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A B S T R A C T 

Black hole X-ray binaries display significant stochastic variability on short time-scales (0.01–100 s), with a complex pattern 

of lags in correlated variability seen in different energy bands. This behaviour is generally interpreted in a model where slow 

fluctuations stirred up at large radii propagate down through the accretion flow, modulating faster fluctuations generated at 
smaller radii. Coupling this scenario with radially stratified emission opens the way to measure the propagation time-scale 
from data, allowing direct tests of the accretion flow structure. We previously developed a model based on this picture and 

showed that it could fit the Neutron star Interior Composition Explorer ( NICER ; 0.5–10 keV) data from the brightest recent 
black hole transient, MAXI J1820 + 070. Ho we ver, here we show it fails when extrapolated to higher energy variability data 
from the Insight-Hard X-ray Modulation Telescope ( HXMT ). We extend our model so that the spectrum emitted at each radius 
changes shape in response to fluctuations (pivoting) rather than just changing normalization. This gives the strong suppression 

of fractional variability as a function of energy seen in the data. The derived propagation time-scale is slower than predicted 

by a magnetically arrested disc (MAD), despite this system showing a strong jet. Our new model jointly fits the spectrum and 

variability up to 50 keV, though still cannot match all the data abo v e this. Nonetheless, the good fit from 3 to 40 keV means the 
quasi-periodic oscillation (QPO) can most easily be explained as an extrinsic modulation of the flow, such as produced in the 
Lense–Thirring precession, rather than arising in an additional spectral-timing component such as the jet. 

Key words: accretion, accretion discs – black hole physics – X-rays: binaries – X-rays: individual: MAXI J1820 + 070. 
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 I N T RO D U C T I O N  

he nature and geometry of the X-ray emission region in black
ole binaries are still contro v ersial, especially in the low/hard state,
here most of the power is emitted in a spectrum quite unlike a

tandard disc (Shakura & Sunyaev 1973 ). Spectral fitting alone is
egenerate, with proposed geometries being a compact source on the
pin axis (lamppost), extended emission along the jet direction (jet
orona), extended coronal emission on top of an underlying accretion
isc (sandwich), and extended coronal emission that replaces the
ccretion disc (truncated disc/hot inner flow; see e.g. Poutanen,
eledina & Zdziarski 2018 ). The truncated disc/hot inner flow model
as the advantage that it gives a framework to explain the evolution
f the spectrum and its fast variability properties together (Done,
ierli ́nski & Kubota 2007 ), although there are persistent questions
 v er the extent of disc truncation from modelling the reflected
mission and its associated iron line (e.g. Buisson et al. 2019 ; but see
dziarski et al. 2021a ). Another way to track the extent of the disc is

he quasi-thermal emission arising from the same X-ray irradiation of
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he disc, which gives rise to the iron line and reflected emission (De
arco et al. 2015 ; Wang et al. 2022 ). Photons that are not reflected

re reprocessed in the disc, producing a thermal reverberation signal.
his gives a soft lag, where variations of soft photons follow those
f hard photons with a light travel time delay. Reverberation size
cales do indeed point to a truncated disc, with a truncation radius
hat decreases as the source spectrum softens (De Marco et al. 2021 ).
erhaps the most compelling evidence for a truncated disc is the
ew polarization results for the low/hard state of Cyg X-1. These
ule out the X-ray emission region being aligned with the jet and,
nstead, require it to be aligned with the accretion flow (Krawczynski
t al. 2022 ). Truncated disc/hot inner flow models are thus strongly
a v oured, moti v ating our work in exploring how we can derive the
hysical properties of the hot flow. 
The fast variability (0.01–100 s) gives independent constraints on

he accretion flow. It shows many complex properties that change as
 function of energy and variability time-scale (see e.g. the re vie w
y Uttley et al. 2014 ). The most promising framework in which
o explain these is with propagating fluctuations (Lyubarskii 1997 ;
oto v, Churazo v & Gilfano v 2001 ). The idea is that variability

s generated in the accretion flow (e.g. by the turbulent dynamo
agnetorotational instability – MRI; Balbus & Ha wle y 1991 ), with
 characteristic time-scale that is shorter at smaller radii. Fluctuations
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enerated at any radius in the hot flow propagate down so that slower
uctuations stirred up at larger radii propagate down to modulate 

he faster fluctuations produced at smaller radii. This produces 
orrelated but lagged multi-time-scale variability in the entire hot 
ow (Lyubarskii 1997 ; Kotov et al. 2001 ). These lags can be seen
irectly in the data if the flow produces different spectra at different
adii, with the observed ‘hard lags’ (fluctuations at 10–20 keV 

agging behind the same fluctuation at 2–3 keV; Miyamoto et al. 
988 ; Nowak, Wilms & Do v e 1999 ) requiring that smaller radii have
arder spectra, which seems physically intuitive. Numerical models 
ombining the propagating fluctuations process with a spectrally 
nhomogeneous hot flow have shown general agreement with the 
ariability properties observed by the Rossi X-ray Timing Explorer 
 RXTE ) in the 3–30 keV bandpass (Ar ́evalo & Uttley 2006 ; Ingram &
one 2011 , 2012 ). 
Ho we ver, accurately reproducing all the observed timing prop- 

rties with the propagating fluctuations model turned out to be 
ore difficult than expected in these first quantitative models, which 

onsidered only the variability in the hot flow. One approach is simply 
o bypass this complexity and use phenomenological models of the 
ntrinsic variability and its lags. This is especially useful if the goal is
imply to measure reverberation lags as in the RELTRANS code (Ingram 

t al. 2019 ). Ho we ver, our goal is instead to make a physical model of
he hot flow, self-consistently producing its spectrum and variability. 
uch models can then be used to measure physical properties, e.g. 

he propagation speed, which constrains the nature and geometry of 
he hot flow. Hence we extend the hot flow propagating fluctuation 

odels to get a better match to the data. There are many potential
ays to do this, but the goal is to identify the physical processes that
ake the most impact on the observed data. 
One difficulty with models of propagating fluctuations through 

he hot flow is that this typically gives rise to a single-peaked power
pectrum (Ar ́evalo & Uttley 2006 ; Ingram & Done 2011 , 2012 ),
hereas the observed power spectra are often double peaked (Belloni, 
saltis & van der Klis 2002 ; Pottschmidt et al. 2003 ; Axelsson,
orgonovo & Larsson 2005 ; Grinberg et al. 2014 ). It is possible to
hange the time-scales and amplitude of variability with radius in 
he hot flow to match the data, but it seems fine-tuned (Mahmoud &
one 2018a , b ). Another issue is that the observed power spectra
ften span a very broad range in frequencies, which is difficult to
uantitatively match by the fairly small range of radii spanned by 
he hot flow without going to extreme parameters (Ingram & Done 
011 , 2012 ; Mahmoud & Done 2018a , b ). 
A key to matching both the power spectral shape and width was

he recognition that the disc generates considerable variability in 
he low/hard state, in addition to that expected from the hot flow
Wilkinson & Uttle y 2009 ; Uttle y et al. 2011 ). While the disc does
ot contribute to the RXTE bandpass ( > 3 keV) in the low/hard state,
ts variability will propagate down into the hot flow, so it will strongly
ffect the variability properties. Rapisarda et al. ( 2016 ) proposed that
he inner edge of the disc had a much longer variability time-scale
han the outer edge of the hot flow due to its smaller scale height,
nd showed that this naturally produces double-peaked power spectra 
but see Veledina 2016 for another potential mechanism). The slowly 
ariable disc also widens the range of time-scales on which the X-
ay flux varies even when the truncation radius is only a few tens of
ravitational radii (Rapisarda et al. 2016 ). 
Modelling of the broad-band X-ray variability demonstrates how 

he timing properties give additional information about the nature 
f the accretion flow. Combining these with spectra (spectral-timing 
tudies) gives an even more powerful tool, as it uses all the informa-
ion from the energy spectrum and its fluctuations (power spectra) 
ogether with causal connections (lags/leads; e.g. Axelsson & Done 
018 ; Mahmoud, Done & De Marco 2019 ; De Marco et al. 2021 ;
ang et al. 2021 ). In our previous w ork (Kaw amura et al. 2022 ,

ereafter K22 ), we developed a spectral-timing model based on 
ropagating fluctuations from a turbulent disc through a spectrally 
nhomogeneous (approximated by two Comptonization regions) flow 

hat generates variability at each radius. We also incorporated rever- 
eration of the variable Comptonization components illuminating 
he disc to perform a self-consistent spectral-timing analysis. We 
pplied the model to the recently disco v ered black hole transient
AXI J1820 + 070 (Kawamuro et al. 2018 ; Tucker et al. 2018 ),
hich has been widely studied (e.g. Kara et al. 2019 ; Shidatsu et al.
019 ; Bright et al. 2020 ; Homan et al. 2020 ; Axelsson & Veledina
021 ; Ma et al. 2021 ; Tetarenko et al. 2021 ; Wang et al. 2021 ; You
t al. 2021 ; Prabhakar et al. 2022 ) thanks to its exceptional brightness,
ow galactic absorption (Uttley et al. 2018 ), and intensive monitoring
y multiple telescopes. K22 fit the time-averaged energy spectrum 

or the Neutron star Interior Composition Explorer ( NICER ; 0.5–
0 keV) + the Nuclear Spectroscopic Telescope Array ( NuSTAR ;
–73 keV) and used this to develop a model for the variability below
0 keV seen in NICER . Ho we ver, NuSTAR has less capability for fast
iming, so K22 could not investigate the variability at higher energies,
hich means that we could not fully probe the innermost parts of

he hot flow. Better constraints on propagation require extending the 
andpass for fast timing to higher energies. 
Here we use contemporaneous data from the Insight-Hard X-ray 
odulation Telescope ( HXMT ; Section 2 ) to test our model at higher

nergies. We predict the high-energy power spectra and phase lags 
nd sho w ho w these fail to describe several key features of the data
Section 3 ). We give the model maximal freedom by fitting only
he timing data rather than using the full spectral-timing data, and
onsider several ways to extend our propagating fluctuation model to 
etter match the data (Section 4 ). In particular, the phase lags give a
lear indication that the propagation time through the flow is slower
han the time-scale on which fluctuations are generated (Rapisarda, 
ngram & van der Klis 2017 ), but the full energy dependence of the
ariability is quite difficult to fit. The key to matching the power
pectra is to allow the Comptonization spectra to pivot, so that they
hange in shape and normalization in response to the fluctuations 
Mastroserio, Ingram & van der Klis 2018 , 2019 ; Mastroserio et al.
021 ). This is physically expected from Comptonization models 
Veledina 2016 , 2018 ) and is observed (Malzac et al. 2003 ; Gandhi
t al. 2008 ; Yamada et al. 2013 ; Bhargava et al. 2022 ). We are
ble to get a good match to the timing properties (power spectra
nd phase-lag spectra) from 2.6 up to 48 keV by including spectral
ivoting, as well as separation of generator and propagation time- 
cale. We implement this as a full spectral-timing model and find we
an fit all the data in the 2.6–48 keV bandpass, though the model
or both spectra and timing diverge from the data abo v e this energy
Section 5 ). We discuss the physical properties of the accretion flow,
omparing them with theoretical hot flow models (Section 6 ), and
hen conclude that the current data quality is still better than the best
hysical models of the flo w, which moti v ates further development
Section 7 ). All of the technical details of the model formalism are
iven in the appendices so that the main text stresses the physical
spects of the model. 

 OBSERVATI ON  A N D  DATA  R E D U C T I O N  

e investigate the bright low/hard state of MAXI J1820 + 070
bserved by Insight-HXMT : 2018 March 22 10:46:53 to 2018 March
4 02:49:49 (Obs. ID: P0114661003). The same data are studied in
MNRAS 519, 4434–4453 (2023) 
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Figure 1. Spectral-timing properties of MAXI J1820 + 070 observed by 
Insight-HXMT . Top: time-averaged energy spectrum. Red, green, and blue 
markers represent LE, ME, and HE telescopes, respectively. The dip around 
22 keV (light green) is associated with fluorescent lines of silver generated 
within the ME detector. The coloured regions show the low (black: 2.6–
4.8 keV) and high (magenta: 35–48 keV) used to extract light curves. Middle: 
power spectra calculated for low- and high-energy bands. Both these have 
the characteristic double peak shape, but with the QPO and its harmonic 
(marked with dashed lines) superimposed. The high-energy power spectrum 

is very similar in shape to that at low energy, but with lower normalization 
(compare to the model in Fig. 2 f). Bottom: phase-lag spectrum between the 
light curves in the low- and high-energy bands. The lags are defined as positive 
if variations in higher energy bands lag behind those in lower energy bands 
(hard lags). The frequency at which the phase lag is maximum is marked with 
a dotted line. This is substantially lower than the characteristic frequency of 
the second peak in the power spectrum (compare to the model in Fig. 2 h). 
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ang et al. ( 2020 ), Ma et al. ( 2021 ), and Yang et al. ( 2022 ). The
bservation time is slightly later than that we studied in K22 (Obs.
D: 1200120106; 2018 March 21), but there are simultaneous NICER
ata (Obs. ID: 1200120108; 2018 March 23) corresponding to these
nsight-HXMT data. We checked that the energy spectrum, power
pectra, and phase-lag spectra in these simultaneous NICER data are
lmost identical to K22 . 

We used the Insight-HXMT Data Analysis Software package
 HXMTDAS ) v2.04 to calibrate and screen the data using the same
riteria as in Yang et al. ( 2022 ). We checked that the spectral
nd variability properties did not change substantially o v er the
bservation and then merged all the data to achieve high signal-
o-noise ratio. 

