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Abstract: 

Game theory contributes to the quantitative study of online ride-hailing regulations; however, 

prior game models of the online ride-hailing market fail to comprehensively consider 

government regulation strategies as well as multiple stakeholders in various regulation 

contexts. This study constructs two system dynamic models of evolutionary games among 

online ride-hailing platforms, drivers, and passengers. One is the basic model not subject to 

government regulations, while the other considers government regulations systematically 

regarding penalty policy, incentive policy, policy adaptability, and public participation. By 

solving and simulating the model, we study evolutionary stable strategies to control 

fluctuations in the game process. The results show that an unregulated online ride-hailing 

system is volatile, and government regulations help stabilize the system. The effect of 

government regulations can be optimized by adopting a dynamic penalty with a greater initial 
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force, considering platforms as agents in incentive policy, improving policy adaptability, and 

rewarding public participation. 
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Introduction 

As a representative application of the sharing economy in the field of transportation, 

online ride-hailing has revived idle vehicles, seats, driving abilities, and other transportation 

resources, providing people with intelligent and personalized ride-hailing services 

(Chalermpong et al. 2022; Zuo et al. 2019). However, the extensive growth of online ride-

hailing has resulted in regulation problems that are difficult to keep up with the rapid 

development of practice in a timely manner, resulting in a gray zone with vague regulations 

and vacuum rules (Cetin & Deakin 2019). Furthermore, an effective regulatory strategy for 

the ride-hailing industry is yet to be fully developed. The illegal operation of online ride-

hailing has resulted in frequent reports of property and safety damage to passengers in China 

(Jiang & Zhang 2019). This has become an important issue that urgently needs to be solved 

(Kauffman and Naldi 2020; Pawlicz 2019). 

Regulation of ride-hailing also has drawn academic attention. Researchers have affirmed 

the importance of regulations from the perspectives of consumer safety and information 

privacy (Zhang 2019). Meanwhile, some scholars suggest that appropriately regulating the 

emerging sharing economy requires further study (Kauffman and Naldi 2020; Yu et al. 2020). 

Owing to the bounded rationality of participants in the ride-hailing market, evolutionary game 

theory has demonstrated explanatory power for understanding the dynamic regulatory process 

of the ride-hailing system (Lei et al. 2020). 

Despite these advancements, the lack of an overall consideration of the ride-hailing 

system is a prominent gap in regulation studies in this field. Prior literature on online ride-
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hailing regulation only considers two-way or three-way gaming (Lu et al. 2019; Yu et al. 

2020). Even in a tripartite game, the role of government regulation only takes into account 

incentives or penalties. However, regulation of the online ride-hailing market is affected by 

major stakeholders, including online ride-hailing platforms, drivers, passengers, and the 

government. According to evolutionary game theory, these stakeholders participate in the 

online ride-hailing market with different roles and interests, causing different influences on 

the regulation of online ride-hailing (Wang et al. 2020). For example, policy adaptability of 

platforms and drivers, and passengers’ participation in regulation are essential issues in this 

context. However, such effects have not been comprehensively examined in presented game 

models. To formulate optimal policies that balance the interests of all stakeholders, a gaming 

model that systematically considers the government regulation strategies and the interaction 

among the main stakeholders (i.e., online ride-hailing platforms, drivers, and passengers) in 

different regulation contexts is urgently needed. 

To fix this void, we adopt evolutionary game theory and system dynamics to study the 

gaming mechanism of the major stakeholders in the online ride-hailing market (i.e., online 

ride-hailing platforms, drivers, and passengers). We construct two system dynamic models of 

the online ride-hailing market. One model does not consider government regulations, while 

the other is equipped with government regulations in terms of penalty policy, incentive 

policy, policy adaptability, and public participation. Furthermore, to suppress the fluctuation 

of game players’ strategies, we explore optimized regulatory measures via simulation 

experiments regarding the four aspects. 
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This study contributes to the ride-hailing literature by developing an evolutionary game 

model that focuses on the entire online ride-hailing market, and not merely on some of its 

participants. This advances our understanding of the gaming relationship among the major 

stakeholders in the online ride-hailing market. Moreover, it offers a systematic view of the 

government’s regulations and the alignment of the other three stakeholders by showing ways 

to reduce the volatility of the game process and optimize the regulatory effect of the online 

ride-hailing market. 

Related works 

As a typical form of transportation in the sharing economy, online ride-hailing can meet 

people's diverse travel needs, effectively use vehicle and road resources, and help relieve 

urban traffic pressure (Tafreshian et al. 2020). However, it also poses several problems, such 

as security risks and regulatory difficulties (Kauffman and Naldi 2020). A literature review 

reveals that previous studies on online ride-hailing have focused on a variety of topics, 

including impact on traditional ride-hailing, consumer behavior, operation strategy of the 

ride-hailing platform, and policy and regulation of ride-hailing among others (Tirachini 

2020). 

In terms of online ride-hailing regulations, most of the research discussed relevant issues 

from the perspectives of theoretical discussion and case analysis (Yu et al. 2020). For 

example, referring to the history of the regulation of ride-hailing, one study indicated that 

traditional taxicab markets and ridesharing services should be regulated differently (Cetin and 

Deakin 2019). Similarly, scholars have stated that to adapt to the Internet sharing economy, 
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online ride-hailing requires a different regulatory response than traditional ones (Hong and 

Lee 2018; Jiang and Zhang 2019). The effect of ride-hailing regulations has been extensively 

discussed, and their pros and cons have been argued (Pawlicz 2019). However, most scholars 

have endorsed the essential role of regulations considering protection of consumer safety and 

other benefits, as well as promoting a healthy ride-hailing industry (Akyelken et al. 2018). 

Most of the existing research on ride-hailing regulations remain in the qualitative 

discussion and reasoning stages. Some scholars have recently applied game models to 

quantitatively study ride-hailing regulations. Evolutionary game theory overcomes the 

assumption of perfect rationality in the traditional game theory and focuses on the dynamic 

process of game-playing, which contributes to uncovering regulation strategies in the ride-

hailing context (Lei et al. 2020; Friedman 1998). In the evolutionary game, players with 

bounded rationality dynamically make responses to the initial strategy and other participants’ 

action strategies until reaching an equilibrium solution. Considering the uncertainty in the 

dynamic process rather than the specific interaction mechanism, the main idea of the 

evolutionary game is to find the frequencies of strategies adopted by participants in dynamic 

balance.  

With these traits, evolutionary game theory has demonstrated explanatory power in 

understanding the dynamic processes of ride-hailing systems. For example, Sun et al. (2019) 

constructed a two-dimensional evolutionary game model between the government and ride-

hailing platforms, and provided evidence for whether ride-hailing platforms require strict 

regulation under the current Internet setting. Furthermore, some scholars have established 
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evolutionary game models that consider three players to study the regulation strategies of the 

online ride-hailing market. Lei et al. (2020) clarified the regulation strategies of multiple 

subjects (i.e., transportation network companies, drivers, and passengers) involved in the ride-

hailing industry and indicated that the evolutionarily stable strategy of a single subject is 

affected by the strategies of the other two subjects. Pu et al. (2020) analyzed the main factors 

determining the optimal supervision strategies of online ride-hailing based on a tripartite 

evolutionary game model between the platform, passengers, and drivers. Wang et al. (2020) 

described the interaction mechanism of the government supervision department, online 

vehicle platform security monitoring department, and car-sharing owner from an evolutionary 

game theory perspective in the process of China's Internet ride-hailing operation. 

Additionally, evolutionary game theory also helps to explore other dynamic mechanisms in 

online ride-hailing systems, such as the ride-hailing service mode choice (Bai et al. 2019), 

collaborative consumption between passengers and drivers (Huang et al. 2020) among others.  

However, the proposed game models are either limited to two stakeholders or consider 

three stakeholders yet government regulation only from a punitive or incentive perspective. 

Models that consider government regulations comprehensively are still missing. Owing to this 

gap, prior research has failed to offer systematic online ride-hailing regulation strategies. 

Therefore, to provide guidance for online ride-hailing regulation in line with reality, this study 

examines the systematic game mechanism of major stakeholders (i.e., online ride-hailing 

platforms, drivers, and passengers) in the online ride-hailing market based on evolutionary 
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game theory. Regulatory strategies of the online ride-hailing market are proposed in terms of 

penalty policy, incentive policy, policy adaptability, and public participation. 

Evolutionary game model and assumptions 

In this study, online ride-hailing regulations involve four heterogeneous entities: online 

ride-hailing platforms, drivers, passengers, and the government. The relationships among the 

four players involved in online ride-hailing regulation are presented in Fig. 1. 

