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Abstract Degradation-based system reliability analysis has been extensively conducted, but the 
components in a system are assumed to experience similar degradation and shock processes, neglecting 
actual failure mechanisms. However, multiple types of components in a system may work under 
different operational conditions and break down due to different failure mechanisms. Hence, a new 
generalized reliability model is proposed for systems with arbitrary structures experiencing multiple 
degradation and shock processes, including pure degradation processes (DPs), independent and 
dependent competing failure processes (CFPs). In this work, the Tweedie exponential-dispersion (TED) 
process is utilized to describe multiple degradation processes of the components, which contains the 
Wiener, Gamma, inverse Gaussian, and other processes as special cases. Based on multiple DPs and 
CFPs, a generalized reliability model is established by utilizing the structure analysis method, the 
survival signature, which allows the proposed method to be applied to various structural systems. Finally, 
an example of an automotive braking system with four types of components experiencing multiple DPs 
and CFPs is applied to illustrate the proposed model. 
 
Keywords: competing failure processes; degradation; Tweedie exponential-dispersion process; survival 
signature; system reliability. 

1. Introduction 

System reliability analysis has been extensively conducted to accurately evaluate the probability that 
the devices function normally under required operational conditions [1]. Research on the reliability of 
complex systems based on survival signature and the reliability of simple systems based on degradation 
and shock processes has been widely investigated [2-3]. However, the reliability analysis for systems 
with complex structures based on degradation-shock processes and survival signature is rarely 
conducted. Therefore, a new generalized reliability model is proposed for complex systems based on 
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multiple competing failure processes (CFPs) and survival signature, which is applicable for systems 
with general structures, including series, parallel, bridge, and network structures. Also, the proposed 
model is suitable for systems experiencing multiple degradation and shock processes, including pure 
degradation processes (DPs), independent and dependent competing failure processes (CFPs). 

Systems are mainly supposed to fail due to soft and hard failures [4]. Soft failures are caused by 
degradation, such as wear, corrosion, crack growth, and other degrading performance characteristics [5]. 
Hard failures are usually caused by random shocks, such as sudden loads, intense temperature 
fluctuations, and other abruptly changing environmental conditions [6]. Research on the reliability of 
systems exposed to DPs and CFPs has been widely carried out, in which the Wiener, Gamma, and inverse 
Gaussian processes are commonly used. For example, Gao et al. [7] established a reliability model for 
a two-unit system based on the Wiener process with consideration of the degradation interdependence. 
Liu et al. [8] proposed a reliability method for systems with uncertainty based on the Wiener process 
and four shock patterns. Li et al. [9] presented a new storage reliability method for missiles considering 
the dependence between the random failure process and the inverse Gaussian degradation process. 
Yousefi et al. [10] presented a new reliability model for dependent CFPs and provided the corresponding 
maintenance policies with conditional thresholds based on the Gamma processes. The Wiener, Gamma, 
and inverse Gaussian processes are suitable for describing stochastic processes with different 
characteristics, such as monotonic or nonmonotonic processes.  

To describe various stochastic processes more generally, Tweedie [11] presented the Tweedie 
exponential-dispersion (TED) process, which includes the commonly used Wiener, Gamma, and inverse 
Gaussian processes as special cases. Many researchers modelled degradation processes and estimated 
system reliability with the TED process due to its generality. Yan et al. [12] modelled the performance 
degradation process of flax fibers by the TED process and completed the durability and reliability 
estimation. Yan et al. [13] proposed a reliability method for photovoltaic modules by modelling the 
dynamic and random degradation process with the TED process. Chen et al. [14] extended the 
application of the TED process by presenting a nonlinear TED process with the consideration of the 
random effects on degradation. In the above research, the reliability analysis for systems exposed to 
various DPs and CFPs has been extensively investigated using the TED process and other stochastic 
processes. However, the degradation of the components in a system is assumed to follow the same 
stochastic process with different parameters, and the DPs and the shock processes are considered to 
affect each other in the same way. The assumptions may not be acceptable for some systems with 
multiple types of components, which are designed for different functional purposes and work under 
different operational conditions. The components may break down due to different failure mechanisms 
under different DPs and CFPs. Therefore, in this work, a generalized reliability model is proposed based 
on the TED process for multi-component systems experiencing multiple DPs and CFPs. 

