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Abstract
This paper presents a discrete macro-element accounting for P-Delta effects to
describe the rocking response of masonry walls subjected to out-of-plane (OOP)
loadings. Both constitutive and geometric nonlinearities are considered within
the discrete macro-element method (DMEM), which is a modeling approach
characterized by a very low computational cost compared to traditional distinct
element method (DEM) and detailed finite element (FEM) strategies. OOP fail-
ure mechanisms are the main cause of severe damage for unreinforced masonry
(URM) buildings, subjected to seismic actions. These mechanisms are generally
activated by low seismic excitation and displacements. However, after their acti-
vation, they can evolve towards large displacements related to rigid-block-like
kinematics that strongly affects the nonlinear mechanical response. Therefore,
geometric nonlinearities, often ignored, should be included in the analyses. A
new simplified, still accurate P-Delta formulation is presented, according to
which the global equilibrium is imposed by referring to the undeformed sys-
tem configuration, avoiding assembling the geometric stiffness matrix. Namely,
the system load vector is updated at each step of the analysis, accounting for
the additional moments generated by the in-plane compression forces acting on
the macro-elements in the deformed configuration. The proposed model is vali-
dated against closed-form analytical solutions of rigid-block benchmarks in large
displacements and the results of experimental tests already available in the litera-
ture. In addition, extensive parametric analyses are performed to investigate the
role of different mechanical and geometric parameters characterizing the ulti-
mate non-linear response of masonry walls subjected to horizontal forces. The
results show how the proposed model, including P-Delta effects, accurately pre-
dicts the non-linear rocking response of masonry walls until the attainment of
the unstable configuration.
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NOVELTY

∙ The paper presents a new P-Delta formulation of the discrete macro-element method (DMEM).
∙ The model allows for an efficient and reliable description of the geometric nonlinearities of rocking masonry
walls.

∙ Themodel is validated against analytical rigid-block solutions and experimental tests up to thewall overturning.
∙ The role of mechanical masonry and model parameters on the predicted rocking response of the wall are
investigated.

1 INTRODUCTION

Masonry structures constitute a significant percentage of the existing buildings worldwide, including historical and mon-
umental constructions, representing an architectural and cultural heritage. Historical masonry buildings are generally
characterized by masonry walls weakly connected to each other and to the other structural elements leading to complex
structural behavior under earthquakes. The seismic response of masonrymonumental structures is generally governed by
the coupled in-plane and out-of-plane (OOP) responses of masonry walls.1,2 In-situ post-earthquake observations clearly
showed that for unreinforcedmasonry (URM) constructions, theOOPbehavior ofmasonrywalls is themost likely cause of
structural damage or collapse.3,4 In addition, once activated, OOP failure mechanisms can evolve towards large displace-
ments, which are generally assumed to be represented by rigid-block-like kinematics,5 strongly influencing the structural
response. Hence, geometric nonlinearities assume great importance when performing a non-linear seismic analysis on a
URMmasonry wall undergoing OOP rocking mechanisms.6 This entails a significant increase in complexity in the study
of the non-linear behavior of URM structures already characterized by a highly non-linear constitutive behavior even at a
slight intensity of the seismic load. On the other hand, the accurate numerical simulations of the non-linear incremental
static or dynamic response of masonry walls subjected to seismic excitation, considering both constitutive and geomet-
ric nonlinearities, represent a very complex computational issue that has been the subject of extensive research over the
last decades. Accurate analyses employing detailed finite element (FEM) or distinct element (DEM) models, accounting
for both geometric and constitutive nonlinearities in large displacements, requiring the adoption of advanced numerical
strategies to update the system configuration and the geometric stiffness matrix during the analyses. Consequently, these
approaches present the disadvantage of being more complex, time-consuming, and computationally expensive. However,
geometric nonlinearities can be taken into account in a simplified way by considering the so-called second-order (P-Delta)
effects. Despite this, the number of P-Delta formulations available in the literature for assessingmasonry structures is lim-
ited and generally restricted to the use of FEM simulations or oversimplified single-degree-of-freedom (SDOF) equivalent
descriptions.
Numerous non-linear numerical strategies, characterized by different levels of accuracy and efficiency, have already

been proposed to assess the non-linear response of URM walls when subjected to OOP loading. Among these, effective
tools are based on the macro-block limit analysis approach, which describes the wall as a kinematism of rigid blocks and
are used to evaluate the lateral load amplitude activating the OOP mechanism.7-10 These methods are employed for the
seismic assessment within the general framework of the force-based approach (FBA) as implemented in international
structural codes (EC811; Italian Code NTC1812). Within this framework, advanced limit-analysis formulations have been
proposed to account for the stabilizing effects of retaining walls,13-16 and the interaction with horizontal diaphragms.17
In addition, more detailed mesoscale limit-analyses formulations have been proposed to investigate the torsion-shear-
bending moment strength domains in OOP mechanisms.18-21 However, force-based limit-analysis approaches cannot
provide information concerning the evolution of themechanismafter its activation and the effective displacement capacity
of the system before reaching the overturning.22,23 To overcome this limit, displacement-based limit-analysis approaches
have gained popularity for the seismic evaluation of existing masonry structures.5,24-27 These methods aim at assessing, in
addition to the ultimate lateral force, the displacement capacity of the system. The latter is generally assumed to coincide
with the configuration when the wall’s self-weight becomes unstabilizing. Then, the displacement capacity of the sys-
tem is compared to the corresponding seismic demand evaluated by dynamic time-history analyses or spectrum analyses
conducted on an equivalent SDOF system.28 These strategies are straightforward and take into account P-Delta effects,
and for these reasons, they are widely used in practice and have been implemented in some structural codes, such as the
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Italian code (NTC18). However, they neglect the stabilizing effects of inertia forces and require the preventive assumption
of the failure mechanism. Another effective method largely used to assess OOP rocking walls is the rigid-block model,
which describes the entire wall by a single rigid block overturning around its base vertexes and subjected to ground accel-
eration time histories. This model response is generally obtained by a direct integration of the equation of the motion in
large displacements. This approximate approach, since the wall is assumed rigid, allows for a simplified dynamic analyses
with a low computational cost.9,29-31 However, the rigid’body model does not account for masonry deformability, three-
dimensional wall’s boundary conditions, and requires specific hypotheses on the energy dissipation model which may
be unsuitable for describing masonry walls. Finally, the rigid-block hypothesis introduces further approximations when
adopted for describing complex 3D failure mechanisms, as those characterizing the ultimate response of large URMwalls
interacting with retaining walls or other structural elements.
On the other hand, FEMand discrete-element approaches, including the distinct elementmethod (DEM), can explicitly

