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ABSTRACT

Black hole X-ray binaries display significant stochastic variability on short time-scales (0.01-100 s), with a complex pattern
of lags in correlated variability seen in different energy bands. This behaviour is generally interpreted in a model where slow
fluctuations stirred up at large radii propagate down through the accretion flow, modulating faster fluctuations generated at
smaller radii. Coupling this scenario with radially stratified emission opens the way to measure the propagation time-scale
from data, allowing direct tests of the accretion flow structure. We previously developed a model based on this picture and
showed that it could fit the Neutron star Interior Composition Explorer (NICER; 0.5-10 keV) data from the brightest recent
black hole transient, MAXI J1820-+070. However, here we show it fails when extrapolated to higher energy variability data
from the Insight-Hard X-ray Modulation Telescope (HXMT). We extend our model so that the spectrum emitted at each radius
changes shape in response to fluctuations (pivoting) rather than just changing normalization. This gives the strong suppression
of fractional variability as a function of energy seen in the data. The derived propagation time-scale is slower than predicted
by a magnetically arrested disc (MAD), despite this system showing a strong jet. Our new model jointly fits the spectrum and
variability up to 50 keV, though still cannot match all the data above this. Nonetheless, the good fit from 3 to 40 keV means the
quasi-periodic oscillation (QPO) can most easily be explained as an extrinsic modulation of the flow, such as produced in the

Lense—Thirring precession, rather than arising in an additional spectral-timing component such as the jet.

Key words: accretion, accretion discs —black hole physics — X-rays: binaries — X-rays: individual: MAXI J1820+070.

1 INTRODUCTION

The nature and geometry of the X-ray emission region in black
hole binaries are still controversial, especially in the low/hard state,
where most of the power is emitted in a spectrum quite unlike a
standard disc (Shakura & Sunyaev 1973). Spectral fitting alone is
degenerate, with proposed geometries being a compact source on the
spin axis (lamppost), extended emission along the jet direction (jet
corona), extended coronal emission on top of an underlying accretion
disc (sandwich), and extended coronal emission that replaces the
accretion disc (truncated disc/hot inner flow; see e.g. Poutanen,
Veledina & Zdziarski 2018). The truncated disc/hot inner flow model
has the advantage that it gives a framework to explain the evolution
of the spectrum and its fast variability properties together (Done,
Gierlifiski & Kubota 2007), although there are persistent questions
over the extent of disc truncation from modelling the reflected
emission and its associated iron line (e.g. Buisson et al. 2019; but see
Zdziarski et al. 2021a). Another way to track the extent of the disc is
the quasi-thermal emission arising from the same X-ray irradiation of
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the disc, which gives rise to the iron line and reflected emission (De
Marco et al. 2015; Wang et al. 2022). Photons that are not reflected
are reprocessed in the disc, producing a thermal reverberation signal.
This gives a soft lag, where variations of soft photons follow those
of hard photons with a light travel time delay. Reverberation size
scales do indeed point to a truncated disc, with a truncation radius
that decreases as the source spectrum softens (De Marco et al. 2021).
Perhaps the most compelling evidence for a truncated disc is the
new polarization results for the low/hard state of Cyg X-1. These
rule out the X-ray emission region being aligned with the jet and,
instead, require it to be aligned with the accretion flow (Krawczynski
et al. 2022). Truncated disc/hot inner flow models are thus strongly
favoured, motivating our work in exploring how we can derive the
physical properties of the hot flow.

The fast variability (0.01-100 s) gives independent constraints on
the accretion flow. It shows many complex properties that change as
a function of energy and variability time-scale (see e.g. the review
by Uttley et al. 2014). The most promising framework in which
to explain these is with propagating fluctuations (Lyubarskii 1997;
Kotov, Churazov & Gilfanov 2001). The idea is that variability
is generated in the accretion flow (e.g. by the turbulent dynamo
magnetorotational instability — MRI; Balbus & Hawley 1991), with
acharacteristic time-scale that is shorter at smaller radii. Fluctuations
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generated at any radius in the hot flow propagate down so that slower
fluctuations stirred up at larger radii propagate down to modulate
the faster fluctuations produced at smaller radii. This produces
correlated but lagged multi-time-scale variability in the entire hot
flow (Lyubarskii 1997; Kotov et al. 2001). These lags can be seen
directly in the data if the flow produces different spectra at different
radii, with the observed ‘hard lags’ (fluctuations at 10-20 keV
lagging behind the same fluctuation at 2-3 keV; Miyamoto et al.
1988; Nowak, Wilms & Dove 1999) requiring that smaller radii have
harder spectra, which seems physically intuitive. Numerical models
combining the propagating fluctuations process with a spectrally
inhomogeneous hot flow have shown general agreement with the
variability properties observed by the Rossi X-ray Timing Explorer
(RXTE) in the 3-30 keV bandpass (Arévalo & Uttley 2006; Ingram &
Done 2011, 2012).

However, accurately reproducing all the observed timing prop-
erties with the propagating fluctuations model turned out to be
more difficult than expected in these first quantitative models, which
considered only the variability in the hot flow. One approach is simply
to bypass this complexity and use phenomenological models of the
intrinsic variability and its lags. This is especially useful if the goal is
simply to measure reverberation lags as in the RELTRANScode (Ingram
etal. 2019). However, our goal is instead to make a physical model of
the hot flow, self-consistently producing its spectrum and variability.
Such models can then be used to measure physical properties, e.g.
the propagation speed, which constrains the nature and geometry of
the hot flow. Hence we extend the hot flow propagating fluctuation
models to get a better match to the data. There are many potential
ways to do this, but the goal is to identify the physical processes that
make the most impact on the observed data.

One difficulty with models of propagating fluctuations through
the hot flow is that this typically gives rise to a single-peaked power
spectrum (Arévalo & Uttley 2006; Ingram & Done 2011, 2012),
whereas the observed power spectra are often double peaked (Belloni,
Psaltis & van der Klis 2002; Pottschmidt et al. 2003; Axelsson,
Borgonovo & Larsson 2005; Grinberg et al. 2014). It is possible to
change the time-scales and amplitude of variability with radius in
the hot flow to match the data, but it seems fine-tuned (Mahmoud &
Done 2018a,b). Another issue is that the observed power spectra
often span a very broad range in frequencies, which is difficult to
quantitatively match by the fairly small range of radii spanned by
the hot flow without going to extreme parameters (Ingram & Done
2011, 2012; Mahmoud & Done 2018a,b).

A key to matching both the power spectral shape and width was
the recognition that the disc generates considerable variability in
the low/hard state, in addition to that expected from the hot flow
(Wilkinson & Uttley 2009; Uttley et al. 2011). While the disc does
not contribute to the RXTE bandpass (>3 keV) in the low/hard state,
its variability will propagate down into the hot flow, so it will strongly
affect the variability properties. Rapisarda et al. (2016) proposed that
the inner edge of the disc had a much longer variability time-scale
than the outer edge of the hot flow due to its smaller scale height,
and showed that this naturally produces double-peaked power spectra
(but see Veledina 2016 for another potential mechanism). The slowly
variable disc also widens the range of time-scales on which the X-
ray flux varies even when the truncation radius is only a few tens of
gravitational radii (Rapisarda et al. 2016).

Modelling of the broad-band X-ray variability demonstrates how
the timing properties give additional information about the nature
of the accretion flow. Combining these with spectra (spectral-timing
studies) gives an even more powerful tool, as it uses all the informa-
tion from the energy spectrum and its fluctuations (power spectra)

MAXI J1820+4-070 spectral-timing ~ 4435
together with causal connections (lags/leads; e.g. Axelsson & Done
2018; Mahmoud, Done & De Marco 2019; De Marco et al. 2021;
Wang et al. 2021). In our previous work (Kawamura et al. 2022,
hereafter K22), we developed a spectral-timing model based on
propagating fluctuations from a turbulent disc through a spectrally
inhomogeneous (approximated by two Comptonization regions) flow
that generates variability at each radius. We also incorporated rever-
beration of the variable Comptonization components illuminating
the disc to perform a self-consistent spectral-timing analysis. We
applied the model to the recently discovered black hole transient
MAXI J1820+070 (Kawamuro et al. 2018; Tucker et al. 2018),
which has been widely studied (e.g. Kara et al. 2019; Shidatsu et al.
2019; Bright et al. 2020; Homan et al. 2020; Axelsson & Veledina
2021; Ma et al. 2021; Tetarenko et al. 2021; Wang et al. 2021; You
etal. 2021; Prabhakar et al. 2022) thanks to its exceptional brightness,
low galactic absorption (Uttley et al. 2018), and intensive monitoring
by multiple telescopes. K22 fit the time-averaged energy spectrum
for the Neutron star Interior Composition Explorer (NICER; 0.5—
10 keV) + the Nuclear Spectroscopic Telescope Array (NuSTAR;
3-73 keV) and used this to develop a model for the variability below
10keV seen in NICER. However, NuSTAR has less capability for fast
timing, so K22 could not investigate the variability at higher energies,
which means that we could not fully probe the innermost parts of
the hot flow. Better constraints on propagation require extending the
bandpass for fast timing to higher energies.

Here we use contemporaneous data from the Insight-Hard X-ray
Modulation Telescope (HXMT; Section 2) to test our model at higher
energies. We predict the high-energy power spectra and phase lags
and show how these fail to describe several key features of the data
(Section 3). We give the model maximal freedom by fitting only
the timing data rather than using the full spectral-timing data, and
consider several ways to extend our propagating fluctuation model to
better match the data (Section 4). In particular, the phase lags give a
clear indication that the propagation time through the flow is slower
than the time-scale on which fluctuations are generated (Rapisarda,
Ingram & van der Klis 2017), but the full energy dependence of the
variability is quite difficult to fit. The key to matching the power
spectra is to allow the Comptonization spectra to pivot, so that they
change in shape and normalization in response to the fluctuations
(Mastroserio, Ingram & van der Klis 2018, 2019; Mastroserio et al.
2021). This is physically expected from Comptonization models
(Veledina 2016, 2018) and is observed (Malzac et al. 2003; Gandhi
et al. 2008; Yamada et al. 2013; Bhargava et al. 2022). We are
able to get a good match to the timing properties (power spectra
and phase-lag spectra) from 2.6 up to 48 keV by including spectral
pivoting, as well as separation of generator and propagation time-
scale. We implement this as a full spectral-timing model and find we
can fit all the data in the 2.6-48 keV bandpass, though the model
for both spectra and timing diverge from the data above this energy
(Section 5). We discuss the physical properties of the accretion flow,
comparing them with theoretical hot flow models (Section 6), and
then conclude that the current data quality is still better than the best
physical models of the flow, which motivates further development
(Section 7). All of the technical details of the model formalism are
given in the appendices so that the main text stresses the physical
aspects of the model.

2 OBSERVATION AND DATA REDUCTION

We investigate the bright low/hard state of MAXI J1820+070
observed by Insight-HXMT: 2018 March 22 10:46:53 to 2018 March
24 02:49:49 (Obs. ID: P0114661003). The same data are studied in
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Wang et al. (2020), Ma et al. (2021), and Yang et al. (2022). The
observation time is slightly later than that we studied in K22 (Obs.
ID: 1200120106; 2018 March 21), but there are simultaneous NICER
data (Obs. ID: 1200120108; 2018 March 23) corresponding to these
Insight-HXMT data. We checked that the energy spectrum, power
spectra, and phase-lag spectra in these simultaneous NICER data are
almost identical to K22.

We used the Insight-HXMT Data Analysis Software package
(HXMTDAS) v2.04 to calibrate and screen the data using the same
criteria as in Yang et al. (2022). We checked that the spectral
and variability properties did not change substantially over the
observation and then merged all the data to achieve high signal-
to-noise ratio.

