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Abstract. Given a graph property \Phi , we consider the problem \# EdgeSub(\Phi ), where the input
is a pair of a graph G and a positive integer k, and the task is to compute the number of k-edge
subgraphs in G that satisfy \Phi . Specifically, we study the parameterized complexity of \#EdgeSub(\Phi )
with respect to both approximate and exact counting, as well as its decision version EdgeSub(\Phi ).
Among others, our main result fully resolves the case of minor-closed properties \Phi : the decision
problem EdgeSub(\Phi ) always admits a fixed-parameter tractable algorithm, and the counting problem
\#EdgeSub(\Phi ) always admits a fixed-parameter tractable randomized approximation scheme. For
exact counting, we present an exhaustive and explicit criterion on the property \Phi which, if satisfied,
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come with an almost tight conditional lower bound under the exponential time hypothesis. Our
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406 PEYERIMHOFF ET AL.

computational problems in the fields of database theory [14, 15, 31, 36, 46], molecular
biology and bioinformatics [1, 43, 73, 82], and network science [66, 67, 83]. In fact,
already in the 1970s, the relevance of finding patterns had become apparent in the
context of finding cliques, finding Hamiltonian paths, or finding specific subgraphs in
general [14, 20, 21, 88]. However, with the advent of motif counting for the frequency
analysis of small structures in complex networks [66, 67], it became evident that de-
tecting the existence of a pattern graph is not enough; we also need to count all of
the occurrences of the pattern.

In this work, our patterns are (not necessarily induced) edge subgraphs that
satisfy a certain graph property: for instance, given a graph, we want to count all
occurrences of edge subgraphs that are are planar or connected. From a classical point
of view, often the problem of finding patterns is already \sansN \sansP -hard: prime examples
include the aforementioned problems of finding (maximum) cliques or Hamiltonian
paths. However, for the task of network motif counting, the patterns are (almost)
always much smaller than the network itself (see [1, 66, 67]). This motivates a param-
eterized view: can we obtain fast algorithms to compute the number of occurrences of
``small"" patterns? If we cannot, can we at least obtain fast (randomized) algorithms
to compute an estimate of this number? And if we cannot even do this, can we at least
obtain fast algorithms to detect an occurrence? In this work, we completely answer all
of the above questions for patterns that are specified by minor-closed graph properties
(such as planarity) or selected other graph properties (such as connectivity).

As it turns out, the techniques we develop for answering the above questions
are quite powerful: they easily generalize to a parameterized version of the Tutte
polynomial. Specifically, our techniques allow us to completely understand at which
rational points we can evaluate the said parameterized Tutte polynomial in reasonable
time and at which rational points this is not feasible. This dichotomy turns out to be
similar, but not equal, to the complexity landscape of the classical Tutte polynomial
due to Jaeger, Vertigan, and Welsh [49].

Parameterized counting and hardness. By now, counting complexity theory is a
well-established subfield of theoretical computer science. Already in the 1970s, Valiant
started a formal study of counting problems when investigating the complexity of the
permanent [89, 90]: counting the number of perfect matchings in a graph is \#P-
complete and hence harder than any problem in the polynomial-time hierarchy PH
by Toda's theorem [87]. In contrast, detecting a perfect matching in a graph is much
easier and can be done in polynomial time [37]. Hence, counting problems can be
much harder than their decision problem counterparts. As an attempt to overcome
the hardness of counting problems in general, the focus shifted to a multivariate or
parameterized view on these problems. Consider, for example, the following problem:
given a query \varphi of size k and a database B of size n, we want to count the number of
answers to \varphi in B. If we make the very reasonable assumption that k is much smaller
than n, then we may consider an algorithm running in time O(2k \cdot n) as tractable.
Note that in particular, such an algorithm may even outperform an algorithm running
in time O(n2). Also consider [44] for a more detailed and formal discussion.

Formally, given a problem P and a parameterization \kappa that maps each instance I
of P to a parameter \kappa (I), we say that P is fixed-parameter tractable with respect to
\kappa if there is an algorithm that solves each instance I of size n in time f(\kappa (I)) \cdot nO(1)

for some computable function f . This notion was introduced by Downey and Fellows
in the early 1990s [33, 34] and has itself spawned a rich body of literature (see [27,
35, 39]). In the context of the problems of detecting and counting small patterns in
large networks, we parameterize by the size of the pattern: given a pattern of size k
and a network of size n, we aim for algorithms that run in time f(k) \cdot nO(1) for some

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 407

computable function f . However, for some patterns, even this goal is too ambitious: it
is widely believed that even finding a clique of size k is not fixed-parameter tractable;
in particular, a fixed-parameter tractable algorithm for finding a clique of size k would
also imply a breakthrough result for the satisfiability problem and thereby refute the
widely believed exponential time hypothesis (ETH) [17, 18]. If a problem P is at
least as hard as finding a clique (or counting all cliques) of size k, we say that P is
\sansW [\sansone ]-hard (or \#\sansW [\sansone ]-hard, respectively).

For such a (\#)\sansW [\sansone ]-hard problem, the hope is to (significantly) improve upon the
naive brute-force algorithm, which runs in time nO(k) for the problems considered in
this work. However, in view of the aforementioned reduction from the satisfiability
problem to the problem of finding cliques of size k [16, 17], we can see that for finding
cliques this, too, would require a breakthrough for the satisfiability problem, which,
again, is believed to be unlikely [48]. In our paper, via suitable reductions from the
problem of finding cliques, we establish that exact algorithms significantly faster than
the brute-force algorithms are unlikely for the problems we study.

Parameterized detection and counting of edge subgraphs. It is well known that
vertex-induced subgraphs as patterns are notoriously hard to detect or to count. The
long line of research on this problem [19, 25, 32, 50, 51, 52, 53, 65, 78, 79] showed
that this holds even if the patterns are significantly smaller than the host graphs,
as witnessed by \sansW [\sansone ] and \#\sansW [\sansone ]-hardness results and almost tight conditional lower
bounds. In the case of exact counting, it is in fact an open question whether there
are nontrivial instances of induced subgraph counting that admit efficient algorithms;
recent work [79] supports the conjecture that no such instances exist.

In search for fast algorithms, in this work, we hence consider a related but different
version of network-motif counting: for a computable graph property \Phi , in the problem
\#EDGESUB(\Phi ) we are given a graph G and a positive integer k, and the task is to
compute the number of (not necessarily induced) edge subgraphs1 with k edges in
G that satisfy \Phi . Similarly, we write EDGESUB(\Phi ) for the corresponding decision
problem. Then, in contrast to the case of counting vertex-induced subgraphs, for
(\#)EDGESUB(\Phi ), we identify nontrivial properties \Phi for which (\#)EDGESUB(\Phi ) is
fixed-parameter tractable; we discuss this in more detail later. First, however, let us
take a detour to elaborate more on what is known already for (\#)EDGESUB(\Phi ).

If the property \Phi is satisfied by at most a single graph for each value of the
parameter k, the decision problem EDGESUB(\Phi ) becomes the subgraph isomorphism
problem. Hence, naturally there is a vast body of known techniques and results for
special properties \Phi : for fixed-parameter tractable algorithms, think of the color-
coding technique by Alon, Yuster, and Zwick [3], the ``divide and color"" technique
[18], narrow sieving [9], representative sets [40], and ``extensor-coding"" [11], to name
but a few. For hardness results, apart from the aforementioned example of detecting
a clique, Lin quite recently established that detecting a k-Biclique is also \sansW [\sansone ]-hard
[58]. However, a complete understanding of the parameterized decision version of the
subgraph isomorphism is one of the major open problems of parameterized complexity
theory [35, Chapter 33.1] that is still to be solved.

In the setting of parameterized counting , the situation is much better understood:
Flum and Grohe [38] proved \#EDGESUB(\Phi ) to be \#\sansW [\sansone ]-hard when \Phi is the property
of being a cycle or the property of being a path. Curticapean [23] established the same
result for the property of being a matching. In [26], Curticapean and Marx established
a complete classification in the case that \Phi does not hold on two different graphs with

1Recall that an edge subgraph G\prime of a graph G may have fewer edges than the subgraph of G
that is induced by the vertices of G\prime .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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408 PEYERIMHOFF ET AL.

the same number of edges, which is essentially the parameterized subgraph counting
problem. In particular, they identified a bound on the matching number as the
tractability criterion. In a later work, together with Dell [25], they presented what is
now called the framework of complexity monotonicity, which can be considered to be
one of the most powerful tools in the field of parameterized counting problems. Note
that this does not classify the decision version.

In contrast to the parameterized subgraph detection/counting problems, the prob-
lem (\#)EDGESUB(\Phi ) allows us to search for more general patterns. For example, while
the (parameterized) complexity of counting all subgraphs of a graph G isomorphic to
a fixed connected graph H with k edges is fully understood [26], the case of counting,
for instance, all connected or all bipartite k-edge subgraphs of a graph G remains open
so far. As consequences of our main technical result, we completely understand the
problem \#EDGESUB(\Phi ) for the properties \Phi = connectivity and \Phi = bipartiteness. In
what follows, we present our results, followed by an exposition of the most important
techniques.

1.1. Main results. In a first part, we present our results on (\#)EDGESUB(\Phi );
we continue with a definition and our results for a parameterized Tutte polynomial
in a second part.

Our main results on (\#)EDGESUB(\Phi ) can be categorized in roughly three cat-
egories: (1) exact algorithms and hardness results for the counting problem, (2)
approximation algorithms for the counting problem, and (3) algorithms for the de-
cision problem. For minor-closed properties \Phi , we obtain exhaustive results for all
three categories; for other (classes of) properties that we study, we obtain partial
criteria.

Complete classification for minor-closed properties. Let us start with the
case where the graph property \Phi is closed under taking minors, that is, if \Phi holds
for a graph, then \Phi still holds after removing vertices or edges, or after contracting
edges. For minor-closed properties \Phi , we obtain a complete picture of the complexity
of \#EDGESUB(\Phi ) and EDGESUB(\Phi ). In what follows, we say that a property \Phi has
bounded matching number if there is a constant bound on the size of a largest matching
in graphs satisfying \Phi .

Main Theorem 1. Let \Phi denote a minor-closed graph property.

1. \sansE \sansx \sansa \sansc \sanst \sansc \sanso \sansu \sansn \sanst \sansi \sansn \sansg : If \Phi is either trivially true or of bounded matching number,
then the (exact) counting version \#EDGESUB(\Phi ) is fixed-parameter tractable.
Otherwise, the problem \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard and, assuming the
ETH, cannot be solved in time f(k) \cdot | G| o(k/ logk) for any functionf .

2. \sansA \sansp \sansp \sansr \sanso \sansx \sansi \sansm \sansa \sanst \sanse \sansc \sanso \sansu \sansn \sanst \sansi \sansn \sansg : The problem \#EDGESUB(\Phi ) always has an FPTRAS.2

3. \sansD \sanse \sansc \sansi \sanss \sansi \sanso \sansn : The problem EDGESUB(\Phi ) is always fixed-parameter tractable.

Let us present an exemplary application of our main result; further discussions
on those examples can be found in [70].

Corollary 1.1. The following problems are \#\sansW [\sansone ]-hard and, assuming ETH,
cannot be solved in time f(k)\cdot | G| o(k/ logk) for any function f : Given G and k, compute
the number of

2A fixed-parameter tractable randomized approximation scheme. The formal definition is given
in section 2.2; intuitively an FPTRAS is the parameterized equivalent of a fully polynomial-time
randomized approximation scheme (FPRAS).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 409

\bullet planar subgraphs with k edges in G,
\bullet linear k-forests (unions of paths) in G,3

\bullet k-edge subgraphs in G with tree-depth at most t, for a constant t\geq 2,
\bullet k-edge subgraphs in G with genus at most g, for a constant g\geq 0,
\bullet k-edge subgraphs in G with Colin de Verdi\`ere's invariant at most c, for a

constant c\geq 1.
In contrast, all of the previous problems have an FPTRAS and a fixed-parameter
tractable decision version.

Further results on exact counting. Let us return to the case of arbitrary
graph properties \Phi . Without any further assumptions on \Phi , the naive algorithm for
\#EDGESUB(\Phi ) on the input (k,G) proceeds by enumerating the k-edge subsets of G
and counting the number of cases where the corresponding subgraph satisfies \Phi . This
leads to a running time of the form f(k) \cdot | V (G)| 2k+O(1). However, at least the linear
constant in the exponent can be substantially improved using the currently fastest
known algorithm for counting subgraphs with k edges due to Curticapean, Dell, and
Marx [25]. We will show that it easily extends to the case of \#EDGESUB(\Phi ):

Proposition 1.2. Let \Phi denote a computable graph property. There exists a
computable function f such that \#EDGESUB(\Phi ) can be solved in time

f(k) \cdot | V (G)| 0.174k+o(k) .

On the other hand, it was shown by Curticapean and Marx [26] that for the
property \Phi of being a matching, the problem \#EDGESUB(\Phi ) cannot be solved in time
f(k) \cdot | V (G)| o(k/ logk) for any function f unless ETH fails. In other words, asymptot-
ically and up to a factor of 1/ logk, the exponent of | V (G)| in the running time of
\#EDGESUB(\Phi ) cannot be improved without posing any restriction on \Phi .

The goal is hence to identify properties \Phi for which the algorithm in Proposition
1.2 can be (significantly) improved. In the best possible outcome, we hope to identify
the properties for which the exponent of | V (G)| does not depend on k; those cases are
precisely the fixed-parameter tractable ones. An easy consequence of known results
for subgraph counting (see, for instance, [26]) establishes the following tractability
criterion; we will include the proof only for the sake of completeness.

Proposition 1.3. Let \Phi denote a computable graph property satisfying that there
is M > 0 such that for all k either the graphs with k edges satisfying \Phi or the graphs
with k edges satisfying \neg \Phi have matching number bounded byM . Then \#EDGESUB(\Phi )
is fixed-parameter tractable.

Examples of properties satisfying the tractability criterion of Proposition 1.3
include, among others, the property of being a star or the complement thereof.
We conjecture that all remaining properties induce \#\sansW [\sansone ]-hardness and cannot be
solved in time f(k) \cdot | G| o(k/ logk) for any function f unless ETH fails.4 For the
case of minor-closed graph properties, we have seen above that this conjecture
holds.

Further, the techniques we develop to prove hardness of \#EDGESUB(\Phi ) for minor-
closed properties \Phi in Main Theorem 1 can also be applied directly to show hardness

3\#\sansW [\sansone ]-hardness and, implicitly, the same conditional lower bound for counting (not necessarily
linear) k-forests was shown in [13] and is subsumed by our result as well.

4Note that it does not matter whether we choose | G| or | V (G)| for the size of the large graph
since we care about the asymptotic behavior of the exponent.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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410 PEYERIMHOFF ET AL.

for other specific properties \Phi . Below, we record several natural examples of such
properties which are covered by our methods.

Main Theorem 2. Consider the following graph properties:
\bullet \Phi C(H) = 1 if and only if H is connected.
\bullet \Phi B(H) = 1 if and only if H is bipartite.
\bullet \Phi H(H) = 1 if and only if H is Hamiltonian.
\bullet \Phi E(H) = 1 if and only if H is Eulerian.
\bullet \Phi CF (H) = 1 if and only if H is claw-free.

For each \Phi \in \{ \Phi C ,\Phi B ,\Phi H ,\Phi E ,\Phi CF \} , the problem \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard.
Further, unless ETH fails, \#EDGESUB(\Phi ) cannot be solved in time f(k) \cdot | G| o(k/ logk)
for any function f .

Can you beat treewidth?. We conclude the presentation of our results on exact
counting by commenting on the factor of 1/(log . . .) in the exponents of all of our
fine-grained lower bounds. This factor is related to the conjecture of whether it is
possible to ``beat treewidth"" [63]. In particular, we point out that the factor can be
dropped in all of our lower bounds if this conjecture, formally stated as Conjecture
1.3 in [64], is true.

Novel constructions of p-group Cayley graph expanders. Cayley graphs
are recalled in section 3 and in the technical overview. Our hardness results crucially
rely on a novel construction of families of low-degree Cayley graph expanders of p-
groups, which might be of independent interest. We will present the new Cayley graph
expanders in the following theorem; their construction, as well as their role in the
hardness proofs for \#EDGESUB(\Phi ), will be elaborated on in the technical discussion
(section 1.2).

Main Theorem 3. Let p\geq 3 be a prime number, and let d\geq 2 be an integer. We
assume that d\geq (p+3)/2 if p\geq 7. Then there is an explicit construction of a sequence
of finite p-groups \Gamma i of orders that tend to infinity, with symmetric generating sets
Si of cardinality 2d such that the Cayley graphs \scrC (\Gamma i, Si) form a family of expanders
(of fixed valency 2d on a set of vertices of p-power orders and with vertex transitive
automorphism groups).

For completeness, we emphasize that the case p= 2 has already been resolved by
two of the authors in [71].