account for 3D OOP boundary conditions allowing for geometric nonlinearities, that is, second-order effects of large-
displacement kinematics. Among them, numerical methods characterized by different orders of complexity have been
proposed and applied. Mesoscale FEM analyses32 explicitly accounting for the actual masonry bond through the use of
zero-thickness interfaces, or continuum FEM analyses through homogeneous equivalent media at the macro-scale21 have
been performed adopting co-rotational approaches,33 which represent an accurate and relatively efficient tool under the
hypothesis of small deformations and large displacements. DEM approaches are well suited for masonry structures with
dry- and mortared joints to perform non-linear static and dynamic analyses accounting for large displacements and the
separation of structural parts. In these approaches, the position and orientation of elements and contacts are updated
at each step of the analysis,35 making them particularly suitable to describe local failures, and characterizing irregu-
lar masonries.35,36,66 However, FEM or DEM strategies need complex 3D constitutive laws and cumbersome calibration
procedures21,37 and require high computational costs, making them generally unsuitable for engineering applications.
For the above reasons, reliable numerical models effectively used in research are rarely compatible with practical seismic
assessments38 and are difficult to be implemented consistently to technical code prescriptions and within commercial
engineering-oriented software packages.39
For these reasons simplified engineering-oriented structural macro-elements are often adopted, including the equiv-

alent frame models40,41 or the discrete macro-element method (DMEM). These strategies significantly reduce the
computational cost of seismic analysis, making them suitable to be employed by practitioners. However, these approaches
often neglect the OOP response of masonry walls, and their use is restricted to assessing the global response of masonry
buildings. Despite this, recently, an enhanced frame-like macro-element incorporating the OOP response also accounting
for second-order effects has been proposed in the literature.42,43
The present study aims to cover this research gap by upgrading the discrete macro-element method (DMEM) intro-

duced by Caliò et al.44 including geometric nonlinearities related to P-Delta effects. The DMEM was originally proposed
for the in-plane response of masonry walls44 and subsequently extended to 3D kinematics to account for the coupled
in-plane and OOP behavior of masonry walls when subjected to earthquake loadings.45,46 This strategy discretises the
masonry walls by shear-deformable macro-elements interacting with the adjacent ones by means of zero-thickness dis-
crete or continuous47 interfaces. The model presents many advantages, compared to previously proposed models for
masonry structures, related to the geometrical consistency, the low computational cost, the possibility to couple discrete
and finite elements, the straightforwardmodel calibration, the possibility to be used at macro andmeso-scale,48 and other
advantages duly expressed in the referenced papers. The model is also particularly suitable for infill frames and confined
masonry structures34,49 due to the accurate modeling of the beam-masonry interaction.
The novelty proposed in this paper consists of accounting for the P-Delta effects, in a computationally-efficient discrete

macro-element (DMEM) strategy, by imposing the current equilibrium at each step of the analysis bymodifying the global
load vector taking into account the eccentricity of the external and internal loads with respect to the initial reference con-
figuration. The model has been implemented within the HiStrA (Historical Structure Analysis) software50 and has been
validated by simulating parapet and vertical spanning brick-wall samples subjected to one-way OOP bending moments.
The numerical predictions have also been compared with reference exact analytical rigid-body solutions. The influence of
somemodel parameters, such as the cross-section discretisation employed in the interface elements and the wall deforma-
bility, have also been investigated through some parametric analyses. Finally, the model has been employed to simulate
some experimental tests conducted on walls under OOP bending,21,51-53 which has also been numerically investigated by
other authors.21,53 The comparisons between the numerical and experimental results demonstrate the accuracy of the
proposed modeling strategy and its potential to be employed for practical assessments of URM buildings whose walls are
subjected to OOP rocking mechanisms.
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F IGURE 1 3D discrete macro-model: (A) panels definition and local reference system, (B) Lagrangian parameters of the panel, and
(C) local reference systems of the perimeter interfaces.

2 THE DISCRETEMACRO-ELEMENTMETHOD

The DMEMhas been proposed with the aim to introduce a low-computational-cost numerical strategy alternative to non-
linear FEM and DEM strategies. In its first proposal, the macro-model approach44,54 was restricted to 2D kinematics to
propose a simplified approach alternative to those based on equivalent frame models (EFM). Subsequently, the model
was extended to 3D kinematics, introducing a discrete macro-element approach for an efficient simulation of in-plane
and OOP response of masonry buildings.45
Themodel has been implemented in the software HiStrA50 and extensively validated against numerical and experimen-

tal results through non-linear static analyses45,55 and time-history analyses simulating the experimental results of shaking
table tests performed on URM prototypes.46 Different applications on case studies are also available in literature.56,57
According to this strategy, a masonry wall is divided into macro-portions, and each macro-portion is represented by

shear-deformable spatial elements connected to each other through non-linear zero-thickness interfaces. Each macro-
element inherits the geometry directly from the macro-portion of the structure that represents, and it is also identified by
four vertexes (v1,..,v4), characterizing the middle plane of the element (π) (Figure 1A) accounting for a generalized shear
deformability described by a single Lagrangian parameter. The typical geometry of the general macro-element is sketched
in Figure 1A where the main geometrical parameters are also reported.