The resulting energy spectrum is shown in Fig. 1 (top). The
different colours represent different telescopes (red: LE; green: ME;
blue: HE; Zhang et al. 2020). The energy spectrum from ME has
a dip of around 22 keV (light green), which is associated with
silver fluorescent lines generated within the detector (Li et al. 2020).
Following You et al. (2021), we added 1.5 per cent systematic errors
to all spectral data.

To study the fast variability, we split the background-subtracted
light curves into segments of 256s with 1/128s time bins (2'3
points), where we avoided any data gaps. We only used the data
where all telescopes were active to calculate light curves, using the
same time selection for every energy band. We calculate the white-
noise-subtracted power spectra and the cross-spectra from each
256 s segment and average them over different segments and log-
arithmically spaced Fourier frequencies (Uttley et al. 2014; Ingram
2019). All power spectra are normalized such that their integral over
frequency corresponds to the fractional variance (Miyamoto et al.
1991; Vaughan et al. 2003). Phase-lag spectra are calculated from
the cross-spectra, using the relation between the phase-lag spectrum
¢ (f) and cross-spectrum C(f), ¢(f) = tan ~' (Im[C(HV/RIC(H)]), where
R[---] and Im[---] denote the real and imaginary parts, respectively.
Phase lag relates to time lag via the relation 27tft(f) = ¢(f).

Fig. 1 (middle) shows the power spectra of the 2.6—4.8 keV (black)
and 35-48 keV (magenta) light curves These energy bands are
marked in the energy spectrum with shaded regions. A quasi-periodic
oscillation (QPO) and its harmonic exist around 0.036 and 0.1 Hz
(shown with dashed lines), in addition to the broad-band variability.

Fig. 1 (bottom) shows the phase-lag spectrum between these two
energy bands. The convention throughout this paper is that positive
lags mean that the harder energy band lags behind the softer one. The
phase lag peaks at ~1.2 Hz (shown with a dotted line), which is not
at the same frequency as the high-energy peak in the power spectra.
This is unexpected as simple propagating fluctuations models have
the same peak frequency both in the power spectrum and cross-
spectrum (Ingram & van der Klis 2013; Rapisarda et al. 2016). The
QPO fundamental appears to affect the phase lag between these two
energy bands, creating a dip in the phase-lag spectrum around the
corresponding frequency (Ma et al. 2021). The effect of the second
harmonic on the phase lag is not so clear between these energy bands,
but we note it does have an impact on different choices of energy
bands (Ma et al. 2021).

For all of the data fits performed in this paper, we use XSPEC 12.12.1
(Arnaud 1996). We formatted variability data and created a diagonal
dummy response such that XSPEC can import power spectra and
phase-lag spectra as a function of Fourier frequency. We developed
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Figure 1. Spectral-timing properties of MAXI J18204+070 observed by
Insight-HXMT. Top: time-averaged energy spectrum. Red, green, and blue
markers represent LE, ME, and HE telescopes, respectively. The dip around
22 keV (light green) is associated with fluorescent lines of silver generated
within the ME detector. The coloured regions show the low (black: 2.6—
4.8 keV) and high (magenta: 35-48 keV) used to extract light curves. Middle:
power spectra calculated for low- and high-energy bands. Both these have
the characteristic double peak shape, but with the QPO and its harmonic
(marked with dashed lines) superimposed. The high-energy power spectrum
is very similar in shape to that at low energy, but with lower normalization
(compare to the model in Fig. 2f). Bottom: phase-lag spectrum between the
light curves in the low- and high-energy bands. The lags are defined as positive
if variations in higher energy bands lag behind those in lower energy bands
(hard lags). The frequency at which the phase lag is maximum is marked with
a dotted line. This is substantially lower than the characteristic frequency of
the second peak in the power spectrum (compare to the model in Fig. 2h).
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our model as an XSPEC model. Being able to perform timing fits
with the common tool in spectral fits is beneficial in performing
spectral-timing fits. For example, we will perform a joint fit to energy
spectrum, six power spectra, and five phase-lag spectra in Section 5.
We ignore variability below ~10~2 Hz because it behaves differently
from other Fourier frequencies. Yang et al. (2022) interpreted this
low-frequency variability as the QPO subharmonic.

3 PROPAGATION AND REVERBERATION IN
OUR PREVIOUS MODEL

3.1 Summary of our previous work

We start with a summary of our previous physical model. Fundamen-
tally we assume that variability is generated by fluctuations in density
in the flow, which propagate inwards as accretion rate fluctuations.
Thus the variability generated at each radius propagates down with
the accretion flow so that slower fluctuations generated at large
radii imprint on faster fluctuations generated at small radii. These
fluctuations in mass accretion rate change the luminosity emitted in
the spectrum at that radius.

We then need additional assumptions to turn this into a quantitative
model, as we have to assume the form of radial stratification for both
the spectrum and variability and how fluctuations are generated and
propagated. We expand on each of these below.

We assume a basic geometry that is a truncated disc/hot inner
flow, as shown in Fig. 2(a) with emissivity at each radius set by
the Shakura—Sunyaev thin disc approximation (Fig. 2b). These two
assumptions alone are enough to roughly set the transition radius
from the inner edge of the disc to the outer edge of the hot flow
by energetics to ~45R,, though instead we set this from the QPO
frequency, assuming the Lense—Thirring precession (Ingram, Done &
Fragile 2009). The similarity of the two estimates gives support to
the Lense—Thirring interpretation. In all the following, we use the
convention that R = rR,, where Ry = GMpp/c”.

Spectrally, we assume that the flow emits a single component
at each radius. This might be unique to each radius, with e.g.
each radius in the disc emitting a blackbody with temperature
T(R), while the hot flow emits a Comptonized spectrum whose
parameters (electron temperature, and optical depth) scale smoothly
with radius. However, spectral models are quite degenerate so we
approximate the emission from the truncated disc region (rou—rgs) as
a disc blackbody, and we approximate the hot flow as two zones as
physically we do expect that there are two main regions in the flow.
Close to the disc, seed photons for Comptonization are predominantly
from the disc. However, it is quite easy for this Comptonization
to become optically thick along the equatorial direction, shielding
the inner regions from the disc photons so that seed photons are
predominantly from cyclo-synchrotron (Poutanen & Veledina 2014).
Thus we assume that radii from ry—rg, emit soft Comptonization,
while radii from rg,—r;, emit hard Comptonization (ri, < rgp < Fags <
Touts Fig. 2a and d). Both Comptonization components illuminate the
disc to produce reflection, while the energy not reflected is (mostly)
thermalized, enhancing the cool disc emission. K22 show that these
assumptions give a good fit to the energy spectrum from 0.5 to
80 keV.

The variability is also assumed to be radially stratified such that
each radius generates fluctuations with a characteristic frequency,
Seen(r). This is assumed to have a power-law form as a function
of radius in the hot flow, so feen(r) = Br~"fk(r), where fx(r) =
(1/270)r=*? in units of ¢/R,. The power-law scaling parameters are
allowed to be different between the hot flow (B, m¢) and disc (Bg, mg),
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giving a different time-scale to reflect the different scale heights of
the two flows (Rapisarda et al. 2016). Thus, the generator frequency
is modelled with

Seen(r) = {Bfrfmffk(r) (rin <7 < rgs),
gen =

Bdrimde(r) (rds =r< roul)s

M

as shown in Fig. 2(c). We assume each logarithmic radial interval
generates the same amplitude of variability. The fluctuations gen-
erated at each radius propagate down without losses to produce a
fluctuating mass accretion rate at each radius that modulates the
emitted luminosity.

As noted above, we assume the QPO is set by the Lense—Thirring
precession of the entire hot flow, and the first bump in the power
spectrum is set by the turbulent disc (Ingram & Done 2011). This
sets (Bg, mg) = (0.03, 0.5) and ry, = 45.

The dashed lines in Fig. 2(e) show three sample power spectra
for the generated variability of the local mass accretion rate in
each region (variable disc: red; soft Comptonization: green; hard
Comptonization: blue; the middle ring of each highlighted in a
darker colour). The functional form is a zero-centred Lorentzian
with the cut-off frequency corresponding to the local generator
frequency feen(r), which yields the peak at foen(r) in the fP(f)
representation.

K22 assumed that the propagation time-scale was the same as that
on which the fluctuations were generated and called this the viscous
time-scale (Lyubarskii 1997; Arévalo & Uttley 2006; Ingram et al.
2009). This assumption sets the propagation speed at any radius
Vp(r) = Ifgen(r) in units of ¢. However, here we will revisit this
assumption, so to avoid confusion, we do not use the term ‘viscous
time-scale’ but use ‘generator time-scale’ and ‘propagation time-
scale’ in this paper to make it clear which one we mean. K22
also assumed that the fluctuating energy release only changed the
normalization of the spectral component emitted at that radius, not
its shape.

The solid lines in Fig. 2(e) show the propagated (total) power
spectra from each region (disc: red; soft Comptonization: green;
and hard Comptonization: blue). This is not the same as the power
spectrum in any given energy band as Fig. 2(d) shows that each
energy band contains a mix of components.

Fig. 2(f) shows the power spectra for the two chosen energy bands,
low (2.6—4.8 keV: black) and high (3548 keV: magenta), also high-
lighted in the same colours in Fig. 2(d). While neither band contains
the disc emission component, both bands contain the propagated disc
variability. The low-energy band also contains both soft and hard
Comptonization, so has the generated/propagated power in the soft
Comptonization region, plus some of the highest frequency power
generated in the hard Comptonization region. The high-energy band
is dominated by the hard Comptonization emission, with variability
that is propagated down from both the disc and soft Comptonization
region, plus the highest frequency power generated/propagated
through the hard Comptonization region. Thus the power spectra
are almost identical for below ~1 Hz, indicating that variability on
these slow time-scales is propagated from the outer regions rather
than generated at their emission regions, while they diverge at the
highest frequencies where the low-energy band does not include as
much of the hard Comptonization component as the high-energy
band.

The propagation time-scale is explicitly seen in the time lag
(Fig. 2g). The luminosity weighted mean radius of the soft Comp-
tonization band is 22R,, whereas that for the hard Comptonization
band is 11R,. This lag time (integrating 1/(rfpop(r))) is 51 ms,
as seen as the value of the approximately constant time lag at
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Figure 2. Model set-up and predictions from K22. Here we show only the intrinsic components, rather than including reflection/reverberation, to focus on the
physics of the propagation. (a) Assumed accretion flow geometry (height as a function of radius). There is an outer stable disc (grey) that is highly turbulent on
its inner edge, forming the variable disc region. Inwards of this is the turbulent hot flow. (b) Radial emissivity, assumed to be similar to that of a thin disc. (c)
Frequency at which variability is generated at each radius. There is a discontinuity between the variable disc and hot flow as their scale heights are different, so
their characteristic time-scales should be different. Sample parameter values are (B¢, mr) = (4, 1) for the hot flow and (Bg4, mg) = (0.03, 0.5) for the variable
disc. (d) Time-averaged energy spectra modelled (black) assuming a disc for the stable and variable disc emission (red), while the hot flow is assumed to be
approximated by two Comptonization components, soft (green) and hard (blue). The relative luminosity in each component, together with the emissivity in (b),
roughly sets the size scale of each region, so that the hard Comptonization is for rj,—rsy = 616, the soft Comptonization for rgp—rgs = 16-32, and the variable
disc for rgs—rout = 32—45. (e) Sample power spectra of the local mass accretion rate in each spectral region. The dashed lines represent the variability generated
at each radius, with r = 45, 38, 33 (in the variable disc: red), 30, 22, 16 (in the soft Comptonization: green), and 12, 9, 6 (in the hard Comptonization: blue) from
left to right. The frequency, at which each radius fP(f) has its peak, corresponds to the local generator frequency fgen(r). The solid lines show the total (generated
plus propagated) variability at » = 38 (red), 22 (green), and 9 (blue). (e) Power spectra for two energy bands highlighted in (d). Any given energy band is not
just a single component. The low-energy band (black) contains roughly equal amounts of soft and hard Comptonization, while the high-energy band (magenta)
has mostly hard Comptonization, but with some contribution from the soft Comptonization as well. Thus the power spectra of the light curves in the low- and
high-energy bands are more similar than those of the soft and hard Comptonization components in (¢). None the less, there is still more high-frequency power
in the high-energy band than in the low-energy band, but at lower frequencies, the power spectra are identical as both contain the same propagated power. (g)
Time-lag spectra for the low- and high-energy band light curves. The orange dotted line shows the intrinsic lag of the soft Comptonization light curve compared
to the hard Comptonization light curve. This is ~50 ms, which is longer than the measured lag of the high-energy band light curve versus the low-energy band
due to the mixture of spectral components in each band. (h) Lag between high- and low-energy bands as a phase lag rather than a time lag (related by ¢(f) =
271ft(f)). This peaks around the frequency of the high-energy peak in the power spectrum.

low frequencies (orange dashed line). The time lag drops when mass accretion rate in the hard Comptonization region being the

the variability starts to be dominated by the generated variability
(which is not correlated) rather than the propagated variability, i.e. at
approximately the generator time-scale of the hard Comptonization
region. At the highest frequencies, the lag also produces oscillatory
structure at high frequencies, by the interference generated by the
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same as in the soft Comptonization region, but lagged by the mean
propagation time-scale. This oscillatory structure has a period of
50 ms. However, the intrinsic lag from the spectral components is
diluted by a factor of ~3 when looking at the low- and high-energy
bands rather than the soft and hard Comptonization components.
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This is because the low-energy band includes both soft and hard
Comptonization, while the high-energy band is dominated by the
hard Comptonization. While the value of the measured lag time
changes, the oscillatory structure period remains at the propagation
time-scale.

