 (4600, 23 · 211) III50 (1, 2) 176

3. 19
2

(
1
2 ,

19
16

)
171 (19,29) B9,1

45
2

(
3
2 ,

29
16

)
45 (4785, 45 · 210) GHM45 (1, 1) 216

4. 10
(

1
2 ,

5
4

)
190 (20,29) D10,1 22

(
3
2 ,

7
4

)
66 (77 · 26, 11 · 211) III45 (1, 2) 256

5. 21
2

(
1
2 ,

21
16

)
210 (21,210) B10,1

43
2

(
3
2 ,

27
16

)
86 (5031, 43 · 29) GHM86 (1, 1) 296

6. 11
(

1
2 ,

11
8

)
231 (22,210) D11,1 21

(
3
2 ,

13
8

)
105 (5096, 21 · 29) GHM105 (1, 2) 336

7. 23
2

(
1
2 ,

23
16

)
253 (23,211) B11,1

41
2

(
3
2 ,

25
16

)
123 (5125, 41 · 28) GHM123 (1, 1) 376

8. 12
(

2
3 ,

4
3

)
156 (27,272) E⊗2

6,1 20
(

4
3 ,

5
3

)
80 (5 · 35, 4 · 37) V39 (4, 4) 236

9. 12
(

3
2 ,

1
2

)
276 (211,24) D12,1 20

(
1
2 ,

5
2

)
780 (40,219) D20,1 (1, 1) 1056

10. 12
(

1
2 ,

3
2

)
276 (24,211) D12,1 20

(
3
2 ,

3
2

)
140 (5120,5120) GHM140 (1, 2) 416

11. 25
2

(
1
2 ,

25
16

)
300 (25,212) B12,1

39
2

(
3
2 ,

23
16

)
156 (5083, 39 · 27) GHM156 (1, 1) 456

12. 13
(

1
2 ,

13
8

)
325 (26,212) D13,1 19

(
3
2 ,

11
8

)
171 (5016, 19 · 27) GHM171 (1, 2) 496

13. 27
2

(
1
2 ,

27
16

)
351 (27,213) B13,1

37
2

(
3
2 ,

21
16

)
185 (4921,37 · 26) GHM185 (1, 1) 536

14. 68
5

(
4
5 ,

7
5

)
136 (119,1700) III22

92
5

(
6
5 ,

8
5

)
92 (1196,7475) III37 (1, 2) 228

15. 14
(

3
4 ,

3
2

)
266 (56,562) E⊗2

7,1 18
(

5
4 ,

3
2

)
198 (9 · 27, 75 · 26) GHM198 (2, 1) 464

16. 14
(

3
2 ,

3
4

)
266 (562,56) E⊗2

7,1 18
(

1
2 ,

9
4

)
630 (36,217) D18,1 (1, 2) 896

17. 14
(

1
2 ,

7
4

)
378 (28,213) D14,1 18

(
3
2 ,

5
4

)
198 (75 · 26, 9 · 27) GHM198 (1, 2) 576

18. 29
2

(
1
2 ,

29
16

)
406 (29,214) B14,1

35
2

(
3
2 ,

19
16

)
210 (4655, 35 · 25) GHM210 (1, 1) 616

19. 15
(

1
2 ,

15
8

)
435 (30,214) D15,1 17

(
3
2 ,

9
8

)
221 (4488, 544) GHM221 (1, 2) 656

20. 15
(

7
8 ,

3
2

)
255 (120,3640) GHM255 17

(
9
8 ,

3
2

)
221 (544,4488) GHM221 (2, 1) 476

21. 15
(

3
2 ,

7
8

)
255 (3640, 120) GHM255 17

(
1
2 ,

17
8

)
561 (34,216) D17,1 (1, 2) 816

22. 31
2

(
3
2 ,

15
16

)
248 (3875,248) E8,2

33
2

(
1
2 ,

33
16

)
528 (33,216) B16,1 (1, 1) 776

Table 14. CFT pairings, cH = 32 with (n1, n2) = (2, 3). The integer N in the last column gives
the total number of dimension-1 states in the meromorphic character j 2

3 (j − 992 +N ).

In rows 25, 26, both solutions are of type V. However for row 25 we have ruled out
one member, V18, and characterised V39 in eq. (3.4), and for row 26 we have already ruled
out both members of the pair V18 (again) and V40. Note that we do not get a constraint
on meromorphic theories in these cases. All remaining rows have an entry of III type, from
which we typically do not get new information.

Conclusion. From table 16 we were not able to newly rule out any solutions from being
CFTs, but instead we were able to predict the absence of meromorphic theories with the
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J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 60
7

(
3
7 ,

8
7

)
210 (10,285) III7

164
7

(
11
7 ,

13
7

)
41 (4797,50922) III54 (1, 1) 251

2. 44
5

(
2
5 ,

6
5

)
220 (11,275) III8

116
5

(
8
5 ,

9
5

)
58 (4959,27550) III52 (1, 2) 278

3. 68
7

(
3
7 ,

9
7

)
221 (17,782) III12

156
7

(
11
7 ,

12
7

)
78 (5070,27170) III47 (1, 1) 299

4. 68
7

(
9
7 ,

3
7

)
221 (782,17) III12

156
7

(
5
7 ,

18
7

)
1248 (130,799500) III48 (1, 1) 1469

5. 76
5

(
4
5 ,

8
5

)
380 (57,572) E⊗2

7.5
84
5

(
6
5 ,

7
5

)
336 (770, 1452) III33 (2, 1) 716

6. 76
5

(
3
5 ,

9
5

)
437 (57,11875) III28

84
5

(
7
5 ,

6
5

)
336 (1452,770) III33 (1, 2) 773

7. 100
7

(
4
7 ,

12
7

)
380 (55,11495) III25

124
7

(
10
7 ,

9
7

)
248 (2108,2108) III35 (1, 1) 628

8. 100
7

(
5
7 ,

11
7

)
325 (55,2925) III24

124
7

(
9
7 ,

10
7

)
248 (2108,2108) III35 (1, 1) 573

9. 108
7

(
6
7 ,

11
7

)
378 (117,3510) III29

116
7

(
8
7 ,

10
7

)
348 (725,1972) III32 (1, 1) 726

10. 108
7

(
4
7 ,

13
7

)
456 (39,20424) III30

116
7

(
10
7 ,

8
7

)
348 (1972,725) III32 (1, 1) 804

Table 15. IVOA-type pairings, cH = 32 with (n1, n2) = (2, 3). The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j 2

3 (j − 992 +N ).

following values of N coupled with a particular factor in their Kac-Moody algebra. This
happens when either one solution in the bilinear pair is a WZW theory (or a known RCFT)
and the other solution has integral Yi values. Furthermore, these two solutions also have a
nice bilinear pairing, that is, dis are integral. In addition to the above two conditions, the N
value of this bilinear pair must be less than or equal to 2016 which is the dimension of the
Kac-Moody algebra D32,1. Table 17 lists the cases for which meromorphic theories at c = 32
with given values of N and simple factor in their Kac-Moody algebras have been ruled out.

As a mild check of these predictions, wherever the algebra listed above is simply laced
and of level 1 one can check from [59] that there are no lattice theories with complete root
systems at c = 32 having these dimensions and subalgebras.

3.5 Cosets of cH = 40

In this subsection we classify all bilinear pairings that add up to a central charge of 40.
From eq. (2.7) this means n1 + n2 = 6, from which we find the three possibilities (n1, n2) =
(1, 5), (2, 4) and (3, 3). We consider each one in turn. The meromorphic theory has the
character χH = j2/3(j−1240+N ) whereN denotes the dimension of the Kac-Moody algebra.

(n1, n2) = (1, 5). As we saw at c = 24, 32, the consistent CFT pairings with n1 = 1 are
all of a standard kind, namely cosets of the cH = 40 meromorphic theory E1[D40,1], whose
Kac-Moody algebra has dimension 3160. Thus we have pairings of (i) Br1,1 and Br2,1 with
r1 + r2 = 39, 0 ≤ r1, r2 ≤ 39, (ii) Dr1,1 and Dr2,1 with r1 + r2 = 40, 1 ≤ r1, r2 ≤ 39. The
pairing of D20,1 is a self-coset relation.

