
Quantum Science and Technology

PAPER • OPEN ACCESS

Qade: solving differential equations on quantum
annealers
To cite this article: Juan Carlos Criado and Michael Spannowsky 2023 Quantum Sci. Technol. 8
015021

View the article online for updates and enhancements.

You may also like
Quantum annealing for industry
applications: introduction and review
Sheir Yarkoni, Elena Raponi, Thomas
Bäck et al.

-

Searching for optimal experimental
parameters with D-Wave quantum
annealer for fabrication of Au atomic
junctions
Yuri Yoneda, Moe Shimada, Asaki
Yoshida et al.

-

Test-driving 1000 qubits
Joshua Job and Daniel Lidar

-

This content was downloaded from IP address 86.168.253.21 on 09/05/2023 at 16:15

https://doi.org/10.1088/2058-9565/acaa51
/article/10.1088/1361-6633/ac8c54
/article/10.1088/1361-6633/ac8c54
/article/10.35848/1882-0786/accc6d
/article/10.35848/1882-0786/accc6d
/article/10.35848/1882-0786/accc6d
/article/10.35848/1882-0786/accc6d
/article/10.1088/2058-9565/aabd9b

Quantum Sci. Technol. 8 (2023) 015021 https://doi.org/10.1088/2058-9565/acaa51

OPEN ACCESS

RECEIVED

7 July 2022

REVISED

3 October 2022

ACCEPTED FOR PUBLICATION

9 December 2022

PUBLISHED

21 December 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Qade: solving differential equations on quantum annealers
Juan Carlos Criado1,2,∗ and Michael Spannowsky1,2

1 Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, United Kingdom
2 Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: juan.c.criado@durham.ac.uk

Keywords: quantum annealing, differential equations, quantum adiabatic computation

Abstract
We present a general method, called Qade, for solving differential equations using a quantum
annealer. One of the main advantages of this method is its flexibility and reliability. On current
devices, Qade can solve systems of coupled partial differential equations that depend linearly on
the solution and its derivatives, with non-linear variable coefficients and arbitrary inhomogeneous
terms. We test this through several examples that we implement in state-of-the-art quantum
annealers. The examples include a partial differential equation and a system of coupled equations.
This is the first time that equations of these types have been solved in such devices. We find that the
solution can be obtained accurately for problems requiring a small enough function basis. We
provide a Python package implementing the method at gitlab.com/jccriado/qade.

1. Introduction

The development of methods for the solution of differential equations is fundamental for the mathematical
modeling of most systems in nature. Methods based on machine learning techniques, first proposed in
references [1–4], have gained increasing attention for their versatility in recent years [5–17]. At their core,
these methods reformulate the task of solving differential equations as an optimization problem, for which
the existing machine learning frameworks are designed [18–27].

Quantum annealing devices [28–40] are particularly well-suited for optimization tasks, as the
computation they perform is directly the minimization of their Hamiltonian, which the user can specify. It
has been shown that quantum annealers can find the global minimum of the target function more efficiently
than classical alternatives in some problems [41–44].

Most quantum annealers are based on a continuous-time evolution using a transverse Ising model
Hamiltonian. The specific form of such Hamiltonian requires a dedicated encoding strategy for the problem
at hand, i.e. here for the solution of differential equations. A general method for approximately encoding
arbitrary target functions with the compact domain as the Hamiltonian of a quantum annealer has been
introduced in [44]. The size of the problems that can be solved in the current devices is limited by the
number of available qubits and connections between them. To overcome this limitation, one can solve a
series of coarse-grained approximations to the problem, each of which require a lower number of qubits,
while iteratively improving the precision of the solution, as proposed in [45].

We apply these quantum optimization techniques to the solution of differential equations in the machine
learning-oriented formulation described in references [10, 27]. Previous implementations of other methods
in quantum computers have been applied successfully to solving differential equations in references [46–49].
In references [46, 49] a variational quantum circuit is used to parametrize the potential solutions. This
provides an expressive non-linear ansatz for the solutions. The parameters of this ansatz are then found using
a classical method. In references [47, 48], the solution is found using a purely quantum algorithm instead,
using either digital quantum computers or quantum annealers.

In this work, we focus on this second possibility; that is, that the solution to the differential equations is
directly provided by the quantum computation, with no classical algorithm involved. The main advantage of

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/acaa51
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/acaa51&domain=pdf&date_stamp=2022-12-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3571-994X
mailto:juan.c.criado@durham.ac.uk
https://gitlab.com/jccriado/qade

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

our method, which we call Qade, is its generality: it does not make assumptions about the equations or
boundary conditions beyond the requirement that they depend linearly on the solutions and their derivatives,
which is required in order for the corresponding Hamiltonian to be that of an Ising model, and thus
embeddable in publicly accessible quantum annealing devices, e.g. devices from D-Wave. This means that
systems of coupled linear partial differential equations of any order, with variable coefficients and arbitrary
inhomogeneous terms, can be handled by this approach. This allows it to go beyond the method proposed
in [47], which deals with functions of a single variable; and the one in [48], which requires that the equations
arise as the Euler–Lagrange equations of some functions, and that the basis functions satisfy the boundary
conditions. Some examples of equations that fit in the Qade framework are: any of the Sturm–Liouville
equations, Maxwell’s equations, the Schrödinger equation or the inhomogeneous wave or heat equations.