2.1 The kinematics

A local cartesian reference system, fixed with respect to the absolute reference system, is associated within each macro-
element with the origin coincident with the barycenter G of the element, where is also concentrated the competing mass.
The local axes (i, j, k) are identified by the unit vectors i, j belonging to the plane of the element, π, with i oriented as the
v1–v2 direction, j oriented as the v1–v4 direction, and k identifying the direction orthogonal to π (Figure 1A). The element
kinematics is described by seven Lagrangian parameters, collected in the vector d, expressed in Equation (1). The first six
parameters, (U, V,W,Φ,Θ,Ψ), are related to the rigid spatialmotion, three translations and three rotations of the barycenter
G referred to the local reference system. A further Lagrangian parameter (γ) is related to the generalized macro-element
shear deformation and is associated with the variation of the angle between the panel edges connecting the vertex v1 to
vertex v2 and the vertex v1 to vertex v4, respectively (Figure 1B).
The zero-thickness plane interfaces πi (i = 1,..4), (Figure 1A), whose orientation is associated with unit vectors ni

(i = 1,..4), cut and identify the element along its perimeter and rule the connections with the adjacent elements. Dif-
ferent thicknesses can be considered at each of the panel’s vertexes (t1,..,t4), leading to direct and easy modeling of a linear
variable wall thickness. Local reference systems en1, en2, en3 (n = 1,..4) are associated with the perimeter interfaces, as
shown in Figure 1C, for the description of the interfaces’ kinematics. More details on DMEM kinematics can be found
in ref. 45, 47 It is worth noticing that no additional Lagrangian parameters is needed to describe the kinematics of inter-
faces. Therefore, the total number of degrees of freedom of the model is directly given by 7 × N being N the number of
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CUSMANO et al. 2051

F IGURE 2 (A) Spatial view of the discrete macro-element, (B) macro-element’s middle plane, and (C) intrinsic reference system.

macro-elements; this aspect strongly contributes to containing the model computational burden.

𝐝𝑇 = [𝑈 𝑉 𝑊 Φ Θ Ψ 𝛾] (1)

Considering a second-order linearized kinematics for the adopted macro-element, a direct expression between the dis-
placement vector of the n-th (n = 1,. . . ,4) vertex of the irregular quadrilateral (uvn), in the relative reference system, and
the seven Lagrangian parameters Equation (1), can be established as follows:

𝐮𝐯𝐧 =
[
𝐈𝟑𝐱𝟑 𝛀𝐯𝐧 𝚪𝐯𝐧

]
𝐝 (2)

Being I3x3 the 3 × 3 identity matrix andΩvn a matrix related to the rigid rotation of the element, defined as follows:

𝛀𝐧 =
⎡⎢⎢⎣
0 0 −𝑦𝑛
0 0 𝑥𝑛
𝑦𝑛 −𝑥𝑛 0

⎤⎥⎥⎦ (3)

with: xvn, yvn, the coordinated of the vertex vn in the local reference system; 𝚪𝐯𝐧 (n = 1,..,4) a vector accounting for the
contribution of the generalized shear deformation that, for each vertex, can be written as:

𝚪𝐯𝟏 =
⎡⎢⎢⎣
0

0

0

⎤⎥⎥⎦ ; 𝚪𝐯𝟐 =
⎡⎢⎢⎣
0

0

0

⎤⎥⎥⎦ ; 𝚪𝐯𝟑 =
⎡⎢⎢⎣
−𝑙4 sin 𝛼2 sin 𝛼1∕sin 𝛼3

−𝑙4 cos 𝛼2 sin 𝛼4∕sin 𝛼3

0

⎤⎥⎥⎦ ; 𝚪𝐯𝟒 =
⎡⎢⎢⎣
−𝑙4 sin 𝛼1

−𝑙4 cos 𝛼1

0

⎤⎥⎥⎦ (4)

Being αn (n = 1,. . . ,4) the corner angles, which are measured at the middle plane of the element (Figure 1A). It is worth
noticing that the generalized shear deformation is defined in the middle plane of the macro-element and is assumed
independent of the z coordinate, referring to the local axis k.
An intrinsic reference system (ξ, η) is introduced aiming at evaluating the displacement of any point P(x,y,z) belonging

to the volume of the element (Figure 2A). The point P is projected on the plane of the element (π), identifying the point
Pπ(x,y) in Figure 2B, which correspond to Pπ(ξ,η) in the intrinsic space (Figure 2C) through the bi-linear polynomial
transformations reported in Equation (5). According to an isoparametric formulation, the displacement of the point Pπ(ξ,η)
in the local reference system can be obtained by interpolating the displacements of the vertexes, using the interpolating
function in Equation (5), and the results is reported in Equation (6).

𝑁𝑣1(𝜉, 𝜂) =
(1 − 𝜉)(1 − 𝜂)

4
; 𝑁𝑣2(𝜉, 𝜂) =

(1 + 𝜉)(1 − 𝜂)

4
; 𝑁𝑣3(𝜉, 𝜂) =

(1 + 𝜉)(1 + 𝜂)

4
; 𝑁𝑣4(𝜉, 𝜂) =

(1 − 𝜉)(1 + 𝜂)

4
(5)

𝐮(𝜉, 𝜂) =
⎡⎢⎢⎣
𝑁𝑣1(𝜉, 𝜂) 0 0 ⋯ 𝑁𝑣4(𝜉, 𝜂) 0 0

0 𝑁𝑣1(𝜉, 𝜂) 0 ⋯ 0 𝑁𝑣4(𝜉, 𝜂) 0

0 0 𝑁𝑣1(𝜉, 𝜂) ⋯ 0 0 𝑁𝑣4(𝜉, 𝜂)

⎤⎥⎥⎦ ⋅
⎡⎢⎢⎢⎢⎣

𝐈𝟑𝐱𝟑 𝛀𝐯𝟏 𝚪𝐯𝟏

𝐈𝟑𝐱𝟑 𝛀𝐯𝟐 𝚪𝐯𝟐

𝐈𝟑𝐱𝟑 𝛀𝐯𝟑 𝚪𝐯𝟑

𝐈𝟑𝐱𝟑 𝛀𝐯𝟒 𝚪𝐯𝟒

⎤⎥⎥⎥⎥⎦
⋅ 𝐝 (6)
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2052 CUSMANO et al.