To complete the system reliability analysis, the structure analysis needs to be conducted after 
completing the component reliability analysis. Typical structures include series [15], parallel [16], mixed 
series and parallel [17], bridge [18], and network structures [19]. For systems with simple structures, 
such as series, parallel, and series-parallel systems, the reliability has been widely analyzed based on 
DPs and CFPs. For example, Dong et al. [20] presented a new reliability model for mixed series and 
parallel systems with CFPs by considering the self-healing and aggravating effects on the random shocks. 
Kong et al. [21] proposed a generalized reliability model for mixed series and parallel systems based on 
multiple dependent DPs. Yousefi et al. [22] established a reliability model for series-parallel systems 
experiencing multiple CFPs, by dividing the components into groups according to their locations. 



However, for multi-component systems with complex structures, such as the bridge and network systems, 
the structure analysis may be challenging to complete by considering alternative series and parallel 
subsystems.  

To complete the reliability analysis for systems with general structures, the survival signature 
proposed by Coolen and Coolen-Maturi [23-24] is utilized, which is a structure analysis technique 
widely applicable to various kinds of systems. For example, Salomon et al. [25] developed a reliability 
model for complex systems with uncertainty based on survival signature and fuzzy probabilities. Qin 
and Coolen [26] proposed a reliability model for multi-state systems with multi-state components based 
on survival signature. Huang et al. [27] applied the survival signature to phased mission systems and 
established an efficient reliability model. Coolen-Maturi et al. [28] proposed a joint survival signature 
for multiple systems with shared components. Reed et al. [29] extended the application of survival 
signature to a K-terminal network system and analyzed the system reliability after completing the 
structure analysis. Different from the previous work based on survival signature, which considered the 
systems to fail due to degradation. Huang et al. [30] applied the survival signature for system reliability 
taking both soft and hard failures into consideration. Similarly, Hashemi et al. [31], and Tavangar and 
Hashemi [32] provided reliability analysis methods based on the survival signature, to derive 
maintenance policies for systems exposed to degradation and shocks. In the above research, reliability 
analysis for various systems has been extensively conducted based on survival signature, but the 
reliability is estimated by modelling time-to-failure data with lifetime distributions. However, for 
complex systems with multiple types of components, it is challenging to obtain enough failure data for 
all components, even with the help of accelerated life tests [33-34]. Therefore, a generalized reliability 
model is proposed for complex systems based on survival signature, in which the reliability analysis is 
completed by modelling the degradation data with the TED process. 

In this paper, based on survival signature and the TED process, a generalized reliability model is 
proposed for systems with arbitrary structures experiencing multiple DPs and CFPs. The main 
contributions of this work are as follows: 

(1) A generalized reliability model is proposed for complex systems with multiple types of 
components based on DPs, CFPs, and survival signature, instead of lifetime distributions requiring time-
to-failure data. The proposed method is presented based on the TED process, which allows to avoid 
predetermining the DPs of components as specific ones, such as the Wiener, Gamma, and inverse 
Gaussian processes. 

(2) By utilizing survival signature, a new degradation-based reliability model is developed for 
systems with arbitrary structures, including the series, parallel, series-parallel, bridge, and network 
systems.  

(3) Instead of assuming the DPs and CFPs of multiple types of components to be similar, according 
to the practical failure mechanisms of the components, generalized reliability models are provided for 
complex systems experiencing multiple degradation and shock processes, including pure DPs, 
independent and dependent CFPs. 

The remainder of the paper is organized as follows. In Section 2, the TED process is utilized to 
describe the DPs of components, and generalized component reliability models are developed based on 
the TED process when experiencing pure DPs, independent and dependent CFPs. Section 3 develops 
new reliability models based on survival signature for systems with arbitrary structures experiencing 
multiple DPs and CFPs. In Section 4, an illustrative example of an automotive braking system with four 
types of components is provided to show the computation processes and validity of the proposed 



methods. Conclusions and some future challenges are presented in Section 5 

2. Reliability analysis for components based on DP and CFPs 

In a practical engineering system, the performance characteristics of components may degrade 
differently. This section conducts the reliability analysis for components exposed to different 
degradation and shock processes, including the general TED process, extreme shock process, 
independent and dependent CFPs. 