 

PlatformsDrivers Passengers

Government

Implement
penalty/incentive policy

Encourage 
public participation

Game interactions

 

Figure 1. Quadripartite interactions diagram 

 

Considering the government’s interaction with the other three players, we elaborated on 

the government's regulatory strategies from the following four aspects: penalty policy, 

incentive policy, policy adaptability, and public participation. First, a penalty policy is a 

common method to ensure that market entities are law-abiding and correct violators (Becker 

1968). As per existing studies, fines have not only become a regular punitive measure, but the 

force of the penalty under the dynamic mechanism has also played a role (Polinsky and 

Shavell 1991). Second, an incentive policy refers to the regulatory means by which the 
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government uses rewards to motivate market entities to behave lawfully (Li et al. 2019). The 

government usually adopts principal-agent cooperation to ensure effective incentives for 

market entities (Pavlou et al. 2007). Hence, considering online ride-hailing platforms as 

agents of government regulations, this study introduces the proportion of government rewards 

between online ride-hailing platforms and drivers into the model. Third, policy adaptability is 

related to the effect of government regulation on the online ride-hailing market. For the 

inconstant economy, an adaptive regulation that keeps abreast of the business practice can 

carry out better results (Akyelken et al. 2018). Here, we employ the error rate of the 

government’s regulation to reflect the probability of regulatory failure due to poor policy 

adaptation. Finally, public participation is welcomed and pursued by service-oriented 

governments (Lee et al. 2017). Participating in the regulation of the online ride-hailing market 

not only safeguards passengers’ rights and interests but also benefits the government. 

Therefore, our model considers the influence of public participation on government 

regulations. 

Online ride-hailing platforms have two strategies for dealing with government 

regulations: positive and negative cooperation. A positive cooperation strategy refers to an 

online ride-hailing platform that complies with the regulations, actively supervises drivers, 

and responds to passengers. In this case, online ride-hailing platforms benefit from 

cooperation with the government and bear the supervision cost (Li et al. 2019). In contrast, 

online ride-hailing platforms can be driven by other interests to adopt negative cooperation 

strategies, such as cutthroat competition, neglected supervision, and encroachment of 
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passengers’ privacy (Zuo et al. 2019). While pursuing the interests brought about by negative 

cooperation strategies, online ride-hailing platforms also face government fines, reputation 

loss, and a crisis of trust. 

Furthermore, the drivers can choose either a legal or an illegal operation strategy. The 

former implies that the drivers follow government regulations and the operating rules of the 

online ride-hailing platforms. The latter refers to drivers’ violation of regulations or operating 

rules such as overloading and risky driving. Once their illegal operations are discovered, the 

drivers must accept penalties and losses from the online ride-hailing platforms or government 

(Ganapati and Reddick 2018). 

Passengers are also essential players whose role has been mostly unheeded in existing 

game models of online ride-hailing regulations (Lei et al. 2020). Regarding public 

participation in online ride-hailing regulations, passengers face the choice between 

monitoring and non-monitoring strategies. Passengers with the monitoring strategy accuse 

drivers and online ride-hailing platforms of illegal behavior. For example, passengers can file 

a complaint about unreasonable charges with the Consumer Protection Agency, so the 

regulatory authority of the government can impose penalties for illegal behaviors in the 

market. The opposite strategy means that no such indirect monitoring is performed. Under the 

monitoring strategy, they may shoulder the cost of monitoring such as time and energy, suffer 

from psychological depression, and receive rewards from online ride-hailing platforms (Pu et 

al. 2020). 
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Based on the above systematic analysis of the interactions among the four players in the 

online ride-hailing regulation, we identify the pure strategy set of online ride-hailing 

platforms, drivers, and passengers. The pure strategy set for online ride-hailing platforms is 

{positive cooperation, negative cooperation}, that for drivers is {legal operation, illegal 

operation}, and that for passengers is {monitoring, non-monitoring}. The government plays a 

regulatory role in four areas: penalty policy, incentive policy, policy adaptability, and public 

participation. To understand the dynamic gaming system better, we propose the following 

reasonable assumptions: 

Assumption 1: The probability of online ride-hailing platforms choosing the positive 

cooperation strategy is 𝑥 (1 ≥ 𝑥 ≥ 0), and that of choosing the negative cooperation strategy 

is 1 − 𝑥. The drivers operate legally at a rate 𝑦 (1 ≥ 𝑦 ≥ 0), and 1 − 𝑦 represents the 

probability of drivers’ irregular behaviors. Additionally, we set the probability of passengers 

participating in monitoring as 𝑧 (1 ≥ 𝑧 ≥ 0), and that of the non-monitoring strategy as 1 −

𝑧.  

Assumption 2: The normal benefit obtained by online ride-hailing platforms from a 

positive cooperation strategy is 𝑅1 (𝑅1 > 0). When adopting a positive cooperation strategy, 

online ride-hailing platforms need to invest resources to operate the platforms, supervise 

drivers, and respond to passengers. We set the relevant cost to be 𝐶1 (𝐶1 > 0). Additionally, 

we assume that only when online ride-hailing platforms can obtain an extra 

benefit ∆𝑅1 (∆𝑅1 > 0), will they adopt a negative cooperation strategy. Similarly, we 

set 𝑅2 (𝑅2 > 0) as the normal benefit of the drivers that operate legally, and  ∆𝑅2 (∆𝑅2 > 0) 
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serves as the extra benefit of the drivers that operate illegally. Moreover, passengers devote 

their time and energy when they participate in the monitoring. The cost of passenger 

monitoring is denoted as 𝐶2 (𝐶2 > 0). No cost is incurred if the passengers are not interested 

during monitoring. 

Assumption 3: When drivers operate illegally, regardless of whether passengers 

participate in monitoring, the online ride-hailing platforms that adopt a negative cooperation 

strategy will suffer a reputation loss 𝑆1 (𝑆1 > 0). Moreover, if passengers participate in 

monitoring, it will cause trust loss 𝑆2 (𝑆2 > 0) to the online ride-hailing platforms that adopt 

a negative cooperation strategy, bringing psychological loss 𝑆3 (𝑆3 > 0) to passengers due 

to platforms’ negligence. Instead, regardless of the drivers’ strategy, online ride-hailing 

platforms adopt a positive cooperation strategy that always actively responds to the voices of 

passengers, which contributes to passenger satisfaction. 𝑅3 (𝑅3 > 0) represents the 

psychological benefit that platforms bring to the passengers.  

Assumption 4: If online ride-hailing platforms adopt a positive cooperation strategy, the 

drivers will be penalized by the platforms owing to an illegal operation. The immediate 

receivers of the drivers' services are passengers, not online ride-hailing platforms. Hence, we 

assume that online ride-hailing platforms have an error rate 𝑠 (1 ≥ 𝑠 ≥ 0) to fail to be aware 

of drivers’ violations. If the passengers that adopt the monitoring strategy report the drivers’ 

irregular behavior to the online ride-hailing platforms, then 𝑠 = 1, and the platform will 

impose a penalty 𝑀 (𝑀 > 0) on drivers and give a reward 𝑅4 (𝑅4 > 0) to passengers.  
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Assumption 5: Regarding the government’s regulations, the online ride-hailing 

platforms that adopt negative cooperation or drivers operating illegally will face a fine 

imposed by the government. Here, 𝑃1 (𝑃1 > 0) represents the government's penalty to 

platforms, and 𝑤 (𝑤 ≥ 1) is the force of government's penalty to platforms. 𝑃2 (𝑃2 > 0) 

represents the government's penalty to drivers, and 𝑣 (𝑣 ≥ 1) is the force of the 

government's penalty to drivers. In contrast, if the online ride-hailing platforms or drivers 

adopt the opposite strategy, they will share a reward 𝑅5 (𝑅5 > 0) offered by the government 

in proportion to the principal-agent mechanism of incentive policy. We set the proportion of 

the government's reward for platforms as 𝑟 (1 ≥ 𝑟 ≥ 0), so the proportion of that for drivers 

is 1 − 𝑟. Additionally, to maximize regulatory effectiveness, the government will give a 

reward 𝑅6 (𝑅6 > 0) to passengers to encourage public participation. Furthermore, passengers 

participating in monitoring also play a positive role in government regulations. We set the 

degree of impact of passengers’ monitoring as 𝑢 (𝑢 ≥ 1). Moreover, an overly serious 

punishment can provoke collective resistance and thus be unenforceable. Hence, we introduce 

policy adaptability in our models, we use an error rate 𝑡 (1 ≥ 𝑡 ≥ 0) to reflect the 

probability of regulatory failure.  