We provide a Python package implementing Qade in full generality. This package contains the tools for
obtaining the quantum annealing formulation of linear differential equations. Furthermore, users with
access to the cloud interface to the D-Wave quantum annealers can also perform the necessary annealing
runs and decode the results into the final solution.

The rest of this paper is organized as follows. In section 2, we briefly introduce the quantum annealing
framework. In section 3, we present the Qade method, which reformulates the task of solving differential
equations as a problem directly solvable by quantum annealers. Examples of application of Qade to 3
differential equations are shown in section 4. We summarize our conclusions in section 5. Finally, the
accompanying Python package is introduced in appendix.

2. Quantum annealing

In the quantum annealing paradigm, computations are encoded as finding the ground state of an Ising
model Hamiltonian

H(σ) =
∑
i j

σi Ji jσ j +
∑
i

hiσi, (1)

for a collection of N spin variables σi =± 1. To perform a quantum annealing calculation, one must then
find a way to reduce the problem at hand to the minimization of H. In section 3, we describe how to obtain
the J ij and hi parameters corresponding to any system of linear partial differential equations.

We now review how H is minimized in a quantum annealing device. Internally, the device has access to a
quantum system that it partially controlled. The system is described by a Hilbert space constructed as the
tensor product of N 1-qubit spaces C2 and a Hamiltonian

Hquantum = A(s)
∑
i

σix

+B(s)

∑
i j

σizJi jσ jz +
∑
i

hiσiz

 , (2)

with σia the ath Pauli matrix applied to the ith qubit, and A(1) = B(0) = 0. The annealer can set the values of
J ij and hi, prepare the system in the ground state of Hquantum at s= 0, change the value of s continuously, and
measure the observable

⊗
i σiz at the end of the annealing process, when s= 1.

The dependence s(t) of the s parameter with time t is referred to as an schedule. In the D-Wave devices
we use in the examples in this work, a typical schedule is a monotonically increasing from function s= 0 at
the initial time to s= 1 at the final time, which, depending on the application, can vary between a few µs to
about 1ms. A pause in the increase of s(t) for some time or an increase in its slope towards the end of the run
is commonly used. When an appropriate schedule is selected, the final measurement of the annealer is
expected to return the ground state of H. Specifically, the adiabatic theorem ensures that the ground state is
found with a high probability if process is sufficiently slow [50].

In real-world devices, the number of couplings J ij that can be set to a non-zero value is relatively low,
since each qubit is physically connected only to a few others. Abstract systems with a higher degree of
connectivity can be embedded in the physical device by chaining qubits with a large negative coupling, so
that they are forced to take the same value. Each spin in the abstract system is then represented by a qubit
chain in the device, which can have a larger number of non-vanishing connections. The calculation of the
embedding corresponding to a given set of values of J ij and hi is computationally expensive. Thus, once it has
been obtained, it is commonly re-used in several runs of the annealing process, which are performed to
reduce noise. The final state with the minimal energy is selected as the final solution.

2

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

3. Method

We now present Qade, our quantum annealing-based method for solving differential equations. We denote
the equations to be solved as

Ei(x)[f]|x∈Xi
= 0, (3)

for a function f : Rnin → Rnout , where the Ei(x) are local functionals of f (i.e. they only depend on the value
of f and its derivatives at x), and the Xi are the domains in which the equations must be satisfied. Initial and
boundary conditions can be viewed as a particular case of these equations, in which Xi is the initial or
boundary set of x values. We impose that all the equations are linear functions of f and its derivatives:

Ei(x)[f] =
∑
kn

C(k)
in (x) · (∂k fn(x))+Bi(x), (4)

where the Bi(x) are the inhomogeneous terms, while, the C(k)
in (x) are the variable coefficients of the

derivatives, and ∂k fn is a vector containing all the partial derivatives of order k of f n.
As explained in section 2, to solve equation (4) in a quantum annealer, it has to be encoded as the ground

state of an Ising model Hamiltonian. We first reformulate it as a minimization problem. Following the
machine learning-oriented methods described in references [10, 27], we discretize the domains into finite
subsets of sample points Xi ⊂Xi, and define the loss function

L[f] =
∑
i

∑
x∈Xi

(Ei(x)[f])
2
. (5)

There is a certain amount of arbitrariness associated with the definition of L[f]: instead of the equations
Ei(x)[f], one can use any complete and linearly-independent set of combinations of them. A particular case
of this is the weighting of each equation Ei(x)[f] by a different constant factor. Although the system of
equations to be solved is equivalent, such a weighting can be useful in practical applications. For example,
one can increase the weight for boundary conditions when a first attempt at the solution violates them. We
will use this in the example in section 4.3.