2.1 Reliability analysis for the TED degradation process 

In this section, a general class of stochastic processes, the TED process, is utilized to model the 
degradation of multiple types of components. If the initial degradation value X(0) is 0, the increments 
are independent and stationary, and the component degradation follows the TED process, then the PDF 
of the degradation value X(t) can be obtained using the saddle-point approximation method [13-14]. 
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Fig. 1 TED degradation process 
 

We denote the TED process by X(t) ~ TED (μt, λ, p), the mean is E[X(t)] = μt, and the variance is 
Var[X(t)] = μPt/λ. The TED processes with different values of parameters are shown in Fig. 1. The soft 



failure is triggered when the degradation value X(t) exceeds the failure threshold H. Based on the 
generalized TED process, the reliability of components experiencing pure DPs can be expressed as: 
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where H is the failure threshold of the degradation process 

2.2 Reliability analysis for the extreme shock process 

 

Fig. 2 The extreme shock process 
 

The extreme shock process [5-6] is widely utilized to model the random stress on components, such 
as random thermal shocks and vibrations. As shown in Fig. 2, a hard failure is triggered when the 
magnitudes of the random shocks exceed the failure threshold D. The arrival of shocks is modeled as a 
homogeneous Poisson process with rate θ. The probability that N(t) shocks occur in (0, t] can be derived 
as: 
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where N(t) is the number of shocks, n = 0, 1, 2, …, θ is the arrival rate of the shock process. The 
magnitudes of random shocks are assumed to be independent identically distributed with a normal 
distribution, denoted as Wj ~ N (μ  

W, σ2 
W). The probability that the components survive a random shock 

can be expressed as: 
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where D is the shock failure threshold and Φ(⋅) is the cumulative distribution function (CDF) of a 
standard normal random variable. The reliability of components suffering from hard failures caused by 



the random shock process can be derived as: 
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To simplify the expressions of the equations in this work, we denote exp(-θt) by r(t), denote(-θt)n /n! 
by r1(t, n), and denote [Φ((D-µ  

W)/σ  
W)]n by r2(Wj|D, n), then Eq. (5) can be expressed as: 
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2.3 Reliability analysis for independent CFPs  

As shown in Fig. 3, when experiencing degradation, some components may also suffer from random 
shocks. The soft failure caused by degradation and the hard failure caused by random shocks are 
considered to be independent CFPs. No matter which one happens, it can lead the components to fail, 
but the degradation and shock processes are assumed not to affect each other. For example, a brake pad 
fails if the cumulated wear reaches the failure threshold H or the friction coefficient drops suddenly due 
to thermal shocks [35-36], the wear and the change of friction coefficient are assumed to be independent. 

 

 
Fig. 3 Description of the independent degradation-shock processes 

 
If the degradation and shock processes of a component can be modelled by the generalized TED 



process and the extreme shock process, then the reliability of a component experiencing the independent 
CFPs can be expressed as: 
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2.4 Reliability analysis for dependent CFPs with changing hard failure threshold 

 
Fig. 4 Description of the dependent degradation-shock processes 

 
As shown in Fig. 4, some components may fail due to dependent CFPs. One is the degradation 

process, which is the sum of the natural degradation (the green parts in Fig. 4) and the sudden increments 
(the orange parts in Fig. 4) caused by random shocks. The other is a shock process with changing failure 
thresholds, in which the resistance ability of the component to random shocks is considered to decline 
with increasing degradation levels. When the total degradation value Xs(t) exceeds a certain level H, 
then the component fails due to a soft failure. When the magnitude of a shock exceeds the corresponding 
failure threshold (D1 or D2), then the component fails due to a hard failure. The two failure processes 
are dependent and competing, the occurrence of either one can lead the component to fail. For example, 
a handbrake cable needs to be replaced when the plastic deformation cumulates to the failure threshold 



H or when the cable snaps under sudden loads Wj [37], where j = 1, 2, 3, …. The capacity of the 
handbrake cable to avoid snapping declines from D1 to D2 when the plastic deformation increases to L 
at time point t∗. 

Assume the natural degradation of components follows the generalized TED process, that is, X(t) ~ 
TED (μt, λ, p). The shock process is considered to be modeled by a homogeneous Poisson process with 
arrival rate θ, and the shock damage is assumed to be linear with the shock magnitude, which can be 
expressed as follows. 
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The PDF of the degradation caused by the shocks is: 
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The total degradation of a component, Xs(t), is the sum of the natural degradation and sudden 
degradation increments caused by random shocks. 
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If the total degradation cumulates to H, then the component fails due to a soft failure. The probability 
that the component survives from a soft failure is: 
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If the magnitude of a shock exceeds the hard failure threshold, the component fails due to a hard 
failure. When the component deteriorates, its capacity to resist random shocks gets weaker, making it 
more vulnerable to breaking down. For example, brake oil gradually gets contaminated due to chemical 
reactions and moisture absorption during brake operation. Oil contamination can reduce the fluid boiling 
point and the pressure transmission, which makes the braking system more vulnerable to failures when 
experiencing thermal shocks [38]. Therefore, in this subsection, the hard failure threshold is considered 