 

Table 1. Variables in the game model 

Variable Meaning of variable Remark 

R1 Normal benefit of platforms from positive cooperation  (0,∞) 

ΔR1 Extra benefit of platforms from negative cooperation (0,∞) 

R2 Normal benefit of drivers from legal operation (0,∞) 

ΔR2 Extra benefit of drivers from illegal operation (0,∞) 
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R3 Psychological benefit of passengers while successful monitoring (0,∞) 

R4 Platforms’ reward to passengers (0,∞) 

R5 Government’s reward to platforms and drivers (0,∞) 

R6 Government’s reward to passengers (0,∞) 

C1 Cost of platforms’ positive cooperation (0,∞) 

C2 Cost of passenger monitoring (0,∞) 

S1 Reputation loss of platforms caused by drivers’ illegal operation  (0,∞) 

S2 Trust loss of platforms caused by being negative with passengers (0,∞) 

S3 Psychological loss of passengers caused by platforms’ negative cooperation (0,∞) 

M Platforms’ penalty to drivers (0,∞) 

P1 Government’s penalty to platforms (0,∞) 

P2 Government’s penalty to drivers (0,∞) 

x Probability of positive cooperation of online ride-hailing platforms [0,1] 

y Probability of legal operation of drivers [0,1] 

z Probability of passenger monitoring  [0,1] 

r Proportion of government's reward for platforms [0,1] 

s 
Error rate of platforms’ positive cooperation  

(Probability that the platforms fail to be aware of drivers’ violation) 
[0,1] 

t Error rate of government regulations due to poor policy adaptability [0,1] 

w Force of government’s penalty to platforms [1,∞) 

v Force of government’s penalty to drivers [1,∞) 

u Impact degree of passengers' monitoring [1,∞) 

 

Based on the above assumptions and analysis, we considered two different scenarios: 

one without government regulations and the other with government regulations. The payoff 

matrix among multiple stakeholders is then developed, as shown in Table 2. 

 

Table 2．Payoff matrix among multiple stakeholders 

The market without government regulations 

Platforms Drivers 
Passengers 

Monitoring Non-monitoring 

Legal operation R1-C1 R1-C1 
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Positive 

cooperation 

R2 

R3-C2 

R2 

0 

Illegal operation 

R1-C1+M 

R2+ΔR2-M 

R3+R4-C2 

R1-C1+(1-s)M-S1 

R2+ΔR2-(1-s)M 

0 

Negative 

cooperation 

Legal operation 

R1+ΔR1 

R2 

-C2 

R1+ΔR1 

R2 

0 

Illegal operation 

R1+ΔR1-S1-S2 

R2+ΔR2 

-C2-S3 

R1+ΔR1-S1 

R2+ΔR2 

0 

The market with government regulations 

Platforms Drivers 
Passengers 

Monitoring Non-monitoring 

Positive 

cooperation 

Legal operation 

R1+rR5-C1 

R2+(1-r)R5 

R3-C2 

R1+rR5-C1 

R2+(1-r)R5 

0 

Illegal operation 

R1+R5-C1+M 

R2+ΔR2-M-uv(1-t)P2 

R3+R4+R6-C2 

R1+R5-C1+(1-s)M-S1 

R2+ΔR2-(1-s)M-v(1-t)P2 

0 

Negative 

cooperation 

Legal operation 

R1+ΔR1-uw(1-t)P1 

R2 

R6-C2 

R1+ΔR1-w(1-t)P1 

R2 

0 

Illegal operation 

R1+ΔR1-S1-S2-uw(1-t)P1 

R2+ΔR2-uv(1-t)P2 

R6-C2-S3 

R1+ΔR1-S1-w(1-t)P1 

R2+ΔR2-v(1-t)P2 

0 

Note: The payoffs in each case are presented in an order of platforms, drivers, and passengers. 

Solving the model 

According to the evolutionary game theory, the participants decide their strategies 

according to their expected payoffs. The replicator dynamics equation indicates the evolution 

mechanisms of participants. When the replicator dynamics equation is equal to zero, the game 
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is in a temporary evolutionary stable equilibrium state. Based on the above assumptions and 

payoff matrix, we compute the replicator dynamics equation of the platforms, drivers, and 

passengers. 

We first consider the situation that government do not carry out any regulations. Let 𝜋𝑥 

be the expected payoffs of the platforms that adopt a positive cooperation strategy and 𝜋1−𝑥 

refer to the expected payoffs of the platforms that adopt a negative cooperation strategy. 𝜋𝑥 

and 𝜋1−𝑥 are expressed as follows: 

𝜋𝑥  =  𝑦𝑧(𝑅1 − 𝐶1) + 𝑦(1 − 𝑧)(𝑅1 − 𝐶1) + (1 − 𝑦)𝑧(𝑅1 − 𝐶1 +𝑀)

+ (1 − 𝑦)(1 − 𝑧)[𝑅1 − 𝐶1 + (1 − 𝑠)𝑀 − 𝑆1]

= 𝑅1 − 𝐶1 + ( 1 − 𝑦)(𝑀 −𝑀𝑠 − 𝑆1) + 𝑧(𝑦 − 1)(𝑅1 − 𝐶1 −𝑀𝑠 − 𝑆1) 

(1-1) 

𝜋1−𝑥 = 𝑦𝑧(𝑅1 + ∆𝑅1) + 𝑦(1 − 𝑧)(𝑅1 + ∆𝑅1) + (1 − 𝑦)𝑧(𝑅1 + ∆𝑅1 − 𝑆1 − 𝑆2)

+ (1 − 𝑦)(1 − 𝑧)(𝑅1 + ∆𝑅1 − 𝑆1) = 𝑅1 + ∆𝑅1 − (1 − 𝑦)(𝑆1 + 𝑧𝑆2) 

(1-2) 

The average expected payoff of platforms is: �̅�𝑥 = 𝑥𝜋𝑥 + (1 − 𝑥)𝜋1−𝑥 

The replicator dynamics equation of platforms is: 

𝐹(𝑥) =
𝑑𝑥

𝑑𝑡
 = 𝑥(𝜋𝑥 − �̅�𝑥)

= 𝑥(1 − 𝑥){−𝐶1 − ∆𝑅1 + (1 − 𝑦)[𝑀 +𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧]} 

(1-3) 

Similarly, the expected payoffs of the drivers with different strategies (legal or illegal 

operations) when government regulation is absent are 𝜋𝑦 and 𝜋1−𝑦: 

𝜋𝑦 = 𝑅2 

(1-4) 
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𝜋1−𝑦 = 𝑥𝑧(𝑅2 + 𝛥𝑅2 −𝑀) + 𝑥(1 − 𝑧)(𝑅2 + 𝛥𝑅2 − (1 − 𝑠)𝑀) + (1 − 𝑥)𝑧(𝑅2 + 𝛥𝑅2)

+ (1 − 𝑥)(1 − 𝑧)(𝑅2 + 𝛥𝑅2) = 𝑅2 + 𝛥𝑅2 +𝑀𝑥(𝑠 − 𝑠𝑧 − 1) 

(1-5) 

The replicator dynamics equation of drivers is: 

𝐹(𝑦) =
𝑑𝑦

𝑑𝑡
= 𝑦(𝜋𝑦 − �̅�𝑦) = 𝑦(1 − 𝑦)[𝑀𝑥(1 + 𝑠𝑧 − 𝑠) − 𝛥𝑅2]  

(1-6) 

The expected payoffs of the passengers with different strategies (monitoring or non-

monitoring) when government regulation is absent are 𝜋𝑧 and 𝜋1−𝑧: 

𝜋𝑧 = 𝑥𝑦(𝑅3 − 𝐶2) + 𝑥(1 − 𝑦)(𝑅3 + 𝑅4 − 𝐶2) + (1 − 𝑥)𝑦(−𝐶2)

+ (1 − 𝑥)(1 − 𝑦)(−𝐶2 − 𝑆3)  = 𝑥(1 − 𝑦)(𝑅4 + 𝑆3) + 𝑥𝑅3 − 𝐶2 − (1 − 𝑦)𝑆3 

(1-7) 

𝜋1−𝑧 = 0 

(1-8) 

The replicator dynamics equation of the passengers is:  

𝐹(𝑧) =
𝑑𝑧

𝑑𝑡
= 𝑧(𝜋𝑧 − �̅�𝑧) = 𝑧(1 − 𝑧)[𝑥(𝑅4 + 𝑆3) − 𝑥𝑦(𝑅4 + 𝑆3) + 𝑥𝑅3 − 𝐶2 − (1 − 𝑦)𝑆3] 

(1-9) 

We then consider the game model that government plays a regulatory role in the market, 

wherein the expected payoffs of the platforms with different strategies (positive or negative 

cooperation) are 𝜋𝑥
′  and 𝜋1−𝑥

′ : 
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𝜋𝑥
′ = 𝑦𝑧(𝑅1 + 𝑟𝑅5 − 𝐶1) + 𝑦(1 − 𝑧)(𝑅1 + 𝑟𝑅5 − 𝐶1) + (1 − 𝑦)𝑧(𝑅1 + 𝑅5 − 𝐶1 +𝑀)

+ (1 − 𝑦)(1 − 𝑧)[𝑅1 + 𝑅5 − 𝐶1 + (1 − 𝑠)𝑀 − 𝑆1]