F IGURE 3 Mechanical scheme of the macro-element: (A) normal flexural links, (B) in-plane shear links, (C) out-of-plane shear links,
and (D) diagonal shear link.

Where:
Equation (6) in compact form can be written as:

𝐮(𝜉, 𝜂) = 𝐍(𝜉, 𝜂)

⎡⎢⎢⎢⎢⎣

𝐈𝟑𝐱𝟑 𝛀𝐯𝟏 𝚪𝐯𝟏(𝛾)

𝐈𝟑𝐱𝟑
𝐈𝟑𝐱𝟑

𝛀𝐯𝟐

𝛀𝐯𝟑

𝚪𝐯𝟐(𝛾)

𝚪𝐯𝟑(𝛾)

𝐈𝟑𝐱𝟑 𝛀𝐯𝟒 𝚪𝐯𝟒(𝛾)

⎤⎥⎥⎥⎥⎦
⋅ 𝐝 = 𝚿 (𝜉, 𝜂, 𝛾) ⋅ 𝐝 (7)

Being𝚿(𝜉, 𝜂, 𝛾) a 3 × 7 matrix collecting seven shape functions governing the element kinematics

𝚿(𝜉, 𝜂, 𝛾) =
[
𝚿1 (𝜉, 𝜂, 𝛾) 𝚿2 (𝜉, 𝜂, 𝛾) . . . 𝚿7 (𝜉, 𝜂, 𝛾)

]
(8)

Each shape function is a vector with three components that can be easily derived by Equation (6). It is worth notic-
ing that the shape functions depend on the shear deformation parameter and are not affected by the local coordinate z.
Consequently, each plan parallel to π presents the same shear deformation.

2.2 The mechanical behavior

The element deformability is lumped in the zero-thickness interfaces and partially distributed in the generalized shear
kinematics.55 The mechanical interface calibration follows a direct fiber discretization approach, as qualitatively shown
in Figure 3. In particular: a distribution of normal (or transversal) non-linear links (Figure 3A) concentrates the axial
and flexural deformability of masonry both in-plane and OOP; a single in-plane longitudinal link (Figure 3B) governs
the shear-sliding mechanism between masonry joints; two out-of-plane shear links control the OOP sliding mechanism
as well as the torsional response (Figure 3C). A further diagonal link (Figure 3D) rules the generalized shear diagonal
deformation. Despite the simplicity of the adoptedmechanical scheme, such an approach accounts for the influence of the
axial load on the flexural behavior and the contemporary occurrence of the bendingmoments along both the in-plane and
OOP directions without the need to define complex bi or three-dimensional plasticity domains. The links are calibrated
by imposing simple equivalences between the discrete model and a corresponding equivalent continuous anisotropic
material according to different criteria depending on their purposes.47 More specifically, transversal links can be calibrated
according to different constitutive lawswith fracture energy both in tension and compression; sliding behavior is calibrated
according to Mohr-Coulomb criterion, accounting for the normal stress obtained by the transversal force of the interface;
the diagonal behavior is limited and generally calibrated according to theMohr-CoulomborTurnšek andČačovič57 criteria
or more specific constitutive laws for masonry structures that can also include the role of damage.58,59

2.3 The external loading contribution

The vector𝐮(𝜉, 𝜂) , expressed in Equation (7), provides the displacement components in the local reference system for each
point of the macro-element, given the generalized shear deformation independent on the local coordinate z. Considering
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CUSMANO et al. 2053

a force distribution f(x,y), belonging to the middle plane of macro-element (π), the corresponding vector of equivalent
forces F0, associated with the macro-element degrees of freedom, can be evaluated through the external virtual work:

𝐿𝑣𝑒 = ∬
𝐴

𝐟𝐓(𝑥, 𝑦)𝐮̃(𝑥, 𝑦)𝑑𝐴 (9)

Being A the load application area and 𝐮̃(𝑥, 𝑦) a virtual displacements field that, in view of Equation (7), can be written
in terms of intrinsic coordinates and the virtual displacements (𝐝̃T) corresponding to the adopted degrees of freedom,
expressed in Equation (1).
In view of Equations (7) and (9), the external virtual work can therefore be expressed as:

𝐿𝑣𝑒 =

1

∫
−1

1

∫
−1

𝐟 𝐓(𝜉, 𝜂)𝐮̃(𝜉, 𝜂)𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂 =

1

∫
−1

1

∫
−1

𝐟 𝐓(𝜉, 𝜂)𝚿(𝜉, 𝜂, 𝛾)𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂𝐝̃ (10)

where J(ξ,η) is the Jacobian of the transformation. Equation (10) leads to the vector of equivalent forces F0 of the macro-
element for any load distribution applied on the middle plane of the element, as follow:

𝐅𝟎 =

1

∫
−1

1

∫
−1

𝐟 𝐓(𝜉, 𝜂)𝚿(𝜉, 𝜂, 𝛾)𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂 (11)

If the force distribution is applied with a z eccentricity, the corresponding moment must be added to the vector F0,
which represents the loading distribution applied in the middle plane of the element.

2.4 Evaluation of the P-Delta within the DMEM

Geometric nonlinearities can play a fundamental role in assessing the ultimate capacity of rocking masonry walls under
earthquake actions. After the activation of the rocking mechanism, the wall response can evolve toward large displace-
ments. In this latter case, due to the typical slender geometry of masonry walls, the stabilizing effects of vertical loads
progressively reduce until the achievement of the critical condition in which vertical loads no longer play a stabilizing
effect. A rigorous description of geometric nonlinearities within the context of DMEM would require the adoption of
large displacement kinematics with the step-by-step update of the geometric stiffness matrix and current configuration of
the system. As a consequence, it requires a more complex theoretical formulation and, above all, a significant increase in
the associated computational cost. Aiming at maintaining the benefits of the DMEM, a simplified but robust and efficient
P-Delta approach is proposed, characterized by a reasonable accuracy for engineering applications while maintaining a
simple theoretical formulation and a very low computational effort.
More specifically, the P-Delta effects are accounted for by updating the current positions of the external and along-

interface forces applied to the macro-element.
Let us consider a generic force distribution f(x,y) applied to a generic area A belonging to the middle plane of the

macro-element. The corresponding vector moment (𝐌𝐏−𝚫) contribution with reference to the current configuration of
the element, identified by the current degrees of freedom d, is given by