The resulting energy spectrum is shown in Fig. 1 (top). The
ifferent colours represent different telescopes (red: LE; green: ME;
lue: HE; Zhang et al. 2020 ). The energy spectrum from ME has
 dip of around 22 keV (light green), which is associated with
ilver fluorescent lines generated within the detector (Li et al. 2020 ).
ollowing You et al. ( 2021 ), we added 1.5 per cent systematic errors

o all spectral data. 
To study the fast variability, we split the background-subtracted

ight curves into segments of 256 s with 1 / 128 s time bins (2 15 

oints), where we a v oided any data gaps. We only used the data
here all telescopes were active to calculate light curves, using the

ame time selection for every energy band. We calculate the white-
oise-subtracted power spectra and the cross-spectra from each
56 s segment and average them over different segments and log-
rithmically spaced Fourier frequencies (Uttley et al. 2014 ; Ingram
019 ). All power spectra are normalized such that their integral over
requency corresponds to the fractional variance (Miyamoto et al.
991 ; Vaughan et al. 2003 ). Phase-lag spectra are calculated from
he cross-spectra, using the relation between the phase-lag spectrum
( f ) and cross-spectrum C ( f ), φ( f ) = tan −1 ( Im [ C ( f )]/ R [ C ( f )]), where
 [ ···] and Im [ ···] denote the real and imaginary parts, respectively.

hase lag relates to time lag via the relation 2 πft ( f ) = φ( f ). 
Fig. 1 (middle) shows the power spectra of the 2.6–4.8 keV (black)

nd 35–48 keV (magenta) light curves These energy bands are
arked in the energy spectrum with shaded regions. A quasi-periodic

scillation (QPO) and its harmonic exist around 0.036 and 0.1 Hz
shown with dashed lines), in addition to the broad-band variability. 

Fig. 1 (bottom) shows the phase-lag spectrum between these two
nergy bands. The convention throughout this paper is that positive
ags mean that the harder energy band lags behind the softer one. The
hase lag peaks at ∼1 . 2 Hz (shown with a dotted line), which is not
t the same frequency as the high-energy peak in the power spectra.
his is unexpected as simple propagating fluctuations models have

he same peak frequency both in the power spectrum and cross-
pectrum (Ingram & van der Klis 2013 ; Rapisarda et al. 2016 ). The
PO fundamental appears to affect the phase lag between these two

nergy bands, creating a dip in the phase-lag spectrum around the
orresponding frequency (Ma et al. 2021 ). The effect of the second
armonic on the phase lag is not so clear between these energy bands,
ut we note it does have an impact on different choices of energy
ands (Ma et al. 2021 ). 
For all of the data fits performed in this paper, we use XSPEC 12.12.1

Arnaud 1996 ). We formatted variability data and created a diagonal
ummy response such that XSPEC can import power spectra and
hase-lag spectra as a function of Fourier frequency. We developed
NRAS 519, 4434–4453 (2023) 
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ur model as an XSPEC model. Being able to perform timing fits
ith the common tool in spectral fits is beneficial in performing 

pectral-timing fits. For example, we will perform a joint fit to energy
pectrum, six power spectra, and five phase-lag spectra in Section 5 .
e ignore variability below ∼10 −2 Hz because it behaves differently 

rom other Fourier frequencies. Yang et al. ( 2022 ) interpreted this
o w-frequency v ariability as the QPO subharmonic. 

 P RO PAG AT I O N  A N D  R E V E R B E R AT I O N  IN  

U R  P R E V I O U S  M O D E L  

.1 Summary of our previous work 

e start with a summary of our previous physical model. Fundamen- 
ally we assume that variability is generated by fluctuations in density 
n the flow, which propagate inwards as accretion rate fluctuations. 
hus the variability generated at each radius propagates down with 

he accretion flow so that slower fluctuations generated at large 
adii imprint on faster fluctuations generated at small radii. These 
uctuations in mass accretion rate change the luminosity emitted in 

he spectrum at that radius. 
We then need additional assumptions to turn this into a quantitative 
odel, as we have to assume the form of radial stratification for both

he spectrum and variability and how fluctuations are generated and 
ropagated. We expand on each of these below. 
We assume a basic geometry that is a truncated disc/hot inner 

o w, as sho wn in Fig. 2 (a) with emissivity at each radius set by
he Shakura–Sunyaev thin disc approximation (Fig. 2 b). These two 
ssumptions alone are enough to roughly set the transition radius 
rom the inner edge of the disc to the outer edge of the hot flow
y energetics to ∼45 R g , though instead we set this from the QPO
requency, assuming the Lense–Thirring precession (Ingram, Done & 

ragile 2009 ). The similarity of the two estimates gives support to
he Lense–Thirring interpretation. In all the following, we use the 
onvention that R = rR g , where R g = GM BH / c 2 . 

Spectrally, we assume that the flow emits a single component 
t each radius. This might be unique to each radius, with e.g.
ach radius in the disc emitting a blackbody with temperature 
 ( R ), while the hot flow emits a Comptonized spectrum whose
arameters (electron temperature, and optical depth) scale smoothly 
ith radius. Ho we v er, spectral models are quite de generate so we

pproximate the emission from the truncated disc region ( r out –r ds ) as
 disc blackbody, and we approximate the hot flow as two zones as
hysically we do expect that there are two main regions in the flow.
lose to the disc, seed photons for Comptonization are predominantly 

rom the disc. Ho we ver, it is quite easy for this Comptonization
o become optically thick along the equatorial direction, shielding 
he inner regions from the disc photons so that seed photons are
redominantly from cyclo-synchrotron (Poutanen & Veledina 2014 ). 
hus we assume that radii from r ds –r sh emit soft Comptonization, 
hile radii from r sh –r in emit hard Comptonization ( r in < r sh < r ds <

 out ; Fig. 2 a and d). Both Comptonization components illuminate the
isc to produce reflection, while the energy not reflected is (mostly)
hermalized, enhancing the cool disc emission. K22 show that these 
ssumptions give a good fit to the energy spectrum from 0.5 to
0 keV. 
The variability is also assumed to be radially stratified such that 

ach radius generates fluctuations with a characteristic frequency, 
 gen ( r ). This is assumed to have a power-law form as a function
f radius in the hot flow, so f gen ( r ) = Br −m f K ( r ), where f K ( r ) =
1/2 π) r −3/2 in units of c / R g . The power-law scaling parameters are
llowed to be different between the hot flow ( B f , m f ) and disc ( B d , m d ),
iving a different time-scale to reflect the different scale heights of
he two flows (Rapisarda et al. 2016 ). Thus, the generator frequency
s modelled with 

 gen ( r) = 

{
B f r 

−m f f K ( r) ( r in ≤ r < r ds ) , 
B d r 

−m d f K ( r) ( r ds ≤ r < r out ) , 
(1) 

s shown in Fig. 2 (c). We assume each logarithmic radial interval
enerates the same amplitude of variability. The fluctuations gen- 
rated at each radius propagate down without losses to produce a
uctuating mass accretion rate at each radius that modulates the 
mitted luminosity. 

As noted abo v e, we assume the QPO is set by the Lense–Thirring
recession of the entire hot flow, and the first bump in the power
pectrum is set by the turbulent disc (Ingram & Done 2011 ). This
ets ( B d , m d ) = (0.03, 0.5) and r out = 45. 

The dashed lines in Fig. 2 (e) show three sample power spectra
or the generated variability of the local mass accretion rate in
ach region (variable disc: red; soft Comptonization: green; hard 
omptonization: blue; the middle ring of each highlighted in a 
arker colour). The functional form is a zero-centred Lorentzian 
ith the cut-off frequency corresponding to the local generator 

requency f gen ( r ), which yields the peak at f gen ( r ) in the fP ( f )
epresentation. 

K22 assumed that the propagation time-scale was the same as that
n which the fluctuations were generated and called this the viscous
ime-scale (Lyubarskii 1997 ; Ar ́evalo & Uttley 2006 ; Ingram et al.
009 ). This assumption sets the propagation speed at any radius
 p ( r ) = rf gen ( r ) in units of c . Ho we ver, here we will re visit this
ssumption, so to a v oid confusion, we do not use the term ‘viscous
ime-scale’ but use ‘generator time-scale’ and ‘propagation time- 
cale’ in this paper to make it clear which one we mean. K22
lso assumed that the fluctuating energy release only changed the 
ormalization of the spectral component emitted at that radius, not 
ts shape. 

The solid lines in Fig. 2 (e) show the propagated (total) power
pectra from each region (disc: red; soft Comptonization: green; 
nd hard Comptonization: blue). This is not the same as the power
pectrum in an y giv en energy band as Fig. 2 (d) shows that each
nergy band contains a mix of components. 

Fig. 2 (f) shows the power spectra for the two chosen energy bands,
ow (2.6–4.8 keV: black) and high (35–48 keV: magenta), also high-
ighted in the same colours in Fig. 2 (d). While neither band contains
he disc emission component, both bands contain the propagated disc 
 ariability. The lo w-energy band also contains both soft and hard
omptonization, so has the generated/propagated power in the soft 
omptonization region, plus some of the highest frequency power 
enerated in the hard Comptonization region. The high-energy band 
s dominated by the hard Comptonization emission, with variability 
hat is propagated down from both the disc and soft Comptonization
egion, plus the highest frequency power generated/propagated 
hrough the hard Comptonization region. Thus the power spectra 
re almost identical for below ∼1 Hz , indicating that variability on
hese slow time-scales is propagated from the outer regions rather 
han generated at their emission regions, while they diverge at the
ighest frequencies where the low-energy band does not include as 
uch of the hard Comptonization component as the high-energy 

and. 
The propagation time-scale is explicitly seen in the time lag 

Fig. 2 g). The luminosity weighted mean radius of the soft Comp-
onization band is 22 R g , whereas that for the hard Comptonization
and is 11 R g . This lag time (integrating 1/( rf prop ( r ))) is 51 ms,
s seen as the value of the approximately constant time lag at
MNRAS 519, 4434–4453 (2023) 
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Variable  
disk

Soft  
ComptonizationHard Comptonization

Stable disk

Propagating fluctuations

Hot flow

Figure 2. Model set-up and predictions from K22 . Here we show only the intrinsic components, rather than including reflection/reverberation, to focus on the 
physics of the propagation. (a) Assumed accretion flow geometry (height as a function of radius). There is an outer stable disc (grey) that is highly turbulent on 
its inner edge, forming the variable disc region. Inwards of this is the turbulent hot flow. (b) Radial emissivity, assumed to be similar to that of a thin disc. (c) 
Frequency at which variability is generated at each radius. There is a discontinuity between the variable disc and hot flow as their scale heights are different, so 
their characteristic time-scales should be different. Sample parameter values are ( B f , m f ) = (4, 1) for the hot flow and ( B d , m d ) = (0.03, 0.5) for the variable 
disc. (d) Time-averaged energy spectra modelled (black) assuming a disc for the stable and variable disc emission (red), while the hot flow is assumed to be 
approximated by two Comptonization components, soft (green) and hard (blue). The relative luminosity in each component, together with the emissivity in (b), 
roughly sets the size scale of each region, so that the hard Comptonization is for r in –r sh = 6–16, the soft Comptonization for r sh –r ds = 16–32, and the variable 
disc for r ds –r out = 32–45. (e) Sample power spectra of the local mass accretion rate in each spectral region. The dashed lines represent the variability generated 
at each radius, with r = 45, 38, 33 (in the variable disc: red), 30, 22, 16 (in the soft Comptonization: green), and 12, 9, 6 (in the hard Comptonization: blue) from 

left to right. The frequency, at which each radius fP ( f ) has its peak, corresponds to the local generator frequency f gen ( r ). The solid lines show the total (generated 
plus propagated) variability at r = 38 (red), 22 (green), and 9 (blue). (e) Power spectra for two energy bands highlighted in (d). An y giv en energy band is not 
just a single component. The low-energy band (black) contains roughly equal amounts of soft and hard Comptonization, while the high-energy band (magenta) 
has mostly hard Comptonization, but with some contribution from the soft Comptonization as well. Thus the power spectra of the light curves in the low- and 
high-energy bands are more similar than those of the soft and hard Comptonization components in (e). None the less, there is still more high-frequency power 
in the high-energy band than in the low-energy band, but at lower frequencies, the power spectra are identical as both contain the same propagated power. (g) 
Time-lag spectra for the low- and high-energy band light curves. The orange dotted line shows the intrinsic lag of the soft Comptonization light curve compared 
to the hard Comptonization light curve. This is ∼50 ms, which is longer than the measured lag of the high-energy band light curv e v ersus the low-energy band 
due to the mixture of spectral components in each band. (h) Lag between high- and low-energy bands as a phase lag rather than a time lag (related by φ( f ) = 

2 πf τ ( f )). This peaks around the frequency of the high-energy peak in the power spectrum. 
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ow frequencies (orange dashed line). The time lag drops when
he variability starts to be dominated by the generated variability
which is not correlated) rather than the propagated variability, i.e. at
pproximately the generator time-scale of the hard Comptonization
egion. At the highest frequencies, the lag also produces oscillatory
tructure at high frequencies, by the interference generated by the
NRAS 519, 4434–4453 (2023) 
ass accretion rate in the hard Comptonization region being the
ame as in the soft Comptonization region, but lagged by the mean
ropagation time-scale. This oscillatory structure has a period of
0 ms. Ho we ver, the intrinsic lag from the spectral components is
iluted by a factor of ∼3 when looking at the low- and high-energy
ands rather than the soft and hard Comptonization components.
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his is because the low-energy band includes both soft and hard 
omptonization, while the high-energy band is dominated by the 
ard Comptonization. While the value of the measured lag time 
hanges, the oscillatory structure period remains at the propagation 
ime-scale. 