There are no IVOA-type pairings with (n1, n2) = (1, 5) so we move on to list the
inconsistent pairings.
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J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 17
2

(
17
16 , 1

2

)
136 (256,17) B8,1

47
2

(
15
16 , 5

2

)
4371 (4371,1135003) III55

(
1
2 , 1
)

4507

2. 17
2

(
1

16 , 3
2

)
255 (17,221) III6

47
2

(
31
16 , 3

2

)
0 (47 · 211, 4371) BM

(
1

16 , 1
)

255

3. 17
2

(
3
2 , 1

16

)
255 (221,17) III6

47
2

(
1
2 , 47

16

)
1081 (47,223) B23,1

(
1, 1

16

)
1336

4. 44
5

(
1
5 , 7

5

)
253 (11,242) III9

116
5

(
9
5 , 8

5

)
58 (27550, 4959) III52

(
1
5 , 1
)

311

5. 44
5

(
6
5 , 2

5

)
220 (275, 11) III8

116
5

(
4
5 , 13

5

)
1711 (1653,910803) III53

(
1
5 , 1
)

1931

6. 9
(

9
8 , 1

2

)
153 (256,18) D9,1 23

(
7
8 , 5

2

)
2323 (575, 32683 · 25) III51 (2, 1) 2476

7. 9
(

1
8 , 3

2

)
261 (9, 456) III10 23

(
15
8 , 3

2

)
23 (23 · 211, 4600) III50

(
1
4 , 1
)

284

8. 9
(

3
2 , 1

8

)
261 (456, 9) III10 23

(
1
2 , 23

8

)
1035 (46,222) D23,1

(
1, 1

4

)
1296

9. 19
2

(
19
16 , 1

2

)
171 (29,19) B9,1

45
2

(
13
16 , 5

2

)
1640 (1595,956449) III49

(
1
4 , 1
)

1811

10. 19
2

(
3

16 , 3
2

)
266 (19,703) III11

45
2

(
29
16 , 3

2

)
45 (45 · 210, 4785) GHM45

(
1
8 , 1
)

311

11. 19
2

(
3
2 , 3

16

)
266 (703,19) III11

45
2

(
1
2 , 45

16

)
990 (45,222) B22,1

(
1, 1

8

)
1256

12. 10
(

1
4 , 3

2

)
270 (5, 960) III13 22

(
7
4 , 3

2

)
66 (11 · 211, 77 · 26) III45 (1, 1) 336

13. 10
(

3
2 , 1

4

)
270 (960, 5) III13 22

(
1
2 , 11

4

)
946 (44,221) D22,1 (1, 1) 1216

14. 10
(

5
4 , 1

2

)
190 (29,20) D10,1 22

(
3
4 , 5

2

)
1298 (154, 847 · 210) III46 (2, 1) 1488

15. 52
5

(
3
5 , 6

5

)
104 (26,262) F⊗2

4,1
108

5

(
7
5 , 9

5

)
27 (2295,42483) III42 (2, 1) 131

16. 52
5

(
6
5 , 3

5

)
104 (262,26) F⊗2

4,1
108

5

(
4
5 , 12

5

)
1404 (459, 153 · 55) III44 (1, 2) 1508

17. 21
2

(
5

16 , 3
2

)
273 (21,1225) III14

43
2

(
27
16 , 3

2

)
86 (43 · 29, 5031) GHM86

(
1
4 , 1
)

359

18. 21
2

(
3
2 , 5

16

)
273 (1225,21) III14

43
2

(
1
2 , 43

16

)
903 (43,221) B21,1

(
1, 1

4

)
1176

19. 11
(

3
8 , 3

2

)
275 (11, 1496) III15 21

(
13
8 , 3

2

)
105 (21 · 29, 5096) GHM105 (1, 1) 380

20. 11
(

3
2 , 3

8

)
275 (1496, 11) III15 21

(
1
2 , 21

8

)
861 (42,220) D21,1 (1, 1) 1136

21. 23
2

(
7

16 , 3
2

)
276 (23,1771) III16

41
2

(
25
16 , 3

2

)
123 (41 · 28, 5125) GHM123

(
1
2 , 1
)

399

22. 23
2

(
3
2 , 7

16

)
276 (1771,23) III16

41
2

(
1
2 , 41

16

)
820 (41,220) B20,1

(
1, 1

2

)
1096

23. 12
(

4
3 , 2

3

)
156 (272,27) E⊗2

6,1 20
(

2
3 , 7

3

)
890 (135, 20 · 39) V41 (2, 2) 1046

24. 12
(

3
5 , 7

5

)
222 (25, 1275) III17 20

(
7
5 , 8

5

)
120 (4 · 54, 13 · 54) GHM120 (2, 2) 342

25. 12
(

1
3 , 5

3

)
318 (32, 2 · 37) V18 20

(
5
3 , 4

3

)
80 (23 · 37, 10 · 35) V39 (1, 1) 398

26. 12
(

5
3 , 1

3

)
318 (2 · 37, 32) V18 20

(
1
3 , 8

3

)
718 (12, 2 · 312) V40 (1, 1) 1046

27. 25
2

(
9

16 , 3
2

)
275 (25,2325) III19

39
2

(
23
16 , 3

2

)
156 (39 · 27, 5083) GHM156 (1, 1) 431

28. 25
2

(
3
2 , 9

16

)
275 (2325,25) III19

39
2

(
1
2 , 39

16

)
741 (39,219) B19,1 (1, 1) 1016

29. 13
(

5
8 , 3

2

)
273 (26, 2600) III20 19

(
11
8 , 3

2

)
171 (19 · 27, 5016) GHM171 (2, 1) 444

30. 13
(

3
2 , 5

8

)
273 (2600,26) III20 19

(
1
2 , 19

8

)
703 (38,218) D19,1 (1, 2) 976

31. 27
2

(
11
16 , 3

2

)
270 (54, 2871) III21

37
2

(
21
16 , 3

2

)
185 (37 · 26, 4921) GHM185 (1, 1) 455

32. 27
2

(
3
2 , 11

16

)
270 (2871, 54) III21

37
2

(
1
2 , 37

16

)
666 (37,218) B18,1 (1, 1) 936

33. 68
5

(
2
5 , 9

5

)
374 (119,12138) III23

92
5

(
8
5 , 6

5

)
92 (7475, 1196) III37

(
1
5 , 1
)

466

34. 68
5

(
7
5 , 4

5

)
136 (1700, 119) III22

92
5

(
3
5 , 11

5

)
690 (299, 178802) III38

(
2
5 , 1
)

826
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J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

35. 14
(

7
4 , 1

2

)
378 (213,28) D14,1 18

(
1
4 , 5

2

)
598 (25, 221 · 210) III36

(
1
4 , 1
)

976

36. 29
2

(
13
16 , 3

2

)
261 (116, 3393) III26

35
2

(
19
16 , 3

2

)
210 (35 · 25, 4655) GHM210 (1, 1) 471

37. 29
2

(
3
2 , 13

16

)
261 (3393, 116) III26

35
2

(
1
2 , 35

16

)
595 (35,217) B17,1 (1, 1) 856

38. 76
5

(
9
5 , 3

5

)
437 (11875, 57) III28

84
5

(
1
5 , 12

5

)
534 (33,55924) III34

(
2

25 , 1
)

971

39. 31
2

(
1
2 , 31

16

)
465 (31,215) B15,1

33
2

(
3
2 , 17

16

)
231 (4301, 528) III31 (1, 1) 696

40. 31
2

(
15
16 , 3

2

)
248 (248,3875) E8,2

33
2

(
17
16 , 3

2

)
231 (528, 4301) III31 (1, 1) 479

Table 16. Inconsistent pairings, cH = 32 with (n1, n2) = (2, 3) The integer N in the last column
gives the total number of dimension-1 states in the meromorphic character j 2

3 (j − 992 +N ).