The global minimum L[fsol] = 0 is attained if and only if all the equations are satisfied at all the sample
points in the Xi sets. Now, we parametrize the function f as a linear combination of a finite set of ‘basis’
functions Φm, as

fn(x) =
∑
m

wnmΦm(x). (6)

Then, the equations can be written as linear functions of a finite set of parameters, the weights wnm:

Ei(x,w) =
∑
nm

Hin(x)[Φm] wnm +Bi(x), (7)

Hin(x)[Φ] =
∑
k

C(k)
in (x) · (∂kΦ(x)), (8)

and the L becomes a quadratic function of them:

L(w) =
∑
nmpq

wnm Jnm,pqwpq +
∑
nm

hnmwnm, (9)

where

Jnm,pq =
∑
i

∑
x∈Xi

Hin(x)[Φm]Hi p(x)[Φq], (10)

hnm = 2
∑
i

∑
x∈Xi

Hin(x)[Φm]Bi(x). (11)

The final step in converting L into an Ising model Hamiltonian is the binary encoding of each weight in

terms of spin variables ŵ(α)
nm =±1, as

wnm = cnm + snm

nspins∑
α=1

ŵ(α)
nm

2α
, (12)

3

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

Table 1.Hyperparameters of the method presented in section 3, with example values.

Example value Description Definition

annealing nreads = 200 number of reads section 2
s(t) = t/(200µs) quantum annealing schedule

encoding nspins = 3 number of spins per weight equation (12)
cmn = 0 (initial) central values of the weights
smn = 1 (initial) scales of the weights

general Φm(x) = xm basis of functions equation (6)
nepochs = 10 number of epochs in the iterative procedure equation (17)
S= 1/2 scale factor to update snm in each epoch

with the free parameter cmn and snm being the center values of the wnm, and the scales by which the can change
within the encoding, respectively. Replacing this expression into equation (9), we finally get the Ising model

H(ŵ) := L(w) =
∑

nmpqαβ

ŵ(α)
nm Ĵ(αβ)nm,pq ŵ

(β)
pq

+
∑
nmα

ĥ(α)nm ŵ(α)
nm , (13)

where

Ĵ(αβ)nm,pq = 2−(α+β)snm spq Jnm,pq, (14)

ĥ(α)nm = 2−αsnm(hnm + 2cpq Jnm,pq). (15)

The original problem can then be solved by minimizing H in a quantum annealing device. The solution
is recovered by decoding the weights using equation (12), and substituting them in equation (6). The total
number of spins in the Ising model is controlled number of spins per weight nspins, the number nbasis of
functions in the basis Φm, and the number nout of functions f i to be solved for:

N= nspins × nbasis × nout. (16)

The size of an Ising model embedded in a current quantum annealer is limited, both in the allowed
number of spins N and the number of connections between them. This means that not many spins per
weight nspin can be currently used, which implies that each weight can only be determined up to a low
precision 2−nspin in a single quantum annealing run. To improve the accuracy of the results, we use a version
of the iterative algorithm proposed in [45]. In each iteration I, which we call an epoch, the annealer is run for
the model defined by setting the centers to the values of the weights obtained in the previous iteration, while
all the snm are scaled by a factor 0< S⩽ 1:

c Inm = w I−1
nm , sInm = SsI−1

nm ,
I= 0, . . . ,nepochs.

(17)

We remark that the use of nepochs > 1 is due to the limited number of qubits and connections available in
the physical device being used. A potential problem when nepochs > 1 is that, if the wrong values of the
parameters are chosen in the first few epochs, this cannot be corrected in later epochs, when the
exponentially-decaying scales smn have decreased significantly. This can be mitigated by choosing a scale
factor S closer to 1, so that smn decreases slowly, and successive epochs have the chance of correcting errors in
the previous ones. In future annealers with a larger size, one might be able to set a larger nspins and
nepochs = 1, so that the solution is obtained in one annealing step, eliminating these problems and taking full
advantage of the quantum computation.

The method we have presented contains several hyperparameters that need to be adjusted to suitable
values before application to a concrete problem. We collect them in table 1, together with examples of the
typical values they might take to solve differential equations with current quantum annealing devices. To
choose a correct set of values for the hyperparameters, one might use domain knowledge about the problem
to be solved, such as which basis of functions is most suited or what is the typical size that the corresponding
weights might have. When this knowledge is not available, the process involves some trial and error, using the
value of loss function L(w) as a measure of the goodness of the solution.

4

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

4. Results and discussion

This section illustrates how to use the Qade method proposed in this paper to solve different kinds of
differential equations. First, we solve equations whose solutions are known analytically to be able to compare
them to the numerical results: the Laguerre equation, as an example of a single ordinary differential equation
with variable coefficients; the wave equation, as an example of a partial differential equation; and an example
of a first-order system of coupled differential equations. The code for these examples is available at gitlab.
com/jccriado/qade/-/tree/main/examples.