This oscillation can be seen more clearly in Fig. 2 (h), which shows
he phase lag rather than time lag, so each time-scale is multiplied
y the factor 2 πf . In this representation, the phase lag peaks at a
requency between the high-frequency peak in the power spectra at 
ow and high energy. By comparison to the panel abo v e, it is also
lear that the oscillatory structure at high frequencies has the same 
eriod as in the undiluted (orange) time lags. 
All model parameters are summarized in Table 1 and we give a
ore quantitative model summary in Appendix A . 
The fluctuating soft and hard Comptonization regions illuminate 

he outer disc and produce a reflected/reprocessed signal that lags 
ehind the generated and propagated flow variability by the light 
ravel time to the disc. The reflected emission itself is not strong,
hough this real reverberation signal will add to the soft lags 
roduced by interference in the propagation (hard) lags seen in 
ig. 2 (g). Ho we ver, at lo wer energies, the photons that are not
eflected heat the disc, giving a thermal reverberation signal that 
s strong at energies close to that of the disc emission ( � 2 keV ;
ara et al. 2019 ). This reverberation signal gives an independent 

heck on the assumption of the disc truncation radius, and the 
act that it is consistent (De Marco et al. 2021 ) gives strong
upporting evidence for the underlying assumption that the QPO 

echanism is the Lense–Thirring precession. Our previous model 
ncludes the reverberation, along with the propagating fluctuations 
 K22 ). 

K22 showed that this model gave a fairly good fit to the energy
ependence of the power spectrum across the NICER energy band 
0.5–10 keV) and to the lags between the same fluctuations in 
ifferent energy bands as a function of frequency. Ho we ver, while the
pectral components were built from NuSTAR data, which extended 
bo v e 10 keV, this instrument does not have a sufficient area to
o high-time-resolution studies, so the model prediction at higher 
nergies could not be tested. 

This outburst of MAXI J1820 + 070 was also monitored by Insight-
XMT (Ma et al. 2021 ; You et al. 2021 ; Yang et al. 2022 ), which
oes have a sufficient effective area at high energies. As mentioned 
n the previous section, the Insight-HXMT data are not absolutely 
imultaneous with the NICER / NuSTAR data set we used in K22 , but
hey are very close in time, and spectral-timing properties are nearly 
onstant during these periods. Hence we take the spectral-timing 
odel of K22 , use it to predict the higher energy behaviour, and

ompare it to the Insight-HXMT data. 

.2 Comparison of our previous model to Insight-HXMT data 

e compare the predictions of our previous model to the power 
pectra for the 2.6–4.8 and 35–48 keV bands and the phase- 
ag spectrum between these bands calculated from the Insight- 
XMT observation data in Fig. 3 (left). Model parameter values 

re summarized in Table 2 , which also contains those for the rest
f the columns in Fig. 3 . The lower energy band is well reproduced
y our previous model from K22 , as expected, as it is within the
ICER energy range o v er which K22 got good fits. Ho we ver, the
ower spectrum at the higher energy band is clearly o v erestimated,
nd the phase lag between the two is completely wrong, peaking 
t too high a frequency with a lag that is too short to match
he data. 
 TI MI NG  FITS:  E X P L O R I N G  T H E  

D D I T I O NA L  PROCESSES  REQU I RED  TO  

ATCH  T H E  H I G H - E N E R G Y  VARI ABI LITY  

he specific spectral-timing model of K22 plainly cannot fit the 
ata, so instead here we explore whether the model is capable
f reproducing the observed timing properties. We give maximal 
exibility by ignoring the time-averaged spectrum (but we will come 
ack to joint spectral-timing modelling in Section 5 ) and attempt to
inimize the sum of χ2 values for the power spectra and phase-lag

pectrum: ∑ 

k 

{(
P data ( E 1 , f k ) − P model ( E 1 , f k ) 

�P data ( E 1 , f k ) 

)2 

+ 

(
P data ( E 2 , f k ) − P model ( E 2 , f k ) 

�P data ( E 2 , f k ) 

)2 

+ 

(
φdata ( E 1 , E 2 , f k ) − φmodel ( E 1 , E 2 , f k ) 

�φdata ( E 1 , E 2 , f k ) 

)2 }
, 

(2) 

here P data ( E , f ) and � P data ( E , f ) are the observed power spectrum
nd its 1 σ error at frequency f for energy E , φdata ( E , E 

′ 
, f ), and

φdata ( E , E 

′ 
, f ) are the equi v alents for the phase-lag spectrum

etween energy E and E 

′ 
, P model ( E , f ) and φ( E , E 

′ 
, f ) are the modelled

ower spectrum and phase-lag spectrum, E 1 = 2 . 6 –4 . 8 keV , E 2 =
5 –48 keV , and f k the sampled Fourier frequency. 
Our model requires the fraction of each spectral component 

o calculate the power spectra and cross-spectra. We express this 
raction as S d ( E ), S s ( E ), S (r) s ( E), S h ( E ), and S (r) h ( E) for the variable
isc, soft Comptonization and its reflection, and hard Comptonization 
nd its reflection, respectively. Since X-ray energy spectra in the 
ard state are almost fully occupied by these five components at
ost (Zdziarski et al. 2021a , b , 2022 ), we require the sum of these

ractions to correspond to unity: 

 d ( E) + S s ( E) + S (r) s ( E) + S h ( E) + S 
(r) 
h ( E) = 1 . (3) 

hereas in Fig. 3 (left), these fractions were calculated from the
esult of spectral fit in K22 for the self-consistent spectral-timing 
odelling, here we let them be independent of the time-averaged 

pectrum in order to focus on the variability properties. We fix
 d ( E ) = 0 because the disc emission is negligible above 2.6 keV. We
lso ignore the reverberation, i.e. S (r) s ( E) = S 

(r) 
h ( E) = 0, to simplify

he model. This is not a bad approximation for our purpose, as
e want to capture the broad-band power spectra and hard lags

rom propagation. Reverberation makes only small changes to the 
ariability properties on the energy and variability range of interest 
ere. 
Finally, we only have the soft and hard Comptonization compo- 

ents with the constraints of S s ( E ) + S h ( E ) = 1. We do not include
ny models for the QPO features for simplicity. 

We keep the black hole mass of M BH = 8 M � (Torres et al. 2020 )
nd emissivity profile, i.e. γ = 3 and b( r) = 1 − √ 

r in /r (No viko v &
horne 1973 ; Shakura & Sunyaev 1973 ), where we assume that

adiation energy from the annulus ranging from r to r + � r is
roportional to r −γ b ( r )2 πr � r . In K22 , the transition radii r sh , r ds were
alculated from the emissivity profile and spectral decomposition. 
o we ver, we lack spectral decomposition. In addition, it turned
ut that model calculations are hardly affected by small changes 
n these parameters. Thus, we simply fix these transition radii to
ypical values, r sh = 16 and 32. 

We show the result of the joint fit to the power spectra for 2.6–4.8
nd 35–48 keV and the phase-lag spectrum between these energy 
ands in Fig. 3 (mid-left). The fit is not qualitativ ely impro v ed ev en
MNRAS 519, 4434–4453 (2023) 
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Table 1. Summary of our model parameters. The variable flow is spectrally composed of the variable disc region and soft (outer) and hard (inner) Comptonization 
regions. We call the entire Comptonization region the hot flow. 

Symbol Meaning Units Default 

M BH Black hole mass M � 8 
N r Number of rings splitting the variable flow 40 
r in Inner radius of the hard Comptonization R g 6 
r sh Transition radius between the hard Comptonization and soft Comptonization R g 16 
r ds Transition radius between the disc and soft Comptonization R g 32 
r out Outer radius of the variable disc R g 45 
F var,f ( F var,d ) Fractional intrinsic variability per radial decade in the hot flow (variable disc) 0.8 
D Damping factor 0 
B f ( B d ) Coefficient of the generator frequency in the hot flow (variable disc) 0.03 
m f ( m d ) Power-la w inde x of the generator frequenc y in the hot flo w (v ariable disc) 0.5 

B 

(p) 
f ( B 

(p) 
d ) Coefficient of the propagation frequency in the hot flow (variable disc) 0.03 

m 

(p) 
f ( m 

(p) 
d ) Power-la w inde x of the propagation frequenc y in the hot flo w (v ariable disc) 0.5 

γ Power-la w inde x of the emissivity 3 
b ( r ) Inner boundary condition of the emissivity 1 − √ 

r in /r 

t 0,h ( t 0,s ) Time delay of the top hat impulse response of reverberation for the hard (soft) Comptonization a s 5.5 × 10 −3 

� t 0,h ( � t 0,s ) Time duration of the top hat impulse response of reverberation for the hard (soft) Comptonization a s 10 × 10 −3 

S 0 ( E ) Fractional contribution of spectral components to the flux b , c , d 0.5 
η0,h ( η0,s ) Constant term of the sensitivity of the hard (soft) Comptonization to change in mass accretion rate e 1 
η1,h ( η1,s ) Gradient term of the sensitivity of the hard (soft) Comptonization to change in mass accretion rate e 0 

a Parameters are required when the reverberation is considered. 
b Each spectral component has its own parameter: S 0 ( E ) consists of S d ( E ), S s ( E ), S (r) s ( E), S h ( E ), and S (r) h ( E) (see Section 3 ). 
c S 0 ( E ) is replaced by η( E ) S 0 ( E ) for timing fits when the spectral pivoting is included (Section 4.2 ). 
d S 0 ( E ) is calculated from spectral models for spectral-timing fits (Section 5 ). 
e Parameters are required for spectral-timing fits (Section 5 ). 

Previous model (prediction) New model without spectral pivoting New model with spectral pivotingPrevious model (fit)

Figure 3. The effect of the model updates on the timing properties. Each figure shows the low (2.4–4.8 keV: black) and high (35–48 keV: magenta) energy band 
power spectra (upper) and phase-lag spectra (middle), with data shown as the stepped line with errors and the model as the smooth curve. The lower panel shows 
the propagation frequency (solid) and generator frequency (dashed) used in the model calculations, with the Keplerian frequency (dash–dotted) for reference. 
Left: predictions from the previous model from K22 (Section 3 ) built from a full spectral-timing fit to the 0.5–10 keV data. Mid-left: fitting with the previous 
model (Section 3 ), ignoring the time-averaged spectrum. Mid-right: extending the model to include a different propagation and generator time-scale (Rapisarda 
et al. 2017 ). This shifts the frequency of the phase-lag peak but does not change the power spectra. We also gave the model the freedom to include damping 
(Mahmoud & Done 2018b ), but the best-fitting value was close to zero, so this is not shown (Section 4.1 ). Right: including spectral pivoting and a difference 
in generator and propagation time-scale (Section 4.2 ). This allows the power spectral normalization of the high-energy band to be lower than at low energies, 
giving a significant impro v ement in the consistency of the model calculations. 
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Table 2. Model parameter values used in Fig. 3 . Common parameter values 
used in all fitting are M BH = 8, N r = 40, r in = 6, r out = 45, B d = B 

(p) 
d = 0 . 03, 

m d = m 

(p) 
d = 0 . 5, γ = 3, and b( r) = 1 − √ 

r in /r . The transition radii are 
fixed to r sh = 17.8, r ds = 32.1 for the left-hand column and r sh = 16, r ds = 

32 for other columns, although these differences are too subtle to become 
important. Other constraints are F var,f = F var,d and D = 0. The mark ‘(f)’ 
means that a value of the corresponding parameter is fixed. 

Symbol Left Mid-left Mid-right Right a 

F var,d 0.8 (f) 0.53 0.59 0.8 (f) 
B f 6 (f) 11.9 342 560 
m f 1.2 (f) 1.50 2.42 2.73 

B 

(p) 
f = B f = B f 80.1 166 

S d (2 . 6 –4 . 8 keV ) 0.001 (f) 0 (f) 0 (f) 0 (f) 
S s (2 . 6 –4 . 8 keV ) 0.356 (f) 0.505 0.471 0.305 
S h (2 . 6 –4 . 8 keV ) 0.330 (f) = 1 − S s ( E ) = 1 − S s ( E ) 0.571 
S 

(r) 
s (2 . 6 –4 . 8 keV ) 0.307 (f) 0 (f) 0 (f) 0 (f) 

S 
(r) 
h (2 . 6 –4 . 8 keV ) 0.006 (f) 0 (f) 0 (f) 0 (f) 

S d (35 –48 keV ) 0 (f) 0 (f) 0 (f) 0 (f) 
S s (35 –48 keV ) 0.213 (f) 0.348 0.277 −0.056 
S h (35 –48 keV ) 0.474 (f) = 1 − S s ( E ) = 1 − S s ( E ) 0.476 
S 

(r) 
s (35 –48 keV ) 0.134 (f) 0 (f) 0 (f) 0 (f) 

S 
(r) 
h (35 –48 keV ) 0.179 (f) 0 (f) 0 (f) 0 (f) 

a S 0 ( E) means η( E ) S 0 ( E ) in this column. 
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iving the K22 model maximal freedom to fit without constraints 
rom the time-averaged energy spectrum. The K22 model al w ays 
as a high-energy-band power spectrum similar to that in the low- 
nergy band everywhere except at the highest frequencies. Yet the 
ata hav e v ery dif ferent po wer spectral normalizations e ven at lo w
requencies where propagation should dominate. 