Results for approximate counting and decision. Our results on exact count-
ing indicate that we have to relax the problem if we aim for tractability results for
a larger variety of properties. One approach is to only ask for an approximate count
of the number of k-edge subgraphs satisfying \Phi . Tractability of approximation in the
parameterized setting is given by the notion of an FPTRAS as introduced by Arvind
and Raman [6]. While we give the formal definition in section 2.2, it suffices for now
to think of an FPTRAS as a fixed-parameter tractable algorithm that can compute
an arbitrarily good approximation of the answer with high probability. Readers famil-
iar with the classical notions of approximate counting algorithms should think of an
FPTRAS as an FPRAS in which we additionally allow a factor of f(k) in the running
time for any computable function f .

For the statement of our results, we say that a property \Phi satisfies the matching
criterion if it is true for all but finitely many matchings, and we say that it satisfies
the star criterion if it is true for all but finitely many stars. Furthermore, we say
that \Phi has bounded treewidth if there is a constant upper bound on the treewidth of
graphs that satisfy \Phi .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 411

Main Theorem 4. Let \Phi denote a computable graph property. If \Phi satisfies
the matching criterion and the star criterion, or if \Phi has bounded treewidth, then
\#EDGESUB(\Phi ) admits an FPTRAS.

For example, the property of being planar satisfies both the star and the matching
criteria. Moreover, we can show that every minor-closed graph property \Phi either has
bounded treewidth or satisfies the matching and star criteria and thus always admits
an FPTRAS.

Additionally, if not only exact but also approximate counting is intractable, we
ask whether we can at least obtain an efficient algorithm for the decision version
EDGESUB(\Phi ). Again, we obtain a tractability criterion; observe the subtle difference
in the tractability criterion compared to Main Theorem 4.

Main Theorem 5. Let \Phi denote a computable graph property. If \Phi satisfies
the matching criterion or the star criterion, or if \Phi has bounded treewidth, then
EDGESUB(\Phi ) is fixed-parameter tractable.

As an easy corollary, we can conclude that for monotone, that is, subgraph-closed
properties \Phi , the problem EDGESUB(\Phi ) is always fixed-parameter tractable.5

For many previously studied problems, the complexity analyses of approximate
counting and decision were related: often an algorithm solving one setting can be
used to solve the other setting [30, 65]. However, in our Main Theorems 4 and 5 we
see an asymmetry between the two settings: it suffices for \Phi to satisfy only one of
the star and the matching criteria to induce tractability of the decision version, but
we require satisfaction of both for approximate counting. One might expect that this
reflects a shortcoming of our proof methods (and that in fact it suffices to check one
of the criteria to have tractability of approximate counting). Interestingly, this is not
the case: There exists a property \Psi that satisfies the matching criterion, but not the
star criterion, such that EDGESUB(\Psi ) is fixed-parameter tractable but \#EDGESUB(\Psi )
does not admit an FPTRAS unless \sansW [\sansone ] coincides with \sansF \sansP \sansT (the class of all fixed-
parameter tractable decision problems) under randomized parameterized reductions
[80].

Dichotomy for evaluating a parameterized Tutte polynomial. As a final
part of the presentation of our main results, let us discuss our results on a parame-
terized Tutte polynomial.

The classical Tutte polynomial (as well as its specializations like the chromatic,
flow, or reliability polynomials) have received widespread attention from both a com-
binatorial and a complexity theoretic perspective [2, 8, 10, 12, 29, 42, 49, 91]. The
classical Tutte polynomial is of special interest from a complexity theoretic perspec-
tive, as the Tutte polynomial encodes a plethora of properties of a graph: prominent
examples include the chromatic number, the number of acyclic orientations, and the
number of spanning trees; we refer the reader to the work of Jaeger, Vertigan, and
Welsh [49] for a comprehensive overview. Formally, the Tutte polynomial is a bivariate
graph polynomial defined as follows (see [49]):

TG(x, y) :=
\sum 

A\subseteq E(G)

(x - 1)k(A) - k(E(G)) \cdot (y - 1)k(A)+\#A - \#V (G) ,

where k(S) is the number of connected components of the graph (V (G), S). In the
aforementioned work, Jaeger, Vertigan, and Welsh [49] also classified the complexity

5Every graph property has either bounded treewidth or unbounded matching number. In the
latter case, if the property is additionally monotone, it must satisfy the matching criterion.
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412 PEYERIMHOFF ET AL.

of evaluating the Tutte polynomial in every pair of (complex) coordinates; that is,
for every pair (a, b), the complexity of computing the function G \mapsto \rightarrow TG(a, b) is fully
understood.

In this work, we consider the following parameterized version of the Tutte poly-
nomial by restricting to edge-subsets A in G of size k:

T k
G(x, y) :=

\sum 
A\in (E(G)

k )

(x - 1)k(A) - k(E(G)) \cdot (y - 1)k(A)+k - \#V (G) .

We observe that the parameterized Tutte polynomial can be seen as a weighted version
of counting small k-edge subgraph patterns by assigning to each k-edge subset A of
G the weight

(x - 1)k(A) - k(E(G)) \cdot (y - 1)k(A)+k - \#V (G) .

Moreover, we point out that T k
G(x, y) is related to a generalization of the base-

generating function for matroids [5]. By establishing a so-called deletion-contraction
recurrence, we show that T k

G(x, y) has similar expressive power as its classical coun-
terpart TG(x, y).

Main Theorem 6. For any graph G and positive integer k, the following graph
invariants are encoded in T k

G(x, y):

1. T k
G(2,1) is the number of k-forests in G. In other words T k

G(2,1) corresponds
to the problem \#EDGESUB(\Phi ) for the property \Phi of being a forest.

2. For each positive integer c, the values of T k
G(1 - c,0) determine6 the numbers

of pairs (A,\sigma ), where A is a k-edge subset of G, and \sigma is a proper c-coloring
of (V (G),A).

3. From T k
G(2,0) we can compute the numbers of pairs (A,\vec{}\eta ), where A is a

k-edge subset of G and \vec{}\eta is an acyclic orientation of (V (G),A).
4. T k

G(2,0) also determines the number of k-edge subsets A of G such that
(V (G),A) has even Betti number (we give a formal definition of the Betti
number in section 9.1).

5. T k
G(0,2) determines the number of k-edge subsets A of G such that (V (G),A)

has an even number of components.

Note that, while \#EDGESUB(\Phi ) only allows us to count the number of subgraphs
with k edges that satisfy \Phi , the parameterized Tutte polynomial allows us to count
more intricate objects, such as tuples of an edge-subset and a coloring (or acyclic
orientation) on the induced graph. From a complexity theoretic point of view, we
obtain a similar result as [49], albeit only for rational coordinates: for each fixed pair
(x, y) of coordinates, we consider the problem receiving as input a graph G and a
positive integer k and computing T k

G(x, y). Following the paradigm of this work, we
choose k as a parameter; that is, we consider inputs in which k is significantly smaller
than | G| .

Main Theorem 7. Let (x, y) denote a pair of rational numbers. The problem of
computing T k

G(x, y) is solvable in polynomial time if x = y = 1 or (x - 1)(y  - 1) = 1,
fixed-parameter tractable, but \#\sansP -hard if x= 1 and y \not = 1 and \#\sansW [\sansone ]-hard otherwise.

The class \#\sansP is the counting version of \sansN \sansP [89, 90], and, in particular, the \#\sansP -
hard cases in the above classification are not polynomial-time tractable unless the

6They are equal up to trivial modifications; in particular, their complexities coincide.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 413

Fig. 1. Points of the parameterized Tutte polynomial that can be computed in fixed-parameter
tractable time (a) exactly or (b) approximately. We emphasize that a full classification for exact
counting is established, while the complexity of approximation remains open outside of the colored
area. (Color available online.)

polynomial-time hierarchy collapses to \sansP [87]. Consider Figure 1 for a depiction of
the classification. Note that Main Theorem 7 yields \#\sansW [\sansone ]-hardness for each of the
aforementioned problems from Main Theorem 6. Note further that the tractable cases
are similar but not equal to the classical counterpart [49].

Moreover, our proof uses entirely different tools than [49] and illustrates the power
and utility of the method presented in the subsequent discussion of our techniques.

Having fully classified the complexity of exact evaluation of the parameterized
Tutte polynomial, we also consider the complexity of approximate evaluation. We
identify two regions bounded by the hyperbola (x - 1)(y - 1) = 1 and the lines x= 1
and y= 1 as efficiently approximable; consider Figure 1(b) for a depiction.

Main Theorem 8. Let (x, y) denote a pair of rational numbers satisfying the
condition 0\leq (x - 1)(y - 1)\leq 1. Then T k

G(x, y) has an FPTRAS. If additionally x \not = 1
or y= 1, then T k

G(x, y) even has an FPRAS.

1.2. Technical overview. Our Main Theorems 4, 5, and 8 are obtained easily:
the proof of Main Theorem 4 is a standard application (see, for instance, [65]) of the
Monte Carlo approach, in combination with Ramsey's theorem, and of Arvind and
Raman's algorithm for approximately counting subgraphs of bounded treewidth [6].
The proof of Main Theorem 5 uses a standard parameterized win-win approach for
graphs of bounded treewidth or bounded degree. Finally, the proof of Main Theorem
8 is an easy consequence of the work of Anari et al. [5] on approximate counting via
log-concave polynomials.

Hence, in this discussion, we want to focus on our main technical results on exact
counting as well as on the construction of novel low-degree Cayley graph expanders,
which, in combination, will enable us to prove the lower bounds for Main Theorems
1 and 2 and, perhaps surprisingly, also for Main Theorem 7.

As a main component, we use the complexity monotonicity framework of Cur-
ticapean, Dell, and Marx [23]. Given a property \Phi and a positive integer k, we
write \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow  \star ) for the function that maps a graph G to the number of
k-edge subgraphs of G that satisfy \Phi . Using a well-known transformation via M\"obius
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414 PEYERIMHOFF ET AL.

inversion [60, Chapter 5.2], we can show that there exists a function of finite support
a\Phi ,k from graphs to rational numbers such that for every graph G we have

(1.1) \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) =
\sum 
H

a\Phi ,k(H) \cdot \#\sansH \sanso \sansm (H\rightarrow G) ,

where \#\sansH \sanso \sansm (H\rightarrow G) is the number of graph homomorphisms from H to G. In other
words, we can express \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow  \star ) as a finite linear combination of homomor-
phism counts. Here, we can then apply the complexity monotonicity framework [25],
which asserts that computing a finite linear combination of homomorphism counts is
precisely as hard as its hardest term (among the terms with a nonzero coefficient).
However, the complexity of computing the number of homomorphisms from small
pattern graphs to large host graphs is very well understood [28, 63]. Roughly speak-
ing, the higher the treewidth of the pattern graph, the harder the problem becomes;
we make this formal in section 2.2.

Instead of our original problem \#EDGESUB(\Phi ), we can thus consider the problem
of computing linear combinations of graph homomorphism counts. In particular, to
obtain hardness, it suffices to understand for which graphs H the coefficient a\Phi ,k(H)
in (1.1) is nonzero.

Relying on the well-known fact that the M\"obius function of the partition lattice
alternates in sign, Curticapean, Dell, and Marx [25] observed that nontrivial cancela-
tions cannot occur in (1.1) if, for each k, every k-edge graph that satisfies \Phi must have
the same number of vertices. Consequently, if the matching number is unbounded,
those properties yield \#\sansW [\sansone ]-hardness. An example for such a property is the case of
\Phi (H) = 1 if and only if H is a tree. In contrast, the intractability result for the case
of \Phi = acyclicity (that is, being a forest) turned out to be much harder to show [13],
indicated by connections to parameterized counting problems in matroid theory.

More generally, it has turned out that the coefficients of such linear combina-
tions for related pattern counting problems are often determined by (or even equal
to) a variety of algebraic and topological invariants, whose analysis is known, unfor-
tunately, to be a difficult problem in its own right. For example, in the case of the
vertex-induced subgraph counting problem, the coefficient of the clique is the reduced
Euler characteristic of a simplicial graph complex [78], the coefficient of the biclique
is the so-called alternating enumerator [32], and, more generally, the coefficients of
dense graphs are related to the h- and f -vectors associated with the property of the
patterns that are to be counted [79]. In all of the previous works mentioned here, the
complexity analysis of the respective pattern counting problems therefore amounted
to understanding the cancelation behavior of those invariants. To do so, the papers
used tools from combinatorial commutative algebra and, to some extent, topological
fixed-point theorems.

In this work, we provide additional insights into said coefficients a\Phi ,k(H). More
precisely, we show that the coefficients of high-treewidth low-degree vertex transitive
graphs can be analyzed much more easily than generic graphs of high treewidth such
as the clique or the biclique. First, we prove that the coefficient of a graph H with k
edges in (1.1) is equal to the indicator of \Phi and H, defined as follows:7

(1.2) a(\Phi ,H) :=
\sum 

\sigma \in \scrL (\Phi ,H)

\prod 
v\in V (H)

( - 1)| \sigma v|  - 1(| \sigma v|  - 1)! ,

7To be precise, the identity in (1.2) will be obtained for a colored version of \#EdgeSub(\Phi ),
which we show to be interreducible with the uncolored version.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 415

Fig. 2. Illustration of the construction of a fractured graph. The left picture shows a vertex v

of a graph H with incident edges . The right picture shows the splitting
of v in the construction of the fractured graph H\sharp \sigma for a fracture \sigma satisfying that the partition \sigma v

contains two blocks and . (Color available online.)

Fig. 3. Two isomorphic representations of the toroidal grid \circledcirc \circledcirc \circledcirc \ell : on the left-hand side as a
grid with connected endpoints, on the right-hand side as a stylized torus.

where \scrL (\Phi ,H) is the set of fractures \sigma of H such that the associated fractured graph
H\sharp \sigma satisfies \Phi . Here, a fracture of a graph H is a tuple \sigma = (\sigma v)v\in V (H), where \sigma v is
a partition of the set of edges EH(v) of H incident to v. Given a fracture \rho of H, the
fractured graph H\sharp \sigma is obtained from H by splitting each vertex v \in V (H) according
to \sigma v; an illustration is provided in Figure 2.

As a consequence, the \#\sansW [\sansone ]-hardness for \#EDGESUB(\Phi ) can be obtained if we
find a family of graphs H of unbounded treewidth such that a(\Phi ,H) \not = 0 for infinitely
many graphs H in this family. The almost tight conditional lower bound under the
ETH will, additionally, require sparsity of the graphs.

Recall further that we claimed the analysis of a(\Phi ,H) to be easier for vertex
transitive graphs. Let us now elaborate on this claim. First of all, we will use Cayley
graphs as a natural class of vertex transitive graphs: The Cayley graph of a group \Gamma 
together with a symmetric generating set8 S \subseteq \Gamma is the graph G= \scrC (\Gamma , S) with vertex
set V (G) = \Gamma and edge set

E(G) = \{ (x,xs)\in V (G)\times V (G);x\in \Gamma , s\in S\} .

Since S is symmetric, with any edge (x,xs) the Cayley graph also contains the
edge with opposite orientation (xs,x) = (xs, (xs)s - 1). Hence we consider Cayley
graphs as the underlying unoriented graph. For example, setting \Gamma = \BbbZ /\ell \BbbZ \times \BbbZ /\ell \BbbZ 
to be the twofold direct product of the group of integers modulo \ell , and setting S =
\{ (1,0), ( - 1,0), (0,1), (0, - 1)\} , the Cayley graph \scrC (\Gamma , S) becomes the toroidal grid\circledcirc \circledcirc \circledcirc \ell ;
a depiction is given in Figure 3.

8This means a subset S of the group \Gamma that generates this group and satisfies S - 1 = S.
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416 PEYERIMHOFF ET AL.

Cayley graphs H = \scrC (\Gamma , S) have a vertex transitive symmetry group. The group
\Gamma acts on the graph by letting g \in \Gamma send the vertex v \in V (H) = \Gamma to gv. This
preserves edges because g(xs) = (gx)s for all g,x, s\in \Gamma . This action extends to the set
of fractures \scrL (\Phi ,H), and since the terms

\prod 
v\in V (H)( - 1)| \sigma v|  - 1(| \sigma v|  - 1)! in the formula

(1.2) are shown to be invariant under this action, the group \Gamma naturally permutes
these summands.

Now let us assume that \Gamma is a p-group and that we are given a Cayley graph
H = \scrC (\Gamma , S) with | E(H)| = k. Since our Cayley graph H arises from a p-group \Gamma , it
follows that when evaluating the indicator a(\Phi ,H) modulo p, only those contributions
from fractures fixed under \Gamma survive. Now recall that \sigma v is a partition of the edges
incident to v. The fixed-point fractures \sigma will satisfy that all \sigma v are equal if we identify
the edges incident to v with the elements of the generating set. Consequently, the
evaluation of the indicator a(\Phi ,H) modulo p requires us to only consider as many
terms as there are partitions of the generating set S. In particular, if H has constant
degree, then | S| and hence the number of partitions of S must be bounded by a
constant as well.

To illustrate the power of this strategy, we provide an explicit consequence when
applied to the special case of toroidal grids (which satisfy | S| = 4): Let us write Mk

for the matching of size k, P2 for the path consisting of 2 edges, Ck for the cycle of
length k, and Sk for a sun (a cycle with dangling edges) of size k, and recall that \circledcirc \circledcirc \circledcirc k

denotes the toroidal grid of size k.