4.1. Laguerre equation
The Laguerre equation is given by

xy ′ ′ +(1− x)y ′ + ny= 0. (18)

Its solutions are the Laguerre polynomials Ln(x). We thus impose the boundary conditions

y(0) = 1, y(1) = Ln(1). (19)

We look for a solution of the form y= wmxm, with 0⩽ andm< 4. We employ the Ising model
formulation outlined in section 3 to find the weights wm using D-Wave’s Advantage_system4.1. Since the
weights wm are expected to grow for increasing n, we pick the scales sm = n− 2. We also find that setting a
high nreads = 500 gives more consistent results. The rest of the hyperparameters are set to the values in
table 1. The corresponding Ising model has N = 12 spins.

We show our results for n= 3,4,5,6 in figure 1, together with the analytical solution. The loss function
for all of them is below 2× 10−2. The distribution of the energies for the final states of the 500 reads
performed in each epoch is presented in the left panel of figure 2. The graph shows that most of the final
states concentrate on the bottom part of the distribution. The iterative procedure produces distributions that
concentrate on a smaller range of energies for larger epochs.

4.2. Wave equation
The wave equation is

∂2ϕ

∂x2
− ∂2ϕ

∂t2
= 0. (20)

For the initial and boundary conditions, we pick

ϕ(x,0) = sin(2π x),
∂ϕ

∂t

∣∣∣∣
t=0

= π cos(2π x), (21)

ϕ(0, t) = ϕ(1, t) = sin(2π t)/2. (22)

We use the natural choice of basis for the solution of this problem, which is the Fourier basis. Since the
input space is two-dimensional (nin = 2), the basis is given as all products ϕm1(x)ϕm2(t), with ϕ0(z) = 1,
ϕ1(z) = sin(2π z), etc. We set the number of ϕmi functions per input component to d= 3, so the total
dimension of the basis is 9. In order to reduce the number of qubits required for the encoding, we pick
nspins = 2, with the rest of hyperparameters set to the values in table 1. We get a total of N = 18 spins in the
Ising model.

We obtain a solution with a loss of L= 2× 10−1. We present it in figure 1, together with the analytical
solution, which is given by

ϕtrue(x, t) =cos(2π x) sin(2π t)

+ sin(2π x)cos(2π t)/2. (23)

The quartiles for the energies of the final states from the 100 reads from each epoch are shown in the
center panel of figure 2. As compared to the distribution of energies for the Laguerre equation, we find that
they are even more concentrated towards low energies. The minimum of the distribution decreases
significantly for the first few epochs. We attribute both effects to the fact that we have used nspins = 2, which
leads to a lower precision in the results. This might make it easier for the annealer to find the optimal
solution, but the low precision will limit the goodness of the solution in the early epochs.

5

https://gitlab.com/jccriado/qade/-/tree/main/examples
https://gitlab.com/jccriado/qade/-/tree/main/examples

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

Figure 1. Solutions obtained with Qade to the Laguerre equation (top, see section 4.1), wave equation (center, see section 4.2) and
a system of first-order coupled equations (bottom, see section 4.3). The dashed lines show the analytical solutions.

4.3. Coupled first-order equations
As an example of a system of coupled equations, we solve

2x ′ + x+ 3y= 0, 2y ′ + 3x+ y= 0, (24)

x(0) = 5, y(0) = 3. (25)

In the t ∈ [0,1] interval. We use a monomial basis x(t) = w0mtm, y(t) = w1mtm. We pick the value snm = 4
for the scales of the binary encoding of the wnm weights, to account for the relatively large values of x and y.
We set all the other hyperparameters to the values in table 1. The resulting Ising model has N = 18 spins.

6

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

Figure 2. Distribution of energies of the final states from the different reads as a function of the epoch, for the solution of the
Laguerre equation (left), the wave equation (center) and the system of coupled equations (right) presented in sections 4.1–4.3,
respectively. The four sections in different colors of the block displayed for each epoch show the four quartiles of the energy
distribution.

Finally, we find that we need to increase their relative importance in the loss function for the initial conditions
to be satisfied. We do so by multiplying the equations (and not the initial conditions) by a factor of 1/10.

We obtain a solution with a value of the loss of 2× 10−2, and present it in figure 1, together with the
analytical solution:

xtrue(t) = et + 4e−2t, ytrue(t) =−et + 4e−2t. (26)

The distributions of the energies of the final states for the 200 reads in each epoch is displayed in the right
panel of figure 2. They are similar to the ones found for the Laguerre equation, with a concentration of states
with low energies, and a quick reduction in the range of energies for larger epochs.

4.4. Comparison to classical
In order to compare the performance of Qade against a classical algorithm, we implement the three examples
in this section in the state-of-the-art classical solver Elvet [27]. Elvet is based on machine learning methods
similar to Qade. A trial function (usually a neural network) with adjustable parameters is proposed. The
optimal values of these parameters are obtained by minimizing the loss function equation (5), using an
stochastic gradient descent algorithm.