= 𝑅1 − 𝐶1 + (1 − 𝑦)(𝑅5 +𝑀) + 𝑟𝑦𝑅5 − (1 − 𝑦)(1 − 𝑧)(𝑠𝑀 + 𝑆1) 

(2-1) 

𝜋1−𝑥
′ = 𝑦𝑧[𝑅1 + ∆𝑅1 − 𝑢𝑤(1 − 𝑡)𝑃1] + 𝑦(1 − 𝑧)[𝑅1 + ∆𝑅1 − 𝑤(1 − 𝑡)𝑃1]

+ (1 − 𝑦)𝑧[𝑅1 + ∆𝑅1 − 𝑆1 − 𝑆2 − 𝑢𝑤(1 − 𝑡)𝑃1]

+ (1 − 𝑦)(1 − 𝑧)[𝑅1 + ∆𝑅1 − 𝑆1 − 𝑤(1 − 𝑡)𝑃1]  

= 𝑅1 − (1 − 𝑦)(𝑆1 + 𝑧𝑆2) + (1 − 𝑡)(𝑤𝑧 − 𝑤 − 𝑢𝑤𝑧)𝑃1 + ∆𝑅1 

(2-2) 

The replicator dynamics equation of platforms is: 

𝐹′(𝑥) = 𝑥(𝜋𝑥
′ − 𝜋 ′̅𝑥)  

= 𝑥(1 − 𝑥)[−𝐶1 + 𝑟𝑦𝑅5 + (1 − 𝑦)(𝑅5 +𝑀) − (1 − 𝑦)(1 − 𝑧)𝑠𝑀

+ 𝑧(1 − 𝑦)(𝑆1 + 𝑆2) + (1 − 𝑡)(𝑤 + 𝑢𝑤𝑧 − 𝑤𝑧)𝑃1 − ∆𝑅1] 

(2-3) 

The expected payoffs of drivers with different strategies (legal or illegal operations) under the 

regulation of the government are 𝜋𝑦
′  and 𝜋1−𝑦

′ : 

𝜋𝑦
′ = 𝑥𝑧[𝑅2 + (1 − 𝑟)𝑅5] + 𝑥(1 − 𝑧)[𝑅2 + (1 − 𝑟)𝑅5] + (1 − 𝑥)𝑧𝑅2 + (1 − 𝑥)(1 − 𝑧)𝑅2  

= 𝑅2 + 𝑥(1 − 𝑟)𝑅5 

(2-4) 

𝜋1−𝑦
′ = 𝑥𝑧[𝑅2 + ∆𝑅2 −𝑀 − 𝑢𝑣(1 − 𝑡)𝑃2] + 𝑥(1 − 𝑧)[𝑅2 + ∆𝑅2 − (1 − 𝑠)𝑀 − 𝑣(1 − 𝑡)𝑃2]

+ (1 − 𝑥)𝑧[𝑅2 + ∆𝑅2 − 𝑢𝑣(1 − 𝑡)𝑃2] + (1 − 𝑥)(1 − 𝑧)[𝑅2 + ∆𝑅2 − 𝑣(1 − 𝑡)𝑃2]

= 𝑅2 + ∆𝑅2 + 𝑥(𝑠 − 1 − 𝑠𝑧)𝑀 + (1 − 𝑡)(𝑧𝑣 − 𝑣 − 𝑧𝑣𝑢)𝑃2 

(2-5) 

The replicator dynamics equation of drivers is: 
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𝐹′(𝑦) = 𝑦(𝜋𝑦
′ − 𝜋 ′̅𝑦)

= 𝑦(1 − 𝑦)[𝑥(𝑀 + 𝑅5 − 𝑟𝑅5 − 𝑠𝑀 + 𝑧𝑠𝑀) − (1 − 𝑡)(𝑧𝑣 − 𝑣 − 𝑧𝑣𝑢)𝑃2 − ∆𝑅2] 

(2-6) 

The expected payoffs of passengers with different strategies (monitoring or non-monitoring) 

under the regulation of the government are 𝜋𝑧
′ and 𝜋1−𝑧

′ : 

𝜋𝑧
′ = 𝑥𝑦(𝑅3 − 𝐶2) + 𝑥(1 − 𝑦)(𝑅3 + 𝑅4 + 𝑅6 − 𝐶2) + (1 − 𝑥)𝑦(𝑅6 − 𝐶2)

+ (1 − 𝑥)(1 − 𝑦)(𝑅6 − 𝐶2 − 𝑆3) = 𝑅2 + 𝑥(1 − 𝑟)𝑅5

= −𝐶2 + 𝑅6 − 𝑆3 + 𝑥(𝑅3 + 𝑅4 + 𝑆3) + 𝑦𝑆3 − 𝑥𝑦(𝑅4 + 𝑅6 + 𝑆3) 

(2-7) 

𝜋1−𝑧
′ = 0 

(2-8) 

The replicator dynamics equation of passengers is: 

𝐹′(𝑧) = 𝑧(𝜋𝑧
′ − 𝜋 ′̅𝑧)

= 𝑧(1 − 𝑧)[−𝐶2 + 𝑥(𝑅3 + 𝑅4) − (1 − 𝑥)(1 − 𝑦)𝑆3 − 𝑥𝑦𝑅4 + (1 − 𝑥𝑦)𝑅6] 

(2-9) 

Stability analysis of the evolutionary game  

According to the evolutionary principle, the players change their strategies over time 

until they acquire a stable state, which is called an evolutionary stable strategy (ESS). The 

replication dynamics is a dynamic differential equation describing the speed and direction of 

strategic adjustment. Referring to the stability theorem of differential equation and the nature 

of ESS, to obtain the equilibrium solution of the tripartite evolutionary game, replicator 
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dynamics equation set is required as shown in (1-10) or (2-10) for a circumstance without or 

with government regulations respectively. 

{

𝐹(𝑥) = 𝑥(1 − 𝑥){−𝐶1 − ∆𝑅1 + (1 − 𝑦)[𝑀 +𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧]} = 0

𝐹(𝑦) = 𝑦(1 − 𝑦)[𝑀𝑥(1 + 𝑠𝑧 − 𝑠) − 𝛥𝑅2] = 0

𝐹(𝑧) = 𝑧(1 − 𝑧)[𝑥(𝑅4 + 𝑆3) − 𝑥𝑦(𝑅4 + 𝑆3) + 𝑥𝑅3 − 𝐶2 − (1 − 𝑦)𝑆3] = 0

 

(1-10) 

{
 

 𝐹′(𝑥) = 𝑥(1 − 𝑥) [
−𝐶1 + 𝑟𝑦𝑅5 + (1 − 𝑦)(𝑅5 +𝑀) − (1 − 𝑦)(1 − 𝑧)𝑠𝑀

+𝑧(1 − 𝑦)(𝑆1 + 𝑆2) + (1 − 𝑡)(𝑤 + 𝑢𝑤𝑧 − 𝑤𝑧)𝑃1 − ∆𝑅1
] = 0

𝐹′(𝑦) = 𝑦(1 − 𝑦)[𝑥(𝑀 + 𝑅5 − 𝑟𝑅5 − 𝑠𝑀 + 𝑧𝑠𝑀) − (1 − 𝑡)(𝑧𝑣 − 𝑣 − 𝑧𝑣𝑢)𝑃2 − ∆𝑅2] = 0

𝐹′(𝑧) = 𝑧(1 − 𝑧)[−𝐶2 + 𝑥(𝑅3 + 𝑅4) − (1 − 𝑥)(1 − 𝑦)𝑆3 − 𝑥𝑦𝑅4 + (1 − 𝑥𝑦)𝑅6] = 0

 

(2-10) 

By solving equation (1-10), we get eight equilibrium points.𝐸1(0,0,0), 𝐸2(0,0,1), 

𝐸3(0,1,0), 𝐸4(0,1,1), 𝐸5(1,0,0), 𝐸6(1,0,1), 𝐸7(1,1,0), 𝐸8(1,1,1). In addition, when 

𝑥0, 𝑦0, 𝑧0 ∈ [0,1] and equation (1-11) is satisfied, 𝐸9(𝑥0, 𝑦0, 𝑧0) is also the equilibrium point 

in the equilibrium solution domain. 

{

−𝐶1 − ∆𝑅1 + (1 − 𝑦)[𝑀 +𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧] = 0

𝑀𝑥(1 + 𝑠𝑧 − 𝑠) − 𝛥𝑅2 = 0

𝑥(𝑅4 + 𝑆3) − 𝑥𝑦(𝑅4 + 𝑆3) + 𝑥𝑅3 − 𝐶2 − (1 − 𝑦)𝑆3 = 0

 

(1-11) 

In equation (2-10), there are also eight special equilibrium points 𝐸1~ 𝐸8. Besides, we 

can obtain the equilibrium point 𝐸9
′(𝑥0

′ , 𝑦0
′ , 𝑧0

′ ) by solving equation (2-11). 