This oscillation can be seen more clearly in Fig. 2(h), which shows
the phase lag rather than time lag, so each time-scale is multiplied
by the factor 27tf. In this representation, the phase lag peaks at a
frequency between the high-frequency peak in the power spectra at
low and high energy. By comparison to the panel above, it is also
clear that the oscillatory structure at high frequencies has the same
period as in the undiluted (orange) time lags.

All model parameters are summarized in Table 1 and we give a
more quantitative model summary in Appendix A.

The fluctuating soft and hard Comptonization regions illuminate
the outer disc and produce a reflected/reprocessed signal that lags
behind the generated and propagated flow variability by the light
travel time to the disc. The reflected emission itself is not strong,
though this real reverberation signal will add to the soft lags
produced by interference in the propagation (hard) lags seen in
Fig. 2(g). However, at lower energies, the photons that are not
reflected heat the disc, giving a thermal reverberation signal that
is strong at energies close to that of the disc emission (S2keV;
Kara et al. 2019). This reverberation signal gives an independent
check on the assumption of the disc truncation radius, and the
fact that it is consistent (De Marco et al. 2021) gives strong
supporting evidence for the underlying assumption that the QPO
mechanism is the Lense—Thirring precession. Our previous model
includes the reverberation, along with the propagating fluctuations
(K22).

K22 showed that this model gave a fairly good fit to the energy
dependence of the power spectrum across the NICER energy band
(0.5-10 keV) and to the lags between the same fluctuations in
different energy bands as a function of frequency. However, while the
spectral components were built from NuSTAR data, which extended
above 10 keV, this instrument does not have a sufficient area to
do high-time-resolution studies, so the model prediction at higher
energies could not be tested.

This outburst of MAX1J1820+070 was also monitored by Insight-
HXMT (Ma et al. 2021; You et al. 2021; Yang et al. 2022), which
does have a sufficient effective area at high energies. As mentioned
in the previous section, the Insight-HXMT data are not absolutely
simultaneous with the NICER/NuSTAR data set we used in K22, but
they are very close in time, and spectral-timing properties are nearly
constant during these periods. Hence we take the spectral-timing
model of K22, use it to predict the higher energy behaviour, and
compare it to the Insight-HXMT data.

3.2 Comparison of our previous model to Insight-HXMT data

We compare the predictions of our previous model to the power
spectra for the 2.6-4.8 and 35-48 keV bands and the phase-
lag spectrum between these bands calculated from the Insight-
HXMT observation data in Fig. 3 (left). Model parameter values
are summarized in Table 2, which also contains those for the rest
of the columns in Fig. 3. The lower energy band is well reproduced
by our previous model from K22, as expected, as it is within the
NICER energy range over which K22 got good fits. However, the
power spectrum at the higher energy band is clearly overestimated,
and the phase lag between the two is completely wrong, peaking
at too high a frequency with a lag that is too short to match
the data.
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4 TIMING FITS: EXPLORING THE
ADDITIONAL PROCESSES REQUIRED TO
MATCH THE HIGH-ENERGY VARIABILITY

The specific spectral-timing model of K22 plainly cannot fit the
data, so instead here we explore whether the model is capable
of reproducing the observed timing properties. We give maximal
flexibility by ignoring the time-averaged spectrum (but we will come
back to joint spectral-timing modelling in Section 5) and attempt to
minimize the sum of x? values for the power spectra and phase-lag
spectrum:

Z{ (Pdata(Elv fk) - Pmodel(Elv fk))2

APdala(El s fk)

k

+ <Pdala(E2a fk) - Pmod.el(EZ» fk))2 (2)
A Pgara(E2, fi)
n <¢data(Elv Es, fi) = $model(E1, E, fk))2}
A¢dala(Els E27 fk) ’

where Py (E, f) and APy, (E, f) are the observed power spectrum
and its lo error at frequency f for energy E, @gaa(E, E, ), and
A} gaa(E, E, J) are the equivalents for the phase-lag spectrum
between energy E and E', Pyoqe1(E, f) and ¢(E, E , f) are the modelled
power spectrum and phase-lag spectrum, £, = 2.64.8keV, E, =
35-48 keV, and f; the sampled Fourier frequency.

Our model requires the fraction of each spectral component
to calculate the power spectra and cross-spectra. We express this
fraction as S4(E), Ss(E), SO(E), Sy(E), and S;”(E) for the variable
disc, soft Comptonization and its reflection, and hard Comptonization
and its reflection, respectively. Since X-ray energy spectra in the
hard state are almost fully occupied by these five components at
most (Zdziarski et al. 2021a,b, 2022), we require the sum of these
fractions to correspond to unity:

Sa(E) + Sy(E) + S(E) + Sw(E) + ST (E) = 1. ©)

Whereas in Fig. 3 (left), these fractions were calculated from the
result of spectral fit in K22 for the self-consistent spectral-timing
modelling, here we let them be independent of the time-averaged
spectrum in order to focus on the variability properties. We fix
S4(E) = 0 because the disc emission is negligible above 2.6 keV. We
also ignore the reverberation, i.e. SV(E) = SI”(E) = 0, to simplify
the model. This is not a bad approximation for our purpose, as
we want to capture the broad-band power spectra and hard lags
from propagation. Reverberation makes only small changes to the
variability properties on the energy and variability range of interest
here.

Finally, we only have the soft and hard Comptonization compo-
nents with the constraints of S5(E) 4+ Sy(E) = 1. We do not include
any models for the QPO features for simplicity.

We keep the black hole mass of Mgy = 8 Mg (Torres et al. 2020)
and emissivity profile,i.e. y =3 and b(r) = 1 — \/rip/r (Novikov &
Thorne 1973; Shakura & Sunyaev 1973), where we assume that
radiation energy from the annulus ranging from r to r + Ar is
proportional to =7 b(r)27tr Ar. In K22, the transition radii r,, rqs were
calculated from the emissivity profile and spectral decomposition.
However, we lack spectral decomposition. In addition, it turned
out that model calculations are hardly affected by small changes
in these parameters. Thus, we simply fix these transition radii to
typical values, rg, = 16 and 32.

We show the result of the joint fit to the power spectra for 2.6-4.8
and 3548 keV and the phase-lag spectrum between these energy
bands in Fig. 3 (mid-left). The fit is not qualitatively improved even
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Table 1. Summary of our model parameters. The variable flow is spectrally composed of the variable disc region and soft (outer) and hard (inner) Comptonization
regions. We call the entire Comptonization region the hot flow.

Symbol Meaning Units Default
Mgy Black hole mass Mo 8

N; Number of rings splitting the variable flow 40

Tin Inner radius of the hard Comptonization Ry 6

Tsh Transition radius between the hard Comptonization and soft Comptonization Ry 16

rds Transition radius between the disc and soft Comptonization Ry 32

Tout Outer radius of the variable disc Ry 45
Fyarf (Fyard) Fractional intrinsic variability per radial decade in the hot flow (variable disc) 0.8

D Damping factor 0

B (Bq) Coefficient of the generator frequency in the hot flow (variable disc) 0.03

my (mg) Power-law index of the generator frequency in the hot flow (variable disc) 0.5
Bt(-p) (Bc(‘p) ) Coefficient of the propagation frequency in the hot flow (variable disc) 0.03
m?p) (mfip)) Power-law index of the propagation frequency in the hot flow (variable disc) 0.5

y Power-law index of the emissivity 3

b(r) Inner boundary condition of the emissivity 1 — /rin/7
ton (tos) Time delay of the top hat impulse response of reverberation for the hard (soft) Comptonization® S 55x 1073
Aton (Atgs) Time duration of the top hat impulse response of reverberation for the hard (soft) Comptonization® S 10 x 1073
So(E) Fractional contribution of spectral components to the flux?-cd 0.5
10.n (M0,s) Constant term of the sensitivity of the hard (soft) Comptonization to change in mass accretion rate® 1

Nin (1) Gradient term of the sensitivity of the hard (soft) Comptonization to change in mass accretion rate®

“Parameters are required when the reverberation is considered.

bEach spectral component has its own parameter: So(E) consists of Sq(E), Ss(E), Sér)(E ), Sh(E), and Sl(qr)(E) (see Section 3).
¢So(E) is replaced by n(E)So(E) for timing fits when the spectral pivoting is included (Section 4.2).

48(E) is calculated from spectral models for spectral-timing fits (Section 5).

“Parameters are required for spectral-timing fits (Section 5).

. Previous model (prediction) Previous model (fit) New model without spectral pivoting New model with spectral pivoting .
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Figure 3. The effect of the model updates on the timing properties. Each figure shows the low (2.4—4.8 keV: black) and high (35—48 keV: magenta) energy band
power spectra (upper) and phase-lag spectra (middle), with data shown as the stepped line with errors and the model as the smooth curve. The lower panel shows
the propagation frequency (solid) and generator frequency (dashed) used in the model calculations, with the Keplerian frequency (dash—dotted) for reference.
Left: predictions from the previous model from K22 (Section 3) built from a full spectral-timing fit to the 0.5-10 keV data. Mid-left: fitting with the previous
model (Section 3), ignoring the time-averaged spectrum. Mid-right: extending the model to include a different propagation and generator time-scale (Rapisarda
et al. 2017). This shifts the frequency of the phase-lag peak but does not change the power spectra. We also gave the model the freedom to include damping
(Mahmoud & Done 2018b), but the best-fitting value was close to zero, so this is not shown (Section 4.1). Right: including spectral pivoting and a difference
in generator and propagation time-scale (Section 4.2). This allows the power spectral normalization of the high-energy band to be lower than at low energies,
giving a significant improvement in the consistency of the model calculations.
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Table 2. Model parameter values used in Fig. 3. Common parameter values
used in all fitting are My = 8, Ny = 40, rin = 6, roue =45, B = B = 0.03,
mq = mflp) =0.5, y = 3, and b(r) = 1 — /rin/r. The transition radii are
fixed to rgy = 17.8, rqgs = 32.1 for the left-hand column and rg, = 16, rgs =
32 for other columns, although these differences are too subtle to become
important. Other constraints are Fyurf = Fyarg and D = 0. The mark ‘(f)’
means that a value of the corresponding parameter is fixed.