We use a neural network with a single hidden layer to solve each of the examples, with 10, 30 and 5
hidden nodes for the Laguerre, wave and coupled equations, respectively. To find the solution, we train the
network using the Adam optimizer [51] with 0.01 learning rate, for 10 000 epochs. An epoch in this context
is an step of the gradient descent algorithm, in which all points in the discretized domain are taken into
account. The results are shown in figure 3. We show the evolution of the loss function (normalized by the
number of points N in the discretized domain) as function of the number of epochs, both for Qade and
Elvet. As an alternative measure of the goodness of the solution, we also display the evolution of the mean
squared error (MSE) between the approximate solution f (x) and the true one ftrue(x):

MSE=
1

N

∑
n,x

(f(x)− ftrue(x))
2
. (27)

For the Laguerre equation, Qade gives better results both in terms of loss and MSE for its first 3 epochs,
as compared to the first 2000 epochs of Elvet. For longer training times, Qade reaches a reasonably good
value of 10−3 of the MSE. The limiting factor for improving the solution is its representation in terms of a
degree-3 polynomial. Due to its use of a much more expressive neural network, Elvet is capable to
significantly reducing the loss and MSE beyond 10−3 in this case.

For the wave equation, Qade outperforms Elvet in the MSE and reaches a similar final loss, even while we
use a larger neural network (with 30 hidden units) in Elvet for this case. At epoch 8, Qade reaches an MSE of
about 10−3. Elvet’s final MSE of 10−1 is comparable to Qade’s third epoch. This is due to the more adequate
parametrization used by Qade in terms of a (in this case, periodic) basis of functions, as opposed to a
generic, fully connected neural network in Elvet. An even larger and/or more specialized network
architecture would be able to overcome this eventually, but then the comparison would cease to be a fair one,
given minimality of the examples we consider here for Qade.

7

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

Figure 3. Comparison of the iterative approximation of the solution by Qade and the classical solver Elvet. The loss function (top)
and MSE (bottom) are shown as functions of epoch, for the solution of the n= 4 Laguerre equation (left), the wave equation
(center) and the system of coupled equations (right) presented in sections 4.1–4.3, respectively.

For the system of coupled equations, Qade performs better than Elvet only in its first epoch. While the
solution is consistently improved in Qade throughout epochs 1–6, giving good final approximation with an
MSE of 10−2, Elvet obtains a near-perfect solution with an MSE of 10−7.

The neural networks used in the Elvet calculations are small enough to be trained more efficiently in a
modern laptop CPU than in a specialized graphical processing unit device. In an Apple M1 processor, the
training times for the Laguerre, wave and coupled examples are: 2 s, 5 s and 6 s. For Qade, the total annealing
times in the D-Wave device for each example are: 1 s, 0.4 s, and 0.4 s.

5. Conclusions

We have presented Qade, a general method for the solution of differential equations using quantum
annealing devices. The first step is to re-formulate the equations as an optimization problem, by means of a
general procedure which was originally developed for the application of machine learning. Then, this is
transformed into a binary quadratic problem, which can directly be solved in a quantum annealer. We find
that quantum annealing provides a reliable and fast way of solving highly non-trivial differential equations,
encoded as an Ising-model ground-state finding problem.

We have implemented Qade the proposed method in a Python package, described in appendix which
provides a user-friendly interface for the calculation of the binary quadratic model corresponding to a set of
equations, and for its solution in a D-Wave quantum annealer.

We have applied the method to three examples of differential equations, with features including variable
coefficients, partial derivatives, and coupled equations. The current quantum annealing technology only
allows to solve problems that require a low number of qubits to encode, but we find that the chosen
equations can already be solved reliably. We also run a comparison to a classical solver for these equations.
The performance we obtain is comparable to that of Qade, but the lack of limitations in the representation of
functions in the classical algorithm leads to a more precise solution in two of the three examples. However, in
view of the relatively good performance we achieve with Qade so far, if the current limitations are lifted in
future quantum annealers (with a larger number of qubits and a higher degree of connectivity), Qade has the
potential to surpass classical methods for the solution of the larger differential equations that arise in
real-world applications.

8

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix. The qade Python package

We provide an implementation of the Qade method, described in section 3, in the form of the Python
package qade, which is publicly available in GitLab (gitlab.com/jccriado/qade) and PyPI, from which it can
be installed through:

> pip install qade

For qade to send problems to be solved in the D-Wave systems, an installation of the D-Wave Ocean
Tools, with the access token configured, is required. If this is not present, qade can still be used to compute
the Ising model, whose ground state represents the solution to a given set of equations. In the rest of this
section, we describe qade’s interface in full generality. For examples of use, see gitlab.com/jccriado/qade/-/
tree/main/examples.