{
 

 
−𝐶1 + 𝑟𝑦𝑅5 + (1 − 𝑦)(𝑅5 +𝑀) − (1 − 𝑦)(1 − 𝑧)𝑠𝑀

+𝑧(1 − 𝑦)(𝑆1 + 𝑆2) + (1 − 𝑡)(𝑤 + 𝑢𝑤𝑧 − 𝑤𝑧)𝑃1 − ∆𝑅1 = 0

𝑥(𝑀 + 𝑅5 − 𝑟𝑅5 − 𝑠𝑀 + 𝑧𝑠𝑀) − (1 − 𝑡)(𝑧𝑣 − 𝑣 − 𝑧𝑣𝑢)𝑃2 − ∆𝑅2 = 0

−𝐶2 + 𝑥(𝑅3 + 𝑅4) − (1 − 𝑥)(1 − 𝑦)𝑆3 − 𝑥𝑦𝑅4 + (1 − 𝑥𝑦)𝑅6 = 0

  

(2-11) 

In the replicator dynamic system of evolutionary game, the stable point obtained by the 

replicator dynamics equations must be strictly at a Nash equilibrium of pure strategy 

(Friedman,1998). Since the solution of 𝐸9 and 𝐸9
′  is a mixed strategy Nash equilibrium, we 
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only consider the asymptotic stability of the other eight equilibrium points (𝐸1~ 𝐸8). To solve 

the partial derivative of the replicator dynamics equations with respect to each game group, 

the Jacobean matrix 𝐽 and 𝐽′ are defined as follow: 

𝐽 =  

[
 
 
 
 
 
 
𝜕𝐹(𝑥)

𝜕𝑥

𝜕𝐹(𝑥)

𝜕𝑦

𝜕𝐹(𝑥)

𝜕𝑧
𝜕𝐹(𝑦)

𝜕𝑥

𝜕𝐹(𝑦)

𝜕𝑦

𝜕𝐹(𝑦)

𝜕𝑧

𝜕𝐹(𝑧)

𝜕𝑥

𝜕𝐹(𝑧)

𝜕𝑦

𝜕𝐹(𝑧)

𝜕𝑧 ]
 
 
 
 
 
 

 

= [

(1 − 2𝑥){−𝐶1 − ∆𝑅1 + (1 − 𝑦)[𝑀 +𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧]} 𝑥(𝑥 − 1)[𝑀 + 𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧] 𝑥(1 − 𝑥)[(1 − 𝑦)(𝑆1 + 𝑆2 +𝑀𝑠)]

𝑦(1 − 𝑦)(𝑀𝑠 − 𝑀 −𝑀𝑠𝑧) (1 − 2𝑦)[𝑀𝑥(1 + 𝑠𝑧 − 𝑠) − 𝛥𝑅2] (1 − 𝑦)𝑀𝑠𝑥𝑦

𝑧(1 − 𝑧)[(𝑅4 + 𝑆3)(1 − 𝑦) + 𝑅3] 𝑧(1 − 𝑧)(𝑆3 − 𝑥(𝑆3 + 𝑅4) (1 − 2𝑧)[𝑥(𝑅4 + 𝑆3) − 𝑥𝑦(𝑅4 + 𝑆3) + 𝑥𝑅3 − 𝐶2 − (1 − 𝑦)𝑆3]
] 

(1-12) 

𝐽′ =

[
 
 
 
 
 
 
𝜕𝐹(𝑥)

𝜕𝑥

𝜕𝐹(𝑥)

𝜕𝑦

𝜕𝐹(𝑥)

𝜕𝑧
𝜕𝐹(𝑦)

𝜕𝑥

𝜕𝐹(𝑦)

𝜕𝑦

𝜕𝐹(𝑦)

𝜕𝑧

𝜕𝐹(𝑧)

𝜕𝑥

𝜕𝐹(𝑧)

𝜕𝑦

𝜕𝐹(𝑧)

𝜕𝑧 ]
 
 
 
 
 
 

 

= [

(1 − 2𝑥){−𝐶1 − ∆𝑅1 + (1 − 𝑦)[𝑀 +𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧]} 𝑥(𝑥 − 1)[𝑀 + 𝑀𝑠(𝑧 − 1) + (𝑆1 + 𝑆2)𝑧] 𝑥(1 − 𝑥)[(1 − 𝑦)(𝑆1 + 𝑆2 +𝑀𝑠)]

𝑦(1 − 𝑦)(𝑀𝑠 − 𝑀 −𝑀𝑠𝑧) (1 − 2𝑦)[𝑀𝑥(1 + 𝑠𝑧 − 𝑠) − 𝛥𝑅2] (1 − 𝑦)𝑀𝑠𝑥𝑦

𝑧(1 − 𝑧)[(𝑅4 + 𝑆3)(1 − 𝑦) + 𝑅3] 𝑧(1 − 𝑧)(𝑆3 − 𝑥(𝑆3 + 𝑅4) (1 − 2𝑧)[𝑥(𝑅4 + 𝑆3) − 𝑥𝑦(𝑅4 + 𝑆3) + 𝑥𝑅3 − 𝐶2 − (1 − 𝑦)𝑆3]
] 

(2-12) 

 

According to Lyapunov's system stability theory, the stability of a strategy can be judged 

by the eigenvalue of Jacobean matrix (Lyapunov,1992). Only when all eigenvalues of a 

matrix are negative can the strategy represented by an equilibrium point become an ESS. We 

substitute the equilibrium points (𝐸1~ 𝐸8) into 𝐽 and 𝐽′ separately to obtain corresponding 

eigenvalues. Table 3 presents the stability analysis based on the eigenvalues. 
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Table 3．Stability analysis of equilibrium points 

Equilibrium point Eigenvalues Stability conditions 

For the matrix 𝐽  (the market without government regulations) 

𝐸1(0,0,0) λ1 = −𝐶2 − 𝑆3 

λ2 = −𝛥𝑅2 

λ3 = 𝑀−𝐶1 −∆𝑅1−𝑀𝑠 

The equilibrium point 𝐸1(0,0,0) 

is the ESS, if 𝑀−𝐶1 − ∆𝑅1 −

𝑀𝑠 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸2(0,0,1) λ1 = −𝛥𝑅2 

λ2 = 𝐶2 + 𝑆3 

λ3 = 𝑀−𝐶1 + 𝑆1 + 𝑆2 − ∆𝑅1 

Due to 𝐶2 + 𝑆3 > 0, the 

equilibrium point 𝐸2(0,0,1) 
cannot be the ESS, but an unstable 

point or a saddle point. 

𝐸3(0,1,0) λ1 = 𝛥𝑅2 

λ2 = −𝐶2 

λ3 = −𝐶1 −𝛥𝑅1 

Due to 𝛥𝑅2 > 0, the equilibrium 

point 𝐸3(0,1,0) cannot be the 

ESS, but an unstable point or a 

saddle point. 

𝐸4(0,1,1) λ1 = 𝐶2 

λ2 = 𝛥𝑅2 

λ3 = −𝐶1 − ∆𝑅1 

Due to 𝐶2 > 0 and 𝛥𝑅2 > 0, the 

equilibrium point 𝐸4(0,1,1) 
cannot be the ESS, but an unstable 

point or a saddle point. 

𝐸5(1,0,0) λ1 = 𝑀−𝛥𝑅2 −𝑀𝑠 

λ2 = 𝑅3 −𝐶2 +𝑅4 

λ3 = 𝐶1 −𝑀+𝛥𝑅1 +𝑀𝑠 

The equilibrium point 𝐸5(1,0,0) 

is the ESS, if 𝑀 − 𝛥𝑅2 −𝑀𝑠 < 0,  

𝑅3 − 𝐶2 + 𝑅4 < 0, and 𝐶1 −𝑀 +

𝛥𝑅1 +𝑀𝑠 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸6(1,0,1) λ1 = 𝑀−𝛥𝑅2 

λ2 = 𝐶2 −𝑅3 −𝑅4 

λ3 = 𝐶1 −𝑀−𝑆1 − 𝑆2 + ∆𝑅1 

The equilibrium point 𝐸6(1,0,1) 

is the ESS, if 𝑀 − 𝛥𝑅2 < 0,  

𝐶2 − 𝑅3 − 𝑅4 < 0, and 𝐶1 −𝑀 −

𝑆1 − 𝑆2 + ∆𝑅1 < 0. Otherwise, it is 

an unstable point or a saddle point. 

𝐸7(1,1,0) λ1 = 𝐶1 +∆𝑅1 

λ2 = 𝑆3 −𝐶2 

λ3 = 𝛥𝑅2 −𝑀+𝑀𝑠 

Due to 𝐶1 + ∆𝑅1 > 0, the 

equilibrium point 𝐸7(1,1,0) 
cannot be the ESS, but an unstable 

point or a saddle point. 