Symbol Left Mid-left Mid-right Right*
Fyard 0.8 (f) 0.53 0.59 0.8 (f)
By 6(f) 11.9 342 560
mg 12(f) 150 242 273
B =B =B 80.1 166
S4(2.6-4.8 keV) 0.001 (f) 0(f 0(f 0(h
55(2.6-4.8keV) 0.356 (f) 0.505 0.471 0.305
Sh(2.6-4.8keV) 0330(H =1—-S(E) =1-S(E) 0571
D2.6-48keV) 0307 (D) 0 0 () 0
5D2.6-4.8keV)  0.006 () 0(fH 0D 0
Sa(35-48keV) 0(f) 0(f) 0(f) 0(f
S(35-48keV) 0213 () 0348 0277  —0.056
Sh(35-48keV) 0474 (H =1—S(E) =1-S(E) 0476
S(35-48 keV) 0.134 (f) 0 0 0
5\D(35-48 keV) 0.179 (f) 0 0 0(f

280(E) means n(E)So(E) in this column.

giving the K22 model maximal freedom to fit without constraints
from the time-averaged energy spectrum. The K22 model always
has a high-energy-band power spectrum similar to that in the low-
energy band everywhere except at the highest frequencies. Yet the
data have very different power spectral normalizations even at low
frequencies where propagation should dominate.

Plainly, while the previous model from K22 was designed to fit
the data below 10 keV, it does not extrapolate to the higher energies,
so does not adequately describe the physics of the propagation of
fluctuations through the flow. This is important as K22 show that
the propagation speed is a key determinant of the nature of the
hot flow, which can allow large-scale magnetically dominated flows
(magnetically arrested disc — MAD) to be distinguished from those
with turbulent dynamo (standard and normal evolution — SANE)
models. The poor applicability of our previous model to higher
energy bands motivates our study to improve it.

4.1 Suppressing variability at high energies with a constant
spectral shape

The major feature missing in the previous model for the power
spectra is the strong suppression of fractional variability at high
energies. The generation/propagation of fluctuations in the model,
where slower fluctuations generated outer regions propagate down
through the flow, always leads to an increase in variability with
energy, as long as the spectrum hardens inwards. In contrast, the
Insight-HXMT observation data show that plainly the high-energy
broad-band power spectrum is a factor of ~3 lower than the low-
energy power spectrum at all frequencies (Fig. 1, middle). This
decrease in fractional variability with energy was not seen in the
NICER energy band (S10keV; K22). But it has been seen before,
in e.g. the RXTE data of other black hole binary low/hard states
(e.g. Nowak et al. 1999; Axelsson & Done 2018 for Cyg X-1;
Malzac et al. 2003 for XTE J1118+480). In the context of other
propagating fluctuations models, it was modelled by the damping of
high-frequency fluctuations as they propagate inwards (Arévalo &
Uttley 2006; Rapisarda et al. 2017), and by decreasing the intrinsic
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variability power generated in the inner regions (Mahmoud & Done
2018b). To implement these effects in our model, we introduce two
new parameters. One is a damping parameter D, which suppresses
high-frequency variability by exp(—DfAt), where At is the propaga-
tion time. The damping effect is ignored if D = 0. We also allow the
intrinsic variability amplitude to be different between the hot flow
Fyarn and disc Fyy g (the previous model from K22 has Fyaf = Fyara)-

Another observational feature that our previous model fails to
capture is the discrepancy in the frequency at which the power spectra
(in the fP(f) representation) and phase-lag spectra peak. The power
spectra and phase-lag spectra calculated by the K22 model have a
similar peak frequency. This observational property is also seen in
the RXTE data (e.g. XTE J1550—564; Rapisarda et al. 2017), where
the proposed solution was to allow the propagation time-scale to be
different from the generator time-scale on which the fluctuations are
generated. Following this, we separate these time-scales and define
the propagation frequency with

P

®) .. —m
By r" r Tin <1y < Ids),
fprop(r) — ip) - (p)fK( ) ( in = 'n ds) (4)
By r™"a fx(r)  (ras < rn < Fow),

such that the propagation speed is provided by vp(r) = rfprop(r).
It is difficult to constrain disc parameters as the disc emission has
negligible contributions to the energy range of interest. Thus we
keep employing feen(r) = forop(r) in the variable disc region with
(BP, mP) = (By, mg) = (0.03,0.5). To reduce the number of free
parameters, we assume that fj,,p(7) has the same radial dependence

as feen(1), i€ m?” = my. Eventually, we have only one additional

parameter B

The modified model formalism due to the damping effect is given
in Appendix B. Other additional effects, Fyuq # Fyart and foen(r) #
Jprop(7), just alter the power spectrum of intrinsic mass accretion rate
variability at nth ring |A(r,,, f)|*> (equation A1) and the propagation
time from the outer kth ring to the inner nth ring At , (equation A3),
respectively, without affecting any other equations containing |A(r,,,
HI? and At ,. As in the last part of the previous section, we attempt
to reproduce only variability properties based on the propagating
fluctuations process rather than full spectral timing. We keep those
parameters fixed that are fixed in the previous fit.

Even with all these additional effects, the model is still not capable
of matching the observation data. The damping parameter D is
pegged to its lower bound of zero, indicating that the damping
described above is ineffective in improving the fit (Mahmoud et al.
2019). This is because our model assumes that the intrinsic variability
has a cut-off at the local generator frequency feen(r), as shown
in Fig. 2(c). This assumption already includes some aspects of
damping. The MRI (Balbus & Hawley 1991, 1998) is expected
to produce variability up to quite fast time-scales. However, only
variability slower than the local propagation time can propagate
inwards as the faster variability is viscously damped out (Churazov,
Gilfanov & Revnivtsev 2001; Cowperthwaite & Reynolds 2014;
Hogg & Reynolds 2016; Ingram 2016; Bollimpalli et al. 2020;
Turner & Reynolds 2021). Our assumptions about the intrinsic
variability are an approximation of this physical picture. The damp-
ing parameter being pegged to zero indicates there is no need for
additional damping effects. We did not find an improvement in the
fits using separate variability amplitude between the variable disc
region and hot flow region, either.

Fig. 3 (mid-right) shows the results of a joint fit to the power spectra
for 2.6-4.8 and 35-48 keV and the phase-lag spectrum between
these energy bands by allowing fyen(r) # fprop(r) for the hot flow. For
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clarity, we removed the other additional effects that did not make a
difference, i.e. Fyyrq = Fyarr and D = 0.

Although we see a slightly better match to the observed peak
frequency of the phase-lag spectrum than the previous fit, the
model still underestimates its amplitude. More importantly, we still
do not solve the essential issue: the model calculates similar or
larger variability for higher energy bands, inconsistent with the
observation that the power spectral amplitude is larger for the
lower energy band. Mahmoud & Done (2018b) and Mahmoud et al.
(2019) introduce more complex radial dependence for the intrinsic
variability, emissivity, and damping to capture energy-dependent
variability properties. However, some assumptions involved with
these complications remain to be tested. We do not explore the
complex radial structure further and conclude that those additional
effects implemented here are less effective than required by the high
signal-to-noise ratio data obtained by Insight-HXMT.

We note that the difficulty in reproducing the observation data here
lies in joint fitting to the power spectra and phase-lag spectrum. It
is possible to reproduce power spectra for these energy bands with
the current model fairly well, ignoring the phase-lag spectrum. In
this case, however, the lower energy photons would come from inner
regions, because inner regions are more variable than outer regions,
and predict soft lags, which is completely in disagreement with the
observed hard lags. This points to the importance of modelling cross-
spectra and power spectra.

4.2 Spectral pivoting

So far, we have assumed that the spectral shape of each component
does not vary in time. However, this is unphysical because mass
accretion rate fluctuations make spectral parameters, e.g. the optical
depth and electron temperature, vary on short time-scales (Malzac
et al. 2003; Gandhi et al. 2008; Yamada et al. 2013; Bhargava
et al. 2022). This oversimplification limits the model’s flexibility to
reproduce energy-dependent variability data. Hence we now allow
the spectral shapes to fluctuate (Veledina 2016, 2018; Mastroserio
et al. 2018, 2019, 2021), along with their amplitude. The schematic
picture of the spectral pivoting is shown in Fig. 4 (top).

Here, we give concise explanations of how the spectral pivoting is
implemented and what the model gets to be able to handle with this
update. More detailed formalism is found in Appendix C. A constant
spectral shape means that the spectrum at every energy reacts to
mass accretion fluctuations in the same way. We consider the mass
accretion rate and energy spectrum at a certain radius. By defining the
average and difference from the average as i1 and Ari(t) for the mass
accretion rate and as Sy(E) and AS(E, t) for the spectrum, the constant
spectral shape is equivalent to AS(E, t)/So(E) = Am(t)/m1g, which
is independent of energy E. To let the spectral shape vary in time,
we give the spectrum sensitivity to Ari(t) as a function of energy,
n(E), and redefine AS(E, t)/So(E) = n(E)Ani(t)/mg, which now
depends on energy. The amplitude of sensitivity parameter |n(E)|
regulates how sensitive the spectrum is to a change in the mass
accretion rate from its average, while its sign determines whether the
spectrum reacts positively or negatively. The spectrum gets higher
(lower) with an increase in mass accretion rate if n(E) > 0 (<0). The
energy at which n(E) crosses zero, called the pivoting point, does
not react to a change in mass accretion rate. Light curves of local
flux for different energies are illustrated in Fig. 4 (bottom). We note
that we do not simulate light curves in the model calculations. The
decrease in n(E) with energy, i.e. the spectrum being less sensitive
to Ami(t) for higher energies, could let the power spectrum decrease
with energy, as observed for MAXI J1820+070, even if the mass
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Figure 4. Schematic picture of the effect of spectral pivoting as implemented
here. Top: instant local energy spectra when the mass accretion rate at the
corresponding radius is higher than, equal to, and lower than the average
(dashed, solid, and dotted, respectively). Bottom: light curves of the local
flux for different energies, 1keV (red), 4keV (green), 16 keV (blue), 64 keV
(cyan) as marked in the top panel. Each light curve is normalized by its
average and offset for clarity. The light curves in the lower energy bands (red
and green) are positively correlated with the local mass accretion rate, but the
fluctuations have lower amplitude as the energy increases, going to zero at
the pivot point at 16 keV, and then switching to negative correlation at higher
energies (cyan).

accretion rate is more variable for central regions emitting higher
energy photons. In our implementation, there arises no lag between
different energies from the spectral pivoting itself except for the
phase lag of 7t when n(E;)n(E;) < 0. Our new model shares this
feature of spectral pivoting with the model developed by Veledina
(2016, 2018). The new model returns to the previous one by setting
n(E) = 1.

Each spectral component is expected to show its own sensitivity
pattern. We give the sensitivity parameter to each spectral component,
ny(E) (Y =d, s, h), where the subscripts stand the variable disc,
soft Comptonization, and hard Comptonization, respectively. With
the implementation of spectral pivoting, all Sy(E) (Y = d, s, h) con-
tained in the analytic expressions of power spectra and cross-spectra
is replaced by ny(E)Sy(E) (see Appendix C for the derivation). This
means that the model’s flexibility is not bound by the constraint (3)
anymore because time-averaged spectra always appear as the product
with their sensitivity. In addition, ny(E)Sy(E) can be negative in
contrast to 0 < Sy(E) < 1. The spectral pivoting gives freedom to the
model in this way.

We attempt to fit the variability properties with the new model.
We have ny(E)Sy(E) as model parameters, instead of Sy(E). The
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negligible disc emission S4(E) = 0 results in 174(E)Sq(E) = 0. We fix
D = 0, in which all intrinsic variability propagates inwards without
any loss. We also fix Fy,q = Fyarr to the typical value of 0.8 because
the sensitivity parameter n(E) can regulate the variability amplitude.