Plainly, while the previous model from K22 was designed to fit
he data below 10 keV, it does not extrapolate to the higher energies,
o does not adequately describe the physics of the propagation of
uctuations through the flow. This is important as K22 show that 

he propagation speed is a key determinant of the nature of the
ot flow, which can allow large-scale magnetically dominated flows 
magnetically arrested disc – MAD) to be distinguished from those 
ith turbulent dynamo (standard and normal evolution – SANE) 
odels. The poor applicability of our previous model to higher 

nergy bands moti v ates our study to impro v e it. 

.1 Suppressing variability at high energies with a constant 
pectral shape 

he major feature missing in the previous model for the power 
pectra is the strong suppression of fractional variability at high 
nergies. The generation/propagation of fluctuations in the model, 
here slower fluctuations generated outer regions propagate down 

hrough the flow, al w ays leads to an increase in variability with
nergy, as long as the spectrum hardens inwards. In contrast, the 
nsight-HXMT observ ation data sho w that plainly the high-energy 
road-band power spectrum is a factor of ∼3 lower than the low-
nergy power spectrum at all frequencies (Fig. 1 , middle). This
ecrease in fractional variability with energy was not seen in the 
ICER energy band ( � 10 keV ; K22 ). But it has been seen before,

n e.g. the RXTE data of other black hole binary low/hard states
e.g. Nowak et al. 1999 ; Axelsson & Done 2018 for Cyg X-1;

alzac et al. 2003 for XTE J1118 + 480). In the context of other
ropagating fluctuations models, it was modelled by the damping of 
igh-frequency fluctuations as they propagate inwards (Ar ́evalo & 

ttley 2006 ; Rapisarda et al. 2017 ), and by decreasing the intrinsic
 ariability po wer generated in the inner regions (Mahmoud & Done
018b ). To implement these effects in our model, we introduce two
ew parameters. One is a damping parameter D , which suppresses
igh-frequency variability by exp( −Df � t ), where � t is the propaga-
ion time. The damping effect is ignored if D = 0. We also allow the
ntrinsic variability amplitude to be different between the hot flow 

 var,h and disc F var,d (the previous model from K22 has F var,f = F var,d ).
Another observational feature that our previous model fails to 

apture is the discrepancy in the frequency at which the power spectra
in the fP ( f ) representation) and phase-lag spectra peak. The power
pectra and phase-lag spectra calculated by the K22 model have a
imilar peak frequency. This observational property is also seen in 
he RXTE data (e.g. XTE J1550 −564; Rapisarda et al. 2017 ), where
he proposed solution was to allow the propagation time-scale to be
ifferent from the generator time-scale on which the fluctuations are 
enerated. Following this, we separate these time-scales and define 
he propagation frequency with 

 prop ( r) = 

{ 

B 

(p) 
f r −m 

(p) 
f f K ( r) ( r in ≤ r n < r ds ) , 

B 

(p) 
d r −m 

(p) 
d f K ( r) ( r ds ≤ r n < r out ) , 

(4) 

uch that the propagation speed is provided by v p ( r ) = rf prop ( r ).
t is difficult to constrain disc parameters as the disc emission has
egligible contributions to the energy range of interest. Thus we 
 eep emplo ying f gen ( r ) = f prop ( r ) in the variable disc region with
 B 

(p) 
d , m 

(p) 
d ) = ( B d , m d ) = (0 . 03 , 0 . 5). To reduce the number of free

arameters, we assume that f prop ( r ) has the same radial dependence
s f gen ( r ), i.e. m 

(p) 
f = m f . Ev entually, we hav e only one additional

arameter B 

(p) 
f . 

The modified model formalism due to the damping effect is given
n Appendix B . Other additional effects, F var,d �= F var,f and f gen ( r ) �=
 prop ( r ), just alter the power spectrum of intrinsic mass accretion rate
ariability at n th ring | A ( r n , f ) | 2 (equation A1 ) and the propagation
ime from the outer k th ring to the inner n th ring � t k , n (equation A3 ),
espectively, without affecting any other equations containing | A ( r n ,
 ) | 2 and � t k , n . As in the last part of the previous section, we attempt
o reproduce only variability properties based on the propagating 
uctuations process rather than full spectral timing. We keep those 
arameters fixed that are fixed in the previous fit. 
Even with all these additional effects, the model is still not capable

f matching the observation data. The damping parameter D is 
egged to its lower bound of zero, indicating that the damping
escribed abo v e is inef fecti v e in impro ving the fit (Mahmoud et al.
019 ). This is because our model assumes that the intrinsic variability
as a cut-off at the local generator frequency f gen ( r ), as shown
n Fig. 2 (c). This assumption already includes some aspects of
amping. The MRI (Balbus & Ha wle y 1991 , 1998 ) is expected
o produce variability up to quite fast time-scales. However, only 
 ariability slo wer than the local propag ation time can propag ate
nwards as the faster variability is viscously damped out (Churazov, 
ilfanov & Re vni vtse v 2001 ; Co wperthwaite & Reynolds 2014 ;
ogg & Reynolds 2016 ; Ingram 2016 ; Bollimpalli et al. 2020 ;
urner & Reynolds 2021 ). Our assumptions about the intrinsic 
ariability are an approximation of this physical picture. The damp- 
ng parameter being pegged to zero indicates there is no need for
dditional damping effects. We did not find an impro v ement in the
ts using separate variability amplitude between the variable disc 
egion and hot flow region, either. 

Fig. 3 (mid-right) shows the results of a joint fit to the power spectra
or 2.6–4.8 and 35–48 keV and the phase-lag spectrum between 
hese energy bands by allowing f gen ( r ) �= f prop ( r ) for the hot flow. For
MNRAS 519, 4434–4453 (2023) 
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Figure 4. Schematic picture of the effect of spectral pivoting as implemented 
here. Top: instant local energy spectra when the mass accretion rate at the 
corresponding radius is higher than, equal to, and lower than the average 
(dashed, solid, and dotted, respectiv ely). Bottom: light curv es of the local 
flux for different energies, 1 keV (red), 4 keV (green), 16 keV (blue), 64 keV 

(cyan) as marked in the top panel. Each light curve is normalized by its 
average and offset for clarity. The light curves in the lower energy bands (red 
and green) are positively correlated with the local mass accretion rate, but the 
fluctuations have lower amplitude as the energy increases, going to zero at 
the pivot point at 16 keV, and then switching to ne gativ e correlation at higher 
energies (cyan). 
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larity, we remo v ed the other additional effects that did not make a
ifference, i.e. F var,d = F var,f and D = 0. 
Although we see a slightly better match to the observed peak

requency of the phase-lag spectrum than the previous fit, the
odel still underestimates its amplitude. More importantly, we still

o not solve the essential issue: the model calculates similar or
arger variability for higher energy bands, inconsistent with the
bservation that the power spectral amplitude is larger for the
ower energy band. Mahmoud & Done ( 2018b ) and Mahmoud et al.
 2019 ) introduce more complex radial dependence for the intrinsic
 ariability, emissi vity, and damping to capture energy-dependent
 ariability properties. Ho we ver , some assumptions in volved with
hese complications remain to be tested. We do not explore the
omplex radial structure further and conclude that those additional
ffects implemented here are less effective than required by the high
ignal-to-noise ratio data obtained by Insight-HXMT . 

We note that the difficulty in reproducing the observation data here
ies in joint fitting to the power spectra and phase-lag spectrum. It
s possible to reproduce power spectra for these energy bands with
he current model fairly well, ignoring the phase-lag spectrum. In
his case, ho we ver, the lo wer energy photons would come from inner
e gions, because inner re gions are more variable than outer regions,
nd predict soft lags, which is completely in disagreement with the
bserved hard lags. This points to the importance of modelling cross-
pectra and power spectra. 

.2 Spectral pi v oting 

o far, we have assumed that the spectral shape of each component
oes not vary in time. Ho we ver, this is unphysical because mass
ccretion rate fluctuations make spectral parameters, e.g. the optical
epth and electron temperature, vary on short time-scales (Malzac
t al. 2003 ; Gandhi et al. 2008 ; Yamada et al. 2013 ; Bhargava
t al. 2022 ). This o v ersimplification limits the model’s flexibility to
eproduce energy-dependent variability data. Hence we now allow
he spectral shapes to fluctuate (Veledina 2016 , 2018 ; Mastroserio
t al. 2018 , 2019 , 2021 ), along with their amplitude. The schematic
icture of the spectral pivoting is shown in Fig. 4 (top). 
Here, we give concise explanations of how the spectral pivoting is

mplemented and what the model gets to be able to handle with this
pdate. More detailed formalism is found in Appendix C . A constant
pectral shape means that the spectrum at every energy reacts to
ass accretion fluctuations in the same way. We consider the mass

ccretion rate and energy spectrum at a certain radius. By defining the
verage and difference from the average as ṁ 0 and � ̇m ( t) for the mass
ccretion rate and as S 0 ( E ) and � S ( E , t ) for the spectrum, the constant
pectral shape is equi v alent to �S( E , t) /S 0 ( E ) = � ̇m ( t) / ̇m 0 , which
s independent of energy E . To let the spectral shape vary in time,
e give the spectrum sensitivity to � ̇m ( t) as a function of energy,
( E ), and redefine �S( E , t) /S 0 ( E ) = η( E) � ̇m ( t) / ̇m 0 , which now
epends on energy. The amplitude of sensitivity parameter | η( E ) |
egulates how sensitive the spectrum is to a change in the mass
ccretion rate from its average, while its sign determines whether the
pectrum reacts positively or negatively. The spectrum gets higher
lower) with an increase in mass accretion rate if η( E ) > 0 ( < 0). The
nergy at which η( E ) crosses zero, called the pivoting point, does
ot react to a change in mass accretion rate. Light curves of local
ux for different energies are illustrated in Fig. 4 (bottom). We note

hat we do not simulate light curves in the model calculations. The
ecrease in η( E ) with energy, i.e. the spectrum being less sensitive
o � ̇m ( t) for higher energies, could let the power spectrum decrease
ith energy, as observed for MAXI J1820 + 070, even if the mass
NRAS 519, 4434–4453 (2023) 
ccretion rate is more variable for central regions emitting higher
nergy photons. In our implementation, there arises no lag between
ifferent energies from the spectral pivoting itself except for the
hase lag of π when η( E 1 ) η( E 2 ) < 0. Our new model shares this
eature of spectral pivoting with the model developed by Veledina
 2016 , 2018 ). The new model returns to the previous one by setting
( E ) = 1. 
Each spectral component is expected to show its own sensitivity

attern. We give the sensitivity parameter to each spectral component,
Y ( E) (Y = d , s , h ), where the subscripts stand the variable disc,
oft Comptonization, and hard Comptonization, respectively. With
he implementation of spectral pivoting, all S Y ( E) (Y = d , s , h ) con-
ained in the analytic expressions of power spectra and cross-spectra
s replaced by ηY ( E ) S Y ( E ) (see Appendix C for the deri v ation). This
eans that the model’s flexibility is not bound by the constraint ( 3 )

n ymore because time-av eraged spectra al w ays appear as the product
ith their sensitivity. In addition, ηY ( E ) S Y ( E ) can be ne gativ e in

ontrast to 0 ≤ S Y ( E ) ≤ 1. The spectral pi voting gi ves freedom to the
odel in this way. 
We attempt to fit the variability properties with the new model.
e have ηY ( E ) S Y ( E ) as model parameters, instead of S Y ( E ). The
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Figure 5. Joint fit to six power spectra (top) and five phase-lag spectra 
(bottom) across 2.6–48 keV with our new model including the spectral 
pivoting. We include two Lorentzian functions for the QPO (dashed) and 
harmonic (dotted). In the calculation of phase-lag spectra, the lowest band of 
2.6–4.8 keV is chosen as the reference band. The lower plot for each panel is 
the difference between data and model divided by 1 σ errors. The new model 
including the spectral pivot successfully reproduces all the timing data across 
this bandpass. 
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egligible disc emission S d ( E ) = 0 results in ηd ( E ) S d ( E ) = 0. We fix
 = 0, in which all intrinsic variability propagates inwards without 

ny loss. We also fix F var,d = F var,f to the typical value of 0.8 because
he sensitivity parameter η( E ) can regulate the variability amplitude. 

The simultaneous fit to the power spectra for 2.6–4.8 and 35–
8 keV and the phase-lag spectrum between these energy bands 
ith the new model is shown in Fig. 3 (right). We see significant

mpro v ement in variability modelling by allowing the spectral shapes 
o vary in time. Our new model captures the energy-dependent vari- 
bility, pointing to the importance of spectral pivoting in modelling 
ariability at high energies. 