to shift with the degradation levels. The probability that a component survives a hard failure at time t is: 
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The reliability of a component experiencing dependent CFPs with changing hard failure thresholds 
can be calculated in the following two independent and mutually exclusive situations. 
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where A is the collection of events that the total degradation is less than H and all shock magnitudes are 
less than the corresponding failure thresholds. B1 is the collection of events that the total degradation is 
less than L and N(t) shocks occur before t; B2 is the collection of events that the total degradation is no 
less than L, N(t∗) shocks occur before t∗, and N(t-t∗) shocks occur between t∗ and t. A, B1, and B2 can be 
expressed as: 
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If the degradation value of a component is less than L, then the probability that the component 
survives in the first case is: 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )

1 11
0

1
0 1

1
1

, ,

0 0

n
jj

n
n

j
n j

n

j
n

P AB P Xs t L N t n W D

P X t S t L N t n P N t n P W D

P X t L N t P N t

P X t S t L N t n P N t n P W D

∞

=
=

∞

= =

∞

=

= < = <

= + < = = <

= < = =

+ + < = = <

∑

∑ ∏

∑



 (18) 

If the degradation value of a component is no less than L, then the probability that the component 
survives in the second case is: 
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where t∗ is the time when the degradation value of components reaches L, f(t∗|N(t∗) = n1) is the 
conditional PDF of t∗ when the number of shocks is n1. 
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where F(t∗|N(t∗) = n1) is the conditional CDF of t∗, expressed as: 
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The reliability of a component experiencing dependent CFPs with changing failure thresholds can be 
derived as: 
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3. Reliability analysis for systems based on DP, CFPs, and survival signature 

To complete the system reliability analysis, component reliability analysis and system structure 
analysis are two essential parts. In this section, the survival signature is utilized to complete the structure 
analysis, and new generalized reliability models are proposed for arbitrary systems with general 
structures experiencing multiple DPs and CFPs. 

3.1 System reliability based on survival signature 

Suppose that a system is composed of K types of components. Let mk represent the number of 
components of type k, where k = 1, 2, …, K. lk denotes the number of functioning components of type 
k. Let vector Y represent the operational state of the components, which can be denoted as Y = (Y1, Y2, …, 
Yk, …, YK), where Yk denotes the operational status of the components of type k, 

( )1 2, , , , ,
k k k ki my y y y=kY   , ik means the ith component of type k. If the ik-th component functions, 

then
ki

y = 1 and 
ki

y = 0, if it does not function. The structure function can be expressed as: 
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The survival signature of the system is: 
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where
1 1,..., ,..., ,...,

K k Kl l l l l =  S S S S , 
1 ,..., Kl lS is the set of all possible state vectors of the system, 

kl
S is the 

set of all possible state vectors of the components of type k when the number of working components of 

the k-th type is lk. 

 

 
Fig. 5 A bridge system 

 
To illustrate the computation of the survival signature, a bridge system consisting of two types of 

components is presented in Fig. 5. The survival signature of this system can be calculated by Eq. (24). 
For the system in Fig. 5, there are (m1+1) × (m2+1) = 4 × 3 = 12 combinations of l1 and l2, the survival 
signature is given in Table 1. An example for calculating the vector Y and the structure function φ(Y) is 
provided, and the results are shown in Table 2. 



Table 1 Survival signature of the bridge system 

l1 l2 Φs(l1, l2) l1 l2 Φs(l1, l2) 

0 0 0 2 1 1 

1 0 0 3 1 1 

2 0 0 0 2 0 

3 0 0 1 2 2/3 

0 1 0 2 2 1 

1 1 1/3 3 2 1 

 
Table 2 The vector Y and φ(Y) when l1 =1 and l2 = 2 

l1 l2 Y φ(Y) ΦS(l1, l2) 