The simultaneous fit to the power spectra for 2.6—4.8 and 35—
48 keV and the phase-lag spectrum between these energy bands
with the new model is shown in Fig. 3 (right). We see significant
improvement in variability modelling by allowing the spectral shapes
to vary in time. Our new model captures the energy-dependent vari-
ability, pointing to the importance of spectral pivoting in modelling
variability at high energies.

To study the variability for a continuous energy range, we split
energy between 2.6—4.8 keV (LE) and 35-48 keV (HE) into four
bands, i.e. 4.8-7keV (LE), 7-11keV (LE), 11-23keV (ME), and 23—
35 keV (ME), where the telescopes used are specified in parenthesis,
and attempt to reproduce power spectra for these six energy bands
and phase-lag spectra with respect to the lowest energy band for the
rest of five energy bands. We minimize

Z <Pdald(E17 fk) model(Ejv fk))
APdata(Ejv fk)

j.k
baaa(Ers Ejy 1) — Pmodel(Er, Ej, ﬁ))z
+
Z ( A¢dala(Era Ej, fk)

(&)

(E; #Er)

through the fit, where E; is each energy band and E; = 2.64.8keV
the reference band. For more complete modelling, we add two
Lorentzian functions to model the QPOs in power spectra by using
the XSPEC model lorentz. To fix the centroid frequency and width
of the QPO models, we perform a phenomenological fit to power
spectra with the sum of four Lorentzian functions, where two of them
are used to model each bump of the broad-band variability. We then
extract the centroid and width of (3.66 x 1072 Hz, 1.20 x 102 Hz)
for the QPO fundamental, and (9.44 x 1072 Hz, 1.16 x 107! Hz)
for the second harmonic as typical values. Thus, the lorentz model
has only one free parameter, the normalization. On the other hand,
we do not use any additional models in phase-lag spectra due to
the relatively small QPO features. The results of the joint fit to six
power spectra and five phase-lag spectra are shown in Fig. 5. Each
component forming power spectra is explicitly plotted with dashed
(QPOs) and dotted (broad-band) lines only for the highest energy
band of 35-48 keV. Model parameter values are summarized in
Table 3.

We find that the new model matches observations well for all
energy bands whilst keeping parameter values similar to those
found in the joint fitting for 2.4—4.8 and 35-48 keV only (Fig. 3,
right). It is interesting to note that the spectral parameter for the
soft Comptonization component us(E)Ss(E) decreases with energy
and finally reaches a negative value at the highest energy band of
35-48 keV. This means that the soft Comptonization component
increases for an increase in mass accretion rate at low energies
(<35keV), whereas it decreases at high energies (=35 keV), showing
the pivoting point of ~35keV.

Although the broad-band variability has been studied with Insight-
HXMT observations (e.g. Wang et al. 2020; Yang et al. 2022), we
succeeded in reproducing it with a physically motivated model for
the first time. In addition, while propagating fluctuations models have
been applied up to ~35 keV (Mahmoud & Done 2018a,b) with RXTE
observations, we extend the energy range up to 48 keV using Insight-
HXMT observations with significantly improved residuals. Our
successful modelling shows the propagating fluctuations scenario
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Figure 5. Joint fit to six power spectra (top) and five phase-lag spectra
(bottom) across 2.6-48 keV with our new model including the spectral
pivoting. We include two Lorentzian functions for the QPO (dashed) and
harmonic (dotted). In the calculation of phase-lag spectra, the lowest band of
2.6-4.8 keV is chosen as the reference band. The lower plot for each panel is
the difference between data and model divided by 1o errors. The new model
including the spectral pivot successfully reproduces all the timing data across
this bandpass.

holds good up to high-energy bands, keeping it the most plausible
explanation for the aperiodic variability.

5 JOINT SPECTRAL-TIMING FIT WITH
SPECTRAL PIVOTING

We come back to implement a full spectral-timing analysis, rather
than just the series of timing analyses above. We attempt to fit the
energy-dependent timing properties from 2.6—48 keV along with the
time-average energy spectrum at the corresponding energy range by
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Table 3. Model parameter values used in
Fig. 5. Fixed parameter values are the same

as in Table 2.

Symbol Value
Fvar,d 0.8 (f)
B¢ 401
me 2.59
B 108
15S5(2.6-4.8 keV) 0.315
NhSh(2.6-4.8keV) 0.588
15 S5(4.8-7 keV) 0.242
7hSh(4.8-7 ke V) 0.601
7sSs(7-11keV) 0.189
hSh(7-11keV) 0.617
7sSs(11-23 ke V) 0.116
NhSh(11-23 keV) 0.549
1sS5(23-35keV) 0.049
NhSh(23-35 ke V) 0.498
1sS85(35-48 ke V) —0.052
NhSh(35-48 keV) 0.484
x*/degrees of 1095.0/457

freedom

minimizing

3 Saual Er) = Smodet(E) )
i ASdata(Ei)
Pdala(Ejv fk) - Pmodel(Ejs fk))z
* jzk: ( APgaa(Ej, fi)

baalEes Ejy f) — bmoder(Evs E;, fk))2
+ ,
jzk < Ad’dala(Erv Ej’ fk)

(6)
(Ej#Ep)

where Sgua(E) and ASg.(E) are the observed time-averaged spec-
trum and its 1o error, Syoqe1(£) the modelled time-averaged spectrum,
and E; each energy bin in the time-averaged spectrum. We remove
clear calibration features seen in the ME spectrum for 20-24 keV
(light green regions in Fig. 1, top) from the spectral modelling.

To model the energy spectrum, we account for not only the soft and
hard Comptonization components but their disc reflection. We ignore
emission from the turbulent disc due to its negligible contribution
above the lowest energy of 2.6 keV (few per cent at 2.6 keV in the
spectral fit found in K22). We also ignore the negligible effect of
galactic absorption. We use the XSPEC model nthcomp (Zdziarski,
Johnson & Magdziarz 1996; Zycki, Done & Smith 1999) for the
Comptonization components, and relxillCp provided in RELXILL
version 2.0 (Garcia et al. 2014; Dauser et al. 2022) for the reflected
components. Finally, we use

(nthcomp + relxillCp) + (nthcomp + relxillCp), (7)

where each bracket corresponds to the soft Comptonization/reflection
and hard Comptonization/reflection, respectively.

To connect the time-averaged spectrum and variability consis-
tently, we take reverberation into account in our timing model.
Its implementation is updated from that in K22 mainly due to the
inclusion of spectral pivoting. We summarize how the reverberation
behaves in our new model here, while the detailed formalism is
described in Appendix D.

The illuminating Comptonization spectrum changing its shape
with time results in the reflected spectrum also changing its shape
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with time. As in the previous section, we consider a certain
radius. Along with the mass accretion rate and direct emission,
we account for the reflected emission associated with the direct
emission. Defining the average and difference from it as Sér) (E) and
ASD(E, 1), we assume ASO(E, 1)/SS(E) = (AS(E, 1)/Sy(E)) ®
h(t) = n(E)(Amo(t)/mp) @ h(t). We use the superscript ‘(r)’ to
stand for the reflected emission. The convolution in time is denoted by
®, and A(?) is called the impulse response, which is the time evolution
of reflected emission for a flash of illumination. All information as
to the disc response, such as the delay for the direct emission due to
an additional light crossing path and the duration due to the different
delay times for different locations of reflection, are encoded in A(r).

The relation of spectral variation between the direct and reflected
emission means that the reflected emission follows variations of the
direct emission at the corresponding energy with some time delay,
as long as the variability is slow enough not to be washed out via
reprocessing, i.e. via the operation of the convolution. In the simple
case of h(f) = §(t — ), variations of the reflected emission exactly
lag behind those of the direct emission with the time delay of t:
ASD(E, 1)/SS(E) = AS(E, t — 1)/Sy(E).

Each reflected component has its own impulse response as each
Comptonization component illuminates different parts of the accre-
tion flow (Zdziarski et al. 2021a). We define the impulse response
with a top-hat function:

hy(t) = L/Atoy (|t —toy| < Atoy/2),
=0 (otherwise),

(®)

where Y = s, h are associated with the soft and hard Comptonization
components, respectively. The parameters #py and Afyy characterize
the delay and duration, respectively. More realistic impulse responses
are required, especially for low-energy bands E < 2keV, where
the quasi-thermal emission due to the reprocessing dominates high-
frequency variability (=1 Hz). However, the top-hat function appears
to be a good approximation for high energies, where Comptonization
largely determines variability properties.

For the consistency between the spectral modelling and variability
modelling, we calculate the fractional time-averaged spectra required
in our timing model, S(E)(= 0), SJ(E), Sh(E), SV(E), S\’(E),
from the spectral models, nthcomp and relxil1Cp. To obtain
1(E)S(E), nn(E)Sh(E), ns(E)SP(E), and ny(E)SP(E), it is simple
to assume a function for the sensitivity parameters ny(E) (Y = s, h).
We note that we do not need n4(E) due to Sq(E) = 0. Given that
ny(E) can switch its sign at the pivoting point and that the fractional
rms of the broad-band variability roughly changes with energy
logarithmically (Gierlinski & Zdziarski 2005; Yang et al. 2022),
it is fair to make a phenomenological assumption of

ny(E) = 1o,y + 11y logo (E [keV]). ©))

The model parameter oy is the sensitivity at 1keV, while 7,y
determines its gradient to energy.

We note the difference in the model calculations between the
timing fits (Section 4.2) and spectral-timing fits. In the timing fits,
N(E)So(E) is a model parameter, and it is impossible to disentangle
this product. On the other hand, So(E) and n(E) are separately
modelled in the spectral-timing fits. The former is calculated from
spectral models, the latter is from equation (9).

In the joint spectral-timing fit, we fix the seed photon temperature
of Comptonization components to the typical disc temperature in
this state, K Teed s = kTsecan = 0.2keV (De Marco et al. 2021; K22).
Since the electron temperature is difficult to constrain from the energy
band of interest, we fixitto kT, s = kT, , = 23 keV, as in K22. While
we allow the inner radius of the reflector for the hard Comptonization
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Figure 6. Spectral-timing fit to the time-averaged energy spectrum (left), six power spectra (middle), and five phase-lag spectra (right) across 2.6-48 keV with
our new model including spectral pivoting. In the left-hand panel, the soft Comptonization and its associated reflection are plotted with the green and light green
lines, while the hard Comptonization and its associated reflection are plotted with the blue and light blue lines. The black line shows their sum. We include the

effect of galactic absorption of Ny = 1.4 x 102! cm™

2 on the spectral components. The colours of the shaded regions in the energy spectral plot show the energy

band used in the power spectra and phase-lag spectra. In the middle panel, the power spectrum at the highest energy band includes the QPO and harmonic, as in
Fig. 5. The bottom panels show residuals. The data-to-model ratio is used for the energy spectrum, while the difference between data and model divided by 1o
errors is used for power spectra and phase-lag spectra. We successfully fit all the data in this bandpass with our updated model including the spectral pivoting,
except for a slight underestimate of the phase-lag spectrum around the peak for the highest energy band.

component to be free, we fix that for the soft Comptonization com-
ponent to R;, s = 45R, corresponding to the outer edge of the variable
flow located at roy = 45. Following K22, we fix the inclination angle
to i = 66° (Torres et al. 2020) and Fe abundance to Zg. = 1.1. We
also set the black hole spin to a* = 0, consistent with r;, = 6 in the
timing model, and use the high electron density of N, = 10 cm™3
(Garcia et al. 2016; Mastroserio et al. 2021). The delay and duration
of the impulse response are, in principle, derived from the location
and geometry of illuminating source and reflector. However, in
the geometry assumed, the time-scales of reverberation <10 ms
(corresponding to the light crossing of $250R, for Mgy = 8 Mg)
are shorter than variability time-scales of interest (20 ms—100s).
In addition, reverberation signatures are unclear across the energy
bands of interest (2.6-48 keV), and small alterations of the impulse
response due to small changes of the accretion flow geometry do
not significantly affect the variability properties. Thus, we simply
fix tos = ton, = 6ms and Aty = Aty = 10ms as typical values.
The top-hat impulse response with these values appears to be good
approximations of more realistic ones (K22).