𝐸8(1,1,1) 𝜆1 = 𝐶1 + ∆𝑅1 

𝜆2 = 𝐶2 − 𝑅3 

λ3 = 𝛥𝑅2 −𝑀 

Due to 𝐶1 + ∆𝑅1 > 0, the 

equilibrium point 𝐸8(1,1,1) 
cannot be the ESS, but an unstable 

point or a saddle point. 

For the matrix 𝐽′ (the market with government regulations) 

𝐸1(0,0,0) λ1 = 𝑅6 − 𝐶2 − 𝑆3 

λ2 = 𝑃2𝑣 − ∆𝑅2 − 𝑃2𝑡𝑣 

The equilibrium point 𝐸1(0,0,0) 

is the ESS, if 𝑅6 − 𝐶2 − 𝑆3 < 0,  

𝑃2𝑣 − ∆𝑅2 − 𝑃2𝑡𝑣 < 0, and 𝑀 −
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λ3 = 𝑀 − 𝐶1 + 𝑅5 − ∆𝑅1 −𝑀𝑠

+ 𝑃1𝑤 − 𝑃1𝑡𝑤 

𝐶1 + 𝑅5 − ∆𝑅1 −𝑀𝑠 + 𝑃1𝑤 −

𝑃1𝑡𝑤 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸2(0,0,1) λ1 = 𝐶2 − 𝑅6 + 𝑆3 

λ2 = 𝑃2𝑢𝑣 − ∆𝑅2 − 𝑃2𝑡𝑢𝑣 

λ3 = M− 𝐶1 + 𝑅5 + 𝑆1 + 𝑆2 − ∆𝑅1
+ 𝑃1𝑢𝑤 − 𝑃1𝑡𝑢𝑤 

The equilibrium point 𝐸2(0,0,1) 

is the ESS, if 𝐶2 − 𝑅6 + 𝑆3 < 0,  

𝑃2𝑢𝑣 − ∆𝑅2 − 𝑃2𝑡𝑢𝑣 < 0, and 

M− 𝐶1 + 𝑅5 + 𝑆1 + 𝑆2 − ∆𝑅1 +

𝑃1𝑢𝑤 − 𝑃1𝑡𝑢𝑤 < 0. Otherwise, it 

is an unstable point or a saddle 

point. 

𝐸3(0,1,0) λ1 = 𝑅6 − 𝐶2 

λ2 = ∆𝑅2 − 𝑃2𝑣 + 𝑃2𝑡𝑣 

λ3 = 𝑅5𝑟 − ∆𝑅1 − 𝐶1 + 𝑃1𝑤

− 𝑃1𝑡𝑤 

The equilibrium point 𝐸3(0,1,0) 

is the ESS, if 𝑅6 − 𝐶2 < 0,  

∆𝑅2 − 𝑃2𝑣 + 𝑃2𝑡𝑣 < 0, and 

𝑅5𝑟 − ∆𝑅1 − 𝐶1 + 𝑃1𝑤 − 𝑃1𝑡𝑤 <

0. Otherwise, it is an unstable point 

or a saddle point. 

𝐸4(0,1,1) λ1 = 𝐶2 − 𝑅6 

λ2 = ∆𝑅2 − 𝑃2𝑢𝑣 + 𝑃2𝑡𝑢𝑣 

λ3 = 𝑅5𝑟 − ∆𝑅1 − 𝐶1 + 𝑃1𝑢𝑤

− 𝑃1𝑡𝑢𝑤 

The equilibrium point 𝐸4(0,1,1) 

is the ESS, if 𝐶2 − 𝑅6 < 0,  

∆𝑅2 − 𝑃2𝑢𝑣 + 𝑃2𝑡𝑢𝑣 < 0, and 

𝑅5𝑟 − ∆𝑅1 − 𝐶1 + 𝑃1𝑢𝑤 −

𝑃1𝑡𝑢𝑤 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸5(1,0,0) λ1 = 𝑅3 − 𝐶2 + 𝑅4 + 𝑅6 

λ2 = 𝐶1 −𝑀 − 𝑅5 + ∆𝑅1 +𝑀𝑠

− 𝑃1𝑤 + 𝑃1𝑡𝑤 

λ3 = 𝑀 + 𝑅5 − ∆𝑅2 −𝑀𝑠 − 𝑅5𝑟

+ 𝑃2𝑣 − 𝑃2𝑡𝑣 

The equilibrium point 𝐸5(1,0,0) 

is the ESS, if 𝑅3 − 𝐶2 + 𝑅4 +

𝑅6 < 0,  𝐶1 −𝑀 − 𝑅5 + ∆𝑅1 +

𝑀𝑠 − 𝑃1𝑤 + 𝑃1𝑡𝑤 < 0, and 𝑀 +

𝑅5 − ∆𝑅2 −𝑀𝑠 − 𝑅5𝑟 + 𝑃2𝑣 −

𝑃2𝑡𝑣 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸6(1,0,1) λ1 = 𝐶2 − 𝑅3 − 𝑅4 − 𝑅6 

λ2 = M+ 𝑅5 − ∆𝑅2 − 𝑅5𝑟 + 𝑃2𝑢𝑣

− 𝑃2𝑡𝑢𝑣 

λ3 = 𝐶1 −𝑀 − 𝑅5 − 𝑆1 − 𝑆2 + ∆𝑅1
− 𝑃1𝑢𝑤 + 𝑃1𝑡𝑢𝑤 

The equilibrium point 𝐸6(1,0,1) 

is the ESS, if 𝐶2 − 𝑅3 − 𝑅4 −

𝑅6 < 0,  M+ 𝑅5 − ∆𝑅2 − 𝑅5𝑟 +

𝑃2𝑢𝑣 − 𝑃2𝑡𝑢𝑣 < 0, and 𝐶1 −𝑀 −

𝑅5 − 𝑆1 − 𝑆2 + ∆𝑅1 − 𝑃1𝑢𝑤 +

𝑃1𝑡𝑢𝑤 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸7(1,1,0) λ1 = 𝑅3 − 𝐶2 

λ2 = 𝐶1 + ∆𝑅1 − 𝑅5𝑟 − 𝑃1𝑤

+ 𝑃1𝑡𝑤 

λ3 = ∆𝑅2 − 𝑅5 −𝑀 +𝑀𝑠 + 𝑅5𝑟

− 𝑃2𝑣 + 𝑃2𝑡𝑣 

The equilibrium point 𝐸7(1,1,0) 

is the ESS, if 𝑅3 − 𝐶2 < 0,  𝐶1 +

∆𝑅1 − 𝑅5𝑟 − 𝑃1𝑤 + 𝑃1𝑡𝑤 < 0, 

and ∆𝑅2 − 𝑅5 −𝑀 +𝑀𝑠 + 𝑅5𝑟 −

𝑃2𝑣 + 𝑃2𝑡𝑣 < 0. Otherwise, it is an 

unstable point or a saddle point. 

𝐸8(1,1,1) λ1 = 𝐶2 − 𝑅3 The equilibrium point 𝐸8(1,1,1) 

is the ESS, if 𝐶2 − 𝑅3 < 0,  𝐶1 +
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λ2 = 𝐶1 + ∆𝑅1 − 𝑅5𝑟 − 𝑃1𝑢𝑤

+ 𝑃1𝑡𝑢𝑤 

λ3 = ∆𝑅2 − 𝑅5 −𝑀 + 𝑅5𝑟 − 𝑃2𝑢𝑣

+ 𝑃2𝑡𝑢𝑣 

∆𝑅1 − 𝑅5𝑟 − 𝑃1𝑢𝑤 + 𝑃1𝑡𝑢𝑤 < 0, 

and ∆𝑅2 − 𝑅5 −𝑀 + 𝑅5𝑟 −

𝑃2𝑢𝑣 + 𝑃2𝑡𝑢𝑣 < 0. Otherwise, it is 

an unstable point or a saddle point. 

The stability analysis of equilibrium points shows that the ESS of a single subject is not 

only affected by personal factors, but also affected by the strategies of other two subjects. It is 

difficult to reasonably customize the strategic choices of the players and identify the stable 

state of two evolutionary game systems. To achieve a better understanding of the stability of 

equilibrium points, we apply system dynamics to simulate and model the evolutionary game 

process.  