Theorem 1.4. Let \Phi denote a computable graph property, and assume that in-
finitely many primes \ell satisfy the equation9

 - 6\Phi (M2\ell 2) + 4\Phi (M\ell 2 + \ell C\ell ) + 8\Phi (\ell 2P2) - \Phi (2\ell C\ell )(1.3)

 - 2\Phi (\ell C2\ell ) - 4\Phi (\ell S\ell ) +\Phi (\circledcirc \circledcirc \circledcirc \ell ) \not = 0 mod \ell .

Then \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard.

As a toy example for an application of Theorem 1.4, let us consider the property
\Phi of being connected. Observe that among the graphs in (1.3), only \circledcirc \circledcirc \circledcirc \ell is connected,
and thus the sum is always 1 for \ell \geq 2. Thus, indeed the left-hand side of (1.3) is
nonzero, proving that \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard.

For our general results, especially for the fine-grained lower bounds, we need
better classes of Cayley graphs. Let us summarize the necessary conditions: Our
Cayley graphs must be

\bullet sparse and of high treewidth (required for hardness) and
\bullet generated by a p-group and of constant degree (required for the analysis of

the indicators).
The natural choice of Cayley graphs satisfying both constraints are p-group Cayley
graph expanders of low degree. An optimal construction (w.r.t. the degree) for the
case p = 2 is known and due to a subset of the authors [71]. However, we will see
that 2-group Cayley graph expanders are not sufficient to prove our full classification.
For this reason, we provide a novel construction of low-degree p-group Cayley graph
expanders in this work. For the sake of presentation, we decided to encapsulate the
treatment of our constructions in separate sections, both in the introduction and
the main part of the paper. We hope that this makes the paper accessible both for
readers primarily interested in the novel construction of Cayley graph expanders and

9We write + for (disjoint) graph union and \ell H for the graph consisting of \ell disjoint copies of H.
Further, we set \Phi (H) = 1 if H satisfies \Phi and \Phi (H) = 0 otherwise.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 417

for readers mainly interested in the analysis of the pattern counting problems. In
particular, this last group may safely skip the next subsection and rely only on Main
Theorem 3.

Construction of low-degree Cayley graph expanders. We prove Main Theorem 3
via an explicit construction of the groups \Gamma i and the symmetric generating sets Si in
section 3 motivated by number theoretic objects.

Let us fix a prime p \geq 3. The starting point is an explicit arithmetic lattice
(a discrete subgroup) in a group of generalized quaternions over a function field in
characteristic p. The quaternion algebra is at the heart of the mathematical properties
of extracting the finite p-groups and the expansion property of the resulting Cayley
graphs, but it is not crucial for understanding the construction. Concretely, for any
choice of elements \alpha \not = \beta \in \BbbZ /(p - 1)\BbbZ we construct an infinite group \Gamma p;\alpha ,\beta defined
in terms of 2(p+ 1) generators ak, bj (where the indices k, j run through sets K,J \subseteq 
\BbbZ /(p2 - 1)\BbbZ defined depending on \alpha ,\beta ) and relations of length 4. The set of relations
is described by explicit algebraic equations in the field \BbbF p2 . In [81] these groups were
realized by mapping the generators ak, bj to explicit generalized quaternions, leading
ultimately to an explicit injective group homomorphism

(1.4) \Psi : \Gamma p;\alpha ,\beta \rightarrow GL3(\BbbF p[[t]]) .

In other words, every element of \Gamma p;\alpha ,\beta is sent to an invertible 3 \times 3-matrix whose
entries are power series in some formal variable t, whose coefficients live in the finite
field \BbbF p with p elements. This is made explicit for p = 3 in subsection 3.3 but could
also be made explicit for any p\geq 5. Since the applications do not depend on concrete
matrices, we merely state the existence of the injective group homomorphism \Psi .

To construct the finite p-groups \Gamma i, consider the group homomorphism

\pi i : GL3(\BbbF p[[t]])\rightarrow GL3(\BbbF p[t]/(t
i+1))

taking a matrix with power series entries and truncating the power series after the
term of order ti. Then the group GL3(\BbbF p[t]/(t

i+1)) is finite, and we define \Gamma i to
be the image of the group \Gamma p;\alpha ,\beta under the composition \pi i \circ \Psi . These groups \Gamma i

are easily shown to be p-groups, and they are what is called congruence quotients (by
construction). The generators ak, bj from the construction of \Gamma p;\alpha ,\beta map to symmetric
generating sets Ti of \Gamma i, i.e., to the set of cosets akNi, bjNi when \Gamma i = \Gamma p;\alpha ,\beta /Ni is
considered as a factor group with respect to Ni =ker(\pi i \circ \Psi ). Using results from [81],
we know that the Cayley graphs Gi = \scrC (\Gamma i, Ti) associated to the congruence quotient
groups \Gamma i with respect to the generating sets Ti are expanders. This argument is
worked out in [81] by Rungtanapirom and two of the authors, and it is based on a
similar approach in the classical papers by Lubotzky, Phillips, and Sarnak [61] and by
Morgenstern [69]. We note here that the results of [81] ultimately rely on deep number
theoretic results, namely, a translation of the spectrum of the adjacency operator into
Satake parameters of an associated automorphic representation and most crucially on
work of Drinfeld on the geometric Langlands program for GL2.

At this point we have proven Main Theorem 3 for the particular valency 2d =
2(p + 1). In order to obtain the more general valencies stated in the theorem, we
recall in subsection 3.1 that a uniformly controlled change of the generating sets Ti
of the groups \Gamma i (the generators must be mutually expressible in words of uniformly
bounded length) preserves the expander property. This change of generating set is
best performed by finding a smaller generating set for the underlying infinite group
\Gamma p;\alpha ,\beta . This is done in Proposition 3.8 reducing to d = (p + 3)/2 for all p \geq 3.
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418 PEYERIMHOFF ET AL.

The reduction is based on the explicit form of the relations and a combinatorial
group theoretic result from [85] on the local permutation structure of the underlying
geometric square complex. To improve even further for p= 3 we consider in subsection
3.3 a concrete presentation of \Gamma 3;0,1 which in Theorem 3.7 is shown to reduce to 2
generators. For p = 5, the explicit Example 3.9 achieves a reduction to 2 generators
for \Gamma 5;0,2. It follows again from the theory recalled in subsection 3.1 that by adding
generators (as necessary) we obtain Main Theorem 3 for all d's in the range that the
theorem promises.

While this is not needed for the purposes of our hardness results, all of the con-
structions above are explicit, certainly in the weak sense that for a fixed p, the sequence
of graphs Gi from Main Theorem 3 is computable. We also would like to emphasize
again that the expanders constructed for the proof of Main Theorem 3 consist of
vertex transitive graphs, of prime power number of vertices, with a fairly low bound
on the degree. All of this is made possible by working with very specific generalized
quaternion groups in positive characteristic.

2. Preliminaries. Given a finite set S, we write | S| and \#S for the cardinality
of S. Further, given a function f : X \times Y \rightarrow Z and an element x \in X, we write
f(x,  \star ) :B\rightarrow C for the function y \mapsto \rightarrow f(x, y).

2.1. Graphs and homomorphisms. Graphs in this work are simple and ir-
reflexive; that is, we do not allow multiple edges or self-loops. Given a graph G and a
subset A of E(G), we write G(A) for the graph (V (G),A), and we write G[A] for the
graph obtained from G(A) by deleting all isolated vertices. The degree of a graph is
the maximum degree of its vertices, and we write H+G for the union of H and G; for-
mally, we assume that V (G)\cap V (H) = \emptyset and setH+G := (V (H)\cup V (G),E(H)\cup E(G)).

Given graphs F and G, a homomorphism from F to G is an edge-preserving
mapping \varphi : V (F ) \rightarrow V (G); that is, for each edge \{ u, v\} \in E(F ) we have that
\{ \varphi (u),\varphi (v)\} \in E(G). A homomorphism is called an embedding if it is injective (on the
vertices). We write \sansH \sanso \sansm (F \rightarrow G) and \sansE \sansm \sansb (F \rightarrow G) for the set of all homomorphisms
and embeddings, respectively, from F to G.

An isomorphism between two graphs F and G is a bijective embedding \varphi sat-
isfying the stronger constraint \{ u, v\} \in E(F ) \leftrightarrow \{ \varphi (u),\varphi (v)\} \in E(G). We say that
F and G are isomorphic, denoted by F \sim = G, if an isomorphism from F to G exists.
An isomorphism from a graph F to itself is called an automorphism, and we write
\sansA \sansu \sanst (F ) for the group formed by such automorphisms (where the group operation is
the composition of automorphisms).

A graph property \Phi is a function from graphs to \{ 0,1\} which is invariant under
isomorphisms, that is, \Phi (H) = \Phi (F ) whenever H \sim = F . We say that a graph H
satisfies \Phi if \Phi (H) = 1.

A graph F is a minor of a graph H if it can be obtained from H by a sequence of
edge- and vertex-deletions and edge-contractions (with multiple edges and self-loops
deleted). We write F \prec H if F is a minor of H. A graph property \Phi is minor-closed
if \Phi (H) = 1 implies \Phi (F ) = 1 whenever F \prec H. Every minor-closed graph property
\Phi is defined by a set \scrF (\Phi ) of minimal (w.r.t. \prec ) forbidden minors, that is, \Phi (H) = 1
if and only if F \nprec H for each F \in \scrF (\Phi ). The celebrated Robertson--Seymour theorem
[75] implies that \scrF (\Phi ) is always finite. In particular, the latter implies that each
minor-closed graph property is (polynomial-time) computable. For the purpose of
this work, forbidden minors of degree at most two will be of particular importance;
therefore, we define \scrF 2(\Phi ) to be the subset of \scrF (\Phi ) containing only the graphs of
degree at most 2.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 419

A graph G is called k-edge-colored if the edges of G are colored with (at most) k
pairwise different colors. Given a homomorphism \varphi \in \sansH \sanso \sansm (G\rightarrow H) for some graphs
G and H, we also call \varphi an H-coloring . Moreover, an H-colored graph is a pair
of a graph G and an H-coloring \varphi . For ease of readability, we say that a graph G
is H-colored if the H-coloring is implicit or clear from the context. Observe that
an H-coloring \varphi of a graph G induces a \#E(H)-edge-coloring by mapping an edge
\{ u, v\} \in E(G) to the color \{ \varphi (u),\varphi (v)\} . Throughout this work, we use the following
notion of homomorphisms between H-colored graphs.

Definition 2.1. Let F and G denote two H-colored graphs, and let cF and cG
denote their H-colorings. A homomorphism \varphi from F to G is called color-preserving
if cG(\varphi (v)) = cF (v) for every v \in V (F ). We write \sansH \sanso \sansm \sansc \sansp (F \rightarrow H G) for the set of all
color-preserving homomorphisms from F to G. Color-preserving embeddings and the
set \sansE \sansm \sansb \sansc \sansp (F \rightarrow H G) are defined similarly.

Further, two H-colored graphs F and G are isomorphic as H-colored graphs,
denoted by F \sim =H G, if there is a color-preserving isomorphism from F to G.

Note that, given two H-colored graphs F and G, we write F \sim = G (rather than
F \sim =H G) if the underlying uncolored graphs are isomorphic.

For the treatment of decision and approximate counting, we introduce the follow-
ing classification criteria on (computable) graph properties. To this end, we writeK\ell ,r

for the biclique with \ell vertices on the left and r vertices on the right side, respectively.
In particular, K1,r denotes the star of size r.

Definition 2.2. Let \Phi denote a computable graph property. We say that
\bullet \Phi satisfies the matching criterion if \Phi (Mk) = 1 for all but finitely many k,
\bullet \Phi satisfies the star criterion if \Phi (K1,k) = 1 for all but finitely many k,
\bullet \Phi has bounded treewidth if there is a constant B such that \Phi is false on all

graphs of treewidth at least B.

For example, the properties of being bipartite or planar satisfy both the matching
and the star criteria. Furthermore, the property of being 2-regular has bounded
treewidth, while the criterion of just being regular satisfies only the matching criterion.
Further, the property of being a tree is an example that both satisfies the star criterion
and is of bounded treewidth, while the property of being a forest satisfies all three
criteria.

Expander graphs. All (almost-tight) conditional lower bounds in this work rely
on the existence of certain (families of) expander graphs. Given a positive integer d,
a rational c > 0, and a class of graphs \scrG = \{ G1,G2, . . .\} with \#V (Gi) = ni, we call \scrG 
a family of (ni, d, c)-expanders if, for all i, the graph Gi is d-regular and satisfies

\forall X \subseteq V (Gi) : | S(X)| \geq c

\biggl( 
1 - | X| 

ni

\biggr) 
| X| ,

where S(X) is the set of all vertices in V (Gi) \setminus X that are adjacent to a vertex in X.
While being sparse due to d-regularity, expander graphs have treewidth10 linear

in the number of vertices (see, for instance, Proposition 1 in [45], and set \alpha = 1/2).
Furthermore, they admit arbitrarily large clique minors [54]. Formally, we have the
following fact.

Fact 2.3. Fix a rational c and an integer d, and let \scrG denote a family of (ni, d, c)-
expanders. Then, \#E(Gi) \in \Theta (ni) and \sanst \sansw (Gi) \in \Theta (ni). Furthermore, for each

10We use the graph parameter ``treewidth"" (\sanst \sansw ) in a black-box manner only and refer the reader
to, for instance, Chapter 7 of [27] for a detailed exposition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

29
.2

34
.7

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



420 PEYERIMHOFF ET AL.

positive integer k there is an index j such that for all i\geq j, the graph Gi contains the
complete graph on k vertices as a minor.

In section 3.1 we recall a spectral reformulation of the expander property in terms
of the nontrivial eigenvalues of the graph Laplace operator on \BbbR -valued functions on
the set of vertices.

2.2. Parameterized complexity theory. A parameterized counting problem
is a pair of a counting problem P : \Sigma \ast \rightarrow \BbbN and a parameterization \kappa : \Sigma \ast \rightarrow \BbbN .
A parameterized decision problem is a pair (P,\kappa ) of a decision problem P : \Sigma \ast \rightarrow 
\{ 0,1\} and a parameterization \kappa . Consider, for example, the problems \#Clique and
Clique: on input of a graph G and a positive integer k, the task is either to compute
the number of k-cliques in G or to detect the mere existence of a k-clique, respectively.
The parameterization is given by \kappa (G,k) := k for both problems.

A parameterized problem (P,\kappa ) is called fixed-parameter tractable if there is a
computable function f such that P can be computed in time f(\kappa (x)) \cdot | x| O(1). For
historic reasons, the class of all fixed-parameter tractable decision problems is called
\sansF \sansP \sansT .11 Furthermore, a parameterized Turing reduction from (P,\kappa ) to ( \^P , \^\kappa ) is a Tur-
ing reduction from P to \^P that, on input x, runs in time f(\kappa (x)) \cdot | x| O(1) and addi-
tionally satisfies \^\kappa (y) \leq f(\kappa (x)) for each oracle query y. Again, f only needs to be
some fixed computable function. We write (P,\kappa )\leq fpt

T ( \^P , \^\kappa ) if a parameterized Turing
reduction exists.

A parameterized counting problem is \#\sansW [\sansone ]-hard if it can be reduced from
\#Clique, and, similarly, a parameterized decision problem is \sansW [\sansone ]-hard if it can
be reduced from Clique, both with respect to parameterized Turing reductions.

Under reasonable assumptions, such as the ETH [48] defined below, \#\sansW [\sansone ]- and
\sansW [\sansone ]-hard problems are not fixed-parameter tractable.12

Conjecture 2.4 (exponential time hypothesis). The ETH asserts that 3-SAT
cannot be solved in time exp(o(n)), where n is the number of variables of the input
formula.

Our hardness results in this paper are obtained by reducing from the problem
\#HOM(\scrH ). Given a fixed class of graphs \scrH , in the problem \#HOM(\scrH ) the input is
a graph H \in \scrH and an arbitrary graph G, and the task is to compute the number
of homomorphisms from H to G; the parameter is | H| . Dalmau and Jonsson [28]
established an exhaustive classification for this problem, stating that \#HOM(\scrH ) is
fixed-parameter tractable if the treewidth of graphs in \scrH is bounded by a constant
and \#\sansW [\sansone ]-hard otherwise.

Let \Phi denote a graph property, that is, a function from (isomorphism classes) of
graphs to \{ 0,1\} . Setting

\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) := \{ A\subseteq E(G)| \#A= k \wedge \Phi (G[A]) = 1\} ,

we define \#EDGESUB(\Phi ) as the parameterized counting problem in which on input of
a graph G and a positive integer k, the task is to compute \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G); the
parameter is k.

11In some literature \sansF \sansP \sansT is used for both parameterized decision and counting problems, while
some authors write \sansF \sansF \sansP \sansT for the class of all fixed-parameter tractable parameterized counting prob-
lems.