To study the variability for a continuous energy range, we split
nergy between 2.6–4.8 keV (LE) and 35–48 keV (HE) into four
ands, i.e. 4.8–7 keV (LE), 7–11 keV (LE), 11–23 keV (ME), and 23–
5 keV (ME), where the telescopes used are specified in parenthesis, 
nd attempt to reproduce power spectra for these six energy bands 
nd phase-lag spectra with respect to the lowest energy band for the
est of five energy bands. We minimize 

 

j,k 

(
P data ( E j , f k ) − P model ( E j , f k ) 

�P data ( E j , f k ) 

)2 

+ 

∑ 

j,k 
( E j �= E r ) 

(
φdata ( E r , E j , f k ) − φmodel ( E r , E j , f k ) 

�φdata ( E r , E j , f k ) 

)2 

(5) 

hrough the fit, where E j is each energy band and E r = 2 . 6 –4 . 8 keV
he reference band. For more complete modelling, we add two 
orentzian functions to model the QPOs in power spectra by using

he XSPEC model lorentz . To fix the centroid frequency and width
f the QPO models, we perform a phenomenological fit to power 
pectra with the sum of four Lorentzian functions, where two of them
re used to model each bump of the broad-band variability. We then
xtract the centroid and width of (3 . 66 × 10 −2 Hz , 1 . 20 × 10 −2 Hz )
or the QPO fundamental, and (9 . 44 × 10 −2 Hz , 1 . 16 × 10 −1 Hz )
or the second harmonic as typical values. Thus, the lorentz model 
as only one free parameter, the normalization. On the other hand, 
e do not use any additional models in phase-lag spectra due to

he relatively small QPO features. The results of the joint fit to six
ower spectra and five phase-lag spectra are shown in Fig. 5 . Each
omponent forming power spectra is explicitly plotted with dashed 
QPOs) and dotted (broad-band) lines only for the highest energy 
and of 35–48 keV. Model parameter values are summarized in 
able 3 . 
We find that the new model matches observations well for all 

nergy bands whilst keeping parameter values similar to those 
ound in the joint fitting for 2.4–4.8 and 35–48 keV only (Fig. 3 ,
ight). It is interesting to note that the spectral parameter for the
oft Comptonization component μs ( E ) S s ( E ) decreases with energy
nd finally reaches a ne gativ e value at the highest energy band of
5–48 keV. This means that the soft Comptonization component 
ncreases for an increase in mass accretion rate at low energies 
 � 35 keV ), whereas it decreases at high energies ( � 35 keV ), showing
he pivoting point of ∼35 keV . 

Although the broad-band variability has been studied with Insight- 
XMT observations (e.g. Wang et al. 2020 ; Yang et al. 2022 ), we

ucceeded in reproducing it with a physically moti v ated model for
he first time. In addition, while propagating fluctuations models have 
een applied up to ∼35 keV (Mahmoud & Done 2018a , b ) with RXTE
bservations, we extend the energy range up to 48 keV using Insight-
XMT observations with significantly impro v ed residuals. Our 

uccessful modelling shows the propagating fluctuations scenario 
olds good up to high-energy bands, keeping it the most plausible
xplanation for the aperiodic variability. 

 J O I N T  SPECTRAL-TIMING  FIT  WI TH  

PECTRAL  PIVOTING  

e come back to implement a full spectral-timing analysis, rather 
han just the series of timing analyses abo v e. We attempt to fit the
nergy-dependent timing properties from 2.6–48 keV along with the 
ime-average energy spectrum at the corresponding energy range by 
MNRAS 519, 4434–4453 (2023) 
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Table 3. Model parameter values used in 
Fig. 5 . Fixed parameter values are the same 
as in Table 2 . 

Symbol Value 

F var,d 0.8 (f) 
B f 401 
m f 2.59 

B 

(p) 
f 108 

ηs S s (2 . 6 –4 . 8 keV ) 0.315 
ηh S h (2 . 6 –4 . 8 keV ) 0.588 
ηs S s (4 . 8 –7 keV ) 0.242 
ηh S h (4 . 8 –7 keV ) 0.601 
ηs S s (7 –11 keV ) 0.189 
ηh S h (7 –11 keV ) 0.617 
ηs S s (11 –23 keV ) 0.116 
ηh S h (11 –23 keV ) 0.549 
ηs S s (23 –35 keV ) 0.049 
ηh S h (23 –35 keV ) 0.498 
ηs S s (35 –48 keV ) −0.052 
ηh S h (35 –48 keV ) 0.484 

χ2 /degrees of 
freedom 

1095.0/457 
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inimizing 

 

i 

(
S data ( E i ) − S model ( E i ) 

�S data ( E i ) 

)2 

+ 

∑ 

j,k 

(
P data ( E j , f k ) − P model ( E j , f k ) 

�P data ( E j , f k ) 

)2 

+ 

∑ 

j,k 
( E j �= E r ) 

(
φdata ( E r , E j , f k ) − φmodel ( E r , E j , f k ) 

�φdata ( E r , E j , f k ) 

)2 

, (6) 

here S data ( E ) and � S data ( E ) are the observ ed time-av eraged spec-
rum and its 1 σ error, S model ( E ) the modelled time-averaged spectrum,
nd E i each energy bin in the time-averaged spectrum. We remove
lear calibration features seen in the ME spectrum for 20–24 keV
light green regions in Fig. 1 , top) from the spectral modelling. 

To model the energy spectrum, we account for not only the soft and
ard Comptonization components but their disc reflection. We ignore
mission from the turbulent disc due to its negligible contribution
bo v e the lowest energy of 2.6 keV (few per cent at 2.6 keV in the
pectral fit found in K22 ). We also ignore the negligible effect of
alactic absorption. We use the XSPEC model nthcomp (Zdziarski,
ohnson & Magdziarz 1996 ; Życki, Done & Smith 1999 ) for the
omptonization components, and relxillCp provided in RELXILL

ersion 2.0 (Garc ́ıa et al. 2014 ; Dauser et al. 2022 ) for the reflected
omponents. Finally, we use 

 nthcomp + relxillCp ) + ( nthcomp + relxillCp ) , (7) 

here each bracket corresponds to the soft Comptonization/reflection
nd hard Comptonization/reflection, respectively. 

To connect the time-averaged spectrum and variability consis-
ently, we take reverberation into account in our timing model.
ts implementation is updated from that in K22 mainly due to the
nclusion of spectral pivoting. We summarize how the reverberation
ehaves in our new model here, while the detailed formalism is
escribed in Appendix D . 
The illuminating Comptonization spectrum changing its shape

ith time results in the reflected spectrum also changing its shape
NRAS 519, 4434–4453 (2023) 
ith time. As in the previous section, we consider a certain
adius. Along with the mass accretion rate and direct emission,
e account for the reflected emission associated with the direct

mission. Defining the average and difference from it as S (r) 0 ( E) and
 S (r) ( E , t ), we assume �S (r) ( E, t) /S (r) 0 ( E) = ( �S( E, t) /S 0 ( E)) ⊗
 ( t) = η( E)( � ̇m 0 ( t) / ̇m 0 ) ⊗ h ( t). We use the superscript ‘(r)’ to
tand for the reflected emission. The convolution in time is denoted by
, and h ( t ) is called the impulse response, which is the time evolution

f reflected emission for a flash of illumination. All information as
o the disc response, such as the delay for the direct emission due to
n additional light crossing path and the duration due to the different
elay times for different locations of reflection, are encoded in h ( t ). 
The relation of spectral variation between the direct and reflected

mission means that the reflected emission follo ws v ariations of the
irect emission at the corresponding energy with some time delay,
s long as the variability is slow enough not to be washed out via
eprocessing, i.e. via the operation of the convolution. In the simple
ase of h ( t ) = δ( t − τ ), variations of the reflected emission exactly
ag behind those of the direct emission with the time delay of τ :
S (r) ( E, t) /S (r) 0 ( E) = �S( E, t − τ ) /S 0 ( E). 
Each reflected component has its own impulse response as each

omptonization component illuminates different parts of the accre-
ion flow (Zdziarski et al. 2021a ). We define the impulse response
ith a top-hat function: 

 Y ( t) = 

{
1 /�t 0 , Y ( | t − t 0 , Y | < �t 0 , Y / 2) , 
0 ( otherwise ) , 

(8) 

here Y = s, h are associated with the soft and hard Comptonization
omponents, respectively. The parameters t 0,Y and � t 0,Y characterize
he delay and duration, respectively. More realistic impulse responses
re required, especially for low-energy bands E � 2 keV , where
he quasi-thermal emission due to the reprocessing dominates high-
requency variability ( � 1 Hz ). However, the top-hat function appears
o be a good approximation for high energies, where Comptonization
argely determines variability properties. 

F or the consistenc y between the spectral modelling and variability
odelling, we calculate the fractional time-averaged spectra required

n our timing model, S d ( E )( = 0), S s ( E ), S h ( E ), S (r) s ( E), S (r) h ( E),
rom the spectral models, nthcomp and relxillCp . To obtain
s ( E ) S s ( E ), ηh ( E ) S h ( E ), ηs ( E ) S (r) s ( E ), and ηh ( E ) S (r) s ( E ), it is simple

o assume a function for the sensitivity parameters ηY ( E) (Y = s , h ).
e note that we do not need ηd ( E ) due to S d ( E ) = 0. Given that

Y ( E ) can switch its sign at the pivoting point and that the fractional
ms of the broad-band variability roughly changes with energy
ogarithmically (Gierli ́nski & Zdziarski 2005 ; Yang et al. 2022 ),
t is fair to make a phenomenological assumption of 

Y ( E) = η0 , Y + η1 , Y log 10 ( E [ keV ] ) . (9) 

he model parameter η0,Y is the sensitivity at 1 keV , while η1,Y 

etermines its gradient to energy. 
We note the difference in the model calculations between the

iming fits (Section 4.2 ) and spectral-timing fits. In the timing fits,
( E ) S 0 ( E ) is a model parameter, and it is impossible to disentangle

his product. On the other hand, S 0 ( E ) and η( E ) are separately
odelled in the spectral-timing fits. The former is calculated from

pectral models, the latter is from equation ( 9 ). 
In the joint spectral-timing fit, we fix the seed photon temperature

f Comptonization components to the typical disc temperature in
his state, k T seed , s = k T seed , h = 0 . 2 keV (De Marco et al. 2021 ; K22 ).
ince the electron temperature is difficult to constrain from the energy
and of interest, we fix it to k T e , s = k T e , h = 23 keV , as in K22 . While
e allow the inner radius of the reflector for the hard Comptonization
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Figure 6. Spectral-timing fit to the time-averaged energy spectrum (left), six power spectra (middle), and five phase-lag spectra (right) across 2.6–48 keV with 
our new model including spectral pivoting. In the left-hand panel, the soft Comptonization and its associated reflection are plotted with the green and light green 
lines, while the hard Comptonization and its associated reflection are plotted with the blue and light blue lines. The black line shows their sum. We include the 
effect of galactic absorption of N H = 1 . 4 × 10 21 cm 

−2 on the spectral components. The colours of the shaded regions in the energy spectral plot show the energy 
band used in the power spectra and phase-lag spectra. In the middle panel, the power spectrum at the highest energy band includes the QPO and harmonic, as in 
Fig. 5 . The bottom panels show residuals. The data-to-model ratio is used for the energy spectrum, while the difference between data and model divided by 1 σ
errors is used for power spectra and phase-lag spectra. We successfully fit all the data in this bandpass with our updated model including the spectral pivoting, 
except for a slight underestimate of the phase-lag spectrum around the peak for the highest energy band. 
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Table 4. Model parameter v alues deri ved from the joint spectral-timing fit 
in Fig. 6 . Fixed parameters related to the spectrum are the seed photon tem- 
perature k T seed , s = k T seed , h = 0 . 2 keV , electron temperature k T e , s = k T e , h = 

23 keV , Fe abundance Z Fe = 1.1, inclination angle i = 66 ◦, black hole 
spin a ∗ = 0, electron density N e = 10 20 cm 

−3 , inner radius of reflection 
region R in,s = 45 R g , and outer radii of reflection region R out,s = R out,h = 

1000 R g . The subsubscript ‘s’ (‘h’) denotes the soft (hard) Comptonization or 
its associated reflection component. Fixed parameters related to variability are 
the same as in Table 2 in addition to the extra parameters about reverberation, 
t 0 , s = t 0 , h = 6 ms and �t 0 , s = �t 0 , h = 10 ms . 

Component Model Symbol Value 

Spectral parameters 

Soft Comptonization 
and reflection 

nthcomp � s 1 .81 

norm s 1 .38 
relxillCp log 10 ξ s 3 .44 

norm 

(r) 
s 0 .0395 

Hard Comptonization 
and reflection 

nthcomp � h 1 .50 

norm h 2 .11 
relxillCp R in,h 78 

log 10 ξh 1 .70 
norm 

(r) 
h 0 .0328 

Variability parameters 

Broad-band Our model B f 862 
m f 2 .81 

B 

(p) 
f 189 

η0,s 1 .023 
η1,s − 0 .568 
η0,h 1 .527 
η1,h − 0 .580 

χ2 /d.o.f. 1993 .1/1795 
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omponent to be free, we fix that for the soft Comptonization com-
onent to R in,s = 45 R g corresponding to the outer edge of the variable
ow located at r out = 45. Following K22 , we fix the inclination angle

o i = 66 ◦ (Torres et al. 2020 ) and Fe abundance to Z Fe = 1.1. We
lso set the black hole spin to a ∗ = 0, consistent with r in = 6 in the
iming model, and use the high electron density of N e = 10 20 cm 

−3 

Garc ́ıa et al. 2016 ; Mastroserio et al. 2021 ). The delay and duration
f the impulse response are, in principle, derived from the location 
nd geometry of illuminating source and reflector. Ho we ver, in 
he geometry assumed, the time-scales of reverberation � 10 ms 
corresponding to the light crossing of � 250 R g for M BH = 8 M �)
re shorter than variability time-scales of interest (20 ms –100 s). 
n addition, reverberation signatures are unclear across the energy 
ands of interest (2 . 6 –48 keV ), and small alterations of the impulse
esponse due to small changes of the accretion flow geometry do 
ot significantly affect the variability properties. Thus, we simply 
x t 0 , s = t 0 , h = 6 ms and �t 0 , s = �t 0 , h = 10 ms as typical values.
he top-hat impulse response with these values appears to be good 
pproximations of more realistic ones ( K22 ). 