1 2 

(0,0,1,1,1) 0 

2/3 (0,1,0,1,1) 1 

(1,0,0,1,1) 1 

 
Assume the components of different types fail independently, then the reliability of the system can 

be expressed as: 
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where P(Ct, k = lk) is the probability that lk out of mk components function at time t. If the failure times 
of components of the same type are independent and identically distributed, then 
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where Rk(t) is the reliability of a component of type k. 
The system reliability can be derived as: 
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3.2 System reliability analysis based on DPs, CFPs and survival signature 

Case 1: Systems experiencing pure DPs without CFPs 

If the components of a system fail due to pure DPs without shocks, the probability that the system 
survives from soft failures can be derived as: 
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where RS_k(t) is the reliability of the components of type k, which are subject to pure DPs. Xk(t) is the 

degradation value of the components of type k, and Hk is the soft failure threshold of the components of 

type k. If the degradation of components follows the Wiener, Gamma, or inverse Gaussian processes, 

which are the special cases of the TED process, then the reliability of a system experiencing pure DPs 

can be derived as: 
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where Xk(t) ~ TED(µkt, λk, pk), pk ∈ (-∞, 0] ∪ [1, +∞), µk and λk respectively are the drift parameter and 

diffusion parameter of the components of type k, ( ) ( )kX tf ⋅  is the PDF of the degradation value Xk(t), 

which is: 
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where, 
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Case 2: Systems experiencing independent CFPs 

For some systems, the components may experience independent degradation-shock processes. For 
example, a concrete column of a bridge may fail due to a soft failure caused by corrosion or a hard 
failure caused by sudden traffic crashes or earthquakes. The probability that a system survives 
independent CFPs is:  
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where Rind_k(t) is the reliability of the components of type k, which are subject to independent CFPs, 

Nk(t) is the number of shocks on the components of type k during (0, t], kj
W  is the magnitude of the jth 

shock on the components of type k, Dk is the hard failure threshold of the component of type k. If the 
components are exposed to the independent generalized TED process and the extreme shock process, 
then the system reliability can be derived as: 
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where µ  
Wk and σ  

Wk are the mean and variance of the magnitudes of the shocks on the components of type 

k, θk is the intensity of the shock on the components of type k, and ( ) ( )expk kr t tθ= − , ( ) ( )
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Case 3: Systems experiencing dependent CFPs 

The components of some systems may operate under dependent degradation-shock processes. For 
example, as the crack size of gear wheel teeth gets larger, the gear wheel teeth become more susceptible 
to fatigue fracture when experiencing random shocks. If the components suffer from the dependent CFPs, 
in which the random shocks can cause sudden increments to the degradation, and increasing degradation 
levels can reduce the capability of the components to resist random shocks, then the system reliability 
calculated based on the survival signature can be derived as: 
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where AkB1k and AkB2k are two independent and mutually exclusive events of the components of type k, 
which are exposed to dependent CPFs. The events Ak, B1k, and B2k can be expressed as: 
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where Lk is the degradation level of the components of type k, at which the hard failure threshold changes 
from D1k to D2k. t∗k is the time when the degradation level of the components of type k reaches Lk. nk and 
n1k are respectively the number of shocks on the components of type k during (0, t∗k] and (t∗k, t]. The 
calculation procedures of P(AkB1k) and P(AkB2k) are similar to Eqs. (18-19), and the details are provided 
in the appendix A. If the components of type k are subject to the generalized TED process and the 
extreme shock process, then the system reliability is: 
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 , which is the PDF of the total 

shock damage of the components of type k and Zk k Wkaµ µ= , Zk k Wkaσ σ= , ak is a constant representing 
the relation between the damages and magnitudes of the shocks on the components of type k. 

Case 4: Systems experiencing multiple DPs and CFPs 

In the cases above, the generalized reliability models for systems suffering from different 
degradation-shock processes are presented. But different types of components in one system are 
considered to be subject to similar degradation and shock processes. However, for some practical 
systems, different types of components may operate under different working conditions and experience 
different degradation and shock processes, such as the automotive braking system, which is illustrated 
in detail in Section 4. The generalized reliability model of a system subject to multiple degradation and 
shock processes can be expressed as: 



 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1 2

1 2

11 2

1 2

2

1

syst S 1 2
0 0 0 1

S 1 2 _ _
0 0 0 1

ind_
1

, , , 1

, , , 1

K
k k k

K

K
k k k

K

m m m K l m lk
K k k

l l l k k

km m m l m lk
K S k S k

l l l k k

k
k

k
k k k

m
R t l l l R t R t

l

m
l l l R t R t

l

m
R t

l

−

= = = =

−

= = = =

= +

   = Φ    −          
      = Φ −        

 
⋅  

 