12In fact, Chen et al. [16, 17] proved the much stronger statement that \#Clique cannot be
solved in time f(k) \cdot | V (G)| o(k) for any function f , unless ETH fails.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 421

In this paper, we often rely on the following important but easy observation: write
\Phi k for the set of graphs H with k edges and without isolated vertices that satisfy \Phi .
Then we have

(2.1) \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) =
\sum 

H\in \Phi k

\#\sansS \sansu \sansb (H\rightarrow G) ,

where \#\sansS \sansu \sansb (H\rightarrow G) is the number of subgraphs of G that are isomorphic to H.
Using the aforementioned transformation, both Proposition 1.2 and Proposition

1.3 are easy consequences of known results regarding the subgraph counting problem.
We add their proofs only for the sake of completeness.

Proposition 2.5. Let \Phi denote a computable graph property. There exists a
computable function f such that \#EDGESUB(\Phi ) can be solved in time

f(k) \cdot | V (G)| 0.174k+o(k) .

Proof. The fastest known algorithm for computing \#\sansS \sansu \sansb (H\rightarrow G) for a k-edge
graph H runs in time kO(k) \cdot | V (G)| 0.174k+o(k) and is due to Curticapean, Dell, and
Marx [25]. Now observe that the size of \Phi k is bounded by a function in k, since
graphs in \Phi k have k edges and no isolated vertices and thus have at most 2k vertices.
Consequently, their algorithm extends to \#EDGESUB(\Phi ) by computing the number
\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) as given in (2.1).

Note that the growth of f in the previous result depends, among other factors,
on the complexity of verifying \Phi .

For the following, recall that a property \Phi has bounded matching number if there
is a constant c such that \Phi is false on all graphs containing a matching of size at least
c. Furthermore, write \neg \Phi for the complement of \Phi .

Proposition 2.6. Let \Phi denote a computable graph property satisfying that there
is M > 0 such that for all k either the graphs with k edges satisfying \Phi or the graphs
with k edges satisfying \neg \Phi have matching number bounded byM . Then \#EDGESUB(\Phi )
is fixed-parameter tractable.

Proof. Applying (2.1), we observe that counting subgraphs isomorphic to H is
fixed-parameter tractable (even polynomial-time solvable) if there is a constant upper
bound on the size of the largest matching of H [26]. This allows us to compute
\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) in the desired running time if the graphs in \Phi k have matching
number bounded by M . In the case that the latter is true for \neg \Phi k instead, we use
the fact that \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) =

\bigl( 
\#E(G)

k

\bigr) 
 - \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\neg \Phi , k\rightarrow G) and proceed

similarly.

2.3. Combinatorial commutative algebra. We assume familiarity with the
notions of basic group theory and refer the reader to, for instance, [57] for a detailed
introduction. Given a positive integer \ell , we write \BbbZ \ell for the group of integers modulo
\ell , and we write \BbbZ k

\ell for the k-fold direct product of \BbbZ \ell ; recall that the binary operation
of the direct product is defined coordinatewise.

For a prime p, recall that a finite group G is called a p-group if the order \#G of
G is a power of p. Recall that by Lagrange's theorem, this implies that the order of
any subgroup H of G is likewise a power of p.

Given a group G and a subgroup H \subseteq G, we write G/H for the set of left cosets
of H. Formally, a left coset of H is an equivalence class of the following equivalence
relation on G: two elements g, g\prime \in G are equivalent if and only if g\prime = gh for some

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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422 PEYERIMHOFF ET AL.

h \in H. We write gH for the equivalence class of g \in G. We define the index of H
in G as the cardinality [G : H] = \#G/H of the set of left cosets. Note that [G : H]
might be finite even though \#G is infinite. The index satisfies the basic identity
\#G = [G : H] \cdot \#H, and again, with a slight abuse of notation, we observe that the
identity remains well defined in the infinite case: \#G is infinite if and only if one of
[G :H] or \#H is infinite. If the subgroup H is normal in G (that is, for each g \in G
we have that the subset gHg - 1 = \{ ghg - 1| h \in H\} of G is equal to H), then the set
G/H naturally carries the structure of a group, with the group operation defined by
(g1H) \cdot (g2H) = (g1 \cdot g2)H. In this case, we call G/H a quotient group.

Given an element g \in G we write

\langle g\rangle = \{ ga : a\in \BbbZ \} \subseteq G

for the subgroup generated by g (recall that for a negative integer a we define ga as
the | a| th power of the inverse element of g). If there is a positive integer a such that
ga equals the neutral element of G, we define the order ordG(g) of g as the smallest
such positive integer a (and set ordG(g) = \infty otherwise). If g has finite order, the
subgroup \langle g\rangle of G generated by g is isomorphic to the cyclic group \BbbZ ordG(g).

Given a finite group \Gamma and a symmetric set S of generators of \Gamma , the Cayley graph
of \Gamma and S, denoted by \scrC (\Gamma , S), has as vertices the elements of \Gamma , and two vertices u
and v are adjacent13 if there is an s \in S such that v = us. For example, the Cayley
graph \scrC (\BbbZ /\ell \BbbZ ,\{ 1, - 1\} ) is isomorphic to the cycle of length \ell .

M\"obius inversion and the partition lattice. We follow the notation of the standard
textbook of Stanley [84]. Given a finite partially ordered set (L,\leq ) and a function
f :L\rightarrow \BbbQ , the zeta transformation \zeta f :L\rightarrow \BbbQ is defined as

\zeta f(\sigma ) :=
\sum 
\rho \geq \sigma 

f(\rho ) .

The principle of M\"obius inversion allows us to invert a zeta transformation; a
proof of the following theorem can be found in [84, Chapter 3].

Theorem 2.7. Given a partially ordered set (L,\leq ), there is a computable func-
tion \mu : L\times L\rightarrow \BbbZ , called the M\"obius function such that for all f : L\rightarrow \BbbQ and \sigma \in L
we have

f(\sigma ) =
\sum 
\rho \geq \sigma 

\mu (\sigma ,\rho ) \cdot \zeta f(\rho ) .

We use M\"obius inversion on the ordering of partitions of finite sets. Given two
partitions \sigma and \rho of a finite set S, we say that \sigma refines \rho if every block of \sigma is a
subset of a block of \rho , and in this case we write \sigma \leq \rho . This induces a partial order,
called the partition lattice14 of S. The explicit formula of the M\"obius function over
the partition lattice is of particular importance in this work.

Theorem 2.8 (see Chapter 3 in [84]). Let \sigma denote a partition of a finite set S.
We have

\mu (\sigma ,\top ) = ( - 1)| \sigma |  - 1 \cdot (| \sigma |  - 1)! ,

where \top = \{ S\} denotes the coarsest partition.

13Note that, in some literature, Cayley graphs are colored and directed. However, we only
consider the underlying uncolored and simple graph.

14A lattice is a partially ordered set in which every pair of elements has a least upper bound and
a greatest lower bound. For a formal definition we refer to [84].
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 423

Fig. 4. Two fractures \rho and \rho \prime \leq \rho of a graph H (depicted by the colors of the outgoing edges
of the vertices) and the corresponding fractured graphs H\sharp \rho and H\sharp \rho \prime . (Color available online.)

Fractured graphs.
Definition 2.9 (fractures). Let H denote a graph. A fracture of H is a tuple

\rho = (\rho v)v\in V (H) ,

where \rho v is a partition of the set of edges EH(v) of H incident to v.

Note that the set of all fractures of H, denoted by \scrL (H), is a lattice that is
isomorphic to the (pointwise) product of the partition lattices of EH(v) for each
v \in V (H). In particular, we write \sigma \leq \rho if, for each v \in V (H), the partition \sigma v refines
the partition \rho v. Consider Figure 4 for a visualization of a fracture and its refinement.

Note further that a fracture describes how to split (or fracture) each vertex of a
given graph: for each vertex v, create a vertex vB for each block B in the partition \rho v;
edges originally incident to v are made incident to vB if and only if they are contained
in B. We call the resulting graph the fractured graph H\sharp \rho ; a formal definition is given
in Definition 2.10, and a visualization is given in Figure 4.

Definition 2.10 (fractured graph H\sharp \rho ). Given a graph H, we consider the
matching MH containing one edge for each edge of H; formally,

V (MH) :=
\bigcup 

e=\{ u,v\} \in E(H)

\{ ue, ve\} and E(MH) := \{ \{ ue, ve\} | e= \{ u, v\} \in E(H)\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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424 PEYERIMHOFF ET AL.

For a fracture \rho of H, we define15 the graph H\sharp \rho as the quotient graph of MH

under the equivalence relation on V (MH) which identifies two vertices ve,wf of MH

if and only if v = w and e, f are in the same block B of the partition \rho v of EH(v).
We write vB for the vertex of H\sharp \rho given by the equivalence class of the vertices ve
(for which e\in B) of MH .

The fractured graph H\sharp \rho comes with a natural H-coloring. Indeed, the homo-
morphism MH \rightarrow H which sends ve \in V (MH) to v \in V (H) descends to H\sharp \rho so that
we always have a canonical diagram MH \rightarrow H\sharp \rho \rightarrow H of graph homomorphisms. For
example, for any graph H, the fracture \bot , with \bot v := \{ \{ e\} | e \in EH(v)\} , induces
the fractured graph H\sharp \bot = MH ; the fracture \top , with \top v := \{ EH(v)\} , induces the
fractured graph H\sharp \top =H. The fractures \bot ,\top are the minimal and maximal elements
of the lattice \scrL (H), respectively.

Given a graph property \Phi and a graph H, we write \scrL (\Phi ,H) for the set of all
fractures \rho of H that satisfy \Phi (H\sharp \rho ) = 1.

3. Construction of Cayley graph expanders. As mentioned before, this
section encapsulates our novel construction of p-group Cayley graph expanders with
low degree. Readers only interested in the application of those Cayley graphs in
our hardness proofs can safely skip this section. Recall that the Cayley graph of a
group \Gamma is generated by a symmetric set S \subseteq \Gamma , i.e., such that S - 1 = S, is the graph
G= \scrC (\Gamma , S) with vertex set V (G) = \Gamma and edge set

E(G) = \{ (x,xs)\in V (G)\times V (G);x\in \Gamma , s\in S\} .

Since S is symmetric, with any edge (x,xs) the Cayley graph also contains the edge
with opposite orientation (xs,x) = (xs, (xs)s - 1). Hence we consider Cayley graphs as
the underlying unoriented graph.

In this section we recall the construction of certain discrete groups from [81, 85]
that are lattices in generalized quaternion algebras. Their group theory is controlled
by representations with values in power series rings with coefficients in \BbbF p. In par-
ticular, these representations lead to well-chosen finite congruence quotients that are
p-groups. With a natural set of generators as in [81, 85] these lead to sequences of
Cayley graph expanders of valency 2(p+1) and vertex set of size a power of p; here p
is odd. We explain the known fact that a change of generators for the lattice does not
destroy the expander property. Moreover, we analyze the relations and find that we
can reduce the number of generators to (p+3)/2 (here p is odd), so the valency of the
corresponding Cayley graph is p+3. For p\geq 5 (with an extra argument for p= 5) we
deduce the existence of a series of Cayley graph expanders of p-power order and now
valency 2(p  - 2) that is necessary for the applications in this paper. Theorem 3.10
gives a more precise statement for the range of possible valencies of our construction.

3.1. Change of generators in Cayley graphs. This section is concerned with
the expansion property of Cayley graphs under change of generators. In general, the
expansion property is not preserved (see, e.g., [47, section 11.4] for a brief discussion).
However, if the two families of generators remain bounded and can be mutually written
in words of bounded lengths of each other, then the expansion property is preserved
(see, e.g., [55, Proposition 3.5.1]). The remainder of this section is devoted to an
easy self-contained proof in the following special case: Let \Gamma be a finitely generated

15The notation H\sharp \rho stems from the fact that the symbol ``\sharp "" is commonly used for medical
fractures.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

29
.2

34
.7

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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infinite group generated by two finite symmetric sets of generators S1 and S2, that
is, S - 1

1 = S1 and S - 1
2 = S2. Let \Gamma k be finite index subgroups of \Gamma with [\Gamma : \Gamma k]\rightarrow \infty ,

and let Hk = \Gamma /\Gamma k be the corresponding finite quotients. The sets Si of generators
of \Gamma can also be viewed as sets of generators of the quotients Hk. Then the following
holds.

Proposition 3.1 (see, e.g., [55, Proposition 3.5.1]). If the Cayley graphs
\scrC (Hk, S1) represent a family of expander graphs, then \scrC (Hk, S2) is also a family of
expander graphs.

The proof is based on a well-known spectral description of expander graphs: Let
G= (V,E) be a connected graph with vertex set V and edge set E. The degree of a
vertex x \in V is denoted by dx. The Laplacian LG of a function f : V \rightarrow \BbbR is defined
as follows:

LGf(x) =
\sum 
y\sim x

(f(x) - f(y)) = dxf(x) - 
\sum 
y\sim x

f(y) .

Then LG is a symmetric operator with nonnegative real eigenvalues. Let \mu 1(G)> 0 be
the smallest nonzero eigenvalue of LG. Since Cayley graphs are regular graphs, there
is a close relationship between the eigenvalues of LG and the adjacency matrix AG

(see, e.g., [47, Lemma 4.7]), namely, \mu 1(G) = \lambda 1(AG) - \lambda 2(AG), where \lambda 1(AG), \lambda 2(AG)
are the two largest eigenvalues of AG. The Cayley graphs \scrC (Hk, S1) from above are
an expander family if and only if there exists a positive constant C > 0 such that, for
all k \in \BbbN (see, e.g., [47, Theorem 4.11]),

\mu 1(\scrC (Hk, S1))\geq C .

Via the Rayleigh quotient

\scrR (f) :=

\sum 
x\in V f(x) \cdot LGf(x)\sum 

x\in V f(x)
2

=

\sum 
\{ x,y\} \in E(f(x) - f(y))2\sum 

x\in V f(x)
2

the eigenvalue \mu 1(G) has the following variational description (see, e.g., [56, Proposi-
tion 1.82] and [55, Proposition 3.4.3]):

\mu 1(G) = inf
\Bigl\{ 
\scrR (f) :

\sum 
x\in V

f(x) = 0, f \not = 0
\Bigr\} 
.

We aim to show that there exists a positive constant K > 0 such that, for all k \in \BbbN ,

\mu 1(\scrC (Hk, S2))\geq K\mu 1(\scrC (Hk, S1)) .

Then the expanding property of the family \scrC (Hk, S1) implies a similar expanding
property of the family \scrC (Hk, S2), albeit with a different spectral expansion constant.

Before starting the proof, we first consider the description of the Rayleigh quotient
\scrR (f) in the case of a Cayley graph \scrC (H,S): The vertex set of this graph is given by
V = H, and the set of edges is given by E = \{ \{ x,xs\} : x \in V, s \in S\} , where E is
understood as a multiset. Then the Rayleigh quotient for a function f : H \rightarrow \BbbR can
be written as

\scrR S(f) =
1

2

\sum 
x\in H

\sum 
s\in S(f(x) - f(xs))2\sum 
x\in H f(x)

2
.
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426 PEYERIMHOFF ET AL.

The Rayleigh quotient is equipped with the index S, that is, the set of generators of
the Cayley graph, since it depends on this choice of generators. Note that \scrC (H,S) is
vertex transitive since H acts on the vertex set V = H by group left-multiplication.
The proof is complete if there exists a constant K > 0 such that, for all k \in \BbbN and all
f :Hk \rightarrow \BbbR ,

(3.1) \scrR S2(f)\geq K\scrR S1(f).

This is the case if there exists, for every generator s \in S1, a constant K \prime (s)> 0 such
that

(3.2)
\sum 
x\in Hk

(f(x) - f(xs))2 \leq K \prime (s)
\sum 
x\in Hk

\sum 
t\in S2

(f(x) - f(xt))2

and that this constant K \prime (s) does not depend on k \in \BbbN . Since S2 is a set of generators
of \Gamma , any s\in S1 \subset \Gamma can be written in the form

s= t1t2 \cdot \cdot \cdot tn

with t1, . . . , tn \in S2. The same relation between the generators holds in each of the
quotientsHk, k \in \BbbN . We abbreviate sj = t1 \cdot \cdot \cdot tj , so s0 = 1 and sn = s, and sj = sj - 1tj .
Let us now show (3.2):

\sum 
x\in Hk

(f(x) - f(xs))2 =
\sum 
x\in Hk

\Bigl( n\sum 
j=1

(f(xsj - 1) - f(xsj))
\Bigr) 2

\leq n
\sum 
x\in Hk

n\sum 
j=1

\bigl( 
f(xsj - 1) - f(xsj - 1tj)

\bigr) 2
= n

\sum 
y\in Hk

n\sum 
j=1

(f(y) - f(ytj))
2

\leq n2
\sum 
y\in Hk

\sum 
t\in S2

(f(y) - f(yt))2.