# N Factor
1. 131 F⊗2

4,1

2. 342 A⊗5
4,1

3. 342 A9,2B3,1

4. 431 D8,2B4,1

5. 431 C⊗2
6,1

6. 444 A⊗2
7,1D5,1

7. 455 E7,2F4,1

8. 471 C10,1

9. 479 E8,2

10. 696 B15,1

11. 856 B17,1

12. 936 B18,1

13. 976 D19,1

14. 1016 B19,1

15. 1046 E⊗2
6,1

16. 1488 D10,1

17. 1508 F⊗2
4,1

Table 17. List of meromorphic theories ruled out by table 16.

Comments on table 18. In row 1 of this table we find V63 which we have so far been
unable to characterise as a CFT or otherwise. It pairs with a consistent theory leading
to an invariant at c = 40 with 5344 currents. This is above the bound of 3160 for a
meromorphic theory in this dimension (see appendix C), hence this is not a genuine pairing
to a meromorphic theory at the level of CFT. We conclude that V63 is not a CFT. This
was actually the last admissible character (other than those of IVOA type) to remain
uncharacterised from our original list.
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J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 4
(

1
3 ,

2
3

)
16 (3,9) A⊗2

2,1 36
(

2
3 ,

13
3

)
3384 (324, 8 · 320) V63 (2, 2) 5344

2. 8
(

1
2 , 1
)

56 (8,64) D⊗2
4,1 32

(
1
2 , 4
)

2016 (64,231) D32,1
(

3, 57
16

) 3608

3. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

156
5

(
4
5 ,

18
5

)
3612 (14877,250774426) III62

(
1

250 , 1
) 1129897

250

4. 9
(

1
8 ,

3
2

)
261 (9, 456) III10 31

(
7
8 ,

7
2

)
5239 (9269, 2295147 · 27) III61

(
1

32 , 1
) 259421

32

5. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

61
2

(
13
16 ,

7
2

)
3599 (47763,264580485) III60

(
1

512 , 1
) 2886377

512

6. 10
(

1
4 ,

3
2

)
700 (5, 960) III13 30

(
3
4 ,

7
2

)
2778 (539, 14421 · 214) III59

(
1
2 , 1
) 8791

2

7. 12
(

1
3 ,

5
3

)
318 (9, 2 · 37) V18 28

(
2
3 ,

10
3

)
1948 (225, 11 · 2 · 314) V58 (1, 1) 4291

8. 68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

132
5

(
3
5 ,

16
5

)
1536 (2392,47018049) III57

(
1

125 , 1
) 523398

125

9. 14
(

3
4 ,

3
2

)
266 (56,562) E⊗2

7,1 26
(

1
4 ,

7
2

)
1118 (117, 3315 · 214) III56

(
1

16 , 1
) 3587

2

10. 84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

116
5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1

125 , 1
) 335174

125

11. 18
(

1
4 ,

5
2

)
598 (25, 221 · 210) III36 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46

(
1
4 , 1
) 5717

2

12. 92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

108
5

(
2
5 ,

14
5

)
860 (833,3015426) III43

(
1

125 , 1
) 442817

125

13. 20
(

1
3 ,

8
3

)
728 (12, 2 · 312) V40 20

(
2
3 ,

7
3

)
890 (135, 10 · 2 · 39) V41 (1, 1) 3238

Table 18. Inconsistent pairings, cH = 40 with (n1, n2) = (1, 5).

In row 2 we have an inconsistent pairing, visible from the fractional value of one of the
pair (d1, d2), which implies the absence of a c = 40 modular invariant with an algebra of
dimension 2584. If the pairing existed then we would have a lattice theory E1[D⊗2

4,1D32,1].
Hence such a theory should not exist. This is a prediction about lattices with complete
root systems in 40 dimensions, which we were unable to independently confirm.

The pair in rows 7 and 13, and also III46 in row 11, have been ruled out by tables 7, 12
and 13. All the other entries are self-evidently inconsistent.

Conclusion. From table 18 we learn for the first time that V63 is not a CFT. With this
we have completed the characterisation of all admissible solutions appearing in table 1. We
also predict that there is no meromorphic theory at c = 40 of the form E1[D⊗2

4,1D32,1].

Conjecture. We conjecture the non-existence of meromorphic theories of the form
E1[D⊗2

4,1D8(N−1),1] at c = 8N , for integer N ≥ 3.

(n1, n2) = (2, 4). We move on to pairings with (n1, n2) = (2, 4). In these cases (as well as
the ones to follow with (n1, n2) = (3, 3)), no non-trivial embeddings of Kac-Moody algebras
can be involved, as we explained earlier. Thus they are relatively simpler to deal with.

Comments on table 19. This table is made up entirely of consistent bilinear pairings
of known theories. Note that III50 and III45 have previously been characterised as CFT in
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J
H
E
P
0
3
(
2
0
2
3
)
0
2
3

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 12
(

3
2 ,

1
2

)
276 (211,24) D12,1 28

(
1
2 ,

7
2

)
1540 (56,227) D28,1 (1, 1) 1816

2. 14
(

3
2 ,

3
4

)
266 (562,56) E⊗2

7,1 26
(

1
2 ,

13
4

)
1326 (52,225) D26,1 (1, 2) 1592

3. 15
(

3
2 ,

7
8

)
255 (3640, 120) GHM255 25

(
1
2 ,

25
8

)
1225 (50,224) D25,1 (1, 2) 1480

4. 31
2

(
3
2 ,

15
16

)
248 (3875,248) E8,2

49
2

(
1
2 ,

49
16

)
1176 (49,224) B24,1 (1, 1) 1424

5. 33
2

(
1
2 ,

33
16

)
528 (33,216) B16,1

47
2

(
3
2 ,

31
16

)
0 (4371, 47 · 211) BM (1, 1) 528

6. 17
(

3
2 ,

9
8

)
221 (561 · 23, 544) GHM221 23

(
1
2 ,

23
8

)
1035 (46,222) D23,1 (1, 2) 1256

7. 17
(

1
2 ,

17
8

)
561 (34,216) D17,1 23

(
3
2 ,

15
8

)
23 (4600, 23 · 211) III50 (1, 2) 584

8. 35
2

(
3
2 ,

19
16

)
210 (4655, 35 · 25) GHM210

45
2

(
1
2 ,

45
16

)
990 (45,222) B22,1 (1, 1) 1200

9. 35
2

(
1
2 ,

35
16

)
595 (35,217) B17,1

45
2

(
3
2 ,

29
16

)
45 (4785, 45 · 210) GHM45 (1, 1) 640

10. 18
(

1
2 ,

9
4

)
630 (36,217) D18,1 22

(
3
2 ,

7
4

)
66 (77 · 26, 11 · 211) III45 (1, 2) 696

11. 18
(

3
2 ,

5
4

)
198 (75 · 26, 9 · 27) GHM198 22

(
1
2 ,

11
4

)
946 (44,221) D22,1 (1, 2) 1144

12. 37
2

(
1
2 ,

37
16

)
666 (37,218) B18,1

43
2

(
3
2 ,

27
16

)
86 (5031, 43 · 29) GHM86 (1, 1) 752

13. 37
2

(
3
2 ,

21
16

)
185 (4921, 37 · 26) GHM185

43
2

(
1
2 ,

43
16

)
903 (43,221) B21,1 (1, 1) 1088

14. 19
(

1
2 ,

19
8

)
703 (38,218) D19,1 21

(
3
2 ,

13
8

)
105 (5096, 21 · 29) GHM105 (1, 2) 808

15. 19
(

3
2 ,

11
8

)
171 (5016, 19 · 27) GHM171 21

(
1
2 ,

21
8

)
861 (42,220) D21,1 (1, 2) 1032

16. 39
2

(
1
2 ,

39
16

)
741 (39,219) B19,1

41
2

(
3
2 ,

25
16

)
123 (5125, 41 · 28) GHM123 (1, 1) 864

17. 39
2

(
3
2 ,

23
16

)
156 (5083, 39 · 27) GHM156

41
2

(
1
2 ,

41
16

)
820 (41,220) B20,1 (1, 1) 976

18. 20
(

1
2 ,

5
2

)
780 (40,219) D20,1 20

(
3
2 ,

3
2

)
140 (5120,5120) GHM140 (1, 2) 920

Table 19. CFT pairings, cH = 40 with (n1, n2) = (2, 4). The character of the meromorphic theory
is j 2

3 (j − 1240 +N ) with N given in the last column of the table.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 124
7

(
9
7 ,

10
7

)
248 (2108,2108) III35

156
7

(
5
7 ,

18
7

)
1248 (130,799500) III48 (1, 1) 1496

Table 20. IVOA-type pairing, cH = 40 with (n1, n2) = (2, 4). The meromorphic character is
j

2
3 (j − 1240 +N ) with N given in the last column of the table.

eq. (3.4). Hence these pairings are predictions about the existence of meromorphic theories
at c = 40. More details of these predictions can be found in [45].