∑∑ ∑ ∏

∑∑ ∑ ∏

∏

 

 

( ) ( ) ( )

( ) ( )( ) ( )( )

( ) ( )

2

11 2

1 2

2

1

ind_ dep_ dep_
1

S 1 2
0 0 0 1

1

1 1

, , , 1

, ,

k k k k k k

K
k k k

K

Kl m l l m lk
k k k

k k k

km m m l m lk
K k k k k

l l l k k

k
k

k k k k
k k k

m
R t R t R t

l

m
l l l P X t H P X t H

l

m
P X t H N t n W

l

− −

= +

−

= = = =

= +

        − −            
      = Φ < − <        

 
⋅ < = 

 

∏

∑∑ ∑ ∏

∏

 

( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )
2

1
0

1
0

1 2 1 2
1

1 , ,

1

k

k

kk
k

k k

k

kk
k

k k k

l
n

j kj
n

m l
n

k k k k j kj
n

K l m lk
k k k k k k k k

k k k

D

P X t H N t n W D

m
P A B P A B P A B P A B

l

∞

=
=

−
∞

=
=

−

= +

 
< 

 

 
⋅ − < = < 
 

  ⋅  +   − −       
  

∑

∑

∏





 (38) 

where k1 is number of types of components experiencing pure degradation without CFPs, k2-k1 is the 
number of types of components subject to independent CFPs, and K-k2 is the number of types of 
components experiencing dependent CFPs. For example, if a system is composed of 3 types of 
components, and they are subject to pure degradation, independent and dependent CFPs respectively, 
then k1 = 1, k2-k1 = 1, K-k2 = 1, k2 = 2, K = 3. If the component degradation follows the Wiener, Gamma, 
inverse Gaussian and other stochastic processes which are special cases of the generalized TED process, 
and the random shock process can be described as the extreme shock process, then the proposed system 
reliability in Eq. (38) can be expressed as:  
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4. Numerical example 

In this section, the proposed generalized reliability model for systems with multiple pure DPs and 
CFPs is illustrated by an automotive braking system, as shown in Fig. 6. The braking system consists of 
multiple types of components, among which the master cylinder, brake cylinders, brake pads, and 
handbrake cable are four critical types of components for braking. The simplified reliability block 
diagram is shown in Fig. 7, which is adapted from the work of Tavangar and Hashemi [32]. In Fig. 7, 
the components of types 1 and 2 are the master cylinder and brake cylinders. The cylinders fail mainly 
due to the wear of pistons and cylinders, and the wear is a pure DP without CFPs. The components of 
type 3 are brake pads. The brake pads are subject to independent CFPs, and the failure of brake pads is 
basically caused by wear or sudden reduction of friction coefficient due to thermal shocks. The 
components of type 4 represent the handbrake cable, which fails because of cumulative plastic 
deformation or snapping under sudden loads. The loads can cause abrupt increments in plastic 
deformation, and the increasing plastic deformation makes the cables more vulnerable to sudden loads. 



The degradation-shock processes of the handbrake cable are dependent CFPs.  
 

 
Fig. 6 An automotive braking system 

 

 
Fig. 7 Reliability block diagram of the braking system (Adapted from reference [32]) 

 
To evaluate the reliability of the automotive braking system in Fig. 7, the reliability of the composed 

four types of components needs to be calculated. The parameters of the degradation and shock processes 
of the components are assumed in Table 3. As shown in Fig. 8, the reliability of the first two types of 
components, failing because of pure degradation, can be calculated by substituting the related 



parameters in Table 3 into Eq. (2), and the results are shown as the solid green and black lines. The 
reliability of brake pads, failing due to independent CFPs, can be calculated by substituting the 
parameters when k = 3 in Table 3 into Eq. (7), and the result is shown as the solid purple line in Fig. 8. 
The reliability of the handbrake cable, failing due to dependent CFPs, can be calculated by substituting 
the parameters in Table 3 in Eq. (22), and the result is shown as the solid blue line in Fig. 8.  