This shows (3.2) with K \prime (s) = n2, where n is the length of a word in S2 expressing s.
Let us finally show (3.1):

\scrR S1(f) =

\sum 
s\in S1

\sum 
x\in Hk

(f(x) - f(xs))2

2
\sum 

x\in Hk
f(x)2

\leq 
\sum 

s\in S1
K \prime (s)

\sum 
x\in Hk

\sum 
t\in S2

(f(x) - f(xt))2

2
\sum 

x\in Hk
f(x)2

\leq 
\Bigl( \sum 

s\in S1

K \prime (s)
\Bigr) \sum 

x\in Hk

\sum 
t\in S2

(f(x) - f(xt))2

2
\sum 

x\in Hk
f(x)2

=
\Bigl( \sum 

s\in S1

K \prime (s)
\Bigr) 
\scrR S2

(f).

This implies that (3.1) holds with K = (
\sum 

s\in S1
K \prime (s)) - 1.

3.2. Unbounded torsion order in congruence quotients. Let \Gamma be a group,
and let R be a ring. Let GLn(R) denote the general linear group of n\times n matrices
with entries in R and whose determinant is a unit in R. A representation of \Gamma with
coefficients in R of dimension n is a group homomorphism

\rho : \Gamma \rightarrow GLn(R),
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 427

i.e., \rho (g1 \cdot g2) = \rho (g1) \cdot \rho (g2) for all g1, g2 \in \Gamma . The representation \rho is said to be faithful
if \rho is injective.

The ring \BbbF p[[t]] is the ring of formal power series in the variable t and coefficients
in the finite field \BbbF p of p elements. Truncating a formal power series f(t) =

\sum 
k\geq 0 akt

k

at order ti+1, that is, mapping it to

i\sum 
k=0

akt
k + (ti+1)\in \BbbF p[t]/(t

i+1),

can be understood as a ring homomorphism

\pi i : \BbbF p[[t]]\rightarrow \BbbF p[[t]]/(t
i+1) = \BbbF p[t]/(t

i+1).

A group is said to be torsion-free if all nontrivial elements have infinite order.

Lemma 3.2. Let \Gamma be an infinite, torsion-free group, and let

\rho : \Gamma \rightarrow GLn(\BbbF p[[t]])

be a faithful representation. For any i\geq 0 let \Gamma i be the finite group which is the image
of the composition

\Gamma 
\rho  - \rightarrow GLn(\BbbF p[[t]])

\pi i - \rightarrow GLn(\BbbF p[t]/(t
i+1))

and we denote by \psi i = \pi i \circ \rho : \Gamma \rightarrow \Gamma i the corresponding surjective map from \Gamma to \Gamma i.
Then for g \in \Gamma a nontrivial element, the order of \psi i(g) in \Gamma i tends to infinity as

i increases.

Proof. We argue by contradiction. Note that the orders of \psi i(g) are monotone in
i. If N is an upper bound for the orders of \psi i(g) for all i, then with \ell =N ! we have
\psi i(g

\ell ) = \psi i(g)
\ell = 1 for all i. Since \rho (g\ell ) is described formally to arbitrary precision

by \psi i(g
\ell ) = 1, we conclude that \rho (g\ell ) = 1. Because \rho is faithful, it follows that g\ell = 1.

Moreover, as \Gamma is torsion-free, we conclude g= 1, a contradiction.

3.3. Quartic Cayley graph expanders of 3-groups. Let us begin with
the least complex example underlying our construction of Cayley graph expanders,
namely, a group \Gamma generated by a1, a2, a3, a4 subject to relations

a1a3a1a4, a1a
 - 1
3 a2a

 - 1
3 , a1a

 - 1
4 a - 1

2 a - 1
4 , a2a3a2a

 - 1
4 .

The group \Gamma agrees with the group \Gamma 2 on page 457 of [85], where the correspondence
is a1 = g0, a2 = g2, a3 = g3, a4 = g1. The group \Gamma can be obtained as the group \Gamma 3;0,1

described in section 3.4 (a particular case of the group \Gamma M,\delta of [81, section 2.8] for
q = 3) by means of the identification \Gamma \sim = \Gamma 3;0,1 via a1 \mapsto \rightarrow a0, a2 \mapsto \rightarrow a2, a3 \mapsto \rightarrow b - 1

3 , and
a4 \mapsto \rightarrow b - 1

1 . It was shown by Stix and Vdovina in [85], that this group is a quaternionic
lattice. The group \Gamma is torsion-free by [85, Theorem 30].

Consider the function field \BbbF 3(x) over the finite field \BbbF 3 in one variable x. Using
computer algebra, it is easy to verify that the following assignments give a well-defined
representation \Psi : \Gamma \rightarrow GL3(\BbbF 3(x)):
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428 PEYERIMHOFF ET AL.

\Psi (a1) =

\left(  1
x 1 + 1

x  - x+ 1 - 1
x

 - 1
x  - 1

x  - x+ 1
x

 - 1
x 1 - 1

x x+ 1+ 1
x

\right)  ,(3.3)

\Psi (a2) =

\left(  1
x  - x+ 1  - x3  - x2  - x
0 1  - x2 + x
0 0 x

\right)  ,

\Psi (a3) =

\left(  0 0 x2 + 1
0  - 1  - x - 1

1
x2+1

x+1
x2+1  - 1 + x

x2+1

\right)  ,

\Psi (a4) =

\left(  2x
x2+1  - 1  - x - 1

x2+1 x2  - x+ 1 - x
x2+1

2x+1
x2+1

2x - 1
x2+1

2x+1
x2+1  - x - 1

1
x2+1

2x
x2+1

1
x2+1  - 1

\right)  .

In fact, all matrices \Psi (ai) for i= 1, . . . ,4 have determinant 1.
The denominators of the matrix entries are nonzero at x = 1. Therefore we can

substitute x= 1+ t and expand the matrix entries, which are now rational functions
in t, as formal power series in \BbbF 3[[t]].

The determinant is still 1, so that the resulting matrices are invertible as matrices
with values in \BbbF 3[[t]]. We thus obtain a representation

\widetilde \Psi : \Gamma \rightarrow GL3(\BbbF 3[[t]]).

Lemma 3.3. The group homomorphism \widetilde \Psi : \Gamma \rightarrow GL3(\BbbF 3[[t]]) given above is in-
jective and defines a faithful representation of \Gamma .

Proof. Because \widetilde \Psi (a2) agrees with \Psi (a2) under the necessary identifications, it
has the same order, which is visibly infinite (due to the upper triangular shape and
the entry x on the diagonal). Therefore \widetilde \Psi has infinite image.

The group \Gamma is an arithmetic lattice in a group of rank 2 by construction in
[85]. By [62], therefore, all homomorphic images of \Gamma are finite, or the kernel of the
homomorphism is finite. As \widetilde \Psi (\Gamma ) is infinite, it follows that the kernel of \widetilde \Psi is finite.
But \Gamma is torsion-free; hence all finite subgroups are trivial, and a trivial kernel means
that \widetilde \Psi is faithful.

As in Lemma 3.2 we consider the truncated representations up to orders ti+1 and
higher,

\widetilde \Psi i : \Gamma 
\widetilde \Psi  - \rightarrow GL3(\BbbF 3[[t]])

\pi i - \rightarrow GL3(\BbbF 3[t]/(t
i+1)),

and denote the image by \Gamma i := \widetilde \Psi i(\Gamma ).

Remark 3.4. As an alternative to the proof of Lemma 3.3 one may observe that
\Gamma is a lattice in a quaternion algebra D over a field K (or rather an arithmetic lattice
in D\times /K\times ) that is split by \BbbF 3(x) (as an extension of K). The homomorphism \Psi is
nothing but the one induced from D acting on the 3-dimensional purely imaginary
quaternions in D by conjugation. It follows that \Gamma acts faithfully since D\times /K\times acts
faithfully.

More importantly, it follows from this construction that the truncated homomor-
phisms \Gamma \rightarrow \Gamma i are finite congruence quotients of \Gamma .

Lemma 3.5. The finite groups \Gamma i are 3-groups: the order of \Gamma i is a power of 3.
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Proof. We denote by id3 the 3 \times 3 unit matrix. Forgetting the term of order
ti yields a group homomorphism \Gamma i \rightarrow \Gamma i - 1. Its kernel is naturally a subgroup of
the additive group M3(\BbbF 3) of 3\times 3 matrices with coefficients in \BbbF 3, hence a 3-group.
Indeed, the elements in ker(\Gamma i \rightarrow \Gamma i - 1) have the form id3 + Ati for an A \in M3(\BbbF 3)
and the identity matrix id3. The assignment id3 + Ati \mapsto \rightarrow A is an injective group
homomorphism ker(\Gamma i \rightarrow \Gamma i - 1)\rightarrow M3(\BbbF 3) because

(id3 +Ati)(id3 +Bti) = id3 + (A+B)ti \in \Gamma i.

It remains to prove the claim for i= 0, the leading constant term, and to conclude
by induction thanks to Lagrange's theorem on group orders.

For i = 0, we simply plug in t = 0 or, what is the same, x = 1, into (3.3) to get
formulas for \widetilde \Psi 0 : \Gamma \rightarrow \Gamma 0 \subseteq GL3(\BbbF 3) as follows:

\widetilde \Psi 0(a1) =

\left(  1  - 1  - 1
 - 1  - 1 0
 - 1 0 0

\right)  , \widetilde \Psi 0(a2) =

\left(  1 0 0
0 1 0
0 0 1

\right)  ,

\widetilde \Psi 0(a3) = \widetilde \Psi 0(a4) =

\left(  0 0  - 1
0  - 1 1

 - 1 1 1

\right)  ,

which generate a cyclic group of order 3, namely, \Gamma 0.

Remark 3.6. In fact, the kernel Ni =ker(\widetilde \Psi i : \Gamma \rightarrow \Gamma i) is by construction described
by congruences modulo ti+1, and---unraveling the definition of [81, 85]---we see that
Ni is a congruence subgroup of the lattice \Gamma . There is a corresponding infinite series
of square complexes Pi, the quotient of the product of trees T4 \times T4 by Ni, with
the number of vertices being a power of 3. Indeed, the 3-group \Gamma i = \Gamma /Ni acts
simply transitively on the vertices of Pi. The 1-skeleton of Pi is the Cayley graph
\~Gi = \scrC (\Gamma i, Si) for Si the image in \Gamma i of the set of generators \{ a\pm 1

1 , a\pm 1
2 , a\pm 1

3 , a\pm 1
4 \} of \Gamma 

as considered in [81, 85].

Theorem 3.7. The quaternionic lattice \Gamma 2 of page 457 of [85], introduced above
as \Gamma , is an infinite group with two generators x0, x1 and an infinite sequence \{ Ni\} i\in \BbbN 
of normal subgroups such that the following are true:

1. The indices [\Gamma :Ni] = ni are powers of 3.
2. Let v0 = x0Ni (resp., v1 = x1Ni) be the image of the generator x0 (resp., x1)

under the quotient map \Gamma \rightarrow \Gamma i := \Gamma /Ni. The orders of the four subgroups H
1
i ,

H2
i , H

3
i , H

4
i of \Gamma i, generated by v0, v1, v

 - 1
1 v0, v1v0, respectively, converge to

infinity as i increases.
3. There exists a positive constant c > 0 such that the set \scrG = \{ G1,G2, . . .\} of

Cayley graphs Gi = \scrC (\Gamma i,\{ v\pm 1
0 , v\pm 1

1 \} ) is a family of (ni,4, c)-expanders.

Proof. The generators are the elements x0 = a2 and x1 = a3 of the above. These
two elements generate \Gamma because the other defining generators can be written (using
the defining relations) as

a1 = a3a
 - 1
2 a3, a4 = a2a3a2.

The normal subgroups are the groups Ni = ker(\widetilde \Psi i) of the above. The indices [\Gamma :
Ni] = \#\Gamma i are powers of 3 due to Lemma 3.5. Lemma 3.2 shows the assertion on
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430 PEYERIMHOFF ET AL.

the asymptotic of the orders of the images of specific elements. In order to apply
this to v0, v1, v

 - 1
1 v0, and v1v0 we must show that x0, x1, x

 - 1
1 x0, and x1x0 are all

nontrivial. Consider the homomorphism \Gamma \rightarrow \BbbZ /2\BbbZ \times \BbbZ /2\BbbZ given by counting modulo
2 the number of even and odd indexed ai occurring in a word representing a group
element of \Gamma . Then x0, x1, x

 - 1
1 x0, and x1x0 all have nontrivial image: (1,0), (0,1),

(1,1), and (1,1), respectively; hence these elements are nontrivial.
Our next aim is to prove the expander property of the graphs Gi. In order to do

so, we first consider the Cayley graphs \~Gi = \scrC (\Gamma i, Si) for the larger set of generators Si

that is the image in \Gamma i of the set of generators \{ a\pm 1
1 , a\pm 1

2 , a\pm 1
3 , a\pm 1

4 \} of \Gamma . As recalled in
Remark 3.6, the graph \~Gi is the 1-skeleton of a square complex Pi = (T4\times T4)/Ni. As
explained in [81, section 6], there are two Hecke operators on functions on the vertices
V (Pi) of Pi, averaging functions over neighbors that differ in the first component
(Av,i with v: vertical neighbor) or, respectively, in the second component (Ah,i with
h: horizontal neighbor). Because the universal covering is a product of trees, these
Hecke operators commmute: Av,iAh,i = Ah,iAv,i. It follows that Av,i and Ah,i are
simultaneously diagonalizable. Therefore the spectrum of the adjacency operator A \~Gi

of \~Gi, which is

A \~Gi
=Av,i +Ah,i,

can be related to the spectrum of both Hecke operators. Eigenvalues of A \~Gi
are sums

of eigenvalues, one of each Hecke operator. By [81, Theorem 6.14] the square complex
Pi is Ramanujan (here it is crucial that Ni is a congruence subgroup), and thus the
eigenvalues of both Hecke operators satisfy a spectral gap (even a Ramanujan gap).
Using [81, Proposition 6.17] to bound the multiplicity of the extremal eigenvalues of
the Hecke operators, also a spectral gap is inherited by A \~Gi

(but now without the

optimal Ramanujan property). Therefore the graphs \~Gi form a family of Cayley graph
expanders (of valency 8 for 3-groups).

The result of section 3.1 shows that the Cayley graphs Gi = \scrC (\Gamma i,\{ v\pm 1
0 , v\pm 1

1 \} ) of
\Gamma i with respect to the generating set given by the images of \{ a\pm 2 , a

\pm 
3 \} in \Gamma i are still

a sequence of expander graphs (although with a different expansion constant). The
valency is now 4, and the vertex set has cardinality ni, a power of 3.

3.4. Explicit Cayley graphs p-expanders with p - 2 generators. We recall
the explicit description of the lattices from [81, section 2.8]. For details we refer to
loc. cit.

Let p \geq 2 be a prime number, and let \BbbF p2 be the field with p2 elements. Its
multiplicative group \BbbF \times 

p2 is cyclic, and we fix a generator \delta \in \BbbF \times 
p2 . We define for

k, j \in \BbbZ /(p2  - 1)\BbbZ such that k \not \equiv j (mod p - 1) the elements xk,j , yk,j \in \BbbZ /(p2  - 1)\BbbZ 
uniquely by

\delta xk,j = 1+ \delta j - k, \delta yk,j = 1+ \delta k - j .

(This is possible since \delta j - k \not = - 1.) We set further, in \BbbZ /(p2  - 1)\BbbZ ,

i(k, j) = j  - yk,j(p - 1), \ell (k, j) = k - xk,j(p - 1).

We now fix two elements \alpha \not = \beta \in \BbbZ /(p  - 1)\BbbZ , consider the reduction modulo p  - 1
given by

pr :\BbbZ /(p2  - 1)\BbbZ \rightarrow \BbbZ /(p - 1)\BbbZ ,
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and define (p + 1)-element sets K = pr - 1(\alpha ) and J = pr - 1(\beta ). Since p  - 1 divides
\mu = (p2  - 1)/2, the sets K and J are preserved under translation by \mu .

The group \Gamma p;\alpha ,\beta (the dependence on \delta is implicit) is defined by generators ak
for k \in K and bj for j \in J subject to the relations: for all k \in K and j \in J we have
akak+\mu = 1 and bjbj+\mu = 1 and

(3.4) akbja
 - 1
\ell (k,j)b

 - 1
i(k,j) = 1.

It was proven in [81] that \Gamma p;\alpha ,\beta is a quaternionic arithmetic lattice of rank 2 and
residually pro-p by congruence p-group quotients. Moreover, congruence quotients
yield Cayley graphs with respect to the given generators A= \{ ak;k \in K\} together with
B = \{ bj ; j \in J\} that form a sequence of expanders (as the 1-skeleton of 2-dimensional
Ramanujan expander complexes). The valency of these graphs is \#(K\cup J) = 2(p+1).

For the applications in this note we must reduce the number of essential generators
(not counting inverses).

Proposition 3.8. The group \Gamma p;\alpha ,\beta can be generated by (p + 3)/2 elements.
More precisely, half of the elements of B (omitting inverses) together with one a\in A
generate \Gamma p;\alpha ,\beta .