The results of simultaneous modelling of the energy spectrum,
six power spectra, and five phase-lag spectra are shown in Fig. 6.
The comparison between the data and model is also plotted as
the ratio for the energy spectrum and the difference divided by
lo errors for the variability. Model parameter values are found in
Table 4. Overall, our new model successfully reproduces both time-
averaged and variability properties, although the discrepancies are
seen in the phase-lag spectrum between 3548 and 2.6-4.8 keV
(magenta), which is discussed in Section 6.3. This modelling is the
first simultaneous fit to spectrum and variability using our model.
The uncertainties of the derived parameter values are evaluated with
a Markov chain Monte Carlo (MCMC) analysis in Appendix E.

The spectral variation derived from the fit is shown in Fig. 7.
The spectra for the mass accretion rate being its average and double
the average are plotted with solid and dashed lines. For illustration
purposes, we ignore all effects from the impulse response for
reverberation, such as time delay, i.e. we assume A(f) = §(¢). This
means that the Comptonization and its associated reflection behave
completely in the same way, AS(E, 1)/So(E) = ASO(E, 1)/S(E).

Table 4. Model parameter values derived from the joint spectral-timing fit
in Fig. 6. Fixed parameters related to the spectrum are the seed photon tem-
perature k Tseed,s = kTseed,n = 0.2keV, electron temperature kT, s = kTe h =
23keV, Fe abundance Zg. = 1.1, inclination angle i = 66°, black hole
spin a* = 0, electron density N, = 102 cm™3, inner radius of reflection
region Rins = 45R,, and outer radii of reflection region Rous = Rouh =
1000R,. The subsubscript ‘s’ (*h”) denotes the soft (hard) Comptonization or
its associated reflection component. Fixed parameters related to variability are
the same as in Table 2 in addition to the extra parameters about reverberation,
to,s = lo,h = 6 ms and Aty s = Atgh, = 10ms.

Component Model Symbol Value
Spectral parameters
Soft Comptonization nthcomp T 1.81
and reflection
normg 1.38
relxillCp logjoés 3.44
norm{ 0.0395
Hard Comptonization nthcomp Iy 1.50
and reflection
normy 2.11
relxillCp Rinn 78
logioén 1.70
norm;” 0.0328
Variability parameters
Broad-band Our model By 862
mg 2.81
B® 189
10.s 1.023
Mg —0.568
10,h 1.527
Nih —0.580
x2/d.o.f. 1993.1/1795

Generally, all spectra are less sensitive for higher energies to mass
accretion rate fluctuations, which results in a decrease in the power
spectrum with energy. We see the pivoting point at ~50keV for the
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Figure 8. Propagation frequency (solid) as a function of radius derived from
the spectral-timing fit. Red, green, and blue colours denote the variable disc,
soft Comptonization, and hard Comptonization regions, respectively. The
propagation frequency derived from our previous work and predicted from
theoretical models are plotted with a dashed line and dash—dotted lines (see
K22 for details). A black hole mass of Mgy = 8 Mg is assumed. The
Keplerian frequency is also plotted with a grey dash—dotted line for reference.
We caution that none of these models except the JED-SAD has an explicit
transition from the flow to the disc.

soft Comptonization and its reflection, which roughly agrees with
that at ~35keV derived from the fit only to the timing properties in
the previous section.

6 DISCUSSION

6.1 Generator time-scale and propagation time-scale

The characteristic time-scales on which the fluctuations are propa-
gated at each radius are derived from the spectral-timing fit (Fig. 6).
We compare the propagation frequency derived (solid) to those
predicted by different hot flow models (dash—dotted) in Fig. 8.
The theoretical propagation frequencies for the advection-dominated
accretion flow (ADAF; Narayan, Kato & Honma 1997), standard and
normal evolution (SANE; Narayan et al. 2012), magnetically arrested
disc (MAD; Narayan et al. 2012), and jet emitting disc (JED; Marcel
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etal. 2018) are calculated in a standard way by dividing the accretion
speed by radius assuming Mgy = 8 Mg (see K22 for details). The
propagation frequency derived from our previous model from K22
is also plotted (dashed).

In K22, we found fairly good agreement of the derived propagation
time-scales with those in ADAF, SANE, and JED rather than MAD.
The propagation time-scale derived from our new model is now
not very similar to any theoretical predictions. Here, allowing the
generator and propagation frequencies to be different makes their
radial dependence steeper, i.e. from fop (1) o 27 10 fprop(1) 431
This steep radial dependence is required to reproduce both the
observed large phase lags and high-frequency broad-band variability
simultaneously. Indeed, the propagation time-scale derived is robust
against uncertainties of the relationship between the generator time-
scale and propagation time-scale. Using our new model including
the spectral pivoting, the assumption of fue, (1) = forop(7) also gives a
similar propagation time-scale, although the fit is not as good as that
obtained in the previous section with fe, (1) 7 forop(r). The key feature
that our new model requires is a slow propagation speed enough to
reproduce observed phase lags. The propagation time-scale of MAD
(brown dash—dotted line) is too short to explain the observed phase
lags. Thus, our results still prefer SANE rather than MAD, although
MAXI J18204-070 displays a powerful jet (Bright et al. 2020).

6.2 Origin of QPOs

Our full spectral-timing modelling accounts for all the X-ray spec-
trum and rapid variability except for the QPOs. We model these QPOs
by adding peaked Lorentzian components in the power spectra. No
extra component is added to the phase-lag spectra simply because the
QPO features are not very clear across 2.6—48 keV. We did not add
any other spectral components for the QPOs, implicitly assuming
that the QPO is a modulation of the spectral components already
included in the model (multiplicative) rather than being associated
with an additional spectral component (additive).

Our successful modelling does not give much room for an
additional emission component only related to the QPOs (Fig. 6),
supporting the assumption above. This result is consistent with a
QPO produced predominantly from a global mode of flow rather than
an intrinsic change in intensity with QPO frequency. We specifically
have in mind the Lense-Thirring (vertical) precession of the entire
hot flow, where the observed luminosity of the Comptonization
component(s), including all their stochastic variability, are modulated
by the changing projected area of the translucent hot flow as the
viewing angle changes with QPO phase (Fragile et al. 2007; Ingram
et al. 2009; Ingram & Done 2011, 2012). This picture agrees with
the new polarization results for Cyg X-1 in the low/hard state,
which requires the hot X-ray emitting plasma to be radially extended
(Krawczynski et al. 2022). Conversely, the alternative model of a
precessing jet suggested by Ma et al. (2021) is challenged by the
polarization results because it requires the hot X-ray emitting region
to align with the jet.

6.3 Limitations of our new model

Our new model gives a poor fit to both the energy spectrum and
phase lags beyond ~40-50 keV. From Fig. 6 (left), the spectral
model clearly underestimates the data above ~100 keV. The hard
Comptonization spectrum rolls over too fast to match the observed
data. The comparison of the phase-lag spectrum between the model
and data at high energies is shown in Fig. 9. The model phase lags
increase smoothly with energy to ~40keV (Fig. 6, right) but then
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Figure 9. The predicted high-energy phase lags (lines) versus the data
(points), calculated using the standard 2.6-5.8 ke'V reference band. The lowest
energy band on this plot is 35-48 keV (magenta), which is the highest energy
band included in the spectral-timing fits. The predicted phase lags at higher
energies saturate beyond 40 keV, unlike the data, which show a clear increase
in phase lag with energy, pointing out the limitations of the model.

saturates to a constant value rather than continually increasing as
in the data. The lag behaviour arises as the fraction of the total
spectrum that is made of the hard (and long lagged) Comptonization
spectrum increases up to around ~40keV, but after this point, the
hard Comptonization dominates, leading to the saturation of lag.

The spectral mismatch could be fixed if there is additional stratifi-
cation of the energy spectrum of the hot flow, so the very innermost
regions produce an even hotter/harder Comptonization component.
In many ways, this is quite natural. The two Comptonization compo-
nents used here for the spectral decomposition are only an approxima-
tion to a continuous flow with (presumably) continuous stratification,
even if we do expect there physically to be two main regions. Close
to the disc, seed photons for Comptonization are predominantly
from the disc. However, it is quite easy for this Comptonization
to become optically thick along the equatorial direction, shielding
the inner regions from the disc photons so that seed photons are
predominantly from cyclo-synchrotron (Poutanen & Veledina 2014).
None the less, there could still be some radial temperature/spectral
hardness gradients in this second region that could produce additional
emissions at the hardest energies (Poutanen & Veledina 2014). We
note that the JED models (e.g. Marcel et al. 2018) also predict a
continuously increasing temperature/harder spectrum with radius in
their hot flow.

However, including the additional harder Comptonization compo-
nent probably does not fully solve issues with the phase lag, as the
amount of increased lag should be rather small as the propagation
speed is already high. Yet the data show a large increase in lag
between high-energy bands. It seems more likely that there are other
factors at work affecting the lags, potentially related to changing
temperature in the flow.

There is another feature that is lacking from our new model. Itis a
physical description of the spectral pivoting from the Comptonization
process. Currently, the model assumes that the spectra pivot in a
synchronous way, i.e. the local spectrum at every energy responds to
fluctuations of the local mass accretion rate simultaneously. Although
the magnitude of the response can be different between different
energies, as seen in Fig. 7, there is no causal connection between
them. There can be 0 or 7t of phase lags arising from the spectral
pivoting itself (the phase lag of 7t arises if one energy band is above
the pivoting point and the other band is below it, i.e. n(E)n(E,y) <
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0). Thus, in our new model, the lags between different energies are
still due to the propagating fluctuation process, as is the case for the
model developed by Veledina (2016, 2018). The spectral pivoting
implemented in our new model can strongly affect power spectra
but has only a relatively mild effect on phase-lag spectra. Indeed,
our new model is able to reproduce energy-dependent power spectra
fairly well up to ~100 ke V, even though it fails to match the phase-lag
spectra.

However, the physical picture of Comptonization described above
should give a characteristic spectral pivoting pattern. A fluctuation
from the edge of the truncated disc first gives a change in seed photons
to the soft Comptonization. Assuming an increase in seed photons,
it increases the Compton cooling on the light travel time without any
change in electron heating, so the spectrum softens. Then, after the
accretion time-scale (propagation time-scale), the same fluctuation
modulates the soft Comptonization by increasing the electron density,
increasing the heating rate, and causing the spectrum to harden. This
gives an asynchronous rocking of the soft Comptonization, where
two mutually correlated but lagged variability sources form its time-
dependent behaviour. By contrast, in the hard Comptonization region,
the fluctuation gives a synchronous change in seed photons and
electron heating as both are produced together around its outer edge.
The synchronous pivoting implemented in our model may be limiting
its ability to properly model the data, as it is suppressing a real lag
that occurs from the two time-scales propagation mechanism in the
soft Comptonization.

It is worth noting that our implementation of the spectral pivoting
is different from that in the RELTRANS model (e.g. Mastroserio et al.
2018; Ingram et al. 2019). Mastroserio et al. (2018, 2021) and
Mastroserio, Ingram & van der Klis (2019) consider the non-linear
effects in the time-varying continuum spectrum and have two variable
terms in its expression to allow lags to arise from the spectral pivoting
itself (Kotov et al. 2001). However, not specifying the underlying
process causing the spectral pivoting may make RELTRANS too
flexible in producing the observed hard-lag data. On the other hand,
our new model has only one variable term, i.e. the local mass
accretion rate, in the expression of the local spectrum. The local
spectrum varies linearly to this term, which does not produce lags
except for 7t. As mentioned above, our model relies on the hard lags
caused by the combination of the propagating fluctuations process
and energy-dependent emission profile (Veledina 2016, 2018).