 
Table 3 Parameters of the degradation and shock processes of the components 

 Component type 
Parameters k = 1 k = 2 k = 3 k = 4 

Hk 5 6 9 7 
Lk - - - 4 
pk 2 2 3 3 
λk 5 6 10 8 
μk 1 1 2 2 

D1k - - 202 1 
D2k - - - 0.8 
μwk - - 200 1 
σ2 

wk - - 10 0.01 
ak - - - 1 
θk   0.5 0.1 

 

 
Fig. 8 Reliability of components calculated by the proposed method 

 
To check the correctness of the derived equations of the proposed method, the theoretical reliability 

of multiple components and the PDF of t∗ with a different number of shocks are compared with the MC 
simulation results. The flow charts of the MC simulation for the reliability calculation based on 
independent and dependent CFPs are shown in Figs. 9-11, respectively. The similar flow charts of the 
MC simulation for reliability calculation based on pure degradation processes are omitted. These can be 
obtained by analogy to the procedures shown in Figs. 9-11. The comparison results are shown with good 
agreements in Figs. 12 and 13, which indicates the potential application of the proposed reliability 
methods for components experiencing multiple DPs and CFPs. 



 
Fig. 9 Flow chart of the MC simulation for component reliability analysis based on independent CFPs 

 
Fig. 10 Flow chart of the MC simulation for P(AkB1k) based on dependent CFPs 



 
Fig. 11 MC simulation for P(AkB2k) based on dependent CFPs 

 

 
Fig. 12 Reliability of components calculated by 

the proposed method and MC simulation 

 
Fig. 13 The conditional PDF of t∗ of the 

components of type 4 calculated by the proposed 
method and MC simulation 

 
Before evaluating the system reliability, the system structure needs to be analyzed by the survival 

signature. The survival signature of the system is calculated by Eq. (24) and partly shown in Table 3. 
For the automotive braking system, the number of items of survival signature is (m1+1) × (m2+1) × 
(m3+1) × (m4+1) = 2×5×5×2 =100. The complete survival signature of the system is available from the 
first author. Substituting the parameters in Tables 3 and 4 into Eqs. (38) and (39), the reliability of the 
automotive braking system estimated by the proposed method, by considering the multiple types of 
components working under different DPs and CFPs, is shown as the solid blue line in Fig. 14 and the 
reliabilities of multiple types of components are shown as the dashed lines in Fig. 14. Substituting the 



theoretical and MC simulation reliability of the components, shown in Fig. 12, into Eq. (38), the 
comparison results of the system reliability calculated by the proposed method and MC simulation 
method are shown in Fig. 14, showing that the theoretical reliability calculated by the proposed method 
is in good agreement with that obtained by MC simulation. 

 
Table 4 The survival signature of the automotive braking system 

l1 l2 l3 l4 Φs(l1, l2, l3, l4) l1 l2 l3 l4 Φs(l1, l2, l3, l4) 

0 0 1 1 0.5 1 3 3 1 1 

0 0 2 1 0.83 1 3 4 1 1 

0 0 3 1 1 1 4 1 1 1 

0 0 4 1 1 1 4 2 1 1 

0 1 1 1 0.5 1 4 3 1 1 

          1 4 4 1 1 

Note: the complete table of the survival signature is available from the first author 
 

 
Fig. 14 Reliability of the braking system and 

components 

 
Fig. 15 System reliability calculated by the 

proposed method and MC simulation 
 

As shown in Figs. 16 and 17, the reliabilities of components and the braking system are evaluated 
under different degradation-shock processes, including the pure DP without CFPs, independent and 
dependent CFPs. The differences among the reliability curves indicate that it is necessary to consider 
the practical dependence between the degradation and shock processes, instead of simply considering 
the degradation and shock processes of multiple components in one system being similar. For example, 
the reliability of the components of type 4, the handbrake cable, is affected by cumulative plastic 
deformation and random shocks caused by sudden loads. The increasing plastic deformation can cause 
the handbrake cable to snap more easily when suffering from sudden loads, and the sudden loads can 
cause abrupt increments in plastic deformation. But if the mutual effects between the degradation and 
shock processes are neglected, the reliability of the components of type 4 and the braking system is 
overestimated, shown as the green and red curves in Figs. 16 and 17. In contrast, for the components 
failing mainly due to pure degradation or independent competing failures, such as the brake cylinders 



and brake pads, the reliability can be underestimated if the components of the system are considered to 
work under similar dependent CFPs. Therefore, it is better to estimate the system reliability by 
considering the DPs and CFPs of multiple types of components according to their practical operational 
conditions and failure mechanisms. 
 