Defining the problem
The input data for qade consists of the sets Xi of sample points for the equations to be solved, together with

the values of the vectors coefficients C(k)
in (x) and inhomogeneous terms Bi(x) defined in equation (4),

evaluated at all points x ∈ Xi. For easiness of use, an interface allowing for the specification of these
parameters through a symbolic expression for an equation is provided. In order to define an equation

c1(x)
∂k f1

∂xk11 · · ·∂xkninnin

+ c2(x)
∂ l f2

∂xl11 · · ·∂x
lnin
nin

+ · · ·+ b(x) = 0, (A1)

the user would write the code:

f1, f2, . . .= qade.function(n_in, n_out)
eq = qade.Equation(

c1 * f1[k1, . . .] + c2 * f2[l1, . . .]
+ . . .+ b,
samples,

)

where samples is an array-like3 with shape (n_samples, n_in) (or just (n_samples,) when n_in =
= 1), representing the set of samples Xi; while c1, c2, …, b are either scalars or array-like objects of shape
(n_samples,), giving the values of the corresponding parameters in the equation at all the sample points.

Solving the problem
The first step in solving a given set of equations is choosing an adequate basis of functions. The function

basis = qade.basis(
name, size_per_dim, n_in = 1, scale = 1.0

)

provides access to five pre-defined bases, which are listed in table A1. The size_per_dim defines the d
parameter for the first three bases in the table, and how many grid points per input-space dimension are
defined for the last 2. In both cases, the total dimension of the bases is size_per_grid ** n_in. The last
two arguments, n_in and scale are only used by the last two bases. scale corresponds to λ in the
definition of the corresponding ϕ(r) functions.

Given a list of equations equations = [eq1, eq2, . . .] and a basis, Qade computes the quadratic loss
function using equations (10) and (11). As a simplification, the pairs of indices nm and pq are flattened as
N= nmmax +m and P= pqmax + q, so that J and h become a matrix JPQ and a vector hP. They are obtained
using the function

J, h = qade.loss(equations, basis)

The corresponding parameters Ĵ and ĥ for the Ising model Hamiltonian are computed using
equations (14) and (15). They are also flattened into a matrix ĴN̂P̂ and a vector ĥN̂, through N̂= αNmax +N

3 An array-like object is either a numpy array or an object that can be converted into one. This includes scalars, lists and tuples.

9

https://gitlab.com/jccriado/qade
https://gitlab.com/jccriado/qade/-/tree/main/examples
https://gitlab.com/jccriado/qade/-/tree/main/examples

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

Table A1. Bases of functions implemented by Qade.

Basis functions Name Definition

Φm(x) = ϕm1(x1)ϕm2(x2) . . .
(0⩽mi < d, m=m1 +m2d+ . . .)

"fourier" ϕm(x) =

{
cos(πnx)
sin(π (n+ 1)x)

"monomial" ϕm(x) = xm

"trig" ϕm(x) = cosd−m−1(x) sinm(x)

Φm(x) = ϕ(|x− zm|)
(zm ∈ equally-spaced grid in [0,1]nin)

"gaussian" ϕ(r) =−exp
[
−(r/λ)2

]
"multiquadric" ϕ(r) =

√
r2 +λ2

and P̂= βPmax + P, so that they can be directly provided to the D-Wave framework to be embedded in a
quantum annealer. They are given by the function:

J_hat, h_hat = qade.ising(
equations, basis,
n_spins, centers, scales,

)

The last three arguments are optional. n_spins (default: 3) is the number of spins to use per weight wN .
centers (default: array of zeros) and scales (default: array of ones) are the flattened arrays of center values
cN and scales sN from the binary encoding in equation (12).

The complete process of finding these parameters, sending them to a D-Wave quantum processing unit
(QPU), setting it up and running the annealing process, reading the results, and decoding them back into the
wnm matrix of weight is automatized by a single function call:

sol = qade.solve(equations, basis, . . .)

The returned object sol is a callable that receives an array x of samples and returns the value sol(x) of
the solution at the sample points. It also contains three attributes:

• sol.basis, the basis of functions in which the problem was solved (its name is available through
sol.basis.name).

• sol.weights, the matrix wnm of weights.
• sol.loss, the value of the loss function.

ORCID iD

Juan Carlos Criado https://orcid.org/0000-0003-3571-994X

References

[1] Lee H and Kang I S 1990 Neural algorithm for solving differential equations J. Comput. Phys. 91 110
[2] Meade A and Fernandez A 1994 The numerical solution of linear ordinary differential equations by feedforward neural networks

Math. Comput. Modelling 19 1
[3] Meade A and Fernandez A 1994 Solution of nonlinear ordinary differential equations by feedforward neural networksMath.

Comput. Modelling 20 19
[4] Lagaris I E, Likas A and Fotiadis D I 1997 Artificial neural networks for solving ordinary and partial differential equations

(arXiv:physics/9705023)
[5] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part i): data-driven solutions of nonlinear partial

differential equations (arXiv:1711.10561[cs.AI])
[6] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part ii): data-driven discovery of nonlinear

partial differential equations (arXiv:171 1.10566[cs.AI])
[7] Raissi M, Perdikaris P and Karniadakis G 2019 Physics-informed neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686
[8] Han J, Jentzen A and E W 2018 Solving high-dimensional partial differential equations using deep learning Proc. Natl Acad. Sci.