Conclusion. Table 19 gives us predictions for meromorphic theories at c = 40. We do
not go into detail here since we have already presented these predictions in [45].

Comments on table 20. This table has just one pair of admissible characters of IVOA
type. Both members have already been identified as such in previous tables.
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0
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)
0
2
3

Comments on table 21. The rows without a type III factor are 12–15, 18, 20, 23, 25,
27, 30, 31. All of them contain precisely one member that has been shown not to be a CFT.
As a consequence we again get a set of cases for which a meromorphic theory at c = 40 is
ruled out. We list these below in table 22. The remaining rows have a type III factor that
is paired with an affine theory in most cases, and with an inconsistent type III solution in
the remaining cases. Either way we get no new information from such pairs.

Conclusion. From table 21 we were able to predict the absence of meromorphic theories
with the following values of N < 3160 coupled with a particular factor in their Kac-Moody
algebra.

(n1, n2) = (3, 3).

Comments on table 23. All entries in this table are genuine coset pairs. Several CFTs
of GHM type from [17] are paired with each other. This includes a self-coset in row 9. Rows
3 and 8 are similar, the theories III45,V39 were not listed in [17] but this should count as
an oversight as they properly belong in table 2 of that paper. In row 7 we see a self-pairing
of D20,1 to a meromorphic theory at c = 40 without enhancement of Kac-Moody algebra, so
the resulting theory can be written E1[D20,1D20,1] (this is to be contrasted with the pairing
of the same factors in the (n1, n2) = (1, 5) case, where the meromorphic theory is D40,1).

Comments on table 24. This table contains four pairings that all involve characters of
IVOA type. Seven of these have been encountered before, but one of the solutions in row
1, with c = 236

7 , is appearing here for the first time. This one has been previously noted
in [18] in the context of a study of three-character solutions without Kac-Moody symmetry.
Hence we denote this character as HM(7, 2).

Conclusion. In table 24 we find seven IVOA-type solutions that were previously discussed
above, and one that appears for the first time in this table but has been noted before.

Comments on table 25. This table contains 10 pairings. Rows 1–8 have one inconsistent
solution paired with a known CFT, while rows 9 and 10 are self-pairings where both members
are known to be inconsistent. As a result, rows 1, 3, 6 and 7 lead to negative predictions for
specific types of meromorphic theories at c = 40, while rows 9 and 10 do not. Meanwhile
rows 2, 4, 5 and 8 have one factor with fractional Yi values, so these also do not lead to
negative predictions for meromorphic theories.

From table 25 we were able to predict the absence of meromorphic theories with the
following values of N < 3160 coupled with a particular factor in their Kac-Moody algebra,
which we collect in table 26.

4 Discussion and conclusions

In this paper we started with a list of 65 admissible characters, listed in table 1, and found
all possible bilinear pairings involving them such that the total central charge is ≤ 40. We
then examined them for consistency as CFTs. 24 of these were ruled out as CFTs at the
outset since they do not have integer multiplicities Y1, Y2. We then studied the remaining
41 through their bilinear pairings to modular invariants, and were able to classify all of
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E
P
0
3
(
2
0
2
3
)
0
2
3

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 17
2

(
3
2 ,

1
16

)
255 (221,17) III6

63
2

(
1
2 ,

63
16

)
1953 (63,231) B31,1

(
1, 1

16

) 2208

2. 44
5

(
6
5 ,

2
5

)
220 (275, 11) III8

156
5

(
4
5 ,

18
5

)
3612 (14877,250774426) III62

(
1

25 , 1
) 3832

3. 9
(

9
8 ,

1
2

)
153 (256,18) D9,1 31

(
7
8 ,

7
2

)
5239 (9269, 2295147 · 27) III61

(
1
4 , 1
) 5392

4. 9
(

3
2 ,

1
8

)
261 (456, 9) III10 31

(
1
2 ,

31
8

)
1891 (62,230) D31,1

(
1, 1

4

) 2152

5. 19
2

(
19
16 ,

1
2

)
171 (29,19) B9,1

61
2

(
13
16 ,

7
2

)
3599 (47763,264580485) III60

(
1

64 , 1
) 3770

6. 19
2

(
3
2 ,

3
16

)
266 (703,19) III11

61
2

(
1
2 ,

61
16

)
1830 (61,230) B30,1

(
1, 1

8

) 2096

7. 10
(

5
4 ,

1
2

)
190 (29,20) D10,1 30

(
3
4 ,

7
2

)
2778 (539, 14421 · 214) III59 (1, 1) 2968

8. 10
(

3
2 ,

1
4

)
270 (960, 5) III13 30

(
1
2 ,

15
4

)
1770 (60,229) D30,1 (1, 1) 2040

9. 21
2

(
3
2 ,

5
16

)
273 (1225,21) III14

59
2

(
1
2 ,

59
16

)
1711 (59,229) B29,1

(
1, 1

4

) 1984

10. 11
(

3
2 ,

3
8

)
275 (1496, 11) III15 29

(
1
2 ,

29
8

)
1653 (58,228) D29,1 (1, 1) 1928

11. 23
2

(
3
2 ,

7
16

)
276 (1771,23) III16

57
2

(
1
2 ,

57
16

)
1596 (57,228) B28,1

(
1, 1

2

) 1872

12. 12
(

4
3 ,

2
3

)
156 (272,27) E⊗2

6,1 28
(

2
3 ,

10
3

)
1948 (225, 11 · 2 · 314) V58 (2, 2) 2104

13. 25
2

(
3
2 ,

9
16

)
275 (2325,25) III19

55
2

(
1
2 ,

55
16

)
1485 (55,227) B27,1 (1, 1) 1760

14. 13
(

3
2 ,

5
8

)
273 (2600, 26) III20 27

(
1
2 ,

27
8

)
1431 (54,226) D27,1 (1, 2) 1704

15. 27
2

(
3
2 ,

11
16

)
270 (2871, 54) III21

53
2

(
1
2 ,

53
16

)
1378 (53,226) B26,1 (1, 1) 1648

16. 68
5

(
7
5 ,

4
5

)
136 (1700, 119) III22

132
5

(
3
5 ,

16
5

)
1536 (2392,47018049) III57

(
2

25 , 1
) 1672

17. 14
(

7
4 ,

1
2

)
378 (213,28) D14,1 26

(
1
4 ,

7
2

)
1118 (117, 3315 · 214) III56

(
1

16 , 1
) 1496

18. 29
2

(
3
2 ,

13
16

)
261 (3393, 116) III26

51
2

(
1
2 ,

51
16

)
1275 (51,225) B25,1 (1, 1) 1536

19. 33
2

(
17
16 ,

3
2

)
231 (528, 4301) III31

47
2

(
15
16 ,

5
2

)
4371 (4371, 1135003) III55

(
1
2 , 1
) 4602

20. 33
2

(
3
2 ,

17
16

)
231 (4301, 528) III31

47
2

(
1
2 ,

47
16

)
1081 (47,223) B23,1 (1, 1) 1312

21. 84
5

(
6
5 ,

7
5

)
336 (770, 1452) III33

116
5

(
4
5 ,

13
5

)
1711 (1653, 910803) III53

(
1
5 , 1
) 2047

22. 84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

116
5

(
9
5 ,

8
5

)
58 (27550, 4959) III52

(
2

25 , 1
) 592

23. 17
(

9
8 ,

3
2

)
221 (544, 561 · 23) GHM221 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51 (2, 1) 2544

24. 35
2

(
19
16 ,

3
2

)
210 (35 · 25, 4655) GHM210

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1
4 , 1
) 1850

25. 18
(

5
4 ,

3
2

)
198 (9 · 27, 75 · 26) GHM198 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (2, 1) 1496