𝐌𝐏−𝚫(𝐟 ) = ∬
𝐴

(𝐮(𝑥, 𝑦) − 𝐮𝐆) ∧ 𝐟 (𝑥, 𝑦) 𝑑𝐴 (12)

Being 𝐮(𝑥, 𝑦) the displacement field of the loading application points. In view of Equation (7), Equation (12) can be
written as:

𝐌𝐏−𝚫(𝐟 ) =

1

∫
−1

1

∫
−1

[𝚿 (𝜉, 𝜂, 𝛾) − 𝚿𝐺] ⋅ 𝐝 ∧ 𝐟 (𝜉, 𝜂)𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂 (13)
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2054 CUSMANO et al.

Considering 𝐏j (j = 1,..,4) the resultants of the internal forces that the macro-element receives from the other elements
through the interfaces, applied to the generic point cj(𝜉𝑐𝑗 , 𝜂𝑐𝑗 , 𝑧𝑐𝑗 ), the corresponding P-Delta moment results:

𝐌𝐏−𝚫(𝐏) =

4∑
𝑗=1

[
𝐮(𝜉𝑐𝑗 , 𝜂𝑐𝑗 , 𝑧𝑐𝑗 ) − 𝐮𝐺

]
∧ 𝐏𝑗 (14)

Considering both the external and along-interface forces applied to the elements, the total P-Delta moment for each
macro-element can be expressed as:

𝐌𝐏−𝚫 = 𝐌𝐏−𝚫(𝐟 ) +𝐌𝐏−𝚫(𝐏) (15)

Finally, the P-Delta (7 × 1) load vector, 𝐅𝐏−Δ, can be written as:

𝐅𝐏−Δ =
[
0 0 0 𝐌𝐏−Δ,(𝟏×𝟑) 0

]T
(16)

3 MODEL VALIDATION

In this section, the novel P-Delta DMEM formulation is validated by performing non-linear static analyses on brick-
masonry walls that have already been investigated in the literature. The walls are characterized by different geometrical
layouts, materials, and boundary conditions. The numerical predictions obtained by the proposed DMEMmodel are com-
pared with the analytical solutions obtained under the simplified hypothesis of rigid-block structure and with the results
of some experimental tests on masonry-wall prototypes, available in literature.
The analyses are performed using the HiStrA software,50 where the model has been implemented. A modified iterative

Newton-Raphson integrationmethodwith arch-length control is employed, according towhich the system stiffnessmatrix
is updated at the beginning of each step of the analysis. Finally, a convergence criterion based on the global equilibrium
is employed. The convergence is achieved when the norm of the unbalance vector normalized by the norm of the total
force vector (F0), is less than a tolerance. The latter is fixed equal to 10−3 in the analyses.

3.1 Numerical validation

In this section, the numerical predictions obtained by the proposed model are compared to the analytical results obtained
by considering the rigid-block assumption. Under this hypothesis, the system does not show lateral displacements until
the unstabilizing moment, due to the lateral forces, reaches the stabilizing value related to the wall self-weight and to
the applied vertical loads. Once the incipient rocking condition is achieved, the rocking mechanism is activated and the
monotonic load-displacement curve of the system follows a softening branch due to the effects of geometric nonlinearities
until the critical displacement is reached. Nevertheless, the assumption of rigid-body behavior can be considered realistic
for low values of vertical forces. Experimental and analytical studies25,51,60 show that URMwalls can deform significantly
when subjected to high axial loads. The two main consequences of this are that (i) the pivot point has finite dimension so
that the internal lever arm and the critical displacement (ucr) are smaller than those corresponding to the rigid block, and
(ii) the wall possess lateral deformability prior to incipient rocking (Figure 4). As a consequence, the force-displacement
capacity curve of the model with finite stiffness deviates from the ideal rigid behavior by assuming a curvilinear profile, as
shown in Figure 4, where it can also be seen that themaximum force of the force-displacement curve is lower than the rigid
threshold resistance F0. This latter behavior is encountered in the numerical simulations performed by the DMEM, being
the interface links characterized by a finite stiffness. As a consequence, the rigid-body assumption has to be considered
as a limit condition.
As benchmark models, two isolated walls, whose mechanisms are characterized by the rotation around horizontal

hinges, are considered. More specifically, a parapet wall (PW) of height h, thickness t and weight W, and a simply-
supported wall (SSW), constituted by two rigid blocks of height h1 and h2, weightW1 andW2 respectively and thickness
t, spanning vertically between supports at ceiling/floor levels, are considered, as shown in Figure 5. A pre-compression
force P is considered applied on the top section of the wall with an eccentricity e with respect to the middle section of the
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CUSMANO et al. 2055

F IGURE 4 Force-displacement relationships for rigid and deformable rocking walls.

F IGURE 5 Rocking masonry walls: (A) parapet wall (PW) and (B) simply-supported wall (SSW).

TABLE 1 Force capacity (F0) and critical displacement (ucr) associated with parapet wall and simply-supported wall mechanisms.