Proof. The relation (3.4) comes from the squares in the one vertex square complex
with complete bipartite link whose fundamental group is \Gamma p;\alpha ,\beta . It follows that for all
j \in J the map

\sigma j : K\rightarrow K, \sigma j(k) = \ell (k, j)

is bijective. The argument of [85, Proposition 35] works also for the groups \Gamma p;\alpha ,\beta and
shows that the group PB generated by all \sigma j for j \in J in the symmetric group on the
set K acts transitively on K. Since the relation (3.4) shows that

a\sigma j(k) = b - 1
i(k,j)akbj ,

a subgroup containing all b\in B will contain with any ak also the a
k
\prime for k\prime \in K in the

PB-orbit of k. By transitivity of PB on K this automatically involves all of A. This
proves the theorem.

Example 3.9. The following is an explicit example for the above construction for
p = 5 and \alpha = 0, \beta = 2 in \BbbZ /4\BbbZ . The group \Gamma 5;0,2 is generated by elements (indices
are to be considered modulo 24)

a0, a4, a8, b2, b6, b10

and 9 relations of length 4,

a0b2a0b10, a0b6a
 - 1
0 b - 1

6 , a0b
 - 1
2 a - 1

4 b - 1
2 , a0b

 - 1
10 a8b

 - 1
10 , a4b6a4b

 - 1
2 ,

a4b10a
 - 1
4 b - 1

10 , a4b
 - 1
6 a - 1

8 b - 1
6 , a8b2a

 - 1
8 b - 1

2 , a8b10a8b
 - 1
6 .

A direct inspection shows that \Gamma 5;0,2 can be generated by 2 elements, for example,
a0, b2.

Theorem 3.10. Let p \geq 3 be a prime number, and let d \geq 2 be an integer. We
assume that d\geq (p+ 3)/2 if p\geq 7.
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432 PEYERIMHOFF ET AL.

There are infinitely many finite p-groups \Gamma i with order tending to infinity and
generating sets Ti of cardinality d such that the Cayley graphs \scrC (\Gamma i, Ti) form a family
of expanders with number of vertices a power of p and valency 2d.

In particular, for p\geq 5 we may take d= p - 2.

Proof. We consider the groups constructed in [81, section 2.8] as recalled in section
3.4 with notation \Gamma p;\alpha ,\beta . By Proposition 3.8, these groups can be generated by (p+
3)/2 elements. Moreover, for p = 5 we take the group \Gamma 5;0,2 considered in Example
3.9, which can be generated by 2 elements. For p= 3, we take the 2-generated group
\Gamma 3,0,1 of Theorem 3.7. For any d as in the statement of the theorem, we may therefore
choose a set T of d generators of the respective infinity group \Gamma p;\alpha ,\beta (adding arbitrary
elements if necessary for values of d larger than the given minimal values).

If p\geq 7, then p - 2\geq (p+ 3)/2, and d= p - 2 is a possible choice. For p= 5, we
have p - 2\geq 2, so d= p - 2 is a valid choice for all p\geq 5.

It follows from [81, Proposition 2.22] that these groups \Gamma p;\alpha ,\beta are residually pro-
p with respect to a suitable infinite sequence of congruence subgroup quotients of
p-power order.

The standard generating sets A\cup B of \Gamma p;\alpha ,\beta yield for the sequence of congruence
quotients of \Gamma p;\alpha ,\beta that the corresponding Cayley graphs form a series of expanders
(as the 1-skeleton of 2-dimensional Ramanujan expander complexes); see [81, section
6]. Details of the transition to the 1-skeleton are as in the proof of Theorem 3.7.

Indeed, by the results of section 3.1, all these Cayley graphs of the finite congru-
ence p-group quotients of \Gamma p;\alpha ,\beta with respect to the alternative set T of d generators
are still expanders (but not necessarily Ramanujan). This proves the theorem.

Let us conclude this section by emphasizing that, in combination, Theorems 3.7
and 3.10 yield Main Theorem 3.

4. The color-preserving homomorphism basis. It turns out that the analy-
sis of the complexity of \#EDGESUB(\Phi ) is much easier if a colorful version of the prob-
lem is considered. For our hardness results, we then show that the colorful version
reduces to the uncolored version. To this end, recall that an H-coloring of a graph G
is a homomorphism from G to H and that a graph G is H-colored if G is equipped
with an H-coloring c. Recall further the implicitly defined \#E(H)-edge-coloring of
G. In the colorful version of \#EDGESUB(\Phi ), denoted by \#COLSUBSUB(\Phi ), the task
is to compute the cardinality of the set

\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G) := \{ A\subseteq E(G)| \#A=\#E(H)\wedge c(A) =E(H)\wedge \Phi (G[A]) = 1\} ,

and the parameter is k := \#E(H). In particular, we write \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H  \star )
for the function that maps an H-colored graph G to \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G). Note
that \#A = \#E(H) \wedge c(A) = E(H) implies that the A contains each of the \#E(H)
colors precisely once. Further, note that \Phi (G[A]) = 1 if and only if \Phi holds on the
(uncolored) graph G[A].

Each element A \in \sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G) induces a fracture \rho of H, where for
v \in V (H) two edges e, f \in EH(v) are in the same block of \rho v if and only if their
(unique) preimages \widehat e, \widehat f \in A under c :A\rightarrow E(H) are connected to the same endpoint
in c - 1(v)\subseteq V (G). From the construction, it immediately follows that G[A] and H\sharp \rho 
are canonically isomorphic as H-colored graphs, that is, G[A]\sim =H H\sharp \rho .

Our goal is to express \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H  \star ) as a linear combination of (color-
preserving) homomorphism counts from graphs only depending on \Phi and H. In
the case that H is a torus, we establish an explicit criterion sufficient for the term
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 433

\#\sansH \sanso \sansm \sansc \sansp (\circledcirc \circledcirc \circledcirc \ell \rightarrow \circledcirc \circledcirc \circledcirc \ell 
 \star ) to survive with a nonzero coefficient in this linear combination.

The existence of the linear combination is given by the following lemma.

Lemma 4.1. Let H denote a graph. We have

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H  \star ) =
\sum 

\sigma \in \scrL (\Phi ,H)

\sum 
\rho \geq \sigma 

\mu (\sigma ,\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H  \star ) ,

where the relation \leq and the M\"obius function \mu are over the lattice of fractures \scrL (H).

Proof. Let G denote an H-colored graph. We first partition the elements A
of the set \sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G) according to their induced fractures. Now, writing
\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G)[\sigma ] for the set of A inducing the fracture \sigma \in \scrL (H), we obtain

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G) =
\sum 

\sigma \in \scrL (\Phi ,H)

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G)[\sigma ] ,

since \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G)[\sigma ] = 0 for all \sigma /\in \scrL (\Phi ,H). From the fact that G[A]
is canonically isomorphic to H\sharp \sigma as an H-colored graph, for \sigma associated to A \in 
\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G), it follows that

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G)[\sigma ] =\#\sansE \sansm \sansb \sansc \sansp (H\sharp \sigma \rightarrow H G) .

Note that we are using that graphs of the form H\sharp \sigma can have no nontrivial automor-
phisms as H-colored graphs (since all edges must be fixed). It remains to show that

(4.1) \#\sansE \sansm \sansb \sansc \sansp (H\sharp \sigma \rightarrow H G) =
\sum 
\rho \geq \sigma 

\mu (\sigma ,\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G).

To this end, we establish the following zeta transformation, which should be considered
as a color-preserving version of the standard transformation in the uncolored case (see,
e.g., [60, section 5.2.3]).

Claim 4.2. For every fracture \sigma of H, we have

\#\sansH \sanso \sansm \sansc \sansp (H\sharp \sigma \rightarrow H G) =
\sum 
\rho \geq \sigma 

\#\sansE \sansm \sansb \sansc \sansp (H\sharp \rho \rightarrow H G).

Proof. Every color-preserving homomorphism \varphi fromH\sharp \sigma to G induces a fracture
\rho \geq \sigma , that is, \rho v is a coarsening of \sigma v for every v \in V (H). Indeed, recall that the
vertices of H\sharp \sigma over v \in V (H) correspond to the blocks B of the partition \sigma v of the
edges EH(v). Then the partition \rho v of EH(v) is obtained from \sigma v by joining those
blocks B,B\prime whose associated vertices in H\sharp \sigma map to the same vertex of G under \varphi .
We have that the subgraph of G given by the image of H\sharp \sigma under \varphi is canonically
isomorphic to H\sharp \rho as an H-colored graph.

Let us call two homomorphisms in \sansH \sanso \sansm \sansc \sansp (H\sharp \sigma \rightarrow H G) equivalent if they in-
duce the same fracture and write \sansH \sanso \sansm \sansc \sansp (H\sharp \sigma \rightarrow H G)[\rho ] for the equivalence class
of all homomorphisms inducing \rho . The claim then follows by partitioning the set
\sansH \sanso \sansm \sansc \sansp (H\sharp \sigma \rightarrow H G) into those equivalence classes and observing that

\#\sansH \sanso \sansm \sansc \sansp (H\sharp \sigma \rightarrow H G)[\rho ] =\#\sansE \sansm \sansb \sansc \sansp (H\sharp \rho \rightarrow H G) .

Equation (4.1) is now obtained by using M\"obius inversion (Theorem 2.7) on the
zeta transformation given by the previous claim. This concludes the proof.
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434 PEYERIMHOFF ET AL.

Let us now collect for the coefficient of the term \#\sansH \sanso \sansm \sansc \sansp (H\sharp \top \rightarrow H G), where
\top is the maximum fracture of H with respect to the ordering \leq . In particular,
each partition of \top only consists of a single block, and thus H\sharp \top \sim = H, where the
isomorphism is given by the H-coloring of H\sharp \top .

Corollary 4.3. Let \Phi denote a computable graph property, and let H denote a
graph. There is a unique computable function a\Phi ,H :\scrL (H)\rightarrow \BbbZ such that

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H  \star ) =
\sum 

\rho \in \scrL (H)

a\Phi ,H(\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H  \star ) .

For \rho =\top we have

a\Phi ,H(\top ) =
\sum 

\sigma \in \scrL (\Phi ,H)

\prod 
v\in V (H)

( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)!.

Here, | \sigma v| denotes the number of blocks of partition \sigma v.

Proof. The first claim follows immediately from Lemma 4.1 by collecting coeffi-
cients; note that \Phi and \mu are computable and that the image of \mu is a subset of \BbbZ .
For the second claim, we collect the coefficients of \#\sansH \sanso \sansm \sansc \sansp (H\sharp \top \rightarrow H \ast ) in Lemma
4.1 and obtain

a\Phi ,H(\top ) =
\sum 

\sigma \in \scrL (\Phi ,H)

\mu (\sigma ,\top ) .

Recall that \mu is the M\"obius function of \scrL (H) and that the latter is the product of
the partition lattices of NH(v) for each v \in V (H). Using that the M\"obius function is
multiplicative with respect to the product (see, for instance, [84, Proposition 3.8.2]),
and applying the explicit formula for the partition lattice (Theorem 2.8), we obtain
the second claim.

In the remainder of the paper, given \Phi and H, we refer to the function a\Phi ,H from
Corollary 4.3 as the coefficient function of \Phi and H.16

4.1. A colored version of complexity monotonicity. Our next goal is to
prove that computing a finite linear combination of color-preserving homomorphism
counts, as given by Corollary 4.3, is precisely as hard as computing its hardest term.
While the proof strategy follows the approach used in [25] and [32], we need to adapt
to the setting of color-preserving homomorphisms between fractured graphs.

We rely on the tensor product of H-colored graphs in the following way: let H
denote a fixed graph, and let G and F denote H-colored graphs with colorings cG
and cF . The color-preserving tensor product G\times H F has vertices \{ (x, y) \in V (G)\times 
V (F )| cG(x) = cF (y)\} , and two vertices (x, y) and (x\prime , y\prime ) are made adjacent in G\times HF
if (and only if) \{ x,x\prime \} \in E(G) and \{ y, y\prime \} \in E(F ). Observe that the graph G\times H F is
H-colored as well by the coloring (x, y) \mapsto \rightarrow cG(x) = cF (y).

Lemma 4.4. Let H denote a graph, and let F , G1 and G2 denote H-colored
graphs. We have

\#\sansH \sanso \sansm \sansc \sansp (F \rightarrow H G1 \times H G2) =\#\sansH \sanso \sansm \sansc \sansp (F \rightarrow H G1) \cdot \#\sansH \sanso \sansm \sansc \sansp (F \rightarrow H G2) .

16We note that the value a\Phi ,H(\top ) of the coefficient function on the largest partition \top is equal
to the indicator a(\Phi ,H) used in the proof outline in the introduction.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 435

Proof. The function

b :\sansH \sanso \sansm \sansc \sansp (F \rightarrow H G1)\times \sansH \sanso \sansm \sansc \sansp (F \rightarrow H G2)\rightarrow \sansH \sanso \sansm \sansc \sansp (F \rightarrow H G1 \times H G2),

b(\varphi ,\psi )(u) := (\varphi (u),\psi (u)) for u\in V (F )

is the canonical bijection.

The reduction for isolating terms with nonzero coefficient requires us to solve a
system of linear equations. For the definition of the corresponding matrix, we fix a
linear extension \preccurlyeq of the order \leq of the H-fractures. Recall that \leq is also the order
of the product of the partition lattices of the set E(v) for all v \in V (H). In particular,
\sigma \leq \rho if and only if \sigma v refines \rho v for all v \in V (H). As a consequence, we observe that
\rho \succ \sigma , that is, \neg (\rho \preccurlyeq \sigma ), implies the existence of a vertex v \in V (H) such that \rho v does
not refine \sigma v. Now let \scrM H denote the matrix whose columns and rows are associated
with the set of all H-fractures, ordered by \preccurlyeq , and whose entries are given by

\scrM H [\rho ,\sigma ] :=\#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H\sharp \sigma ) .

Lemma 4.5. For each H, the matrix \scrM H is upper triangular with entries 1 on
the diagonal.

Proof. Let us first consider the diagonal. We claim that \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H\sharp \rho ) =
1. Due to the trivial (identity) homomorphism we have \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H\sharp \rho ) \geq 1.
On the other hand, the canonical coloring H\sharp \rho \rightarrow H induces a bijection from the
edges of H\sharp \rho to the edges of H that preserves the coloring. Since a color-preserving
homomorphism H\sharp \rho \rightarrow H\sharp \rho must commute with this map, it must act as the identity
on all edges of H\sharp \rho and is thus equal to the identity.

It remains to prove that \scrM H [\rho ,\sigma ] = 0 for every \rho \succ \sigma . Recall that the latter
implies the existence of a vertex v \in V (H) such that \rho v does not refine \sigma v; that
is, there is a block B of \rho v which is not a subset of any block of \sigma v. Thus, there
are edges e, f \in B \subseteq EH(v) such that e, f are in different blocks of \sigma v. Identifying
E(H\sharp \sigma ) = E(H\sharp \rho ) = E(H) using the coloring, we see that e, f are adjacent to the
same vertex in H\sharp \rho (corresponding to the block B) but to different vertices in H\sharp \sigma .
This implies that there cannot be a color-preserving homomorphism \varphi :H\sharp \rho \rightarrow H\sharp \sigma 
since e, f being incident at vB in H\sharp \rho would imply that e = \varphi (e), f = \varphi (f) must be
incident at \varphi (vB) in H\sharp \sigma .

We are now able to prove a version of the complexity monotonicity principle which
is sufficient for the purposes in this work. In what follows, given a graph property \Phi ,
we write \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow  \star  \star ) for the function that expects as input a graph H and
an H-colored graph G, and outputs \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G).

Lemma 4.6. Let \Phi denote a computable graph property. Then there exists a deter-
ministic algorithm \BbbA which has oracle access to the function \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow  \star  \star )
and computes, given as input a graph H and an H-colored graph G, the numbers
\#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G) for every H-fracture \rho satisfying that a\Phi ,H(\rho ) \not = 0, where a\Phi ,H

is the coefficient function of \Phi and H.
Furthermore, there is a computable function f such that \BbbA runs in time f(| H| ) \cdot 

| G| O(1) and every posed oracle query ( \^H, \^G) satisfies \^H =H and | \^G| \leq f(| H| ) \cdot | G| .
Proof. Given H and G, we can obtain \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G\times H (H\sharp \sigma )) for all

H-fractures \sigma via access to the oracle. By Corollary 4.3 and Lemma 4.4, we have
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436 PEYERIMHOFF ET AL.

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G\times H (H\sharp \sigma ))

=
\sum 

\rho \in \scrL (H)

a\Phi ,H(\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G\times H (H\sharp \sigma ))

=
\sum 

\rho \in \scrL (H)

a\Phi ,H(\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H H\sharp \sigma ).

Observe that the latter yields a system of linear equations for the numbers

a\Phi ,H(\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G)

with matrix \scrM H which has full rank according to Lemma 4.5. Consequently \BbbA can
compute the number a\Phi ,H(\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G) for each H-fracture \rho . Therefore,
\#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G) can be computed whenever a\Phi ,H(\rho ) \not = 0.