26. 18
(

1
4 ,

5
2

)
598 (25, 221 · 210) III36 22

(
7
4 ,

3
2

)
66 (11 · 211, 77 · 26) III45

(
1
4 , 1
) 664

27. 92
5

(
6
5 ,

8
5

)
92 (1196, 7475) III37

108
5

(
4
5 ,

12
5

)
1404 (459, 153 · 55) III44 (1, 2) 1496

28. 92
5

(
8
5 ,

6
5

)
92 (7475, 1196) III37

108
5

(
2
5 ,

14
5

)
860 (833,3015426) III43

(
1

25 , 1
) 952

29. 92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

108
5

(
7
5 ,

9
5

)
27 (2295, 42483) III42

(
2
5 , 1
) 717

30. 20
(

4
3 ,

5
3

)
80 (2430, 17496) V39 20

(
2
3 ,

7
3

)
890 (135, 20 · 39) V41 (1, 1) 970

31. 20
(

5
3 ,

4
3

)
80 (17496, 2430) V39 20

(
1
3 ,

8
3

)
728 (12, 2 · 312) V40 (1, 1) 808

Table 21. Inconsistent pairings, cH = 40 with (n1, n2) = (2, 4). The meromorphic character is
j

2
3 (j − 1240 +N ) with N given in the last column of the table.
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# N Factor
1. 808 A⊗10

2,1

2. 808 A⊗2
5,2C2,1

3. 808 A8,3

4. 970 A⊗10
2,1

5. 970 A⊗2
5,2C2,1

6. 970 A8,3

7. 1312 B23,1

8. 1496 E6,3G2,1

9. 1496 D⊗3
6,1

10. 1496 A⊗2
9,1

11. 1536 B25,1

12. 1648 B26,1

13. 1704 D27,1

14. 1760 B27,1

15. 2104 E⊗2
6,1

16. 2544 A11,1E6,1

Table 22. List of meromorphic theories ruled out by table 21.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 17
(

9
8 ,

3
2

)
221 (544, 4488) GHM221 23

(
15
8 ,

3
2

)
23 (23 · 211, 4600) III50 (2, 1) 244

2. 35
2

(
3
2 ,

19
16

)
210 (4655, 35 · 25) GHM210

45
2

(
3
2 ,

29
16

)
45 (4785, 45 · 210) GHM45 (1, 1) 255

3. 18
(

5
4 ,

3
2

)
198 (9 · 27, 75 · 26) GHM198 22

(
7
4 ,

3
2

)
66 (11 · 211, 77 · 26) III45 (2, 1) 264

4. 37
2

(
3
2 ,

21
16

)
185 (4921, 37 · 26) GHM185

43
2

(
3
2 ,

27
16

)
86 (5031, 43 · 29) GHM86 (1, 1) 271

5. 19
(

3
2 ,

11
8

)
171 (5016, 19 · 27) GHM171 21

(
3
2 ,

13
8

)
105 (5096, 21 · 29) GHM105 (1, 2) 276

6. 39
2

(
3
2 ,

23
16

)
156 (5083, 39 · 27) GHM156

41
2

(
3
2 ,

25
16

)
123 (5125, 41 · 28) GHM123 (1, 1) 279

7. 20
(

1
2 ,

5
2

)
780 (40,219) D20,1 20

(
5
2 ,

1
2

)
780 (219, 40) D20,1 (1, 1) 1560

8. 20
(

4
3 ,

5
3

)
80 (2430, 17496) V39 20

(
5
3 ,

4
3

)
80 (17496, 2430) V39 (1, 1) 160

9. 20
(

7
5 ,

8
5

)
120 (4 · 54, 13 · 54) GHM120 20

(
8
5 ,

7
5

)
120 (13 · 54, 4 · 54) GHM120 (2, 2) 240

Table 23. CFT pairings, cH = 40 with (n1, n2) = (3, 3). H with χH = j2/3(j + N0) where
N0 ≥ −1240. The meromorphic character is j 2

3 (j − 1240 +N ) with N given in the last column of
the table.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 44
7

(
4
7 ,

5
7

)
88 (11,44) III3

236
7

(
17
7 ,

16
7

)
0 (848656, 715139) HM(7, 2) (1, 1) 88

2. 116
7

(
8
7 ,

10
7

)
348 (725,1972) III32

164
7

(
13
7 ,

11
7

)
41 (50922,4797) III54 (1, 1) 389

3. 84
5

(
6
5 ,

7
5

)
336 (770, 1452) III33

116
5

(
9
5 ,

8
5

)
58 (27550, 4959) III52 (2, 1) 394

4. 124
7

(
9
7 ,

10
7

)
248 (2108,2108) III35

156
7

(
12
7 ,

11
7

)
78 (27170,5070) III47 (1, 1) 326

Table 24. IVOA-type pairings, cH = 40 with (n1, n2) = (3, 3). The meromorphic character is
j

2
3 (j − 1240 +N ) with N given in the last column of the table.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N

1. 33
2

(
17
16 ,

3
2

)
231 (528, 4301) III31

47
2

(
31
16 ,

3
2

)
0 (47 · 211, 4371) BM (1, 1) 231

2. 33
2

(
1
2 ,

33
16

)
528 (33,216) B16,1

47
2

(
5
2 ,

15
16

)
4371 (1135003,4371) III55

(
1, 1

2

) 4899

3. 17
(

1
2 ,

17
8

)
561 (34,216) D17,1 23

(
5
2 ,

7
8

)
2323 (32683 · 25, 575) III51 (1, 2) 2884

4. 35
2

(
1
2 ,

35
16

)
595 (35,217) B17,1

45
2

(
5
2 ,

13
16

)
1640 (956449,1595) III49

(
1, 1

4

) 2235

5. 18
(

1
4 ,

5
2

)
598 (25, 221 · 210) III36 22

(
11
4 ,

1
2

)
946 (221,44) D22,1

(
1
4 , 1
) 1544

6. 18
(

1
2 ,

9
4

)
630 (36,217) D18,1 22

(
5
2 ,

3
4

)
1298 (847 · 210, 154) III46 (1, 2) 1928

7. 92
5

(
6
5 ,

8
5

)
92 (1196, 7475) III37

108
5

(
9
5 ,

7
5

)
27 (42483, 2295) III42 (1, 2) 119

8. 92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

108
5

(
12
5 ,

4
5

)
1404 (153 · 55, 459) III44

(
2
5 , 1
) 2094

9. 20
(

1
3 ,

8
3

)
728 (12, 2 · 312) V40 20

(
8
3 ,

1
3

)
728 (2 · 312, 12) V40 (1, 1) 1456

10. 20
(

2
3 ,

7
3

)
890 (135, 10 · 2 · 39) V41 20

(
7
3 ,

2
3

)
890 (10 · 2 · 39, 135) V41 (1, 1) 1780

Table 25. Inconsistent pairings, cH = 40 with (n1, n2) = (3, 3). The meromorphic character is
j

2
3 (j − 1240 +N ) with N given in the last column of the table.

# N Factor
1. 119 E6,3G2,1

2. 231 BM
3. 1928 D18,1

4. 2884 D17,1

Table 26. List of meromorphic theories ruled out by table 25.
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# c (h1, h2) m1 W Chiral Algebra
1. 12

5 (1
5 ,

3
5) 6 III2 E3[A1,8]

2. 68
5 (4

5 ,
7
5) 136 III22 E3[C8,1]

3. 92
5 (6

5 ,
8
5) 92 III37 E3[E6,3G2,1]

4. 20 (4
3 ,

5
3) 80 V39 E3[A⊗10

2,1 ], E3[A⊗2
5,2C2,1], E3[A8,3]

5. 22 (3
2 ,

7
4) 66 III45 E3[A⊗22

1,1 ], E3[A⊗4
3,2A

⊗2
1,1], E3[A5,3D4,3A1,1],

E3[A7,4A1,1], E3[D5,4C3,2], E3[D6,5]
6. 23 (3

2 ,
15
8 ) 23 III50 E3[D⊗23

1,1 ]

Table 27. Consistent CFTs of type III and V.

them into three groups: (i) 6 consistent CFTs, for which we have found the Kac-Moody
algebra, (ii) 20 candidates for Intermediate Vertex Operator Algebras, whose fusion rules
are not all positive, (iii) 15 admissible characters that cannot correspond to any CFT.