Mechanism F0 ucr

PW 1

ℎ
(𝑊 + 𝑃) ⋅ 𝑡 −

2

ℎ
𝑃 ⋅ 𝑒

[
2

ℎ
⋅ (𝑊 + 𝑃) ⋅

𝑡

2
−

2

ℎ
⋅ 𝑃 ⋅ 𝑒

]
⋅
[
2

ℎ
⋅ (𝑊 + 2 ⋅ 𝑃)

]−1

SSW 2

ℎ1

(𝑊 + 𝑃) ⋅ 𝑡 +
𝑃

ℎ−ℎ1

(𝑡 + 2 ⋅ 𝑒)
[

2

ℎ1

⋅ (𝑊 + 𝑃) ⋅ 𝑡 + 𝑃 ⋅
(𝑡+2⋅𝑒)

(ℎ−ℎ1)

]
⋅
[

2

ℎ1

⋅ (𝑊 + 𝑃) + 2 ⋅
𝑃

(ℎ−ℎ1)

]−1

wall. Only two one-way bendingmoment schemes are considered in order to avoid considering the influence of combined
flexural-shear-torsion wall response.61 The analytical expressions of the force-displacement (F-u) law is a rigid bi-linear
curve and, therefore, can be described by evaluating the parameters F0 and ucr, identifying the activation force and the
ultimate displacement, respectively, reported in Table 1, for each of the two considered mechanisms.62 In particular, ucr
refers to the control points coincidentwith the geometric barycenter of thewall for the PWmechanism and themid-height
of the wall for the SSW mechanism. In the latter, for a sake of simplicity, it was assumed h1= h2 and, as a consequence,
W1 =W2. Before undergoing non-linear rocking behavior, URMwalls are characterized by a perfectly rigid response. Once
the mechanism is triggered, the linear-softening branch becomes the reference curve until the displacement value equal
to ucr is reached, corresponding to which the lateral force becomes zero. It can be observed that the displacement capacity
is essentially a function of the wall thickness, whereas the strength capacity is significantly influenced by the wall bound-
ary conditions.51 In the simulations reported in the following, two different geometric layouts, characterized by different
values of wall slenderness, are considered, as specified in Table 2, where l is the in-plane width of the wall.
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2056 CUSMANO et al.

TABLE 2 Geometrical wall layouts considered in the analyses.

Wall h (mm) t (mm) l (mm) t/h (−) W (kN)
Specimen 1 1000 120 375 0.12 1.18
Specimen 2 1000 250 754 0.25 4.94

F IGURE 6 Force-displacement relationship varying the number of rows of links.

The DMEM models are developed considering a single panel in the case of the PW and two panels for the SSW. In
the latter case, it is considered h1= h2= h/2. The interface links of the macro-element are characterized by assuming a
no-tension material, linear elastic in compression, with kn representing the stiffness of a unitary area, which is set equal
to 5E+ 08 N/m3, according to the assumption already adopted in the ref. 63 to approximate a quasi-rigid body. The results
obtained by the DMEM for the two (PW and SSW)walls and the two different geometries are shown in Figure 6, compared
to the corresponding analytical capacity curves of the rigid-blockmodels. The results are normalized by the ultimate force
(F0) and critical displacement (ucr) corresponding to the case of zero compression load P. In the analyses, the number
rows of the interface transversal links, discretizing thewall thickness, was changed from 5 to 50 to investigate the influence
of this discretization parameter on the wall response. In particular, the number of rows of links, being centered on the
competent area, affects the approximation of the wall thickness and the location of the rotation point. Namely, using 50
rows, the effective model thickness (coincident with the distance between the two extreme links) is equal to 117.6 mm in
the case of specimen 1 and 245 mm in the case of specimen 2, corresponding to an error of 2%. It is apparent that this error
can be controlled by considering a different geometrical distribution of the non-linear links in the fiber discretization of
the wall section. However, a classical fiber discretization has been adopted in the numerical simulations.
Observing the graphs in Figure 6, it can be noted that the proposed model well describes the overall response of the

walls since the force-displacement curve tends to the theoretical rigid-block response as the number of links increases.
Small differences between the numerical and the analytical responses are observed in the pre-peak and peak load stages
due to the finite stiffness of the numerical model, as already qualitatively highlighted in Figure 4. These differences are
more evident for specimen 1-PW, which is characterized by a higher value of slenderness. In all the investigated cases,
the response is very close to the analytical limit case when more than twenty rows are employed in the discretization.
In the following simulations, the interfaces are discretized using fifty rows of links to guarantee a good model accuracy,
although for practical applications, ten rows could be sufficient to obtain satisfactory results. It is worth noticing that the
number of links does not significantly affect the computational burden and computing time since the overall degrees of
freedom are associated with the number ofmacro-elements only. Figure 7 shows force-displacement relationships varying
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CUSMANO et al. 2057

F IGURE 7 Force-displacement relationships varying kn.

the interface stiffness kn from 5E + 7 N/m3 to 2E + 10 N/m3. It can be observed that the numerical response is strongly
affected by this parameter both in terms of peak force and ultimate displacement capacity. As expected, the greater the
interface stiffness, the closer the numerical curve approaches the results predicted by the analytical response of the rigid-
block, at the expense of a more significant computational burden. Higher values of normal stiffness are not consistent
with the behavior of real masonry walls and reduce the model performances leading to an increase in the average number
of iterations. The comparisons here reported aim to validate the proposed DMEM model and also to show the limits of
the rigid-block behavior assumption. Slenderer wall (specimen 1) appears more sensitive to the variation of the interface
stiffness, ranging the ultimate force from 40% to 60% of the corresponding theoretical peak force of the PW and SSW rigid
block (Figure 7). In specimen 2, the corresponding peak-force reductions result in 60% and 80% (Figure 7). These values
are consistent with the simplified SDOF approach proposed by,25,51,64 showing a peak force close to 75% of the theoretical
rigid-block peak force. A less influence of the interface stiffness on the critical displacement is observed. The largest
difference on the ultimate displacement between the DMEM and the rigid-block models is approximately 20%, observed
in the case of PW of specimen 1, while the interface stiffness does not significantly affect the ultimate displacement of the
SSW specimens.
As a further investigation, the influence of an applied axial load is also evaluated by comparing numerical and analytical

results in terms of force-displacement relationships (F-u) by varying the axial compression force applied at the top of the
wall. It can be observed how the presence of a vertical pre-compression plays a fundamental role on the ultimate response
of rocking walls as it leads to an increase of the lateral-load capacity but causes the decrease of the critical displacement
of the wall (Figure 8).
As already observed in previous results, the most significant differences correspond to the PW and SSW mechanisms

of specimen 1. In particular, PW walls show a progressive inconsistency between the rigid-block curve and the DMEM
prediction with the increase of the axial load, reaching a peak lateral force of 35% and 43% of the rigid-block body in case
of specimen 1 and specimen 2, respectively, when the pre-compression is 0.15 MPa. These differences reduce in the cor-
responding specimens of the SSW walls, reaching 60% and 80% of the peak lateral load of the rigid body, respectively. A
lower but still significant dependency of the compression load on the ultimate displacement is observed, with the max-
imum discrepancy between the numeric and analytical model of 20% observed in the case of specimen 1 of PW. These
results are particularly significant regarding the assessment of historical constructions, when the PWmechanism is more
likely to be activated and, as evidenced by the above results, the presence of a significant compression load can make the
rigid-block predictions less accurate.
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2058 CUSMANO et al.