115 8505
[9] Magill M, Qureshi F, and de Haan HW, 2018 Neural networks trained to solve differential equations learn general representations

(arXiv:1807.00042[stat.ML])
[10] Piscopo M L, Spannowsky M and Waite P 2019 Solving differential equations with neural networks: applications to the calculation

of cosmological phase transitions Phys. Rev. D 100 016002
[11] Dockhorn T, 2019 A discussion on solving partial differential equations using neural networks (arXiv:1904.07200[cs.LG])
[12] Regazzoni F, Dedè L and Quarteroni A 2019 Machine learning for fast and reliable solution of time-dependent differential

equations J. Comput. Phys. 397 108852
[13] Chen R T Q, Rubanova Y, Bettencourt J and Duvenaud D 2019 Neural ordinary differential equations (arXiv:1806.07366[cs.LG])

10

https://orcid.org/0000-0003-3571-994X
https://orcid.org/0000-0003-3571-994X
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1016/0895-7177(94)90095-7
https://doi.org/10.1016/0895-7177(94)90095-7
https://doi.org/10.1016/0895-7177(94)00160-X
https://doi.org/10.1016/0895-7177(94)00160-X
https://arxiv.org/abs/physics/9705023
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10566
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://arxiv.org/abs/1807.00042
https://doi.org/10.1103/PhysRevD.100.016002
https://doi.org/10.1103/PhysRevD.100.016002
https://arxiv.org/abs/1904.07200
https://doi.org/10.1016/j.jcp.2019.07.050
https://doi.org/10.1016/j.jcp.2019.07.050
https://arxiv.org/abs/1806.07366

Quantum Sci. Technol. 8 (2023) 015021 J C Criado and M Spannowsky

[14] Shen X, Cheng X and Liang K 2020 Deep Euler method: solving odes by approximating the local truncation error of the Euler
method (arXiv:2003.09573[math.NA])

[15] Rudd K, Muro G D and Ferrari S 2014 A constrained backpropagation approach for the adaptive solution of partial differential
equations IEEE Trans. Neural Netw. Learn. Syst. 25 571

[16] Rudd K and Ferrari S 2015 A constrained integration (CINT) approach to solving partial differential equations using artificial
neural networks Neurocomputing 155 277

[17] Sirignano J and Spiliopoulos K 2018 DGM: a deep learning algorithm for solving partial differential equations J. Comput. Phys.
375 1339

[18] Lu L, Meng X, Mao Z and Karniadakis G E 2019 DeepXDE: a deep learning library for solving differential equations
(arXiv:1907.04502)

[19] Koryagin A, Khudorozhkov R and Tsimfer S 2019 Pydens: a Python framework for solving differential equations with neural
networks (arXiv:1909.11544)

[20] Hennigh O, Narasimhan S, Nabian M A, Subramaniam A, Tangsali K, Rietmann M, del Aguila Ferrandis J, Byeon W, Fang Z and
Choudhry S 2020 Nvidia simnetTM: an ai-accelerated multi-physics simulation framework (arXiv:2012.07938[physics.flu-dyn])

[21] Chen F, Sondak D, Protopapas P, Mattheakis M, Liu S, Agarwal D and Giovanni M D 2020 Neurodiffeq: a Python package for
solving differential equations with neural networks J. Open Source Softw. 5 1931

[22] Hartmann D, Lessig C, Margenberg N and Richter T 2020 A neural network multigrid solver for the Navier-Stokes equations
(arXiv:2008.11520[physics.comp-ph])

[23] Jin X, Cai S, Li H and Karniadakis G E 2021 NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the
incompressible Navier-Stokes equations J. Comput. Phys. 426 109951

[24] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A and Anandkumar A 2020 Fourier neural operator for
parametric partial differential equations (arXiv:2010.08895[cs.LG])

[25] Lau L L H and Werth D 2020 Oden: a framework to solve ordinary differential equations using artificial neural networks
(arXiv:2005.14090[physics.com p-ph])

[26] Guidetti V, Muia F, Welling Y and Westphal A 2021 dNNsolve: an efficient NN-based PDE solver (arXiv:2103.08662[cs.LG])
[27] Araz J Y, Criado J C and Spannowsky M 2021 Elvet – a neural network-based differential equation and variational problem solver

(arXiv:2103.14575[cs.LG])
[28] Finilla A B, Gomez M A, Sebenik C and Doll J D 1994 Quantum annealing: a new method for minimizing multidimensional

functions Chem. Phys. Lett. 219 343
[29] Kadowaki T and Nishimori H 1998 Quantum annealing in the transverse Ising model Phys. Rev. E 58 5355
[30] Brooke J, Bitko D, Rosenbaum T F and Aeppli G 1999 Quantum annealing of a disordered magnet Science 284 779
[31] Dickson N G 2013 Thermally assisted quantum annealing of a 16-qubit problem Nat. Commun. 4 1903
[32] Lanting T et al 2014 Entanglement in a quantum annealing processor Phys. Rev. X 4 021041
[33] Albash T, Vinci W, Mishra A, Warburton P A and Lidar D A 2015 Consistency tests of classical and quantum models for a quantum

annealer Phys. Rev. A 91 042314
[34] Albash T and Lidar D A 2018 Adiabatic quantum computing Rev. Mod. Phys. 90 015002
[35] Boixo S, Smelyanskiy V N, Shabani A, Isakov S V, Dykman M, Denchev V S, Amin M H, Smirnov A Y, Mohseni M and Neven H