4.1 Our results

Table 27 lists the cases from among the admissible characters listed in table 1 that have
been classified as CFTs. We note that cases 2–5 are most easily understood as cosets of
Schellekens theories by the square of MMS [2] theories.15 These are of the same form as
the cosets in [17] in that (n1, n2) = (2, 2) and the Kac-Moody algebra of the coset is simply
obtained by deleting a factor from the meromorphic theory. Case 1, however, first arises as
the coset of E8,1 by G⊗2

2,1 and subsequently as a coset of E1[D16,1] by E3[C8,1]. On the other
hand case 6 is a coset of the unique theory in [37] having Abelian factors, by U(1) ∼ D1,1.
We see that in some cases there are multiple CFTs corresponding to a single set of admissible
characters, as was already seen in [17]. All entries of this table were identified by [36].

Next we list the cases that were in our table 1, other than those already eliminated at
the outset (namely type III and V), which we have shown in the present work cannot be
identified as consistent CFTs. These fall into two classes: the first are those of IVOA type:
III1, III3, III4, III5, III7, III8, III12, III24, III25, III27, III28, III29, III30, III32,
III33, III35, III47, III48, III52, III54, while the second have sensible fusion rules but are
nonetheless inconsistent: III17, V18, III19, III20, III21, III26, III31, V40, V41, III42,
III44, III46, III51, V58, V63 (recall that the (c, h1, h2) and m1 values of these are listed
in table 1). From the inconsistent list, the ten type-III solutions were first discovered as
admissible characters in [28] while the five type-V solutions are among the seven that were
newly found last year in [33–35].

Our work once more highlights the intimate relation between general RCFT and
meromorphic CFT. We see that this relation, when properly applied, allows us to rule
in and also rule out characters from being CFT, and likewise gives positive and negative
predictions for the existence of meromorphic theories.

15Recall that the square of a two-character theory is a three-character theory.
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While we have not aspired to mathematical rigour in this work, we believe our con-
clusions can and should be tested at a more formal and rigorous level. Basic properties of
Modular Tensor Categories (MTC) at low numbers of primaries [53] lead us to believe that
whenever two admissible characters pair up and both are known CFTs, the pair is also a
CFT — but technically this is only known up to 4 primaries and a few of our examples have
more primaries than that, despite having only three characters. There are also possible
subtleties about linear equivalence vs equivalence of embeddings, as well as about possibly
inequivalent embeddings in different simple factors of the same algebra. Such questions were
addressed in [39] where the focus was on a rigorous classification for exactly two primaries
in a range of central charge. Something similar can surely be attempted for three primaries
(rather than three characters) in a more rigorous fashion than was done here using the
MTC data for theories with three simple objects.

On the other hand, a positive aspect of the present approach based on MLDE and
bilinear pairing of q-series is that the classification of pairings is explicit and exhaustive,
and does not rely on mathematically subtle questions. Also it raises intriguing questions
about admissible characters that are not CFT — we do not know why they nevertheless
exhibit bilinear pairings, and what this teaches us. This point may be of interest to the
community studying vector-valued modular forms.

4.2 Complete list of unitary (3,0) CFTs, except c = 8, 16

In this section we tabulate the complete list of unitary (3, 0) CFTs (except at c = 8, 16).
Here IVOA-type solutions are excluded since properly speaking they are not strict CFTs.
The last column #(primaries) denote the number of primaries of the given theory W.

# c (h1, h2) m1 W Chiral Algebra #(primaries)
1. 2r+1

2 (1
2 ,

2r+1
16 ) 2r2 + r I Br,1 3

2. r (1
2 ,

r
8) 2r2 − r I Dr,1 (r 6= 8, 16) 4

3. 12
5 (1

5 ,
3
5) 6 III2 E3[A1,8] 4

4. 4 (2
5 ,

3
5) 24 I A4,1 5

5. 28
5 (2

5 ,
4
5) 28 I G⊗2

2,1 4
6. 52

5 (3
5 ,

6
5) 104 I F⊗2

2,1 4
7. 12 (2

3 ,
4
3) 156 I E⊗2

6,1 9
8. 68

5 (4
5 ,

7
5) 136 III22 E3[C8,1] 4

9. 14 (3
4 ,

3
2) 266 I E⊗2

7,1 4
10. 15 (7

8 ,
3
2) 255 GHM255 E3[A15,1] 4

11. 31
2 (15

16 ,
3
2) 248 I E8,2 3

12. 17 (9
8 ,

3
2) 221 GHM221 E3[A11,1E6,1] 4

13. 35
2 (19

16 ,
3
2) 210 GHM210 E3[C10,1] 3

14. 18 (5
4 ,

3
2) 198 GHM198 E3[D⊗3

6,1] 4
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15. E3[A⊗2
9,1] 4

16. 92
5 (6

5 ,
8
5) 92 III37 E3[E6,3G2,1] 4

17. 37
2 (21

16 ,
3
2) 185 GHM185 E3[E7,2F4,1] 3

18. 19 (11
8 ,

3
2) 171 GHM171 E3[A⊗2

7,1D5,1] 4
19. 39

2 (23
16 ,

3
2) 156 GHM156 E3[B4,1D8,2] 3

20. E3[C⊗2
6,1 ] 3

21. 20 (4
3 ,

5
3) 80 V39 E3[A⊗10

2,1 ] 9
22. E3[A⊗2

5,2C2,1] 9
23. E3[A8,3] 9
24. 20 (7

5 ,
8
5) 120 GHM120 E3[A⊗5

4,1] 5
25. E3[A9,2B3,1] 5
26. 41

2 (3
2 ,

25
16) 123 GHM123 E3[D6,2C4,1B3,1] 3

27. E3[A9,2A4,1] 3
28. 21 (3

2 ,
13
8 ) 105 GHM105 E3[A⊗7

3,1] 4
29. E3[A3,1D

⊗2
5,2] 4

30. E3[A7,2C
⊗2
3,1 ] 4

31. E3[D7,3G2,1] 4
32. E3[C7,2] 4
33. 43

2 (3
2 ,

27
16) 86 GHM86 E3[C⊗3

2,1D
⊗2
4,2] 3

34. E3[A⊗2
5,2A

⊗2
2,1] 3

35. E3[A2,1E6,4] 3
36. 22 (3

2 ,
7
4) 66 III45 E3[A⊗22

1,1 ], 4
37. E3[A⊗4

3,2A
⊗2
1,1] 4

38. E3[A5,3D4,3A1,1] 4
39. E3[A7,4A1,1] 4
40. E3[D5,4C3,2] 4
41. E3[D6,5] 4
42. 45

2 (3
2 ,

29
16) 45 GHM45 E3[A⊗15

1,2 ] 3
43. E3[A⊗3

3,4] 3
44. E3[A5,6C2,3] 3
45. E3[D5,8] 3
46. 23 (3

2 ,
15
8 ) 23 III50 E3[D⊗23

1,1 ] 4
47. 47

2 (3
2 ,

31
16) 0 IV Baby Monster 3

Table 28. Complete list of unitary (3, 0) CFTs (except unitary CFTs at c = 8, 16).
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# c (h1, h2) m1 W Chiral Algebra #(primaries)

1. 8
(

1
2 , 1
)

56 I D⊗2
4,1 16

2. 8
(

1
2 , 1
)

120 I D8,1 4

3. 16
(

1
2 , 2
)

496 I D16,1 4

4. 16
(

3
2 , 1
)

112 III′′(m1 = 112) E3[D⊗4
4,1] 16

Table 29. 4 unitary (3, 0) CFTs at c = 8, 16.

Finally, table 29 lists four theories at c = 8, 16 that are well-understood. The first of
these is the tensor product of an affine theory with itself, the second and third are affine
theories and the fourth is more subtle as it is a three-character extension of the fourth power
of an affine theory. The first and the last theories have three characters but 16 primaries
each. A more complete study of the infinite set of cases at c = 8, 16 is left for future work.