F IGURE 8 Force-displacement relationships varying the wall pre-compression force.

F IGURE 9 Force-displacement relationships considering (continue line) and neglecting (dashed line) P-effects for specimen 2.

Finally, in Figure 9, the role of P-Delta effects is quantified by comparing the predictions obtained by the previous and
novel DMEM formulations, neglecting and considering the P-Delta effects, respectively. The comparisons highlight how
neglecting the P-Delta effects not only does not allow the prediction of the ultimate displacement but also affects the
accuracy in terms of peak load prediction. From Figure 9, it is also evident how the P-Delta effects become significant at
a rather low displacement magnitude. Considering the cases investigated in this section, that threshold can be assumed
to be 10% and 20% of the ultimate displacement for PW and SSW, respectively.

3.2 Experimental validation

In this section, the proposed modeling strategy is employed to simulate a series of experimental tests conducted on iso-
lated walls subjected to a one-way OOP bending moment, carried out by ref. 51 and numerically investigated by different
authors.21,51–53 The comparison among the numerical DMEM prediction, the experimental observations and the results of
more refinedmodeling strategies enables evaluation of the accuracy of the proposedmodel in describing the OOP rocking
behavior of URM walls.
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CUSMANO et al. 2059

F IGURE 10 (A) Static push test configuration, (B) non-load-bearing, and (C) load-bearing boundary conditions.

3.2.1 Experimental tests

The experimental campaign has been performed at the Chapman Structural Testing laboratory of the University of Ade-
laide and the results are reported in ref. 51 and ref. 52. The tests have been carried out on simply-supported walls with
and without pre-compression, representing load-bearing and non-load-bearing walls in URM buildings, which were sub-
jected to monotonic static loads and dynamic excitations along the OOP direction (Figure 10A). The specimens consisted
in single-leaf brick-masonry walls, 110 mm thick, 1500 mm height, and 950 mmwidth. Standard extruded clay brick units
with dimensions 230 × 110 × 76 mm3 and a typical Australian mix of 1:1:6 (cement:lime:sand) mortar were used in the
tests, and 10 mmmortar joints were adopted as well per standard construction practices in Australia. The average density
of specimens was determined to be 1800 kg/m3.
The tests were conducted on uncracked and cracked specimens to investigate the influence of pre-existing structural

damage on the OOP wall response. In the present study, the simulations are conducted considering only the uncracked
specimens subjected to static loads. One specimen was subjected to an initial axial load designed to provide a uniform
pre-compression σv = 0.15 MPa to simulate the conditions of a real wall in a multistorey building. In all the static tests,
the lateral load (F) was uniformly applied at the wall mid-height using a hand pump-driven hydraulic actuator. A rigid
steel frame prevented the lateral OOP displacements at the base and top sections of the wall (Figure 10A). In the specimen
with zero axial load, both the vertical displacement and the rotation at the top section of the wall were allowed. In the
specimen with initial axial load, the vertical displacement and rotation at the top section were partially restrained due to
a spring, which was put in unilateral contact with the wall to transfer the initial vertical load and simulate the presence
of a slab interacting with the wall. However, the elastic stiffness of that spring was not measured experimentally.

3.2.2 Numerical simulations and comparisons

The analyses have been performed by adopting, for the model, a refined mesh. Namely, a number of 18 macro-elements,
corresponding to the number of brick layers of the specimen, and 19 interfaces, equally distributed along the wall
height and discretized with seven links, have been considered. In the analyses, the top restraint of the model with pre-
compression is modeled by considering a rigid element at the top section of the wall, connected with it by a no-tension
interface (simulating the dry joint between the wall and the steel apparatus used in the test). The rigid element is then
fully restrained against rotation and elastically restrained against vertical displacements (Figure 10C), whose stiffness has
been evaluated by fitting the experimental results, resulting in 1560 N/mm. The elastic and non-linear masonry material
parameters required to calibrate the numerical model have been chosen according to ref. 53 and ref. 21 and are summa-
rized in Table 3. In particular, the masonry tensile strength (σt) is assumed, according to ref. 65 1/3 of the masonry flexural
strength provided by Doherty.51 An elastoplastic constitutive law with softening governed by fracture energies in tension
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2060 CUSMANO et al.

TABLE 3 Mechanical parameters of masonry.

E (MPa)
Young’s
modulus

σt (MPa)
Tensile
strength

σc (MPa)
Compressive
strength

Gt (N/mm)
Tensile fracture
energy

Gc (N/mm)
Compressive
fracture energy

c (MPa)
Cohesion

tg(φ) (−)
Friction
coefficient

1560 0.163 6.2 0.05 1.00 0.23 0.58

F IGURE 11 Experimental-numerical comparison of pushover curves: (A) σv = 0 and (B) σv = 0.15 Mpa.