System dynamics model of the evolutionary game 

System dynamics contributes to the analysis of the complex dynamics of the 

evolutionary game model with multiple stakeholders (Sterman 2001). We adopt Vensim to 

conduct the system dynamics model of the evolutionary game of online ride-hailing 

regulations. Referring to the introduction of regulations in online ride-hailing market (Zhang 

2019), we consider two scenarios. We first study the system dynamics model of three players, 

namely the online ride-hailing platforms, drivers, and passengers, when the government 

neglects regulations (as shown in Fig. 2), and then the system dynamics model with 

government regulations (as shown in Fig. 5). 
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Figure 2. System dynamics model of evolutionary game among online ride-hailing platforms, 

drivers, and passengers when government neglects regulations 

 

To analyze the system dynamics model without government regulations, it is necessary 

to assign the initial values of the external variables in the model. It should be noted that the 

system dynamics model focuses on revealing the dynamic change, variable assignment does 

not require accurate results but enables the model to reflect the trend of the system and the 

impact of regulation changes (Sterman 2001). Therefore, when setting the initial value of the 

external variables, we mainly consider the sensitivity of the variable changes to the players' 

strategy choices rather than precisely representing the benefits or costs of all parties. 

Referring to the relevant online ride-hailing news reports
 
and related studies (Lei et al. 2020; 

Sun et al. 2019; Wang et al. 2020), the initial values of the external variables in the model are 

set as follows: 𝑅1 = 8, ∆𝑅1 = 6, 𝑅2 = 4, ∆𝑅2 = 5, 𝑅3 = 2, 𝑅4 = 1, 𝐶1 = 2, 𝐶2 = 1.5,𝑀 =
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3, 𝑆1 = 2, 𝑆2 = 2, 𝑆3 = 3, 𝑠 = 0,6. We set the parameters in the system dynamics model as 

INITIAL TIME=0, FINAL TIME=100, TIME STEP=0.03125, and Units for TIME: Month. 

The initial values of the external variables are introduced into the replicator dynamic 

equations (1-10), wherein eight pure strategy equilibrium points (𝐸1~ 𝐸8) are satisfied. We 

simulate the dynamic process to analyze the stability of the pure strategy equilibrium points. 

The simulation results show that the three players do not actively change their initial 

strategies at pure strategy equilibrium points. However, the states of these equilibrium points 

are unstable and path-dependent. Taking 𝐸6 = (1,0,1) as an example, we simulate that a 

small number of passengers are mutated. When the probability of passengers choosing the 

monitoring strategy changes from 𝑥 = 1 to 𝑥 = 0.99, the results are shown in Fig. 3. 

 

 

Figure 3. Game evolution of the initial pure strategy E6 (x →0.99) 

 

It is evident from Fig. 3 that the equilibrium state of pure strategy 𝐸6 = (1,0,1) is not 

stable. If a small number of passengers exit from monitoring, the overall strategy of the 

passengers will change to non-monitoring, and the game system will evolve from 𝐸6 =
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(1,0,1) to 𝐸2(0,0,1). Similarly, we find that the other pure strategy equilibrium points are 

unstable. Regardless of the initial strategy of the game players, as time goes on, the 

equilibrium state eventually evolves to 𝐸1 = (0,0,0), as shown in Fig. 4. 

 

 

Figure 4. Game evolution of different initial strategies 

 

In the absence of government regulations, the final evolutionary process of the online 

ride-hailing regulation system tends to be 𝐸1 = (0,0,0), indicating that online ride-hailing 

platforms are negatively cooperative, drivers operate illegally, and passengers do not 

participate in monitoring.  

Based on the above system dynamics model of online ride-hailing platforms, drivers, and 

passengers, we further consider the role of government regulations from four aspects: penalty 

policy, incentive policy, policy adaptability, and public participation. The online ride-hailing 

system regulated by the government is modelled and simulated, as shown in Fig. 5. 

 



28 

 

Figure 5. System dynamics model of evolutionary game among online ride-hailing platforms, 

drivers, and passengers with government regulations 

 

As the case of online ride-hailing market in China, the government mainly regulates ride-

hailing platforms and drivers by restrictive policy, and little or no incentives are introduced, 

which means that the government's penalties should be greater than its reward. With reference 

to reality and relevant research (Lei et al. 2020; Sun et al. 2019; Zhang 2019), the initial 

values of the other external variables in the model are assigned as follows: 𝑅5 = 4, 𝑟 =

0.6, 𝑅6 = 1.6, 𝑃1 = 4, 𝑃2 = 3.5, 𝑡 = 0.4, 𝑢 = 1.2, 𝑤 = 1, 𝑣 = 1. We can also obtain eight pure 

strategy equilibrium points (𝐸1~ 𝐸8) by solving the replicator dynamic equations (2-10) 

with above initial values. To analyze the stability of these equilibrium points, we consider the 

equilibrium point 𝐸8(1,1,1) as an example to simulate the game evolution process of the 

online ride-hailing regulation system. Simulating that a small number of online ride-hailing 

service platforms mutate from 𝑥 = 1 to 𝑥 = 0.99, the game system evolves from 𝐸8(1,1,1) 
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to 𝐸4(0,1,1), as shown in Fig. 6. The simulation of other equilibrium points also indicates 

instability. In summary, no ESS exists during the game process. 

 

Figure 6. Game evolution of the initial mixed strategy E8 (x→0.99) 

 

Simulation experiments of stability control and optimization 

The evolutionary game of the online ride-hailing regulation system with government 

regulations fluctuates unstably, posing challenges for government regulation strategies. 

Hence, it is necessary to optimize regulation strategies to control the volatility of the 

evolutionary game process to provide practical and effective guidance for government 

regulations. 

Impact of penalty policy 

General penalty strategy 

The government usually imposes penalties in the form of fines to regulate the behavior 

of platforms and drivers. First, we examine the impact of the general penalty on online ride-

hailing regulations. In terms of the platforms, the initial value of the government’s penalty 𝑃1 
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is assigned as 4, and we then simulate the evolution of online ride-hailing platforms when the 

government’s penalty for platforms is increased to 6 and 8. Similarly, in addition to the initial 

government penalty for drivers (i.e., 𝑃2=3.5), we consider the case in which the penalty value 

increases to 5 and 6.5. The simulation results are presented in Fig. 7. 

 

  

Figure 7. The impact of general penalty on platforms (left) and drivers (right)  

 

As the government’s penalty increased, the strategies of ride-hailing platforms and 

drivers did not change significantly. However, the amplitude and frequency of fluctuations in 

the evolutionary game process increased, causing greater volatility of the system. The 

behavior of online ride-hailing platforms and drivers becomes more difficult to predict and 

control during long-term games, which is an impediment to government regulations. From a 

long-term perspective, simply increasing the government’s penalties for platforms and drivers 

is not conducive to online ride-hailing regulations. 

Dynamic penalty strategy 

To curb the volatility in the game of online ride-hailing regulations, scholars have 

proposed a dynamic penalty strategy (Wang et al. 2020), that is, the government dynamically 

regulates the behaviors of market entities according to their interactions. More specifically, 
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the government's penalty is adjusted dynamically based on the behavior of the penalized 

object. For example, the lower the probability of positive cooperation of platforms, the greater 

the government's penalty to the platforms. 

The dynamic penalty mechanism contributes to restraining the fluctuation of the game 

among platforms, drivers, and passengers, and the evolution process roughly converged at x = 

0.64, y = 0.57, and z = 0.69. For instance, regardless of the initial strategy set of online ride-

hailing platforms, drivers and passengers are (0.1, 0.1, 0.1), (0.5, 0.5, 0.5), or (0.9, 0.9, 0.9), 

respectively, the process of the evolutionary game of online ride-hailing regulations always 

converges to (0.64, 0.57, 0.69). The results are shown in Fig. 8. 

 

  

Figure 8. Game evolution of different initial strategies under dynamic penalty mechanism 

 

Moreover, the government has an initial force for penalties in long-term regulations. We 

analyze the evolution paths of the platforms and drivers under different initial forces of 

government penalty in the dynamic penalty. The initial force of the government's penalty to 

platforms 𝑤 is set as 1, 2, and 3, respectively, so is the initial force of the government's 

penalty to drivers 𝑣. The results are presented in Fig. 9.  
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Figure 9. The impact of initial force of government penalty in dynamic penalty on platforms 

(left) and drivers (right) 

 

Evidently, when the initial force of government penalty increases, the probability of 

positive cooperation of platforms as well as legal operation of drivers also increases. 

Improving the initial force of government's penalty results in a higher cost for violators. 

Hence, a dynamic penalty strategy with greater initial force benefits the regulation effect. 

Impact of incentive policy 

The government introduces a regulatory incentive mechanism to encourage ride-hailing 

platforms, drivers, and passengers to adopt strategies that benefit the overall market. First, the 

government rewards passengers to promote public participation. To simulate the incentive 

policy’s impact on passengers, we keep the other variables unchanged and set the 

government’s rewards to passengers 𝑅6 as 1.6, 2.1, and 2.6. The simulation results are 

shown in Fig. 10. 
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Figure 10. The impact of incentive policy on passengers  

 

Government incentives increase the probability of public participation in monitoring 

activities. When the reward exceeds a certain amount, the proportion of passenger monitoring 

will reach 100%. Even if it is a general reward, passengers will be encouraged to monitor. 

Therefore, the incentive policy for passengers is better than that of no incentive policy. 