The results of simultaneous modelling of the energy spectrum, 
ix power spectra, and five phase-lag spectra are shown in Fig. 6 .
he comparison between the data and model is also plotted as

he ratio for the energy spectrum and the dif ference di vided by
 σ errors for the variability. Model parameter values are found in 
able 4 . Overall, our new model successfully reproduces both time- 
veraged and variability properties, although the discrepancies are 
een in the phase-lag spectrum between 35–48 and 2.6–4.8 keV 

magenta), which is discussed in Section 6.3 . This modelling is the
rst simultaneous fit to spectrum and variability using our model. 
he uncertainties of the derived parameter values are e v aluated with
 Markov chain Monte Carlo (MCMC) analysis in Appendix E . 

The spectral v ariation deri ved from the fit is shown in Fig. 7 .
he spectra for the mass accretion rate being its average and double

he average are plotted with solid and dashed lines. For illustration
urposes, we ignore all effects from the impulse response for 
everberation, such as time delay, i.e. we assume h ( t ) = δ( t ). This
eans that the Comptonization and its associated reflection behave 

ompletely in the same way, �S( E , t) /S 0 ( E ) = �S (r) ( E, t) /S (r) 0 ( E).
enerally, all spectra are less sensitive for higher energies to mass
ccretion rate fluctuations, which results in a decrease in the power
pectrum with energy. We see the pivoting point at ∼50 keV for the
MNRAS 519, 4434–4453 (2023) 
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Figure 7. Changes in the shape of the energy spectral components due 
to changes in mass accretion rate derived from the spectral-timing fit in 
Fig. 6 . The average energy spectrum for the soft (green) and hard (blue) 
Comptonization components and their reflected emission (pale green and 
c yan, respectiv ely) are shown as solid lines, while the dashed lines show the 
effect of doubling the mass accretion rate. 

Previous model (K22)
Our model

Figure 8. Propagation frequency (solid) as a function of radius derived from 

the spectral-timing fit. Red, green, and blue colours denote the variable disc, 
soft Comptonization, and hard Comptonization re gions, respectiv ely. The 
propagation frequenc y deriv ed from our previous work and predicted from 

theoretical models are plotted with a dashed line and dash–dotted lines (see 
K22 for details). A black hole mass of M BH = 8 M � is assumed. The 
Keplerian frequency is also plotted with a grey dash–dotted line for reference. 
We caution that none of these models except the JED-SAD has an explicit 
transition from the flow to the disc. 
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oft Comptonization and its reflection, which roughly agrees with
hat at ∼35 keV derived from the fit only to the timing properties in
he previous section. 

 DISCUSSION  

.1 Generator time-scale and propagation time-scale 

he characteristic time-scales on which the fluctuations are propa-
ated at each radius are derived from the spectral-timing fit (Fig. 6 ).
e compare the propagation frequency derived (solid) to those

redicted by different hot flow models (dash–dotted) in Fig. 8 .
he theoretical propagation frequencies for the advection-dominated
ccretion flow (ADAF; Narayan, Kato & Honma 1997 ), standard and
ormal evolution (SANE; Narayan et al. 2012 ), magnetically arrested
isc (MAD; Narayan et al. 2012 ), and jet emitting disc (JED; Marcel
NRAS 519, 4434–4453 (2023) 
t al. 2018 ) are calculated in a standard way by dividing the accretion
peed by radius assuming M BH = 8 M � (see K22 for details). The
ropagation frequenc y deriv ed from our previous model from K22
s also plotted (dashed). 

In K22 , we found fairly good agreement of the derived propagation
ime-scales with those in ADAF, SANE, and JED rather than MAD.
he propagation time-scale derived from our new model is now
ot very similar to any theoretical predictions. Here, allowing the
enerator and propagation frequencies to be different makes their
adial dependence steeper, i.e. from f prop ( r ) ∝ r −2.7 to f prop ( r ) ∝ r −4.31 .
his steep radial dependence is required to reproduce both the
bserved large phase lags and high-frequency broad-band variability
imultaneously. Indeed, the propagation time-scale derived is robust
gainst uncertainties of the relationship between the generator time-
cale and propagation time-scale. Using our new model including
he spectral pivoting, the assumption of f gen ( r ) = f prop ( r ) also gives a
imilar propagation time-scale, although the fit is not as good as that
btained in the previous section with f gen ( r ) �= f prop ( r ). The key feature
hat our new model requires is a slow propagation speed enough to
eproduce observed phase lags. The propagation time-scale of MAD
brown dash–dotted line) is too short to explain the observed phase
ags. Thus, our results still prefer SANE rather than MAD, although

AXI J1820 + 070 displays a powerful jet (Bright et al. 2020 ). 

.2 Origin of QPOs 

ur full spectral-timing modelling accounts for all the X-ray spec-
rum and rapid variability except for the QPOs. We model these QPOs
y adding peaked Lorentzian components in the power spectra. No
xtra component is added to the phase-lag spectra simply because the
PO features are not very clear across 2.6–48 keV. We did not add

ny other spectral components for the QPOs, implicitly assuming
hat the QPO is a modulation of the spectral components already
ncluded in the model (multiplicative) rather than being associated
ith an additional spectral component (additive). 
Our successful modelling does not give much room for an

dditional emission component only related to the QPOs (Fig. 6 ),
upporting the assumption abo v e. This result is consistent with a
PO produced predominantly from a global mode of flow rather than

n intrinsic change in intensity with QPO frequency. We specifically
ave in mind the Lense–Thirring (vertical) precession of the entire
ot flow, where the observed luminosity of the Comptonization
omponent(s), including all their stochastic variability, are modulated
y the changing projected area of the translucent hot flow as the
iewing angle changes with QPO phase (Fragile et al. 2007 ; Ingram
t al. 2009 ; Ingram & Done 2011 , 2012 ). This picture agrees with
he new polarization results for Cyg X-1 in the low/hard state,
hich requires the hot X-ray emitting plasma to be radially extended

Krawczynski et al. 2022 ). Conversely, the alternative model of a
recessing jet suggested by Ma et al. ( 2021 ) is challenged by the
olarization results because it requires the hot X-ray emitting region
o align with the jet. 

.3 Limitations of our new model 

ur new model gives a poor fit to both the energy spectrum and
hase lags beyond ∼40–50 keV. From Fig. 6 (left), the spectral
odel clearly underestimates the data abo v e ∼100 keV. The hard
omptonization spectrum rolls o v er too fast to match the observed
ata. The comparison of the phase-lag spectrum between the model
nd data at high energies is shown in Fig. 9 . The model phase lags
ncrease smoothly with energy to ∼40 keV (Fig. 6 , right) but then
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Figure 9. The predicted high-energy phase lags (lines) versus the data 
(points), calculated using the standard 2.6–5.8 keV reference band. The lowest 
energy band on this plot is 35–48 keV (magenta), which is the highest energy 
band included in the spectral-timing fits. The predicted phase lags at higher 
energies saturate beyond 40 k eV, unlik e the data, which show a clear increase 
in phase lag with energy, pointing out the limitations of the model. 
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aturates to a constant value rather than continually increasing as 
n the data. The lag behaviour arises as the fraction of the total
pectrum that is made of the hard (and long lagged) Comptonization 
pectrum increases up to around ∼40 keV , but after this point, the
ard Comptonization dominates, leading to the saturation of lag. 
The spectral mismatch could be fixed if there is additional stratifi-

ation of the energy spectrum of the hot flow, so the very innermost
egions produce an even hotter/harder Comptonization component. 
n many ways, this is quite natural. The two Comptonization compo- 
ents used here for the spectral decomposition are only an approxima- 
ion to a continuous flow with (presumably) continuous stratification, 
ven if we do expect there physically to be two main regions. Close
o the disc, seed photons for Comptonization are predominantly 
rom the disc. Ho we ver, it is quite easy for this Comptonization
o become optically thick along the equatorial direction, shielding 
he inner regions from the disc photons so that seed photons are
redominantly from cyclo-synchrotron (Poutanen & Veledina 2014 ). 
one the less, there could still be some radial temperature/spectral 
ardness gradients in this second region that could produce additional 
missions at the hardest energies (Poutanen & Veledina 2014 ). We 
ote that the JED models (e.g. Marcel et al. 2018 ) also predict a
ontinuously increasing temperature/harder spectrum with radius in 
heir hot flow. 

Ho we ver, including the additional harder Comptonization compo- 
ent probably does not fully solve issues with the phase lag, as the
mount of increased lag should be rather small as the propagation 
peed is already high. Yet the data show a large increase in lag
etween high-energy bands. It seems more likely that there are other 
actors at work affecting the lags, potentially related to changing 
emperature in the flow. 

There is another feature that is lacking from our new model. It is a
hysical description of the spectral pivoting from the Comptonization 
rocess. Currently, the model assumes that the spectra pivot in a 
ynchronous way, i.e. the local spectrum at every energy responds to 
uctuations of the local mass accretion rate simultaneously. Although 

he magnitude of the response can be different between different 
nergies, as seen in Fig. 7 , there is no causal connection between
hem. There can be 0 or π of phase lags arising from the spectral
ivoting itself (the phase lag of π arises if one energy band is abo v e
he pivoting point and the other band is below it, i.e. η( E 1 ) η( E 2 ) <
). Thus, in our new model, the lags between different energies are
till due to the propagating fluctuation process, as is the case for the
odel developed by Veledina ( 2016 , 2018 ). The spectral pivoting

mplemented in our new model can strongly af fect po wer spectra
ut has only a relatively mild effect on phase-lag spectra. Indeed,
ur new model is able to reproduce energy-dependent power spectra 
airly well up to ∼100 keV , even though it fails to match the phase-lag
pectra. 

Ho we ver, the physical picture of Comptonization described abo v e
hould give a characteristic spectral pivoting pattern. A fluctuation 
rom the edge of the truncated disc first gives a change in seed photons
o the soft Comptonization. Assuming an increase in seed photons, 
t increases the Compton cooling on the light travel time without any
hange in electron heating, so the spectrum softens. Then, after the
ccretion time-scale (propagation time-scale), the same fluctuation 
odulates the soft Comptonization by increasing the electron density, 

ncreasing the heating rate, and causing the spectrum to harden. This
ives an asynchronous rocking of the soft Comptonization, where 
wo mutually correlated but lagged variability sources form its time- 
ependent behaviour. By contrast, in the hard Comptonization region, 
he fluctuation gives a synchronous change in seed photons and 
lectron heating as both are produced together around its outer edge.
he synchronous pivoting implemented in our model may be limiting 

ts ability to properly model the data, as it is suppressing a real lag
hat occurs from the two time-scales propagation mechanism in the 
oft Comptonization. 

It is worth noting that our implementation of the spectral pivoting
s different from that in the RELTRANS model (e.g. Mastroserio et al.
018 ; Ingram et al. 2019 ). Mastroserio et al. ( 2018 , 2021 ) and
astroserio, Ingram & van der Klis ( 2019 ) consider the non-linear

ffects in the time-varying continuum spectrum and have two variable 
erms in its expression to allow lags to arise from the spectral pivoting
tself (Kotov et al. 2001 ). Ho we ver, not specifying the underlying
rocess causing the spectral pivoting may make RELTRANS too 
exible in producing the observed hard-lag data. On the other hand,
ur new model has only one variable term, i.e. the local mass
ccretion rate, in the expression of the local spectrum. The local
pectrum varies linearly to this term, which does not produce lags
xcept for π. As mentioned above, our model relies on the hard lags
aused by the combination of the propagating fluctuations process 
nd energy-dependent emission profile (Veledina 2016 , 2018 ). 

We suspect that this lack of a physical spectral pivoting model,
ncluding the light crossing time spectral softening and the propaga- 
ion time, is the major reason our new model fails to fit the phase-lag
pectra from 50 to 150 keV. This more physical model for spectral
ivoting is beyond the scope of this paper but will be considered in
uture work. 

 C O N C L U S I O N S  

e have studied X-ray spectral-timing properties of the black hole 
inary MAXI J1820 + 070 in the bright low/hard state using Insight-
XMT observation data. P articularly, we hav e focused on the energy-
ependent broad-band variability on time-scales from milliseconds 
o seconds. 

We started with testing our previous model from K22 , which
ncluded the propagating fluctuations process and reverberation, and 
uccessfully explained soft X-ray timing properties ( < 10 keV ), and 
ound that it cannot be applied to higher energy bands. The key
ariability feature that our previous model missed was the decrease 
n fractional power spectrum with energy abo v e ∼10 keV , which is
ifficult to explain with the simple propagating fluctuations picture 
MNRAS 519, 4434–4453 (2023) 
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ut is typically observed (Nowak et al. 1999 ; Malzac et al. 2003 ;
xelsson & Done 2018 ). We have seen that additional effects
roposed in the literature, such as the damping (Rapisarda et al. 2017 ;
ahmoud & Done 2018b ), are not very ef fecti ve in reproducing both

bserved power spectra and phase-lag spectrum simultaneously. 
We updated our model by implementing spectral pivoting. This

s physically expected in a Comptonization model with fluctuating
ower (Malzac et al. 2003 ; Gandhi et al. 2008 ; Veledina 2016 ;
astroserio et al. 2018 ). This, plus allowing the propagation speed to

e different from the time-scale on which fluctuations are generated,
llows us to reproduce both power spectra and phase-lag spectra
cross the 2.6–48 keV band. The pivoting reduces the amplitude
f the response of the spectrum at high energies compared to
ow energies, suppressing the power spectral normalization at high
nergies but keeping its shape. We are finally able to do a full spectral-
iming fit in the 2–50 keV bandpass, demonstrating that our timing
odel can be self-consistently combined with spectral models. 
The propagation derived from the spectral-timing fit fa v ours SANE

 v er MAD, as the propagation speed is too fast to explain the
bserved lags for MAD. Our spectral model for the accretion flow
onsists of emission from the turbulent disc, plus soft and hard
omptonization regions and their associated disc reflection. These

pectral components fit all the emissions in our bandpass, and their
iming components fit all of the power spectra and phase lags apart
rom the QPO. Thus there is very little room for any additional
pectral component to make the QPO, supporting models where the
POs originate from a global modulation (multiplicative process) of

he existing hot flow such as the Lense–Thirring precession (Ingram
t al. 2009 ) rather than e.g. an additional component from the jet (Ma
t al. 2021 ). 