and compression is used for the transversal links. Finally, an elasto-plastic constitutive law with a Mohr-Coulomb yield
criterion is used for the shear sliding interface mechanisms. The results of the numerical analyses are reported in Figure
11 for the case of the specimen with zero axial load (Figure 11A) and for the load-bearing wall (Figure 11B), compared to
the experimental results and to the predictions of more refined modelling strategies.
In both the analyzed specimens, the pre-peak branch is almost linear elastic with high stiffness, up to a maximum force

that depends on the boundary and loading conditions. Once the maximum force is reached, which corresponds to the
cracking of the mid-height interface element, the curve shows a sudden drop in resistance in the case of 𝜎𝑣 = 0. Then,
the softening continues up to the residual strength of approximately 0.4 kN. Differently, the load-bearing wall recovers the
lateral strength showing a much more ductile response due to the effect of the top restraint. The overall DMEM response
agrees well with experimental results and FEM predictions for both the specimens investigated.
As a further investigation, parametric analyses have been performed on the wall with zero pre-tension to investigate the

role of the mesh size and the number of interface transversal links. The simulations were conducted considering two dif-
ferent mesh discretisations. Namely, the fine mesh, already adopted in the simulation above, and a coarse mesh obtained
by doubling the element size concerning the finemesh. Finally, three different interface discretization, comprising 5-10-20
rows of transversal links along the wall thickness, have been considered.
Figure 12A shows the DMEM responses obtained by varying the mesh size while keeping constant the number of rows

of links equal to 20. Figure 12B shows the results obtained by changing the number of rows of links while adopting the
finemesh. In the graphs, the experimental results and numerical FEMpredictions are reported for comparison. Observing
Figure 12, it is possible to conclude that the investigated parameters do not significantly affect the accuracy of the proposed
model. Moreover, the DMEM provided reliable predictions of the wall response, even adopting a coarse mesh and a low
number of rows of links, with clear benefit in terms of the model’s efficiency.
Furthermore, for the load-bearingwall, numerical results obtainedwith different values of the stiffness of the top spring

(kspring) are reported in Figure 13. In particular, two limit values are considered, corresponding to +50% and −50% of the
reference value used to fit the experiments in Figure 11B. FromFigure 13, it is apparent how this parameter affects the post-
peakwall response and its ultimate displacement capacity. In the final analysis, the influence ofmasonry deformability on
the rocking behavior of the specimen is investigated. Analyses are performed on the specimen with no pre-compression
( 𝜎𝑣 = 0) varying the masonry Young’s modulus by doubling and halving the reference value reported in Table 3. The
results are reported in Figure 14 concerning the refinedmesh (Figure 14A) and the coarsemesh (Figure 14B) discretization.
Comparing the graphs reported in Figure 14A and in Figure 14B, it can be concluded that the mesh discretization does not
significantly affect the wall response, confirming the results reported in Figure 11A. Moreover, it is clear how the masonry
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CUSMANO et al. 2061

F IGURE 1 2 Parametric analysis varying: (A) the dimension of the mesh and (B) the number of links.

F IGURE 13 Load-bearing condition with different values of the top spring’s stiffness.

F IGURE 14 Parametric analyses varying the masonry Young’s modulus: (A) refined mesh and (B) course mesh.

deformability influences the pre- and peak-load stages of the response. More specifically, the lateral wall strength showed
a variation of approximately 20% due to the Young’s modulus variation.
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2062 CUSMANO et al.

F IGURE 15 Force-displacement relationship varying the tensile strength (σt).

3.2.3 Parametric analyses

In this section, the role of the main masonry nonlinear mechanical parameters on the wall response is investigated by
considering the same specimens investigated in the previous section without applying any axial load.
Figure 15 shows the first parametric investigation on the influence of tensile strength The analyses are performed con-

sidering an elasto-brittle constitutive law in tensile with three different values of tensile strength. It can be observed how
the masonry strength significantly influences the peak load of the mechanisms. More specifically, the ultimate load cor-
responding to a tensile strength of 0.15 MPa is over double the ultimate load corresponding to the no-tension material
model.
Finally, in Figure 16, three values of the tensile fracture energy are considered keeping constant the tensile strength

equal to 0.15Mpa. Higher fracture energy values increase the peak force, ranging from 200% to 500% of the peak force
corresponding to the rigid-block ultimate force. However, they cause a moderate increase in the displacement capacity
that becomes negligible in the case of specimen 2. From Figure 15 and Figure 16, it can be concluded that tensile strenght
and fracture energy affect the post-peak stage of the response up to 10% and 20% of the critical displacement in the case of
the PW ans the SSWmechanism, respectively with more significal effects observed in the case of the specimen 1 and PW
mechanism. This result confirms how the ultimate capacity of rockingwalls ismainly governed by geometrical parameters
rather than the material strength.

4 CONCLUSIONS AND FUTURE DEVELOPMENTS

The paper presents a further development of the DMEM by including an effective way of accounting for the geometric
nonlinearities due to the applied in-plane compression forces, loads, which are particularly significant when rocking
failure mechanisms of URM walls are activated, as typical of URM buildings and monumental structures. A simplified
but robust P-Delta formulation is presented and implemented within a standard iterative Newton-Raphsonmethod in the
HiStrA software, which implements the DMEM approach.
The proposed formulation does not require assembling and updating the geometric matrix of the system. Conversely,

the geometric nonlinearities are addressed during the analyses by updating the global load vector according to the
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F IGURE 16 Force-displacement relationship varying the tensile fracture energy (Gt).

macro-elements’ current configurations. As a result, the proposed model does not require a significant increase of
computational cost compared to DMEM strategy not accounting for the P-Delta effects.
The proposedmodel has been validated against analytical, numerical and experimental results available in the literature

demonstrating its capacity to describe the non-linear response of rocking masonry walls subjected to different boundary
and loading conditions. The results show good accuracy of the proposed model, which was able to describe the pre-peak
and post-peak response as well as the ultimate lateral strength and the displacement capacity of masonry walls exhibiting
common OOP rocking mechanisms. Namely, cantilever and vertical spanning mechanisms for different geometrical lay-
outs and loading conditions confirmed the model’s potential to be employed for real structural assessments of masonry
structures whose non-linear response is characterized by the activation of rocking failure mechanisms.
Finally, parametric analyses have been conducted to investigate the role of (i) modeling parameters, like the mesh

discretization and the interface link discretization; (ii) masonry deformability; (iii) axial load. Future developments will
aim to extend the proposed model to the dynamic field to accurately simulate the effects of the geometric nonlinearities
and the energy dissipation mechanisms on the rocking response and ultimate capacity of URM walls.
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