Acknowledgments

AD would like to thank Nabil Iqbal, Napat Poovuttikul, Daniele Dorigoni, T.V. Karthik
and Madalena Lemos for useful discussions on Lie algebras. He expresses his gratitude
to Jagannath Santara for helpful discussions on fusion coefficients. He would also like to
thank Jishu Das and Naveen Umasankar for insightful discussions on MLDEs. He would
also like to express his gratitude to Sigma Samhita for her immense help in the type
setting of the tables required for this work. CNG thanks J. Santara for helpful discussions
and collaboration on related projects. SM gratefully acknowledges the hospitality of the
Institute for Advanced Study, Princeton, where this work was completed with generous
support from NSF Grant PHY-2207584, and the hospitality of the Isaac Newton Institute
for Mathematical Sciences, Cambridge during the programme New Connections in Number
Theory and Physics, where early work on this paper was undertaken with support from
EPSRC grant no EP/R014604/1. He is grateful to Brandon Rayhaun for several useful
discussions (including suggesting the proof in appendix C) and to Sahand Seifnashri for
patient explanations of Modular Tensor Categories.

A Computations of some embedding indices

Example 1: F4 → A
(a)
1 ×G

(b)
2 . Here we consider F4 → A

(a)
1 ×G

(b)
2 (which is a maximal

S type embedding). We shall compute a and b which are embedding indices. For the above
embedding consider the following branching,

52 = (3,1)⊕(5,7)⊕(1,14) (A.1)
now, LF4(52) = 18

LA1
net = 1×LA1(3)+7×LA1(5)+14×LA1(1) = 1×4+7×20+14×0 = 144

LG2
net = 3×LG2(1)+5×LG2(7)+1×LG2(14) = 3×0+5×2+1×8 = 18 (A.2)
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where Lg(irrep) denotes the Dynkin index of the corresponding irrep of the Lie algebra g in
question, LA1

net denotes the net Dynkin index computed from the above branching and L
g
net

has a similar meaning for the corresponding Lie algebra g.

thus, a = LA1
net

LF4(52) = 144
18 = 8

and, b = LG2
net

LF4(26) = 18
18 = 1 (A.3)

Hence, we have: F4 → A
(8)
1 ×G

(1)
2 and in the affine case we would have: F̂4,1 → Â1,8× Ĝ2,1.

Example 2: E8 → A
(a)
1 × G

(b)
2 × G

(c)
2 . Consider the following embedding, E8 →

A
(a)
1 ×G

(b)
2 ×G

(c)
2 (non-maximal)[E8 → III2 ×G(1)

2 ×G
(1)
2 ].

To understand the above non-maximal embedding let us first understand the maximal
embeddings from which the above can be obtained,

E8
m−→ G

(1)
2 × F

(1)
4 (A.4)

furthermore, F4
m−→ A

(8)
1 ×G

(1)
2 (A.5)

implying, E8
n−m−→ G

(a)
2 ×A

(b)
1 ×G

(c)
2 . (A.6)

From the first embedding consider the following branching rule,

248 = (14,1)⊕ (7,26)⊕ (1,52) (A.7)

Now let us employ the second embedding to write the above branching rule as,

(14,1)⊕(7,26)⊕(1,52) = (14,1,1)⊕(7,((5,1)⊕(3,7)))⊕(1,((3,1)⊕(5,7)⊕(1,14)))
= (14,1,1)⊕(7,5,1)⊕(7,3,7)⊕(1,3,1)⊕(1,5,7)⊕(1,1,14),

(A.8)

where in the second equality we are just expanding the first equality and considering that
the numbers inside a parenthesis have to be multiplied.

Now let us compute the embedding indices a, b, c,

LE8(248) = 60
LG2

net = 0 + 0 + 42 + 0 + 10 + 8 = 60
LA1

net = 1× 14× LA1(1) + 1× 7× LA1(5) + 7× 7× LA1(3) + 1× 1× LA1(3)
+ 7× 1× LA1(5) + 14× 1× LA1(1) = 0 + 140 + 196 + 4 + 140 + 0 = 480

LG2
net = 8 + 10 + 42 + 0 + 0 + 0 = 60

thus, a = LG2
net

LE8(248) = 60
60 = 1

and, b = LA1
net

LE8(248) = 480
60 = 8

and, c = LG2
net

LE8(248) = 60
60 = 1 (A.9)
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Hence we have: E8
n−m−→ G

(1)
2 ×A

(8)
1 ×G

(1)
2 which implies that in the affine case we would

get: Ê8,1
n−m−→ Ĝ2,1 × Â1,8 × Ĝ2,1.

Example 3: non-maximal embedding. Here let us try to give an example of MMS
theory cH=8←→

n1=1
MMS theory, where a non-maximal embedding is involved. Consider,

E8
m−→ D

(a)
8

m−→ D
(b)
4 ×D

(c)
4 (A.10)

implying, E8
n−m−→ D

(r)
4 ×D

(s)
4 , (A.11)

where m stands for a maximal embedding and n−m stands for a non-maximal embedding.
Let us compute the embedding indices, a, b, c, r, s, for the above three embeddings.

E8 → D
(a)
8 . Now let us consider the embedding E8 → D

(a)
8 (maximal and R type). For

the above embedding consider the following branching,

248 = 120⊕ 128 (A.12)
now, LE8(248) = 60

LD8(120) = 28
LD8(128) = 32

thus, a = LD8(120) + LD8(128)
LE8(248) = 60

60 = 1 (A.13)

Hence, we have: E8 → D
(1)
8 .

E8
m−→ D

(a)
8 . Let us consider D8 → D

(b)
4 ×D

(c)
4 (maximal and R type),

120 = (8v,8v)⊕(28,1)⊕(1,28) (A.14)
now, LD8(120) = 28

LD4
net = 8×LD4(8v)+1×LD4(28)+28×LD4(1) = 8×2+1×12+28×0 = 28

LD4
net = 8×LD4(8v)+28×LD4(1)+1×LD4(28) = 8×2+28×0+1×12 = 28

thus, b= LD4
net

LD8(120) = 28
28 = 1

and, c= LD4
net

LD8(120) = 28
28 = 1 (A.15)

Hence, we have: D8
m−→ D

(1)
4 ×D

(1)
4 .
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E8 → D
(r)
4 ×D

(s)
4 . Let us consider E8 → D

(r)
4 ×D

(s)
4 (non-maximal),

248 = 120⊕128 = (8v,8v)⊕(28,1)⊕(1,28)⊕(8c,8s)⊕(8s,8c) (A.16)
now, LE8(248) = 60

LD4
net = 8×LD4(8v)+1×LD4(28)+28×LD4(1)+8×LD4(8c)+8×LD4(8s)

= 8×2+1×12+28×0+8×2+8×2 = 60
LD4

net = 8×LD4(8v)+28×LD4(1)+1×LD4(28)+8×LD4(8s)+8×LD4(8c)
= 8×2+28×0+1×12+8×2+8×2 = 60

thus, r= LD4
net

LE8(248) = 60
60 = 1

and, s= LD4
net

LE8(248) = 60
60 = 1 (A.17)

Hence, we have: E8
n−m−→ D

(1)
4 × D(1)

4 . This implies that, D4 as a sub-algebra of E8 has
commutant D4 inside E8. This is the statement that was made in [17].