We suspect that this lack of a physical spectral pivoting model,
including the light crossing time spectral softening and the propaga-
tion time, is the major reason our new model fails to fit the phase-lag
spectra from 50 to 150 keV. This more physical model for spectral
pivoting is beyond the scope of this paper but will be considered in
future work.

7 CONCLUSIONS

We have studied X-ray spectral-timing properties of the black hole
binary MAXI J18204-070 in the bright low/hard state using Insight-
HXMT observation data. Particularly, we have focused on the energy-
dependent broad-band variability on time-scales from milliseconds
to seconds.

We started with testing our previous model from K22, which
included the propagating fluctuations process and reverberation, and
successfully explained soft X-ray timing properties (<10keV), and
found that it cannot be applied to higher energy bands. The key
variability feature that our previous model missed was the decrease
in fractional power spectrum with energy above ~10keV, which is
difficult to explain with the simple propagating fluctuations picture
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but is typically observed (Nowak et al. 1999; Malzac et al. 2003;
Axelsson & Done 2018). We have seen that additional effects
proposed in the literature, such as the damping (Rapisarda et al. 2017;
Mahmoud & Done 2018b), are not very effective in reproducing both
observed power spectra and phase-lag spectrum simultaneously.

We updated our model by implementing spectral pivoting. This
is physically expected in a Comptonization model with fluctuating
power (Malzac et al. 2003; Gandhi et al. 2008; Veledina 2016;
Mastroserio et al. 2018). This, plus allowing the propagation speed to
be different from the time-scale on which fluctuations are generated,
allows us to reproduce both power spectra and phase-lag spectra
across the 2.6-48 keV band. The pivoting reduces the amplitude
of the response of the spectrum at high energies compared to
low energies, suppressing the power spectral normalization at high
energies but keeping its shape. We are finally able to do a full spectral-
timing fit in the 2-50 keV bandpass, demonstrating that our timing
model can be self-consistently combined with spectral models.

The propagation derived from the spectral-timing fit favours SANE
over MAD, as the propagation speed is too fast to explain the
observed lags for MAD. Our spectral model for the accretion flow
consists of emission from the turbulent disc, plus soft and hard
Comptonization regions and their associated disc reflection. These
spectral components fit all the emissions in our bandpass, and their
timing components fit all of the power spectra and phase lags apart
from the QPO. Thus there is very little room for any additional
spectral component to make the QPO, supporting models where the
QPOs originate from a global modulation (multiplicative process) of
the existing hot flow such as the Lense—Thirring precession (Ingram
et al. 2009) rather than e.g. an additional component from the jet (Ma
et al. 2021).

None the less, our new model still has some limitations, with clear
discrepancies with data above ~40keV. The observed phase lags
keep on increasing up to ~150 keV while those in our model saturate
above ~40keV. These may point to a more complex description of
spectral pivoting and/or additional spectral stratification of the inner
parts of the hot flow, but clearly, they show that the data are better
than the best current models of the hot flow. We stress that this is
a motivation for better physical modelling of the flow so that we
can robustly use the observed spectral and timing data to explore the
underlying nature and geometry of the accretion flow in the region
where the jet is launched.
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APPENDIX A: SUMMARY OF OUR PREVIOUS
MODEL

We give the detailed formalism of our model in the whole appendix.
We start with the summary of our previous model presented in
K22 before formulating model updates made in this work in the
subsequent appendices. We note that while we assume three radially
stratified spectral components as the variable flow, i.e. Ny = 3
(see Fig. 2a), the formalism can be straightforwardly applied to
an arbitrary number of spectral components. Needless to say, the
formalism is the simplest for the single spectral component, Ny = 1.

We split the variable flow ranging from 7y, to 7oy into N; rings
logarithmically, such that the central radius of the nth ring, r,, and
the distance between neighbouring central radii, Ar, =r, — 1,4+ 1,
follow Ar,/r, = constant (n = 1, 2, ..., N, from outer to inner rings).
We use the radius 7, in units of gravitational radii R, = GMgy/c?,
where G, Mgy, and c are the gravitational constant, black hole mass,
and speed of light in vacuum, respectively. The number of rings
N; determines the resolution of the model calculation (Ingram &
van der Klis 2013). The larger number of N, allows more accurate
calculations of power spectra and cross-spectra for high frequencies
at the expense of computation efficiency.

MAXI J1820+4070 spectral-timing 4449

The mass accretion rate varies stochastically everywhere in the
variable flow. We define this intrinsically fluctuating mass accretion
rate for each ring as the product of its mean m and time-variable term
a(r,, t) having the mean of unity, u = (a(r,, 1)), = 1, where  denotes

time. Employing a dimensionless mass accretion rate prescription,
we set ring = 1. We assume that the power spectrum of a(r,, ), |A(r,,

I?, is provided by a zero-centred Lorentzian function with the cut-

off frequency equal to the generator frequency fen(7),

202 fgen(rn)

Ay, P = 22 Jeenlln)
A DF = e X )P

(A

where fis the Fourier frequency and o2 the variance of a(r,, f). In the
expression (A1), we employ the normalized power spectra such that
their integral over positive frequency corresponds to (o/u)?. We use
the parameter Fy, to set the variance through o/ = Fyar/v/ Naecs
where Nge. is the number of rings per radial decade and thus, F\,, is
the fractional variability per radial decade. The generator frequency
is defined as equation (1) (see also Fig. 2¢). Sample power spectra
are shown in Fig. 2(e) with dashed lines.

While mass accretion rate fluctuations are generated, they propa-
gate towards the central object at the same time. The propagation is
expected to happen in a multiplicative manner (Uttley, McHardy &
Vaughan 2005), which leads to assuming

(e, 1) = mitg | [ a(ri t = Aticn), (A2)
k=1

where Ay, is the propagation time from the outer kth ring to inner
nth (n > k) ring. We note that 19 = 1 is left in the expression to
preserve generality. As the propagation speed v, (r) is set by radial
velocity, i.e. v,(r) = rfyisc(r), the propagation time is expressed as

Ar < 1
r fvisc(r),

I=k+1

Aty = (A3)

where Ar/r = Ar,/r, = constant. In the statistical equilibrium
under the generation and propagation of mass accretion rate
fluctuations, the power spectra, |M(r,, f)|>, and cross-spectra,
(M1, f)Y*M(r,, f)(m # n), can be calculated analytically (see
appendix A in K22). The asterisk * denotes the complex conjugate.
Sample the power spectra are shown in Fig. 2(e) with solid lines.

The flux at energy E and time 7, x(E, 1), is the sum of contributions
from each ring in the variable flow. Ignoring the effect of reverber-
ation for simplicity (we take it into account in Appendix D), we
express the flux as

Ny
X(E )= Mra)S(E, ra. 1). (A4)

n=1

The flux represents the number of photons per unit of time because
the variability is studied for count rather than energy. Both treatments
give the same model calculations for a single energy. However, using
countrates is necessary to compare the model to observations because
observation data cannot be processed for an infinitesimal energy
band. The local flux emitted from nth ring, S(E, r,, 1), is defined as

S(E, ra, 1) = So(E, rn)M, (AS)

mg

where Sy(E, r,,) is the time-averaged spectrum at the nth ring. We note
that ri1p = 1 is explicitly written in equation (AS). Since we assume
three spectral components (N = 3), this time-averaged spectrum is
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categorized into three spectra:

Sh(E) (rin =rm < rsh)a
So(E,ry) = S(E)  (ren <1y < Tds)s (A6)
Sa(E)  (ras <1y < row,

depending on to which spectral regions the nth ring belongs. r,
is the inner edge of the hard Comptonization component, ry, is
the transition radius between the hard Comptonization and soft
Comptonization components, 7y, is the transition radius between the
soft Comptonization and variable disc components, and 7,y is the
outer edge of the variable disc component. Sy(E), Ss(E), and Sq(E)
are the time-averaged spectra for the hard Comptonization, soft
Comptonization, and disc components, as shown in Fig. 2(d).

To let equations be concise, we define the collection of radii
affiliated with the variable disc, soft Comptonization, and hard
Comptonization regions as rq, rs, and ry, respectively. Then we
express So(E) as

So(E, ra) = SY(E) (ry € ry), (AT)

for Y =h, s, d. In the model formalism, we use Sy(FE, r,,) as a fraction,
giving the constraint of

> SwE)=1. (A8)
Y=h,s,d
We note that we ignore any other spectral components here, such as
reflected emission.

Along with the time-averaged spectrum Sy(E, r,,), the contribution
from each ring is also regulated by A(r,) in terms of energy
dissipation:

Mra) = e(r)2mr, Ar, / D ern2mr, Ary, (A9)

m(rm€ry)

where €(r) is the emissivity. The emissivity is defined as the
product of a power-law function and inner boundary condition:
e(r) o« r7b(r), where b(r) = 1 — \/rin/r or b(r) = 1 for the ‘stress-
free’ or ‘stressed’ boundary condition (Ingram & Done 2012).
Because of the normalization of A(r,) and mass accretion rate
fluctuations, the time-averaged flux from an entire spectral region
corresponds to the time-averaged spectrum:

D AES(E, . 1) = Sy(E), (A10)

n(ra€ry)

giving rise to the time-averaged total flux being unity, (x(E, 7)), =
Doy =hsdSy(E) =1

From equations (A4) and (AS), the Fourier transform of the flux
x(E, t) is proportional to the Fourier transform of the local mass
accretion rate ri(r,, t):

Ne

So(E, 1) -
X(E, f)= Zm)‘)(TO”M(rn, H

n=1

Ne
= > wru, EYM (. f), (A1)

n=1
where we call the coefficient w(r,, E) = A(r,)(So(E, r,)/mo) the
weight. The weight w(r,, E) is proportional to the product of the
emissivity and energy spectrum, finally determining how much nth
ring contributes to the variability of the flux. Since we know the
analytic forms of power spectra and cross-spectra for the local
mass accretion rate, (M(ry,, ))*M(ry, t)(m,n =1,2,..., N;), we
can calculate the power spectrum |X(E, f)|> and cross-spectrum for
two different energies E; and E», (X(E\, f))*X(E>, f), analytically (see
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appendix A in K22), which can be directly compared to observation
data. The sample model calculations of power spectra, time-lag
spectrum, and phase-lag spectrum are shown in Figs 2(f), (g), and
(h), respectively.

APPENDIX B: INCLUDING DAMPING EFFECTS

We summarize the expressions of power spectra and cross-spectra for
the local mass accretion rate and flux, where the damping effects are
taken into account. The derivations are described in Rapisarda et al.
(2017) appendix A, and in Mahmoud & Done (2018b) appendix A.
We note that the damping effects are excluded in any results presented
since they turned out to be ineffective for this work.