Now observe that a\Phi ,H , which is computable, only depends on \Phi , which is fixed,
and H. Furthermore \scrL (H) and all H\sharp \rho only depend on H. Thus the computation of
\#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H H\sharp \sigma ) takes time only depending on H as well. Consequently, the
system of linear equations can be solved in time f \prime (| H| ) \cdot | G| O(1) for some computable
function f \prime . Furthermore, the size of G\times H (H\sharp \sigma ) is bounded by | H\sharp \sigma | \cdot | G| . Setting
f(| H| ) := max\{ f \prime (| H| ),max\sigma \in \scrL (H) | H\sharp \sigma | \} concludes the proof since each fractured
graph H\sharp \sigma has only \#E(H) many edges.

4.2. Intractability of counting homomorphisms from tori and ex-
panders. The final step of this section is to establish \#\sansW [\sansone ]-hardness of the (un-
colored) problem \#EDGESUB(\Phi ) whenever a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) \not = 0 for infinitely many \ell . Es-
sentially, we rely on the fact that tori have high treewidth and that the problem of
counting (color-preserving) homomorphisms from high-treewidth graphs is hard. We
can proceed similarly in the case of expanders, and due to the fact that expanders
have high treewidth and are sparse (see Fact 2.3), we even obtain an almost tight
conditional lower bound.

In both cases, we use complexity monotonicity, which yields hardness of the
(edge-)colorful version of \#EDGESUB(\Phi ). Consequently, we need to show that the
colorful version reduces to the uncolored version. This can be achieved by a standard
inclusion-exclusion argument.

Lemma 4.7. Let \Phi denote a computable graph property. There exists a determin-
istic algorithm \BbbA , equipped with oracle access to the function

(k, \^G) \mapsto \rightarrow \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow \^G) ,

which expects as input a graph H and an H-colored graph G and computes in time
2| E(H)| \cdot | G| O(1) the cardinality \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G). Furthermore, every oracle
query (k, \^G) posed by \BbbA satisfies k= | E(H)| and | \^G| \leq | G| .

Proof. Given H and an H-colored graph G, we write c : E(G) \rightarrow E(H) for the
induced edge-coloring of G. Given a set of edge-colors J \subseteq E(H), we write G \setminus J
for the graph obtained from G by deleting all edges e with c(e) \in J . Now recall
that

\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , | E(H)| \rightarrow G) = \{ A\subseteq E(G)| \#A= | E(H)| \wedge \Phi (G[A]) = 1\} and

\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G) = \{ A\subseteq E(G)| \#A= | E(H)| \wedge c(A) =E(H)\wedge \Phi (G[A]) = 1\} .
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 437

Next set k := | E(H)| ; then we have

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G)

=\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)

 - \#

\left(  \bigcup 
e\in E(H)

\{ A\in \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)| e /\in c(A)\} 

\right)  
=\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)

 - 
\sum 

\emptyset \not =J\subseteq E(H)

( - 1)| J| +1 \cdot \#

\Biggl( \bigcap 
e\in J

\{ A\in \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)| e /\in c(A)\} 

\Biggr) 
=\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)

 - 
\sum 

\emptyset \not =J\subseteq E(H)

( - 1)| J| +1 \cdot \#\{ A\in \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)| \forall e\in J : e /\in c(A)\} 

=\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)

 - 
\sum 

\emptyset \not =J\subseteq E(H)

( - 1)| J| +1 \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G \setminus J)

=
\sum 

J\subseteq E(H)

( - 1)| J| \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G \setminus J).

Note that the second equation is due to the inclusion-exclusion principle. We
conclude that the desired number \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi \rightarrow H G) can be computed using
2| E(H)| many oracle calls of the form \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , | E(H)| \rightarrow G \setminus J). The claim of the
lemma follows since | G \setminus J | \leq | G| .

For the formal statement of this section's main lemma, we define \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] as the
set of all \circledcirc \circledcirc \circledcirc \ell such that a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) \not = 0. Furthermore, given a family \scrG = \{ G1,G2, . . .\} of
(ni, d, c)-expanders, we write \scrH [\Phi ,\scrG ] for the set of all Gi such that a\Phi ,Gi

(\top ) \not = 0.

Lemma 4.8. Let \Phi denote a computable graph property, fix a rational c and an
integer d, and let \scrG = \{ G1,G2, . . .\} denote a family of (ni, d, c)-expanders. If at least
one of \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] and \scrH [\Phi ,\scrG ] is infinite, then \#COLSUBSUB(\Phi ) and \#EDGESUB(\Phi ) are
\#\sansW [\sansone ]-hard. Moreover, if \scrH [\Phi ,\scrG ] is infinite, then, assuming ETH, both problems
cannot be solved in time

f(k) \cdot | G| o(k/ logk)

for any function f .

Proof. We first consider the colored version \#COLSUBSUB(\Phi ).
We start with the case of \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] being infinite. If the latter is true, then \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ]

has unbounded treewidth since it contains graphs with arbitrary large grid minors
[74]. This allows us to reduce from the problem \#HOM(\scrH [\Phi ,\circledcirc \circledcirc \circledcirc ]) which is known
to be \#\sansW [\sansone ]-hard since \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] has unbounded treewidth [28]. It is convenient to
consider the following intermediate problem: given a graph H \in \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] and an H-
colored graph G with coloring c, in the problem \#CP  - HOM(\scrH [\Phi ,\circledcirc \circledcirc \circledcirc ]) the task is
to compute the number \#\sansc \sansp -\sansH \sanso \sansm (H\rightarrow G) of homomorphisms \varphi \in \sansH \sanso \sansm (H\rightarrow G) such
that c(\varphi (v)) = v for each vertex v of H. It is well known that \#HOM(\scrH ) reduces to
\#CP  - HOM(\scrH ) for every class of graphs \scrH ; see, for instance, [24, 31, 32, 77]---note
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438 PEYERIMHOFF ET AL.

that, in the latter, the problem is referred to as \#PartitionedSub(\scrH ). Thus we
have

(4.2) \#HOM(\scrH [\Phi ,\circledcirc \circledcirc \circledcirc ])\leq fpt
T \#CP  - HOM(\scrH [\Phi ,\circledcirc \circledcirc \circledcirc ]) .

Now observe that \#\sansc \sansp -\sansH \sanso \sansm (H \rightarrow G) = \#\sansH \sanso \sansm \sansc \sansp (H\sharp \top \rightarrow H G) for every graph
H and H-colored graph G, since H\sharp \top = H. By definition of \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ], we have that
a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) \not = 0 whenever \circledcirc \circledcirc \circledcirc \ell \in \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ]. Thus we can use complexity monotonicity
(Lemma 4.6) which yields the reduction

(4.3) \#CP  - HOM(\scrH [\Phi ,\circledcirc \circledcirc \circledcirc ])\leq fpt
T \#COLSUBSUB(\Phi ) .

Consequently, \#COLSUBSUB(\Phi ) is \#\sansW [\sansone ]-hard by (4.2)--(4.4) in combination with
\#\sansW [\sansone ]-hardness of \#HOM(\scrH [\Phi ,\circledcirc \circledcirc \circledcirc ]).

In the case of \scrH [\Phi ,\scrG ], we reduce from the homomorphism counting problem as
well and obtain \#\sansW [\sansone ]-hardness analogously. However, for the almost tight condi-
tional lower bound, we rely on a result of Marx [63] implying that for any class \scrH of
unbounded treewidth, the problem \#HOM(\scrH ) cannot be solved in time

f(| H| ) \cdot | G| o(\sanst \sansw (H)/ log \sanst \sansw (H))

for any function f , unless ETH fails.17 Let us use the aforementioned lower bound for
the case of \scrH =\scrH [\Phi ,\scrG ]. Observe that the reduction sequence from \#HOM(\scrH [\Phi ,\scrG ]) to
\#COLSUBSUB(\Phi ) as illustrated before only leads to a linear blow up of the parameter:
given an input (Gi,G) for which we wish to compute \#\sansH \sanso \sansm (Gi \rightarrow G), we only query
the oracle for \#COLSUBSUB(\Phi ) on instances (k,G\prime ) where k = \#E(Gi) and | G\prime | \leq 
f \prime \prime (\#E(Gi)) \cdot | G| for some function f \prime \prime . Since both \#E(Gi) and the treewidth of Gi

are linear in | V (Gi)| (see Fact 2.3), any algorithm that, for some function f \prime , solves
\#COLSUBSUB(\Phi ) in time

f \prime (k) \cdot | G\prime | o(k/ logk)

yields an algorithm for \#HOM(\scrH [\Phi ,\scrG ]), running in time

f(| Gi| ) \cdot | G| o(\sanst \sansw (Gi)/ log \sanst \sansw (Gi)) ,

for some function f (depending only on f \prime and f \prime \prime ), contradicting ETH by Marx's
lower bound.

Finally, we reduce the colored version to the uncolored version by Lemma 4.7 and
obtain

(4.4) \#COLSUBSUB(\Phi )\leq fpt
T \#EDGESUB(\Phi ) .

Again, this reduction is tight in the sense that the parameter does not increase by the
condition on the oracle queries in Lemma 4.7. Consequently, \#\sansW [\sansone ]-hardness and the
conditional lower bound hold for \#EDGESUB(\Phi ) as well.

Regarding the previous proof, observe that we cannot obtain a similar condi-
tional lower bound if only \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] is infinite, since in that case the parameter grows
quadratically: while \circledcirc \circledcirc \circledcirc \ell has treewidth O(\ell ), it has 2\ell 2 edges.

17Observe that this result follows only implicitly from [63], but we made it explicit in [79].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

29
.2

34
.7

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 439

In the next section, we will focus on analyzing the classes \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] and \scrH [\Phi ,\scrG ],
the latter for a variety of families of p-group Cayley graph expanders constructed
in section 3. More precisely, we will establish conditions on properties \Phi under
which those classes are infinite. The parameterized and fine-grained lower bounds
on exact counting will then be derived in section 6 as an immediate consequence of
Lemma 4.8.

5. Coefficients of tori and Cayley graph expanders. The previous section
allows us to establish hardness of \#EDGESUB(\Phi ) by the purely combinatorial prob-
lem of determining whether one of the sets \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] and \scrH [\Phi ,\scrG ], for some family of
expanders \scrG , is infinite. Still, this is a challenging combinatorial problem, and we
consider the treatment of the coefficients of the tori and Cayley graph expanders to
be our main technical contribution in this work.

Recall from Corollary 4.3 that the coefficient function of \Phi and H satisfies

a\Phi ,H(\top ) =
\sum 

\sigma \in \scrL (\Phi ,H)

\prod 
v\in V (H)

( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)! .

In the case that H satisfies certain symmetry properties, we prove that it suffices to
consider only those fractures in the previous sum that are fixed points under suitable
group actions. More formally, we obtain the desired symmetries from the structure
of the groups underlying the Cayley graph constructions for tori and expanders as
introduced in the subsequent subsections.

We start with general conditions on properties under which \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] and \scrH [\Phi ,\scrG ],
the latter for a family of 4-regular 2-group Cayley graph expanders, are infinite.

5.1. Tori and 2-group Cayley graph expanders.

5.1.1. Symmetries of the torus. Even though most (but not all) of our hard-
ness results rely on Cayley graph expanders, we start our presentation of the analysis
of the coefficient function with the toroidal grid (or just the ``torus""). Since the struc-
ture of the torus is much simpler than the Cayley graph expanders, the group action
on the fractures of the torus will be much easier to visualize. In particular, we hope
that the analysis of the torus provides the intuition for actions on our Cayley graph
expanders needed in the subsequent sections which generalize the case of the torus in
the natural way.

Formally, the torus is a simple Cayley graph given by the direct product of two
cyclic groups.

Definition 5.1 (the torus). Let \ell \geq 3 denote an integer. The torus, also called
the toroidal grid, \circledcirc \circledcirc \circledcirc \ell of size \ell is the Cayley graph of \BbbZ 2

\ell with generators (\pm 1,0), (0,\pm 1),
that is,

\circledcirc \circledcirc \circledcirc \ell := \scrC 
\bigl( 
\BbbZ 2
\ell ,\{ (1,0), ( - 1,0), (0,1), (0, - 1)\} 

\bigr) 
.

Equivalently, the vertices of \circledcirc \circledcirc \circledcirc \ell are \BbbZ 2
\ell and two vertices (x, y) and (x\prime , y\prime ) are

adjacent if and only if

x= x\prime and y\prime = y\pm 1 mod \ell , ory= y\prime and x\prime = x\pm 1 mod \ell .

Consult Figure 3 for a visualization.

In the following, for simplicity, we write + for (pointwise) addition modulo \ell . Our
goal is to understand the symmetries of \circledcirc \circledcirc \circledcirc \ell . Consider the following action of \BbbZ 2

\ell on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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440 PEYERIMHOFF ET AL.

Fig. 5. Each automorphism \varphi of H lifts to an automorphism \^\varphi of MH . The latter descends
to an isomorphism from H\sharp \rho to H\sharp \varphi (\rho ) for every fracture \rho of H.

the vertices of \circledcirc \circledcirc \circledcirc \ell . Let (i, j) \in \BbbZ 2
\ell , and let (x, y) \in V (\circledcirc \circledcirc \circledcirc \ell ). We set (i, j) \vdash (x, y) :=

(i, j) + (x, y). The following is immediate.

Fact 5.2. The action of \BbbZ 2
\ell on V (\circledcirc \circledcirc \circledcirc \ell ) is transitive. In particular, for every

(i, j)\in \BbbZ 2
\ell , the function (i, j) \vdash  \star is an automorphism of \circledcirc \circledcirc \circledcirc \ell .

The fact above allows us to consider the set \BbbZ 2
\ell of all (i, j)-``shifts"" as a subgroup

of the automorphism group of \circledcirc \circledcirc \circledcirc \ell . We remark that not all automorphisms are given
by such shifts, but for our arguments we will not need to consider the full group of
automorphisms.

Fractures of the torus. Recall that a fracture \rho of a graph H is a tuple \rho =
(\rho v)v\in V (H), where \rho v is a partition of the set EH(v) of edges of H incident to v. Now
given an automorphism \varphi :H\rightarrow H of H, it gives a bijection from the edges EH(v) at
v to the edges EH(\varphi (v)) at \varphi (v). Thus, given a fracture \rho of H, we obtain a fracture
\varphi (\rho ) of H such that two edges e1, e2 \in EH(\varphi (v)) are in the same block of \varphi (\rho )\varphi (v) if
and only if their preimages \varphi  - 1(e1),\varphi 

 - 1(e2)\in EH(v) are in the same block of \rho v.
We claim that that the two fractured graphsH\sharp \rho \sim =H\sharp \varphi (\rho ) are isomorphic. To see

this, note that the automorphism \varphi :H\rightarrow H lifts to an automorphism \widehat \varphi :MH \rightarrow MH

of the matching MH associated to H, where \widehat \varphi sends the vertex ve of MH to \varphi (v)\varphi (e).
The map \widehat \varphi sends the equivalence relation on MH associated to \rho (with quotient
H\sharp \rho ) to the equivalence relation associated to \varphi (\rho ) (with quotient H\sharp \varphi (\rho )). Thus\widehat \varphi : MH \rightarrow MH descends to an isomorphism H\sharp \rho \rightarrow H\sharp \varphi (\rho ) fitting in a diagram of
graph homomorphisms, depicted in Figure 5.

Given a finite group G acting on the graph H by graph isomorphisms \varphi g :H\rightarrow H
(for g \in G), we obtain an action \Vdash of G on the lattice \scrL (H) of fractures on H, where
g \in G acts by g \Vdash \rho = \varphi g(\rho ). Clearly, this action respects the order of the lattice
(\rho \leq \rho \prime if and only if g \Vdash \rho \leq g \Vdash \rho \prime ), and as seen above, for any \widetilde \rho in the G-orbit of \rho 
we have H\sharp \widetilde \rho \sim =H\sharp \rho .

We now return to the special case when H =\circledcirc \circledcirc \circledcirc \ell is a torus. Here, given a vertex
(i, j) of H it is convenient to identify the edges incident to the vertex (connecting it
to (i, j + 1), (i, j  - 1), (i - 1, j), and (i+ 1, j)) with the four ``directions"" \vartriangle ,\triangledown ,\vartriangleleft , and
\vartriangleright , respectively, so that each \rho (i,j) is a partition of the set \{ \vartriangle ,\triangledown ,\vartriangleleft ,\vartriangleright \} .

We have seen that \BbbZ 2
\ell acts transitively on the vertices of \circledcirc \circledcirc \circledcirc \ell in such a way that

every element of \BbbZ 2
\ell induces an automorphism of \circledcirc \circledcirc \circledcirc \ell . Thus, by the discussion above,

we obtain an action \Vdash of \BbbZ 2
\ell on the set of fractures of \circledcirc \circledcirc \circledcirc \ell . Let us make this action

explicit: (i, j)\Vdash \rho := \^\rho , where \^\rho 
((i,j)\vdash (i\prime ,j\prime )) = \rho 

(i
\prime 
,j
\prime 
)
for all (i\prime , j\prime )\in \BbbZ 2

\ell .