Example 4: D16 → D
(a)
1 × A

(b)
15 . Here we consider D16 → D

(a)
1 × A(b)

15 (which is a
maximal R type embedding). For the above embedding consider the following branching,

496 = (1,255)⊕ (1,1) + (1,120)⊕ (1,120) (A.18)
now, LD16(496) = 60

LD1
net = 255× LD1(1) + 1× LD1(1) + 2× 120× LD1(1)

= 255× 0 + 1× 0 + 240× 1
4 = 60

LA15
net = 1× LA15(255) + 1× LA15(1) + 2× 1× LA15(120)

= 1× 32 + 1× 0 + 2× 1× 14 = 60 (A.19)

Hence, we get, for the embedding indices, a, b,

a = LD1
net

LD16(496) = 60
60 = 1

and, b = LA15
net

LD16(496) = 60
60 = 1 (A.20)

Hence, we have: D16 → D
(1)
1 × A

(1)
15 and in the affine case we would have: D̂16,1 →

D̂1,1 × Â15,1.
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Example 5: D16 → A
(a)
1 × C

(b)
8 . Here we consider D16 → A

(a)
1 × C(b)

8 (which is a
maximal S type embedding). For the above embedding consider the following branching,

496 = (1,136)⊕ (3,1)⊕ (3,119) (A.21)
now, LD16(496) = 60

LA1
net = 136× LA1(1) + 1× LA1(3) + 119× LA1(3)

= 136× 0 + 1× 4 + 119× 4 = 480
LC8

net = 1× LC8(136) + 3× LC8(1) + 3× LC8(119)
= 1× 18 + 3× 0 + 3× 14 = 60 (A.22)

Hence, we get, for the embedding indices, a, b,

a = LA1
net

LD16(496) = 480
60 = 8

and, b = LC8
net

LD16(496) = 60
60 = 1 (A.23)

Hence, we have: D16 → A
(8)
1 ×C

(1)
8 and in the affine case we would have: D̂16,1 → Â1,8×Ĉ8,1.

B Infinite family of c = 8 and c = 16 for category III solutions

In this appendix, we briefly summarise the results of section 2.3 of [34] which explains, from
an MLDE perspective, why there are an infinite family of c = 8 and c = 16 for category
III solutions (this fact was previously noted in [27]). It is shown in [34] that the identity
character χ0 can be written in terms of the other two characters, χ1, χ2 as,

χ0(q) = q
1
2−α1−α2

∞∑
n=0

[
a0,n +A1 q

− 1
2 +2α1+α2 a1,n +A2 q

− 1
2 +α1+2α2 a3,n

]
qn, (B.1)

where ai,n are the Fourier coefficients in the q-series of the character χi(q) and i = 0, 1, 2.
Now say the values of α1 and α2, for which admissible solutions, exist are such that

−1
2 + 2α1 + α2 and −1

2 + α1 + 2α2 are not non-negative integers, then to get admissible
solution for χ0, we have to set A1 and A2 to be zero. This is what happens in most examples.
However, one can imagine the following situation.

(i) If −1
2 + 2α1 + α2 is a non-negative integer, then A1 isn’t required to vanish. A1 can

take any positive integral value and we would have an admissible solution for χ0.

− 1
2 + 2α1 + α2 ∈ Z≥0, A1 ∈ Z≥0

χ1(q) = q
1
2−α2−α3

∞∑
n=0

[
a0,n +A1 q

− 1
2 +2α1+α2 a1,n

]
qn. (B.2)

We thus have an infinite number of admissible character solutions, parametrised by A1,
in (B.2). All members of this infinite family have the same indices and hence the same c,
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h1, h2 and also they have the same Wronskian. However, they are different solutions as in
they differ in the identity character.

(ii) If −1
2 + α1 + 2α2 is a non-negative integer, then A2 isn’t required to vanish. A2

can take any positive integral value and we would have an admissible solution for χ0.

− 1
2 + α1 + 2α2 ∈ Z≥0, A2 ∈ Z≥0

χ1(q) = q
1
2−α1−α2

∞∑
n=0

[
a0,n +A2 q

− 1
2 +α1+2α2 a2,n

]
qn. (B.3)

We thus have an infinite number of admissible character solutions, parametrised by A2,
in (B.3). All members of this infinite family have the same indices and hence the same c,
h1, h2 and also they have the same Wronskian. However, they are different solutions as in
they differ in the identity character.

So, in the study of admissible solutions to [3,0] MLDEs, one encounters the above two
infinite families of CFTs where each family has the same c, h1, h2 values, one following (B.2)
and another following (B.3).

Note that, D⊗2
4,1 is a part of the infinite family of c = 8 solutions with m1 = 56, D8,1

is a part of the infinite family of c = 8 solutions with m1 = 120 and D⊗4
4,1 is a part of the

infinite family of c = 16 solution with m1 = 112. The key point to note here is that, in
the notation of [34], D⊗2

4,1, D8,1 and D⊗4
4,1 are the only three solutions which belong to both

category I and III.

C Upper bound on N for meromorphic theories

Here we prove the following bound: for any meromorphic CFT with c = 8N , the dimension
N of its Kac-Moody algebra is bounded above by 8N(16N − 1). This bound is saturated
by the meromorphic theory E1[D8N ].16

To show this, let us first consider meromorphic theories with a “complete” Kac-Moody
algebra with simple factors, i.e. theories whose entire central charge comes from non-Abelian
Kac-Moody factors. This holds for 69 of 71 theories at c = 24, and additional examples
come from lattice theories with “complete root systems” at higher values of c such as
Kervaire lattices in 32d [59]. In this situation we have:

c =
∑
a

ca, ca = ka dimGa
ka + ga

(C.1)

where ka is the level, ga is the dual Coxeter number and dimGa is the dimension of the a’th
simple factor. The sum runs over all the simple factors.

Next, we note that simply-laced algebras Ga satisfy the inequality, rank Ga ≤ ca ≤ dimGa
where the first inequality is saturated at ka = 1 and the second as ka →∞. In fact, as one
can easily check, the same inequality is satisfied by non-simply-laced algebras, except that
the lower bound becomes strict and is never saturated.

16We are grateful to Brandon Rayhaun for suggesting this line of argument.
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Meanwhile, the total dimension of the Kac-Moody algebra is:

N =
∑
a

dimGa (C.2)

Our problem then is to maximise N keeping c fixed.
Now we further restrict to complete Kac-Moody algebras with just one simple factor.

Using standard formulae for the dimensions Nr and dual Coxeter numbers of the classical
compact Lie algebras (Ar, Br, Cr, Dr) we find:

c(Ar,k) = kr(r + 2)
k + r + 1

c(Br,k) = kr(2r + 1)
k + 2r − 1

c(Cr,k) = kr(2r + 1)
k + r + 1

c(Dr,k) = kr(2r − 1)
k + 2r − 2

(C.3)

It follows that, at fixed central charge, r decreases as k increases. Thus to maximise the
rank in each family (which maximises the dimension, which is monotonic in the rank) we
must take k = 1, which gives the simpler formulae:

c(Ar,1) = r

c(Br,1) = r + 1
2

c(Cr,1) = r(2r + 1)
r + 2

c(Dr,1) = r

(C.4)

Notice that c(Br,1), c(Cr,1) are non-integral for all r ≥ 2. From the above, the dimension of
the algebra at fixed c is:

Ar,1 : N = c(c+ 2)
Br,1 : N = c(2c− 1)

Cr,1 : N = 1
4
(
7c+ c2 + c

√
1 + 14c+ c2

)
Dr,1 : N = c(2c− 1)

(C.5)

It is easy to verify that for any fixed c ≥ 8, the common value of N for Br, Dr is
the largest in the above set. However since Br has non-integral central charge it cannot
be a complete simple factor. Therefore Dr,1 has the largest possible dimension among
simple algebras at a fixed integral central charge. Moreover there is indeed a meromorphic
theory with Kac-Moody algebra D8N,1 for every r, corresponding to the modular invariant
extension E1[D8N,1] (for N = 1 this is E8,1, while for all N ≥ 2 the extension does not
enhance the Kac-Moody algebra).
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Now we can go on to the general case: direct sums of Kac-Moody algebras, including
exceptional as well as Abelian algebras, at arbitrary levels. We also allow meromorphic
theories where the Kac-Moody algebra is not complete (for example the algebra could
contain minimal model or higher-spin modules). We argue that all these generalisations
lower the dimension of the Kac-Moody algebra, proving the bound. First, when we take
direct sums, the sum of dimensions of the factors is always less than the dimension of a
simple algebra of the same c. Since there are finitely many exceptional algebras one can
also verify explicitly that none of them “wins” over D8N,1. Also for Abelian algebras the
dimensions are always smaller than those of non-Abelian algebras of comparable central
charge. Second, raising the level of any factor raises its central charge without changing
its dimension, and therefore lowers its dimension for fixed central charge. Finally if the
Kac-Moody algebra is not complete, its dimension will be smaller than that of a complete
algebra with the same c. This then proves the result.
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