 
Fig. 16 Reliability of the components of type 4 

under different failure modes 

 
Fig. 17 Comparison of system reliability under 

different failure modes 
 

 
Fig. 18 Sensitivity of system reliability on Hk, 

where k = 1, 2, 3, 4 

 
Fig. 19 Sensitivity of system reliability on Dk, 

where k = 4 
Figs. 18-20 show the sensitivity of the system reliability on the parameters of DPs and CFPs. The 

reliabilities are calculated by substituting the parameters in Table 3 into Eqs. (38) and (39), and the 
changed parameter values are shown in the legends in Figs. 18-20. As shown in Fig. 18, the system 
reliability shifts to the right with higher soft failure thresholds Hk, which can be explained by the fact 
that the larger the degradation of the components is allowed, the higher the reliability of the system is. 
For example, the thickness of the brake pads is about 15mm, and the brake pads need to be replaced if 
the wear of the brake pads reaches about 10mm. If the wear value Hk of the brake pads is allowed to be 
larger, then the reliability of the brake pads and the braking system is higher. The sensitivity of the 
reliability on the hard failure threshold Dk is shown in Fig. 19, the reliability shifts to the right with 
higher failure thresholds. Because if the thermostability of the brake pads is higher, then the reduction 



of the friction coefficient of brake pads is less when suffering from thermal shocks.  
 

 
Fig. 20 Sensitivity of system reliability on μk, 

where k = 1, 2, 3, 4 

 
Fig. 21 Sensitivity of system reliability on θk, 

where k = 3 and 4 
 
As shown in Fig. 20, the reliability of the system shifts to the left with increasing drift parameter µ, 

which represents the degradation speed of the components. This is because the faster the components 
degrade, the faster the system reliability declines. For example, if the wear resistance of the piston is 
better, then the brake oil is less likely to leak, and the braking system works with higher reliability. The 
sensitivity of the system reliability with regard to the shock intensity θ is shown in Fig. 21. The system 
reliability shifts to the left with higher shock intensity. It is because the increasing number of shocks 
makes the system more vulnerable to hard failures. For example, if the braking system is used very 
frequently, a large among of heat is generated by the friction between the brake pads and brake disc, 
then the braking system is more likely to fail because thermal shocks can cause a sudden reduction of 
the friction coefficient of brake pads. 

5. Conclusion 

In previous degradation-based work on system reliability, the components in one system are typically 
assumed to suffer from similar CFPs, neglecting their failure mechanisms. In this work, a new 
generalized reliability model is proposed for systems subject to multiple degradation and shock 
processes, including pure DPs without CFPs, independent and dependent CFPs. The new model is 
presented in terms of the generalized TED process, which allows the model to be applied to systems 
whose components degrade with different stochastic processes, such as the Wiener, Gamma, inverse 
Gaussian, and other processes. Furthermore, compared with the existing degradation-based reliability 
methods, which mainly focus on series and parallel systems, the combination of the survival signature 
enables the application of the proposed method to systems with general structures, including series, 
parallel, bridge, and network structural systems. An automotive braking system with four types of 
components, which are exposed to multiple degradation and shock processes, is applied as a numerical 
example to illustrate the application of the proposed method, and the reliability of this braking system 
is analyzed by the proposed method in different scenarios, including single and multiple degradation 
and shock processes. The differences among the reliability results show the necessity of considering the 



variety of the DPs and CFPs of multi-component systems.  
In this work, a generalized reliability model is proposed, which is applicable to various structural 

systems with multiple DPs and CFPs, but the systems are assumed to be unrepairable. Therefore, it 
would be an interesting problem to extend the generalized reliability model to systems with repairable 
components. One kind of dependence between the degradation and shock processes is considered in this 
work. It is worthwhile to investigate more generalized reliability methods for systems subject to other 
dependent CFPs. In addition, random shocks are modelled by a homogeneous process, the presented 
work can be extended by considering a shock process with changing intensity, such as being a function 
of time or related to the degradation levels of the components. 
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Appendix A 

If the degradation value of the component of type k is less than Lk, then the probability that the 
component survives in the first case is: 
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If the degradation value of the component of type k is no less than Lk, then the probability that the 
component survives in the second case is: 
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where t∗k is the time when the degradation value of the component reaches Lk, f(t∗k|Nk(t∗k) = n1k) is the 
conditional PDF of t∗k when the number of shocks on the component is n1k, expressed as: 
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where F(t∗k|Nk(t∗k) = n1k) is the conditional CDF of t∗k, expressed as: 
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