2016 Computational multiqubit tunnelling in programmable quantum annealers Nat. Commun. 7 10327
[36] Chancellor N, Szoke S, Vinci W, Aeppli G and Warburton P A 2016 Maximum–entropy inference with a programmable annealer

Sci. Rep. 6 22318
[37] Benedetti M, Realpe-Gómez J, Biswas R and Perdomo-Ortiz A 2016 Estimation of effective temperatures in quantum annealers for

sampling applications: a case study with possible applications in deep learning Phys. Rev. A 94 022308
[38] Muthukrishnan S, Albash T and Lidar D A 2016 Tunneling and speedup in quantum optimization for permutation-symmetric

problems Phys. Rev. X 6 031010
[39] Cervera Lierta A 2018 Exact Ising model simulation on a quantum computer Quantum 2 114
[40] Lanting T 2017 The D-Wave 2000Q processor (presented at AQC 2017)
[41] Farhi E, Goldstone J and Gutmann S 2002 Quantum adiabatic evolution algorithms versus simulated annealing (arXiv:ph/0201031)
[42] Abel S, Chancellor N and Spannowsky M 2021 Quantum computing for quantum tunneling Phys. Rev. D 103 016008
[43] Abel S, Blance A and Spannowsky M 2021 Quantum optimisation of complex systems with a quantum annealer

(arXiv:2105.13945[quant-ph])
[44] Abel S, Criado J C and Spannowsky M 2022 Completely quantum neural networks (arXiv:2202.11727[quant-ph])
[45] Zlokapa A, Mott A, Job J, Vlimant J-R, Lidar D and Spiropulu M 2020 Quantum adiabatic machine learning by zooming into a

region of the energy surface Phys. Rev. A 102 062405
[46] Lubasch M, Joo J, Moinier P, Kiffner M and Jaksch D 2020 Variational quantum algorithms for nonlinear problems Phys. Rev. A

101 010301
[47] Zanger B, Mendl C B, Schulz M and Schreiber M 2021 Quantum algorithms for solving ordinary differential equations via classical

integration methods Quantum 5 502
[48] Srivastava S and Sundararaghavan V 2019 Box algorithm for the solution of differential equations on a quantum annealer Phys.

Rev. A 99 052355
[49] Kyriienko O, Paine A E and Elfving V E 2021 Solving nonlinear differential equations with differentiable quantum circuits Phys.

Rev. A 103 052416
[50] Born M and Fock V 1928 Beweis des adiabatensatzes Z. Phy. 51 165
[51] Kingma D P and Ba J 2014 Adam: a method for stochastic optimization (arXiv:1412.6980)

11

https://arxiv.org/abs/2003.09573
https://doi.org/10.1109/TNNLS.2013.2277601
https://doi.org/10.1109/TNNLS.2013.2277601
https://doi.org/10.1016/j.neucom.2014.11.058
https://doi.org/10.1016/j.neucom.2014.11.058
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://arxiv.org/abs/1907.04502
https://arxiv.org/abs/1909.11544
https://arxiv.org/abs/2012.07938
https://doi.org/10.21105/joss.01931
https://doi.org/10.21105/joss.01931
https://arxiv.org/abs/2008.11520
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2020.109951
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2005.14090
https://arxiv.org/abs/2103.08662
https://arxiv.org/abs/2103.14575
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1038/ncomms2920
https://doi.org/10.1038/ncomms2920
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1103/PhysRevX.4.021041
https://doi.org/10.1103/PhysRevA.91.042314
https://doi.org/10.1103/PhysRevA.91.042314
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/ncomms10327
https://doi.org/10.1038/srep22318
https://doi.org/10.1038/srep22318
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.22331/q-2018-12-21-114
https://arxiv.org/abs/ph/0201031
https://doi.org/10.1103/PhysRevD.103.016008
https://doi.org/10.1103/PhysRevD.103.016008
https://arxiv.org/abs/2105.13945
https://arxiv.org/abs/2202.11727
https://doi.org/10.1103/PhysRevA.102.062405
https://doi.org/10.1103/PhysRevA.102.062405
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.22331/q-2021-07-13-502
https://doi.org/10.22331/q-2021-07-13-502
https://doi.org/10.1103/PhysRevA.99.052355
https://doi.org/10.1103/PhysRevA.99.052355
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://arxiv.org/abs/1412.6980

	Qade: solving differential equations on quantum annealers
	1. Introduction
	2. Quantum annealing
	3. Method
	4. Results and discussion
	4.1. Laguerre equation
	4.2. Wave equation
	4.3. Coupled first-order equations
	4.4. Comparison to classical

	5. Conclusions
	Appendix. The qade Python package
	Defining the problem
	Solving the problem

	References