Second, the government motivates platforms and drivers to behave lawfully through 

rewards. Additionally, the principal-agent cooperation between the government and platforms 

allows the platforms and drivers to share the government's rewards. To consider the incentive 

policy’s impact on online ride-hailing platforms and drivers, we simulate the evolution 

process of online ride-hailing platforms and drivers with different government rewards, that 

is, 𝑅5= 4, 𝑅5= 5, 𝑅5=6, while the other variables, including the proportion between 

platforms and drivers, remain the same. The results are shown in Fig. 11. 
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Figure 11. The impact of incentive policy on platforms (left) and drivers (right)  

 

The results show that government rewards can improve the probability of positive 

platform cooperation, as well as the legal operation of drivers. Furthermore, the government 

needs to consider both the scale and allocation of rewards to optimize the regulatory result. In 

view of the principal-agent mechanism between government and platforms, we analyze the 

impact of the proportion of government rewards between platforms and drivers by simulating 

the evolution process of platforms and drivers under two different proportions, wherein the 

proportion of government rewards for platforms 𝑟 is assigned as 0.6 and 0.8. The results are 

shown in Fig. 12. 

 

 

Figure 12. The impact of incentive policy that considers principal-agent mechanism  
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When the government rewards are inclined toward online ride-hailing platforms, both the 

probability of positive cooperation of platforms and the legal operation of drivers increase. 

The principal-agent relationship between the government and online ride-hailing platforms is 

conducive to market regulation. Drivers seem to prefer illegal operation strategies when the 

government rewards online ride-hailing platforms more, leading to lower benefits for drivers. 

Nevertheless, platforms are motivated by more rewards to enforce stricter regulations for 

drivers and monitor drivers to operate legally. Hence, the principal-agent cooperative 

regulation mechanism, in which a government–platform relationship is achieved, can play a 

better role in online ride-hailing market regulation. The overall effect of market regulation is 

better than that of the government's direct incentives for drivers. 

Impact of policy adaptability 

The enforcement of government regulations is affected by the adaptability of the online 

ride-hailing policy, including whether the policies and regulations of online ride-hailing are 

suitable for the development of online ride-hailing, whether the regulatory scope and contents 

are comprehensive and operable, and whether it is possible to mollify contradictions among 

multiple stakeholders in the online ride-hailing market. We employ the error rate of 

government regulations to reflect the probability of regulatory failure due to insufficient 

policy adaptation. To examine the impact of policy adaptability, the error rate of government 

regulations 𝑡 is set to 0.4, 0.3, and 0.2, while keeping the other variables unchanged. A 

simulation analysis is conducted on the evolution of the probability of positive cooperation of 
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platforms and the probability of the legal operation of drivers. The results are shown in Fig. 

13. 

 

  

Figure 13. The impact of policy adaptability on platforms (left) and drivers (right)  

 

As the error rate of government regulations declines, the probabilities of online ride-

hailing platforms’ positive cooperation and drivers’ legal operation increase, indicating that 

improving policy adaptability has a positive effect on regulating the behavior of the main 

players in the online ride-hailing market. To adopt adaptive regulation in the emerging online 

ride-hailing market, the government needs to constantly adjust the regulatory strategy 

according to the feedback of the regulatory effect to improve the feasibility and effectiveness 

of regulations and make it more suitable for the sustainable development of the online ride-

hailing market.  

Impact of public participation 

Passengers directly contact online ride-hailing platforms and drivers in the service 

process; therefore, they often experience the illegality of drivers or platforms, becoming an 

important force in online ride-hailing regulations. Here, public participation is considered as a 
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complement to government regulations (Lee et al. 2017), and the degree of impact of 

passenger monitoring is introduced to estimate the effect. To analyze the impact of public 

participation in online ride-hailing regulations, we set the impact degree of passengers' 

monitoring 𝑢 as 1.2, 2.4, and 3.6. The results for platforms and drivers are shown in Fig. 14. 

 

 

Figure 14. The impact of public participation on platforms (left) and drivers (right)  

 

With an increase in the degree of impact, the probability of online ride-hailing platforms 

adopting a positive cooperation strategy slightly increases, and the probability of drivers 

operating legally significantly increases. In fact, as receivers of online ride-hailing services, 

passengers have direct contact with drivers in the process of service consumption. Whether 

drivers operate legally matters to the interests of passengers, so passengers often actively 

monitor their behavior. However, passengers connect with the platforms via a mobile 

application or an online client service, making it difficult to monitor the operation of the 

platforms. In brief, passengers can play a positive role in monitoring the operation of drivers, 

and it is difficult for passengers to significantly impact the regulation of online ride-hailing 

platforms.  
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Conclusion, implications, and limitations 

Based on evolutionary game theory, this study builds gaming models that 

comprehensively consider the regulation strategies of government as well as three main 

players (i.e., online ride-hailing platforms, drivers, and passengers) in an online ride-hailing 

market context. Combining the idea of the evolutionary game with the simulation approach, 

we present the system dynamics of the evolutionary game and conduct simulation 

experiments to explore optimized regulatory measures from the aspects of penalty policy, 

incentive policy, policy adaptability, and public participation. The following conclusions and 

implications are drawn:  

(1) Government regulations play an important role in restraining the lawbreaking of 

market entities, which is conducive to promoting sustainable development of the online ride-

hailing market. The online ride-hailing market fluctuates in the absence of government 

regulations. Online ride-hailing platforms, drivers, and passengers, as bounded rational 

behaviorists in the online ride-hailing market, attempt to maximize their personal interests. 

The online ride-hailing market tends to stagnate when platforms cooperate negatively, drivers 

operate illegally, and passengers do not participate in regulation.  

(2) Dynamic penalty can effectively suppress periodic fluctuations in the gaming process 

of the online ride-hailing market. Under the general penalty mechanism, no stable equilibrium 

state exists in the evolution game of the online ride-hailing regulation system. Conversely, the 

dynamic penalty mechanism effectively controls the fluctuation in the gaming process, 

resulting in an evolutionarily stable equilibrium. When ride-hailing accidents occur 

frequently, the government tends to tighten penalties. Furthermore, ride-hailing platforms and 
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drivers cope with strict regulations by operating in a friendly manner. As the ride-hailing 

market becomes orderly, the government eases its penalties. In summary, the government 

should be flexible, with a penalty mechanism to reduce game volatility in the online ride-

hailing market. 

(3) The indirect incentive mechanism of the principal-agent relationship between the 

government and ride-hailing platforms can achieve better regulatory effects than the 

government's direct driver supervision. Online ride-hailing platforms directly access the 

information of drivers and vehicles, but it is difficult for the government to obtain such first-

hand information that is conducive to regulations. Hence, a principal-agent regulatory mode 

in which the government motivates ride-hailing platforms to regulate drivers is advantageous. 

Driven by the government’s incentives, ride-hailing platforms are willing to invest more 

resources in stricter regulation of drivers and explore more effective ways to motivate drivers’ 

legal operations. 

(4) A regulation with greater adaptability results in better regulatory effects, whereas 

regulatory failure is linked to worse policy adaptation and a higher error rate in government 

regulations. This is reflected in the fact that with the improvement in policy adaptability, both 

the probability of positive cooperation of online ride-hailing platforms and the legal operation 

of drivers climbs. However, in the context of a sharing economy, traditional regulatory 

policies may no longer be applicable to the evolving ride-hailing market, failing to prevent 

accidents. To improve the adaptability and flexibility of regulatory policies, it is crucial for 

regulatory authorities to be aware of the actual needs of each player in the market and 

continuously adjust their policies.  
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(5) Public participation in monitoring drivers or platforms benefit government 

regulations. Our findings reveal that the positive impact of passenger monitoring on driver 

operations is significantly greater than their impact on online ride-hailing platforms. To 

achieve better effects of public participation on the regulation of the online ride-hailing 

market, both the government and online ride-hailing platforms should focus on providing 

convenient channels for passenger feedback. Additionally, incentives can greatly increase the 

proportion of the public involved in monitoring, regardless of the reward amount, an incentive 

policy to encourage public participation in monitoring is advocated. 

This study has enriched online ride-hailing market regulation research by offering a 

systematic view of government regulations from four aspects, meanwhile, considering the 

major stakeholders of the entire online ride-hailing market. From a substantive standpoint, our 

findings provide regulatory authorities and online ride-hailing platforms with a better 

understanding of the gaming relationship and regulatory optimization in the ride-hailing 

market. Further, considering the limitations of this study, we merely examined the 

effectiveness of the regulations in four terms separately rather than their combined effect. The 

interaction between different regulatory strategies can be further explored. And researchers 

can build game models that better simulate reality by optimizing the assumptions and 

introducing factors (e.g., heterogeneity of drivers and passengers) that are more in line with 

the actual conditions of the regulation of the online ride-hailing market. 
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