None the less, our new model still has some limitations, with clear
iscrepancies with data abo v e ∼40 keV . The observ ed phase lags
eep on increasing up to ∼150 keV while those in our model saturate
bo v e ∼40 keV . These may point to a more complex description of
pectral pivoting and/or additional spectral stratification of the inner
arts of the hot flow, but clearly, they show that the data are better
han the best current models of the hot flow. We stress that this is
 moti v ation for better physical modelling of the flow so that we
an robustly use the observed spectral and timing data to explore the
nderlying nature and geometry of the accretion flow in the region
here the jet is launched. 
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PPENDIX  A :  SUMMARY  O F  O U R  P R E V I O U S  

O D E L  

e give the detailed formalism of our model in the whole appendix.
e start with the summary of our previous model presented in 
22 before formulating model updates made in this work in the 

ubsequent appendices. We note that while we assume three radially 
tratified spectral components as the variable flow, i.e. N s = 3 
see Fig. 2 a), the formalism can be straightforwardly applied to 
n arbitrary number of spectral components. Needless to say, the 
ormalism is the simplest for the single spectral component, N s = 1.

We split the variable flow ranging from r in to r out into N r rings
ogarithmically, such that the central radius of the n th ring, r n , and
he distance between neighbouring central radii, � r n = r n − r n + 1 ,
ollow � r n / r n = constant ( n = 1, 2, ..., N r from outer to inner rings).

e use the radius r n in units of gravitational radii R g = GM BH / c 2 ,
here G, M BH , and c are the gravitational constant, black hole mass,

nd speed of light in v acuum, respecti vely. The number of rings
 r determines the resolution of the model calculation (Ingram & 

an der Klis 2013 ). The larger number of N r allows more accurate
alculations of power spectra and cross-spectra for high frequencies 
t the expense of computation efficiency. 
The mass accretion rate varies stochastically everywhere in the 
 ariable flo w. We define this intrinsically fluctuating mass accretion
ate for each ring as the product of its mean m 0 and time-variable term
 ( r n , t ) having the mean of unity, μ = 〈 a ( r n , t ) 〉 t = 1, where t denotes
ime. Employing a dimensionless mass accretion rate prescription, 
e set ṁ 0 = 1. We assume that the power spectrum of a ( r n , t ), | A ( r n ,

 ) | 2 , is provided by a zero-centred Lorentzian function with the cut-
ff frequency equal to the generator frequency f gen ( r n ), 

 A ( r n , f ) | 2 = 

2 σ 2 

πμ2 

f gen ( r n ) 

f 2 + ( f gen ( r n )) 2 
, (A1) 

here f is the F ourier frequenc y and σ 2 the variance of a ( r n , t ). In the
xpression ( A1 ), we employ the normalized power spectra such that
heir inte gral o v er positiv e frequenc y corresponds to ( σ / μ) 2 . We use
he parameter F var to set the variance through σ/μ = F var / 

√ 

N dec ,
here N dec is the number of rings per radial decade and thus, F var is

he fractional variability per radial decade. The generator frequency 
s defined as equation ( 1 ) (see also Fig. 2 c). Sample power spectra
re shown in Fig. 2 (e) with dashed lines. 

While mass accretion rate fluctuations are generated, they propa- 
ate towards the central object at the same time. The propagation is
xpected to happen in a multiplicative manner (Uttley, McHardy & 

aughan 2005 ), which leads to assuming 

˙  ( r n , t) = ṁ 0 

n ∏ 

k= 1 

a( r k , t − �t k,n ) , (A2) 

here � t k , n is the propagation time from the outer k th ring to inner
 th ( n ≥ k ) ring. We note that ṁ 0 = 1 is left in the expression to
reserve generality. As the propagation speed v p ( r ) is set by radial
elocity, i.e. v p ( r) = rf visc ( r), the propagation time is expressed as 

t k,n = 

�r 

r 

n ∑ 

l= k+ 1 

1 

f visc ( r) 
, (A3) 

here � r / r = � r n / r n = constant. In the statistical equilibrium
nder the generation and propagation of mass accretion rate 
uctuations, the power spectra, | Ṁ ( r n , f ) | 2 , and cross-spectra,
 Ṁ ( r m 

, f )) ∗Ṁ ( r n , f ) ( m �= n ), can be calculated analytically (see
ppendix A in K22 ). The asterisk ∗ denotes the complex conjugate.
ample the power spectra are shown in Fig. 2 (e) with solid lines. 
The flux at energy E and time t , x ( E , t ), is the sum of contributions

rom each ring in the variable flow. Ignoring the effect of reverber-
tion for simplicity (we take it into account in Appendix D ), we
xpress the flux as 

( E, t) = 

N r ∑ 

n = 1 

λ( r n ) S( E, r n , t) . (A4) 

he flux represents the number of photons per unit of time because
he variability is studied for count rather than energy. Both treatments
ive the same model calculations for a single energy. Ho we ver, using
ount rates is necessary to compare the model to observations because
bservation data cannot be processed for an infinitesimal energy 
and. The local flux emitted from n th ring, S ( E , r n , t ), is defined as 

( E, r n , t) = S 0 ( E, r n ) 
ṁ ( r n , t) 

ṁ 0 
, (A5) 

here S 0 ( E , r n ) is the time-averaged spectrum at the n th ring. We note
hat ṁ 0 = 1 is explicitly written in equation ( A5 ). Since we assume
hree spectral components ( N s = 3), this time-averaged spectrum is
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ategorized into three spectra: 

 0 ( E, r n ) = 

⎧ ⎨ ⎩ 

S h ( E) ( r in ≤ r n < r sh ) , 
S s ( E) ( r sh ≤ r n < r ds ) , 
S d ( E) ( r ds ≤ r n < r out ) , 

(A6) 

epending on to which spectral regions the n th ring belongs. r in 
s the inner edge of the hard Comptonization component, r sh is
he transition radius between the hard Comptonization and soft
omptonization components, r ds is the transition radius between the

oft Comptonization and variable disc components, and r out is the
uter edge of the variable disc component. S h ( E ) , S s ( E ) , and S d ( E )
re the time-averaged spectra for the hard Comptonization, soft
omptonization, and disc components, as shown in Fig. 2 (d). 
To let equations be concise, we define the collection of radii

ffiliated with the variable disc, soft Comptonization, and hard
omptonization regions as r d , r s , and r h , respectively. Then we
xpress S 0 ( E ) as 

 0 ( E, r n ) = S Y ( E) ( r n ∈ r Y ) , (A7) 

or Y = h, s, d. In the model formalism, we use S 0 ( E , r n ) as a fraction,
iving the constraint of ∑ 

Y = h , s , d 

S Y ( E) = 1 . (A8) 

e note that we ignore any other spectral components here, such as
eflected emission. 

Along with the time-averaged spectrum S 0 ( E , r n ), the contribution
rom each ring is also regulated by λ( r n ) in terms of energy
issipation: 

( r n ) = ε( r n )2 πr n �r n 

/ ∑ 

m ( r m ∈ r Y ) 
ε( r m 

)2 πr m 

�r m 

, (A9) 

here ε( r ) is the emissivity. The emissivity is defined as the
roduct of a power-law function and inner boundary condition:
( r ) ∝ r −γ b ( r ), where b( r) = 1 − √ 

r in /r or b ( r ) = 1 for the ‘stress-
ree’ or ‘stressed’ boundary condition (Ingram & Done 2012 ).
ecause of the normalization of λ( r n ) and mass accretion rate
uctuations, the time-averaged flux from an entire spectral region
orresponds to the time-averaged spectrum: ∑ 

n ( r n ∈ r Y ) 
λ( r n ) S( E, r n , t) = S Y ( E) , (A10) 

iving rise to the time-averaged total flux being unity, 〈 x ( E , t ) 〉 t =
 

Y = h, s, d S Y ( E ) = 1. 
From equations ( A4 ) and ( A5 ), the Fourier transform of the flux

 ( E , t ) is proportional to the Fourier transform of the local mass
ccretion rate ṁ ( r n , t): 

( E, f ) = 

N r ∑ 

n = 1 

λ( r n ) 
S 0 ( E, r n ) 

ṁ 0 
Ṁ ( r n , f ) 

= 

N r ∑ 

n = 1 

w( r n , E) Ṁ ( r n , f ) , (A11) 

here we call the coefficient w( r n , E) = λ( r n )( S 0 ( E, r n ) / ̇m 0 ) the
eight. The weight w( r n , E ) is proportional to the product of the

missivity and energy spectrum, finally determining how much n th
ing contributes to the variability of the flux. Since we know the
nalytic forms of power spectra and cross-spectra for the local
ass accretion rate, ( Ṁ ( r m 

, t)) ∗Ṁ ( r n , t) ( m, n = 1 , 2 , . . . , N r ), we
an calculate the power spectrum | X ( E , f ) | 2 and cross-spectrum for
wo different energies E 1 and E 2 , ( X ( E 1 , f )) ∗X ( E 2 , f ), analytically (see
NRAS 519, 4434–4453 (2023) 
ppendix A in K22 ), which can be directly compared to observation
ata. The sample model calculations of power spectra, time-lag
pectrum, and phase-lag spectrum are shown in Figs 2 (f), (g), and
h), respectively. 

PPENDI X  B:  I N C L U D I N G  DA MPIN G  EFFECTS  

e summarize the expressions of power spectra and cross-spectra for
he local mass accretion rate and flux, where the damping effects are
aken into account. The deri v ations are described in Rapisarda et al.
 2017 ) appendix A, and in Mahmoud & Done ( 2018b ) appendix A.

e note that the damping effects are excluded in any results presented
ince they turned out to be inef fecti ve for this work. 

The local mass accretion rate is expressed as 

˙  ( r n , t) = 

n ∏ 

k= 1 

g( r k , r n , t) ⊗ a( r k , t) , (B1) 

here the symbol ⊗ denotes the convolution in time t . The green
unction g ( r k , r n , t ) describes how the local mass accretion rate at
he inner n th ring responds to that at the outer k th ring ( n ≥ k ). The
ourier transform of the green function, G ( r k , r n , t ), is required in
odel calculations. While we employ G ( r k , r n , t) = e −i2 πf �t k,n in
22 and Appendix A , which is equi v alent to g ( r k , r n , t ) = δ( t −
 t k , n ), we use 

 ( r k , r n , f ) = e −Df �t k,n e −i2 πf �t k,n (B2) 

n order to include the damping effects. 
From equation ( B1 ), the following expressions for power spectra

nd cross-spectra for the local mass accretion rate are obtained: 

 Ṁ ( r n , f ) | 2 = 

1 

N 

2 
| A ( r n , f ) | 2 ⊗ | G ( r n −1 , r n , f ) Ṁ ( r n −1 , f ) | 2 , (B3) 

 Ṁ ( r k , f )) 
∗Ṁ ( r n , f ) = � k,n G ( r k , r n , f ) | Ṁ ( r k , f ) | 2 ( n ≥ k) , (B4) 

here ⊗ denotes the convolution in frequency f . The consecutive
roduct of the time-averaged local mass accretion rate μl ( l = 1, ...,
 r ) from k th ring to n th ring is defined as � k , n , i.e. � k,n = 

∏ n 

l= k+ 1 μl ,
hich is unity. We note that we use continuous Fourier frequency

 rather than discrete F ourier frequenc y f m for simplicity. The
oefficient 1/ N 

2 in equation ( B3 ), where N is the number of data
oints used, comes from the convolution theorem 

( f m 

) = 

1 

N 

A ( f m 

) ⊗ B( f m 

) , (B5) 

here x ( t l ) = a ( t l ) b ( t l ). In the convolution theorem, the discrete
ourier transform is defined as 

( f m 

) = 

N−1 ∑ 

l= 0 

x( t l ) e 
−i2 πf m t l , (B6) 

here f m = m /( N � t ) ( m = −N /2 + 1, ..., N /2 for even N or m =
 N − 1)/2, ..., ( N − 1)/2 for odd N ) and t l = l � t with � t being the
ampling interval. The discrete inverse Fourier transform is thus 

( t l ) = 

1 

N 

∑ 

m 

X( f m 

) e + i2 πf m t l . (B7) 
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Combining equations ( B3 ) and ( B4 ) with equation ( C4 ) yields the
xpressions of the power spectra for the flux: 