The local mass accretion rate is expressed as

(e, 1) = [ [ g0 rar ) @ alr, 1), (B1)
k=1

where the symbol ® denotes the convolution in time ¢. The green
function g(ry, ry, t) describes how the local mass accretion rate at
the inner nth ring responds to that at the outer kth ring (n > k). The
Fourier transform of the green function, G(ry, r,, 1), is required in
model calculations. While we employ G(rg, r,, t) = e 27 Alkn jp
K22 and Appendix A, which is equivalent to g(ry, r,, 1) = 6(t —
Aty,), We use

Gl 1. f) = &P Sk gi2rf M (B2)

in order to include the damping effects.
From equation (B1), the following expressions for power spectra
and cross-spectra for the local mass accretion rate are obtained:

. 1 .
|M(r,, P> = 2140 PP ®IG(rut, 1ay FIM(ra_r, f)I?, (B3)

(M(ri, )My, ) = AnGris ray PIM e, PP (n > k), (B4)

where ® denotes the convolution in frequency f. The consecutive
product of the time-averaged local mass accretion rate u; (I =1, ...,
N;) from kth ring to nthring is defined as Ay, i.e. Ay, = H;’ZH] [OR
which is unity. We note that we use continuous Fourier frequency
f rather than discrete Fourier frequency f,, for simplicity. The
coefficient 1/N? in equation (B3), where N is the number of data
points used, comes from the convolution theorem

1
X(fm) = 55 AUfm) ® B(fum), (BS)

where x(t;) = a(t;)b(t;). In the convolution theorem, the discrete
Fourier transform is defined as

N—1

X(fu) =Y x(t)e ™I, (B6)

1=0

where f,, = m/(NAt) (im = —N/2 + 1, ..., N/2 for even N or m =
(N — 1)/2, ..., (N — 1)/2 for odd N) and #; = [At with At being the
sampling interval. The discrete inverse Fourier transform is thus

x(n) = % > X (f) et (B7)

€202 ABIN 0} U0 189NB Aq 12Z€/69/VEYYIE/61G/aI0IE/SEIUW/ WO dNO"D1WLSPED.//:Sd))Y WO PapEOjuMOd



Combining equations (B3) and (B4) with equation (C4) yields the
expressions of the power spectra for the flux:

Ny

IX(E, HIP =) {(w(rn, E)[M(ry, f)I?

n=1

n—1
+2Z{w(rk, EYw(ry, E)Ay.

k=1
X |Gk, 1 )] COS(@U, r FIM (s, f>|2}],
(B8)

where G(r¢, 7y, f) = |G(rg, 1y, )| €®0%7 ) The cross-spectra for
the flux can be calculated in the same manner:

Ne

(X(Er, ) X(Es /)= {w(rn, EDw(ry, E2)|M(ry, f)?

n=1

n—

+ > { (Wi, Ewry, Epye s
1

+w(ry, ENw(rg, Ey) et D)

»
Il

X Mal Gl 1y DI, f>|2}] (B9)

APPENDIX C: INCLUDING SPECTRAL
PIVOTING

To include the change in the spectral shape on short time-scales, we
redefine the variable local energy spectrum S(E, r,, ) as
m(r ns b ) — nig

S(E,rp, t) = (1 + n(E, rn)T) So(E, ry). (C1)
Again, although we assume iy = 1, we leave the symbol explicitly
in the formulation to preserve generality. The new energy-dependent
parameter 7n(E, r,) regulates how the spectrum at the energy E
responds to mass accretion rate fluctuations. While the amplitude of
n(E, r,) regulates the sensitivity, its sign determines the correlation
patterns (see Fig. 4). Since we have three spectral regions for the
variable flow (N = 3), we accordingly classify this sensitivity
parameter into three:

N(E, ) =y (E) (ry € ry), (C2)

for Y = h, s, d. The spectrum S(E, r,, ) is positively (negatively)
correlated to mass accretion rate fluctuations if n(E, r,) > 0 (<0),
as shown in Fig. 4. Both correlations can be physically realized
(Veledina 2018). The new definition (C1) is reduced to the previous
definition (AS5) if n(E, r,) = 1. Thus, we see that equation (C1),
in which the spectral shapes vary in time, is a natural extension of
equation (AS), in which the spectral shapes are fixed.
Employing equation (C1), the Fourier transform of the flux is

N E.r)So(E. 1) .
X(E, )= 3w TETE D gy g

n=1
Ny
= > wrn, EYM(ry. £), (€3)
n=1
where the weight w(r,, E) is redefined as

U(E» rn)SO(E’ rn)
1 '

w(ry, E) = A(ry) ()
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The Fourier transform X(E, f) is expressed in the same manner as
equation (A11) and thus linear to M(r,, f). Thus, we can calculate
power spectra and cross-spectra for the flux analytically.

The only difference that appeared in the expression of X(E,
/) (compare equations All and C3) is the presence of the new
parameter n(E, r,). Allowing the spectral variation is equivalent to
regarding So(E) in equation (A11) as n(E, r,)So(E, r,). Because of
this replacement, the spectral pivoting releases the model from the
constraint (A8) in the sense that the model calculations always require
the product n(E, r,)S(E, r,,), not So(E, r,,). The spectral pivoting gives
much flexibility to the model in this way, as seen in the successful
modelling in Fig. 3 (rightmost) compared to the failed ones in the
rest of the columns.

APPENDIX D: MODIFYING REVERBERATION

We modify the implementation of reflection due to the implemen-
tation of the spectral variation described above. While a part of
the emission from the variable flow directly hits a detector, it also
irradiates the outer disc, resulting in the reflected/reprocessed emis-
sion. Considering this reprocessed emission also hits the detector,
the observed flux is expressed as

X(E,t) = x9YE, )+ xE, 1), (D)

where xXY(E, 1) and x")(E, t) are the direct and reflected components,
respectively. Hereafter, we use the subscripts ‘(d)’ and ‘(r)’ to specify
the direct and reflected components. Since we have only considered
the direct component above, symbols that appeared in previous
appendices will be used with the superscript of ‘(d)’. The expression
of the direct component X (E, 1) corresponds to equation (A4).

The variable disc component is unlikely to contribute to the
reflected emission. In this regard, the variable disc component
is distinct from the soft and hard Comptonization components.
However, in terms of formalism, it is simple to assume that every
spectral component in the variable flow, i.e. every direct component,
has its associated reflected component. Therefore, we account for
the reflected component for the variable disc in the formalism and
remove it in parameter space.

Each ring of the variable flow illuminates the outer disc, yielding
the following expression of the reflected component:

Nr
XUE =" / dE'M(r)SE 1y, ) @ (E, E', 1y, 1), (D2)
n=1

where the symbol ® denotes the convolution in time 7. The impulse
response A(E, E, r,, 1) describes the time-evolution of reflected flux
at the photon energy E for the instant incident flux at E' from the nth
ring. The impulse response also encompasses the probability that a
photon at energy E is generated from one at E . Here, we assume that
the form of the impulse response is common within each spectral
component:

WE,E' ry,t)=hy(E,E',t) (r, €ry), (D3)

for Y = h, s, d. The radius of the ring r,, is only needed to specify
to which spectral component the ring belongs. The impulse response
for each spectral component is independent of radius, i.e. the location
of illuminating source. This approximation should be validated since
the size of a reflector (~103Rg) is expected to be much larger than
the size of spectral regions in the variable flow (~10Ry).

We also assume that the shape of the impulse response is inde-
pendent of photon energies E and E and separate its amplitude and
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shape in the expression:
W(E, E' r,, 1) = C(E, E',r,)h(r,. 1), (D4)
where we normalize the shape ﬁ(t) to follow
+00 -
/ dr h(r,, t) = 1. (D5)

Again, each term of the impulse response is common within spectral
regions:

C(E, E',r,) = Cx(E, E'), h(ry, 1) = hy(1) (r, € ry), (D6)

forY =h, s, d. HerNeafter, we replace the symbol of the normalized
impulse response h(r,,t) with h(r,, t), since the symbol of the
impulse response including normalization, h(E, E, ry, 1), is not
required in the formalism anymore. Substituting equations (C1) and
(D4) into equation (D2) yields

Ny . .
XED =D / dE'A(r) (1 +n(E, mM)
n=1

mo
x SSU(E' 1) ® C(E, E', 1,)h(ry, 1). (D7)

We note that (d) is explicitly used here to distinguish the direct
component from the reflected one, although not in the previous
subsections, where the reflection is not included.

To connect equation (D7) with the time-averaged reflected spec-
trum,

S$(E, 1) = SY(E) (Y =h, s, d), (D8)

we average the reflected flux x(E, ) in time:

xOE, ) = Y / dE'Cy(E, ENSY(E'), (D9)
Y=h,s,d

which needs to correspond to > y_; (4 SY(E). Each term on the

right-hand side corresponds to each time-averaged reflected flux. In
practical applications, we fix S((;)(E ) = 0 to exclude the reflected
emission arising from irradiation by the variable disc component.
Equation (D7) cannot be simplified with this constraint because
n‘Y(E, r,) depends on the incident photon energy E . The existence
of n@(E', r,) in the integration in equation (D7) means that the
spectral variation at every energy affects the reflected emission as
long as C(E, E , r,) # 0. Although this situation is physically natural,
its proper treatment would require many complications. Moreover,
r](d)(E', r,) is an ad hoc parameter introduced to include the spectral
variation and not connected directly to physical parameters. Given
these circumstances, we replace n@(E', r,,) with n®(E, r,) related to
the reflection component and let n”(E, r,) be only dependent of the
output photon energy E, resulting in

Ny
X(E, 1) =Y Ara) (1 +n"(E, 1)

n=1

m(r)u t) - I”’i())

mo
X SS(E, 1) ® h(r, 1). (D10)
Defining

i llvt —m
SO(E, 1y, 1) = (1 +n<°<E,rn)u) SO(E, r,) (DI1)
ny

yields an expression for the reflected component comparable to that
for the direct component (A4):

Nr
XOE, )= 2r)SO(E, 1y, 1) ® h(ry, 1). (D12)

n=1
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The difference lies in the presence of convolution. As each direct
spectral component does, each reflected spectral component shares
the sensitivity parameter within its associated radii:

n(E, r,) = ny(E) (ry € ry), (D13)

for Y = h, s, d. In the spectral-timing fit in Section 5, we assume
n@(E) = n$)(E), which means that the direct and its associated
reflected components react to a deviation of the mass accretion rate
from its average in the same way.

Finally, substituting equations (A4) and (D12) into equation (D1),
we get the expression of the flux:

Ny
X(E )= Mra) (SUE. 1. 1) + SUE. 1. 1) @ h(rn. 1))

n=1
(D14)
Using equations (C1) and (D11), its Fourier transform is

Nr

X(E, )= (w0 E)+ wO, EYH (. £)) M1, £).

n=1

(D15)
where

NO(E, r,)SY(E, 1)
rg

w(r)(rm E) = A(ry)

(D16)

is the weight for the reflection component, and H(r,, f) is the transfer
function, the Fourier transform of the impulse response h(r,, f).
Again, the linearity of X(E, f) to M(r,, f) allows analytic calculations
for the power spectra and cross-spectra of the flux.

APPENDIX E: MCMC FIT

We demand 28 free parameters in the spectral-timing fit performed
in Section 5. In addition to these many free parameters, our model
computations are quite expensive, even though not prohibitive. These
situations make it difficult to properly estimate the errors on the
derived parameter values.

Here, we perform a Markov chain Monte Carlo (MCMC) fit
to evaluate the uncertainties of the model parameter values. We
use the chain command in XSPEC, in which we employ the
Goodman—Weare algorithm with 100 walkers and 100000 steps
in total. Whereas in Section 5, we free the normalizations of the
lorentz model used to capture QPO features in the power spectra,
we fix all of them in the MCMC fit. Fixing them decreases 12 free
parameters because there are two lorentz models for each of
the six energy bands, enabling the MCMC analysis with 16 free
parameters. We burn 1000 steps because the x? values converge after
~1000 steps.

The corner plots for all 16 free parameters are shown in Fig. E1.
The distribution is generally centrally peaked for every free param-
eter, signifying good convergence. The parameters regulating the
propagation time-scale, B}p) and mﬁp), take values among 160-240
and 2.78-2.88, respectively. These spreads give rise to the spreads of
the propagation time-scale as narrow as the line width in Fig. 8. Thus,
the result of our analysis that the propagation time-scale derived fairly
disagrees with any theoretical predictions in Fig. 8 is robust.
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Figure E1. Corner plots for 16 free parameters of the spectral-timing fit in Section 5. Every free parameter has its row and column. The correlation between
two free parameters is shown at the intersection of the corresponding row and column. The distribution of each parameter is shown at the rightmost (top) of the
corresponding row (column). We use the corner module (Foreman-Mackey 2016) to produce the plots. The figure is viewed clearly in the digital version.
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