 X( E, f ) | 2 = 

N r ∑ 

n = 1 

[
( w( r n , E)) 2 | Ṁ ( r n , f ) | 2 

+ 2 
n −1 ∑ 

k= 1 

{ 

w( r k , E) w( r n , E) � k,n 

× | G ( r k , r n , f ) | cos ( � ( r k , r n , f ) ) | Ṁ ( r k , f ) | 2 
} 

]
, 

(B8) 

here G ( r k , r n , f ) = | G ( r k , r n , f ) | e i � ( r k ,r n ,f ) . The cross-spectra for
he flux can be calculated in the same manner: 

 X ( E 1 , f )) 
∗X ( E 2 , f ) = 

N r ∑ 

n = 1 

[
w ( r n , E 1 ) w ( r n , E 2 ) | Ṁ ( r n , f ) | 2 

+ 

n −1 ∑ 

k= 1 

{ (
w ( r k , E 1 ) w ( r n , E 2 ) e 

−i � ( r k ,r n ,f ) 

+ w( r n , E 1 ) w( r k , E 2 ) e 
+ i � ( r k ,r n ,f ) 

)
×� k,n | G ( r k , r n , f ) || Ṁ ( r k , f ) | 2 

} 

]
. (B9) 

PPENDIX  C :  I N C L U D I N G  SPECTRAL  

IVOTING  

o include the change in the spectral shape on short time-scales, we
edefine the variable local energy spectrum S ( E , r n , t ) as 

( E, r n , t) = 

(
1 + η( E, r n ) 

ṁ ( r n , t) − ṁ 0 

ṁ 0 

)
S 0 ( E , r n ) . (C1) 

gain, although we assume ṁ 0 = 1, we leave the symbol explicitly 
n the formulation to preserve generality. The new energy-dependent 
arameter η( E , r n ) regulates how the spectrum at the energy E
esponds to mass accretion rate fluctuations. While the amplitude of 
( E , r n ) regulates the sensitivity, its sign determines the correlation
atterns (see Fig. 4 ). Since we have three spectral regions for the
 ariable flo w ( N s = 3), we accordingly classify this sensitivity
arameter into three: 

( E, r n ) = ηY ( E) ( r n ∈ r Y ) , (C2) 

or Y = h, s, d. The spectrum S ( E , r n , t ) is positively (negatively)
orrelated to mass accretion rate fluctuations if η( E , r n ) > 0 (<0),
s shown in Fig. 4 . Both correlations can be physically realized
Veledina 2018 ). The new definition ( C1 ) is reduced to the previous
efinition ( A5 ) if η( E , r n ) = 1. Thus, we see that equation ( C1 ),
n which the spectral shapes vary in time, is a natural extension of
quation ( A5 ), in which the spectral shapes are fixed. 

Employing equation ( C1 ), the Fourier transform of the flux is 

( E, f ) = 

N r ∑ 

n = 1 

λ( r n ) 
η( E, r n ) S 0 ( E, r n ) 

ṁ 0 
Ṁ ( r n , f ) 

= 

N r ∑ 

n = 1 

w( r n , E) Ṁ ( r n , f ) , (C3) 

here the weight w( r n , E ) is redefined as 

( r n , E) = λ( r n ) 
η( E , r n ) S 0 ( E , r n ) 

ṁ 

. (C4) 

0 
he Fourier transform X ( E , f ) is expressed in the same manner as
quation ( A11 ) and thus linear to Ṁ ( r n , f ). Thus, we can calculate
ower spectra and cross-spectra for the flux analytically. 
The only difference that appeared in the expression of X ( E ,

 ) (compare equations A11 and C3 ) is the presence of the new
arameter η( E , r n ). Allowing the spectral variation is equivalent to
egarding S 0 ( E ) in equation ( A11 ) as η( E , r n ) S 0 ( E , r n ). Because of
his replacement, the spectral pivoting releases the model from the 
onstraint ( A8 ) in the sense that the model calculations al w ays require
he product η( E , r n ) S ( E , r n ), not S 0 ( E , r n ). The spectral pivoting gives
uch flexibility to the model in this way, as seen in the successful
odelling in Fig. 3 (rightmost) compared to the failed ones in the

est of the columns. 

PPENDI X  D :  M O D I F Y I N G  R E V E R B E R ATI O N  

e modify the implementation of reflection due to the implemen- 
ation of the spectral variation described abo v e. While a part of
he emission from the v ariable flo w directly hits a detector, it also
rradiates the outer disc, resulting in the reflected/reprocessed emis- 
ion. Considering this reprocessed emission also hits the detector, 
he observed flux is expressed as 

( E, t) = x (d) ( E, t) + x (r) ( E, t) , (D1) 

here x (d) ( E , t ) and x (r) ( E , t ) are the direct and reflected components,
espectively. Hereafter, we use the subscripts ‘(d)’ and ‘(r)’ to specify
he direct and reflected components. Since we have only considered 
he direct component abo v e, symbols that appeared in previous
ppendices will be used with the superscript of ‘(d)’. The expression
f the direct component x (d) ( E , t ) corresponds to equation ( A4 ). 
The variable disc component is unlikely to contribute to the 

eflected emission. In this regard, the variable disc component 
s distinct from the soft and hard Comptonization components. 
o we ver, in terms of formalism, it is simple to assume that every

pectral component in the v ariable flo w, i.e. e very direct component,
as its associated reflected component. Therefore, we account for 
he reflected component for the variable disc in the formalism and
emo v e it in parameter space. 

Each ring of the variable flow illuminates the outer disc, yielding
he following expression of the reflected component: 

 

(r) ( E, t) = 

N r ∑ 

n = 1 

∫ 
d E 

′ λ( r n ) S 
(d) ( E 

′ , r n , t) ⊗ h ( E, E 

′ , r n , t) , (D2) 

here the symbol ⊗ denotes the convolution in time t . The impulse
esponse h ( E , E 

′ 
, r n , t ) describes the time-evolution of reflected flux

t the photon energy E for the instant incident flux at E 

′ 
from the n th

ing. The impulse response also encompasses the probability that a 
hoton at energy E is generated from one at E 

′ 
. Here, we assume that

he form of the impulse response is common within each spectral
omponent: 

 ( E , E 

′ , r n , t) = h Y ( E , E 

′ , t) ( r n ∈ r Y ) , (D3) 

or Y = h, s, d. The radius of the ring r n is only needed to specify
o which spectral component the ring belongs. The impulse response 
or each spectral component is independent of radius, i.e. the location
f illuminating source. This approximation should be validated since 
he size of a reflector ( ∼10 3 R g ) is expected to be much larger than
he size of spectral regions in the variable flow ( ∼10 R g ). 

We also assume that the shape of the impulse response is inde-
endent of photon energies E and E 

′ 
and separate its amplitude and
MNRAS 519, 4434–4453 (2023) 
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hape in the expression: 

 ( E , E 

′ , r n , t) = C( E , E 

′ , r n ) ̃  h ( r n , t) , (D4) 

here we normalize the shape ̃  h ( t) to follow ∫ +∞ 

−∞ 

d t ̃  h ( r n , t) = 1 . (D5) 

gain, each term of the impulse response is common within spectral
egions: 

( E , E 

′ , r n ) = C Y ( E , E 

′ ) , ˜ h ( r n , t) = ̃

 h Y ( t) ( r n ∈ r Y ) , (D6) 

or Y = h, s, d. Hereafter, we replace the symbol of the normalized
mpulse response ˜ h ( r n , t) with h ( r n , t ), since the symbol of the
mpulse response including normalization, h ( E , E 

′ 
, r n , t ), is not

equired in the formalism anymore. Substituting equations ( C1 ) and
 D4 ) into equation ( D2 ) yields 

 

(r) ( E, t) = 

N r ∑ 

n = 1 

∫ 
d E 

′ λ( r n ) 

(
1 + η(d) ( E 

′ , r n ) 
ṁ ( r n , t) − ṁ 0 

ṁ 0 

)
× S 

(d) 
0 ( E 

′ , r n ) ⊗ C( E , E 

′ , r n ) h ( r n , t) . (D7) 

e note that (d) is explicitly used here to distinguish the direct
omponent from the reflected one, although not in the previous
ubsections, where the reflection is not included. 

To connect equation ( D7 ) with the time-averaged reflected spec-
rum, 

 

(r) 
0 ( E, r n ) = S 

(r) 
Y ( E) (Y = h , s , d ) , (D8) 

e average the reflected flux x (r) ( E , t ) in time: 

 x (r) ( E , t) 〉 t = 

∑ 

Y = h , s , d 

∫ 
d E 

′ C Y ( E , E 

′ ) S (d) 
Y ( E 

′ ) , (D9) 

hich needs to correspond to 
∑ 

Y = h , s , d S 
(r) 
Y ( E). Each term on the

ight-hand side corresponds to each time-averaged reflected flux. In
ractical applications, we fix S (r) d ( E) = 0 to exclude the reflected
mission arising from irradiation by the variable disc component.
quation ( D7 ) cannot be simplified with this constraint because
(d) ( E 

′ 
, r n ) depends on the incident photon energy E 

′ 
. The existence

f η(d) ( E 

′ 
, r n ) in the integration in equation ( D7 ) means that the

pectral variation at every energy affects the reflected emission as
ong as C ( E , E 

′ 
, r n ) �= 0. Although this situation is physically natural,

ts proper treatment would require man y complications. Moreo v er,
(d) ( E 

′ 
, r n ) is an ad hoc parameter introduced to include the spectral

ariation and not connected directly to physical parameters. Given
hese circumstances, we replace η(d) ( E 

′ 
, r n ) with η(r) ( E , r n ) related to

he reflection component and let η(r) ( E , r n ) be only dependent of the
utput photon energy E , resulting in 

 

(r) ( E, t) = 

N r ∑ 

n = 1 

λ( r n ) 

(
1 + η(r) ( E, r n ) 

ṁ ( r n , t) − ṁ 0 

ṁ 0 

)
× S 

(r) 
0 ( E, r n ) ⊗ h ( r n , t) . (D10) 

efining 

 

(r) ( E, r n , t) = 

(
1 + η(r) ( E, r n ) 

ṁ ( r n , t) − ṁ 0 

ṁ 0 

)
S (r) ( E , r n ) (D11) 

ields an expression for the reflected component comparable to that
or the direct component ( A4 ): 

 

(r) ( E, t) = 

N r ∑ 

λ( r n ) S 
(r) ( E, r n , t) ⊗ h ( r n , t) . (D12) 
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n = 1 
he difference lies in the presence of convolution. As each direct
pectral component does, each reflected spectral component shares
he sensitivity parameter within its associated radii: 

(r) ( E, r n ) = ηY ( E) ( r n ∈ r Y ) , (D13) 

or Y = h, s, d. In the spectral-timing fit in Section 5 , we assume
(d) 
Y ( E) = η

(r) 
Y ( E), which means that the direct and its associated

eflected components react to a deviation of the mass accretion rate
rom its average in the same way. 

Finally, substituting equations ( A4 ) and ( D12 ) into equation ( D1 ),
e get the expression of the flux: 

( E, t) = 

N r ∑ 

n = 1 

λ( r n ) 
(
S (d) ( E, r n , t) + S (r) ( E, r n , t) ⊗ h ( r n , t) 

)
. 

(D14) 

sing equations ( C1 ) and ( D11 ), its Fourier transform is 

( E, f ) = 

N r ∑ 

n = 1 

(
w 

(d) ( r n , E) + w 

(r) ( r n , E) H ( r n , f ) 
)
Ṁ ( r n , f ) , 

(D15) 

here 

 

(r) ( r n , E) = λ( r n ) 
η(r) ( E , r n ) S 

(r) 
0 ( E , r n ) 

ṁ 0 
(D16) 

s the weight for the reflection component, and H ( r n , f ) is the transfer
unction, the Fourier transform of the impulse response h ( r n , t ).
gain, the linearity of X ( E , f ) to Ṁ ( r n , f ) allows analytic calculations

or the power spectra and cross-spectra of the flux. 

PPENDI X  E:  M C M C  FIT  

e demand 28 free parameters in the spectral-timing fit performed
n Section 5 . In addition to these many free parameters, our model
omputations are quite e xpensiv e, ev en though not prohibitive. These
ituations make it difficult to properly estimate the errors on the
erived parameter values. 
Here, we perform a Markov chain Monte Carlo (MCMC) fit

o e v aluate the uncertainties of the model parameter values. We
se the chain command in XSPEC , in which we employ the
oodman–Weare algorithm with 100 w alk ers and 100 000 steps

n total. Whereas in Section 5 , we free the normalizations of the
orentz model used to capture QPO features in the power spectra,
e fix all of them in the MCMC fit. Fixing them decreases 12 free
arameters because there are two lorentz models for each of
he six energy bands, enabling the MCMC analysis with 16 free
arameters. We burn 1000 steps because the χ2 values converge after
1000 steps. 
The corner plots for all 16 free parameters are shown in Fig. E1 .

he distribution is generally centrally peaked for every free param-
ter, signifying good convergence. The parameters regulating the
ropagation time-scale, B 

(p) 
f and m 

(p) 
f , take values among 160–240

nd 2.78–2.88, respectively. These spreads give rise to the spreads of
he propagation time-scale as narrow as the line width in Fig. 8 . Thus,
he result of our analysis that the propagation time-scale derived fairly
isagrees with any theoretical predictions in Fig. 8 is robust. 
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Figure E1. Corner plots for 16 free parameters of the spectral-timing fit in Section 5 . Every free parameter has its row and column. The correlation between 
two free parameters is shown at the intersection of the corresponding row and column. The distribution of each parameter is shown at the rightmost (top) of the 
corresponding row (column). We use the corner module (F oreman-Macke y 2016 ) to produce the plots. The figure is viewed clearly in the digital version. 
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