Analysis of the fixed points. We proceed with the fixed points of the action \Vdash of
\BbbZ 2
\ell on the fractures\circledcirc \circledcirc \circledcirc \ell . Since this action consists of (all possible) (i, j)-shifts, the fixed

points are precisely those fractures \rho for which all partitions \rho (i,j) are equal---recall
that we assumed every \rho (i,j) to be a partition of \{ \vartriangle ,\triangledown ,\vartriangleleft ,\vartriangleright \} . Fortunately, there are
only 15 partitions of the four-element set, and thus we can analyze the fixed points by
hand. Indeed, one special case of our main result, as well as the classification of the
parameterized Tutte polynomial, relies on the understanding of all of those 15 fixed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 441

Fig. 6. The 15 fixed points of the action \Vdash of \BbbZ 2
\ell on the fractures of \circledcirc \circledcirc \circledcirc \ell . Vertices in the

fractured graphs that correspond to the same vertex in the original graph are encircled with a dashed
line; the corresponding fixed point is denoted below its graphical representation.

points. However, while there are 15 fixed points \rho , we can group those into 7 types
according to the isomorphism class of \circledcirc \circledcirc \circledcirc \ell \sharp \rho ; an illustration of all fixed points is given
in Figure 6.

Observation 5.3. The fixed points of the action of \BbbZ 2
\ell on the fractures of \circledcirc \circledcirc \circledcirc \ell are

as follows.
\bfsansM \bfsansa \bfsanst \bfsansc \bfsansh \bfsansi \bfsansn \bfsansg : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim =M2\ell 2 , the matching of size 2\ell 2.

1. \rho (i,j) = \{ \{ \vartriangle \} ,\{ \triangledown \} ,\{ \vartriangleleft \} ,\{ \vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell , that is, \rho =\bot .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\bfsansM \bfsansa \bfsanst \bfsansc \bfsansh \bfsansi \bfsansn \bfsansg \bfsansa \bfsansn \bfsansd \bfsansc \bfsansy \bfsansc \bfsansl \bfsanse \bfsanss : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = M\ell 2 + \ell C\ell , the union of a matching of size \ell 2 and \ell 
disjoint cycles of length \ell .

2. \rho (i,j) = \{ \{ \vartriangle ,\triangledown \} ,\{ \vartriangleleft \} ,\{ \vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell .

3. \rho (i,j) = \{ \{ \vartriangle \} ,\{ \triangledown \} ,\{ \vartriangleleft ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell .

\bfsansW \bfsanse \bfsansd \bfsansg \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = \ell 2P2, the union of \ell 2 disjoint paths of length 2.
4. \rho (i,j) = \{ \{ \vartriangle ,\vartriangleright \} ,\{ \triangledown \} ,\{ \vartriangleleft \} \} for all (i, j)\in \BbbZ 2

\ell .
5. \rho (i,j) = \{ \{ \vartriangle ,\vartriangleleft \} ,\{ \triangledown \} ,\{ \vartriangleright \} \} for all (i, j)\in \BbbZ 2

\ell .
6. \rho (i,j) = \{ \{ \triangledown ,\vartriangleleft \} ,\{ \vartriangle \} ,\{ \vartriangleright \} \} for all (i, j)\in \BbbZ 2

\ell .
7. \rho (i,j) = \{ \{ \triangledown ,\vartriangleright \} ,\{ \vartriangle \} ,\{ \vartriangleleft \} \} for all (i, j)\in \BbbZ 2

\ell .
\bfsansC \bfsansy \bfsansc \bfsansl \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg \bfsansI : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = 2\ell C\ell , the union of 2\ell disjoint cycles of length \ell .

8. \rho (i,j) = \{ \{ \vartriangle ,\triangledown \} ,\{ \vartriangleleft ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell .

\bfsansC \bfsansy \bfsansc \bfsansl \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg \bfsansI \bfsansI : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = \ell C2\ell , the union of \ell disjoint cycles of length 2\ell .
9. \rho (i,j) = \{ \{ \vartriangle ,\vartriangleright \} ,\{ \triangledown ,\vartriangleleft \} \} for all (i, j)\in \BbbZ 2

\ell .
10. \rho (i,j) = \{ \{ \vartriangle ,\vartriangleleft \} ,\{ \triangledown ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2

\ell .
\bfsansS \bfsansu \bfsansn \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = \ell S\ell , the union of \ell suns of size \ell . Here a a sun of size \ell is
obtained from a cycle of length \ell by adding one ``dangling"" edge at every vertex of
the cycle.

11. \rho (i,j) = \{ \{ \vartriangle \} ,\{ \triangledown ,\vartriangleleft ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell .

12. \rho (i,j) = \{ \{ \triangledown \} ,\{ \vartriangle ,\vartriangleleft ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell .

13. \rho (i,j) = \{ \{ \vartriangleleft \} ,\{ \vartriangle ,\triangledown ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2
\ell .

14. \rho (i,j) = \{ \{ \vartriangleright \} ,\{ \vartriangle ,\vartriangleleft ,\triangledown \} \} for all (i, j)\in \BbbZ 2
\ell .

\bfsansT \bfsanso \bfsansr \bfsansu \bfsanss : \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim =\circledcirc \circledcirc \circledcirc \ell , the torus of size \ell .
15. \rho (i,j) = \{ \{ \vartriangle ,\triangledown ,\vartriangleleft ,\vartriangleright \} \} for all (i, j)\in \BbbZ 2

\ell , that is, \rho =\top .

While it might be surprising at first glance, we observe that, for many properties
\Phi , our analysis of the complexity of \#EDGESUB(\Phi ) only depends on which of the
previous 15 fixed points \rho satisfy that \circledcirc \circledcirc \circledcirc \ell \sharp \rho has the property \Phi .

5.1.2. Symmetries of Cayley graph expanders of 2-groups. For the sec-
ond family of Cayley graphs, we rely on an explicit construction of 4-regular Cayley
graph expanders due to a subset of the authors [71]. They are constructed from an
explicit infinite group \Gamma with generators x0, x1 and a sequence

\Gamma \supseteq N0 \supseteq N1 \supseteq N2 \supseteq \cdot \cdot \cdot 

of normal subgroups Ni of \Gamma such that the indices [\Gamma :Ni] = 2ti = ni are powers of 2
converging to infinity as i increases. Moreover, writing \scrK i for the quotient group \Gamma /Ni,
the set of Cayley graphs Gi := \scrC (\scrK i,\{ v\pm 1

0 , v\pm 1
1 \} ) is a family \scrG of (ni,4, c)-expanders

for some constant c > 0. Here, v0 = x0Ni and v1 = x1Ni are generators of \scrK i.
Similar to the case of the toroidal grid, we obtain an action of the group \scrK i on

the graph Gi, where an element g \in \scrK i acts on a vertex v \in V (Gi) =\scrK i sending it to
g \vdash v = gv, where the latter is the product of g and v in the group \scrK i. The action of
g defines a graph automorphism of Gi since the four edges \{ v, vv\pm 1

j \} (for j = 0,1) at

v are sent to the four edges \{ gv, gvv\pm 1
j \} incident to gv.

Fractures of the Cayley graph expanders. For v \in V (Gi)\sim =\scrK i, the edges adjacent
to v connect v to the vertices vs for s\in S and thus can be uniquely labeled18 by

18We use the same notation here as in the section about the torus grid\circledcirc \circledcirc \circledcirc \ell . Many of the intuitions
that we gained so far are still valid; for instance, the edge \vartriangleright going out from the vertex v to vv0 is
equal to the edge \vartriangleleft associated to the vertex vv0. On the other hand, we also need to be more careful
in our proofs, since, e.g., going along an edge \vartriangleright followed by \vartriangle does not necessarily go to the same
vertex as the path \vartriangle followed by \vartriangleright , since the group \scrK i is in general not abelian.
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\vartriangleright = \{ v, vv0\} , \vartriangleleft = \{ v, vv - 1
0 \} , \vartriangle = \{ v, vv1\} , \triangledown = \{ v, vv - 1

1 \} .

Thus a fracture \rho \in \scrL (Gi) is a collection \rho = (\rho v)v\in V (Gi) of partitions of the set
\{ \vartriangleright ,\vartriangleleft ,\vartriangle ,\triangledown \} .

Analysis of the fixed points. As seen before, the action \vdash of \scrK i on Gi induces
an action \Vdash of \scrK i on the lattice of partitions \scrL (Gi). A fracture \rho = (\rho v)v\in V (Gi) is
invariant under the action of \scrK i if and only if \rho v does not depend on v.

Later we want to compute the coefficient a\Phi ,Gi
(\top ) modulo two. As before we

observe that only fixed points of the action of \scrK i contribute, and additionally we
observe that only such fixed points \rho can contribute where \rho v has at most two blocks:
The contribution of \rho v to a\Phi ,Gi(\top ) contains a factor (| \rho v|  - 1)! which is even if \rho v has
at least 3 blocks (see Corollary 4.3). Thus in the following we consider fixed points
in which each partition has at most 2 blocks.

Lemma 5.4. Fix i \geq 2, and let us denote b0 = ord\scrK i(v0), b1 = ord\scrK i(v1), b2 =
ord\scrK i(v

 - 1
1 v0), b3 = ord\scrK i(v1v0), and aj = \#\scrK i/bj for j = 0, . . . ,3. Then the fixed

points \rho = (\rho v)v\in V (Gi) of the action of \scrK i on the fractures of Gi satisfying that all \rho v
have at most two blocks are as follows:
\bfsansC \bfsansy \bfsansc \bfsansl \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg \bfsansI :

1. \rho v = \{ \{ \vartriangle ,\triangledown \} ,\{ \vartriangleleft ,\vartriangleright \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a0 \cdot Cb0 + a1 \cdot Cb1 .
\bfsansC \bfsansy \bfsansc \bfsansl \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg \bfsansI \bfsansI :

2. \rho v = \{ \{ \vartriangle ,\vartriangleright \} ,\{ \triangledown ,\vartriangleleft \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a2 \cdot C2b2 .
3. \rho v = \{ \{ \vartriangle ,\vartriangleleft \} ,\{ \triangledown ,\vartriangleright \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a3 \cdot C2b3 .

\bfsansS \bfsansu \bfsansn \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg :

4. \rho v = \{ \{ \vartriangle \} ,\{ \triangledown ,\vartriangleleft ,\vartriangleright \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a0 \cdot Sb0 .
5. \rho v = \{ \{ \triangledown \} ,\{ \vartriangle ,\vartriangleleft ,\vartriangleright \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a0 \cdot Sb0 .
6. \rho v = \{ \{ \vartriangleleft \} ,\{ \vartriangle ,\triangledown ,\vartriangleright \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a1 \cdot Sb1 .
7. \rho v = \{ \{ \vartriangleright \} ,\{ \vartriangle ,\vartriangleleft ,\triangledown \} \} for all v \in V (Gi) and Gi\sharp \rho \sim = a1 \cdot Sb1 .

\bfsansF \bfsansu \bfsansl \bfsansl \bfsansg \bfsansr \bfsansa \bfsansp \bfsansh :

8. \rho v = \{ \{ \vartriangle ,\triangledown ,\vartriangleleft ,\vartriangleright \} \} for all v \in V (Gi), that is, \rho =\top and Gi\sharp \rho \sim =Gi.
Moreover, the numbers aj , bj are all powers of 2 and aj \geq 8.

Proof. In cases 1,2,3 it follows from the definition of the fractured graph that Gi\sharp \rho 
is 2-regular and thus a union of circles. In case 1 the first type of circles (associated
to the directions \vartriangleleft ,\vartriangleright ) is given by

(5.1) w0 \rightarrow w0v0 \rightarrow w0v
2
0 \rightarrow \cdot \cdot \cdot \rightarrow w0v

b0 - 1
0 \rightarrow w0v

b0
0 =w0

and thus isomorphic to Cb0 , with one circle for each w0 \in Ki/\langle v0\rangle giving a total number
of \#(\scrK i/\langle v0\rangle ) = \#\scrK i/bi = ai. Analogously we obtain a1 copies of Cb1 associated to
the directions \vartriangle ,\triangledown .

In case 2 the circles are of the form

w0 \rightarrow w0v
 - 1
1 \rightarrow w0v

 - 1
1 v0 \rightarrow w0v

 - 1
1 v0v

 - 1
1 \rightarrow w0(v

 - 1
1 v0)

2 \rightarrow \cdot \cdot \cdot 
\rightarrow w0(v

 - 1
1 v0)

b2 - 1v - 1
1 \rightarrow w0(v

 - 1
1 v0)

b2 =w0.

Thus they are isomorphic to C2b2 , and since the total number of edges of Gi\sharp \rho is equal
to \#E(Gi) = 4\#\scrK i/2 = 2\#\scrK i, the number of copies of C2b2 is given by 2\#\scrK i/(2b2) =
a2. Case 3 is treated analogously.

In case 4, the connected component of a vertex w0 \in Gi\sharp \rho associated to the
directions \triangledown ,\vartriangleleft ,\vartriangleright certainly contains the circle Cb0 given by (5.1), and in addition, each
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444 PEYERIMHOFF ET AL.

vertex w0v
\ell 
0 is connected to w0v

\ell 
0v

 - 1
1 , which forms a leaf of Gi\sharp \rho . Thus, these are the

only additional vertices connected to the circle, and thus the connected component of
each vertex in Gi\sharp \rho forms a sun Sb0 . The total number of suns is \#E(Gi)/\#E(Sb0) =
(2\#\scrK i)/(2b0) = a0. The cases 5,6,7 are treated completely analogously.

Finally, case 8 follows from the general property H\sharp \top \sim =H. The fact that aj , bj
divide the order of \#\scrK i, together with the property that \scrK i is a 2-group, implies that
aj , bj are powers of 2. Finally, we show the inequality aj \geq 8 by induction on i \geq 2.
Note that in the case i= 2 this can be checked by hand. For this one uses the explicit
description of the group law of \scrK 2 presented in [71, section 3] and verifies that the
orders bj of elements v0, v1, v

 - 1
1 v0, v1v0 are precisely 4, so that aj =\#\scrK 2/bj = 8.

To conclude the general case for i \geq 2, denote V i
0 = \langle v0\rangle \subseteq \scrK i the subgroup

generated by v0, so that a0 = [\scrK i : V
i
0 ]. Recalling the facts from the start of the

section, we saw that \scrK i = G/Ni with N2 \supseteq Ni for i \geq 3. Thus we have a surjective
group homomorphism

\varphi i :\scrK i =G/Ni \rightarrow G/N2 =\scrK 2 , xNi \mapsto \rightarrow xN2

sending V i
0 \subseteq \scrK i to V

2
0 \subseteq \scrK 2 (this follows since the generator v0 = x0Ni of V

i
0 maps to

the generator v0 = x0N2 of V 2
0 ). As mentioned above, we checked by hand that V 2

0

has index 8 in \scrK 2. Then by Lemma 5.5 we have that 8 = [\scrK 2 : V
2
0 ] = [\varphi (\scrK i) : \varphi (V

i
0 )]

divides [\scrK i : V
i
0 ] = ai and thus a0 \geq 8. The bounds for a1, a2, a3 work exactly the same

way.

Lemma 5.5. Let \Gamma ,\Gamma \prime denote finite groups and \varphi : \Gamma \rightarrow \Gamma \prime a group homomorphism.
Then, for any subgroup H \subseteq \Gamma we have that [\varphi (\Gamma ) :\varphi (H)] divides [\Gamma :H].

Proof. LetK =ker(\varphi ) andKH =K\cap H =ker(\varphi | H); then by the first isomorphism
theorem we have \varphi (\Gamma )\sim =\Gamma /K and \varphi (H)\sim =H/KH . Using this, we have

[\Gamma :H] =
\#\Gamma 

\#H
=

\#\Gamma /\#K

\#H/\#KH
\cdot \#K

\#KH
=

\#(\Gamma /K)

\#(H/KH)
\cdot \#K

\#KH
=

\#\varphi (\Gamma )

\#\varphi (H)
\cdot \#K

\#KH

= [\varphi (\Gamma ) :\varphi (H)] \cdot \#K

\#KH
.

But KH \subseteq K is a subgroup, so by Lagrange's theorem, the order of KH divides the
order of K, so that \#K/\#KH is an integer. Thus the above equality shows that
[\varphi (\Gamma ) :\varphi (H)] divides [\Gamma :H].

5.1.3. Analysis of the coefficient function via fixed points. While the
value a\Phi ,H(\top ) of the coefficient function seems to be very difficult to handle for
arbitrary graphs H, we now use our observations on the symmetries of the torus and
the Cayley graph expanders to prove that the coefficient function does not vanish
infinitely often under specific constraints on the behavior of \Phi on the fixed points
presented in the preceding section.

We start with the case of a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ), which, while being simple, turns out to be

required for one of the special cases in our main classification for minor-closed graph
properties.

Lemma 5.6. Let \ell denote a prime, and let \Phi denote a computable graph property.
We have that

a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ) = - 6\Phi (M2\ell 2) + 4\Phi (M\ell 2 + \ell C\ell ) + 8\Phi (\ell 2P2)

 - \Phi (2\ell C\ell ) - 2\Phi (\ell C2\ell ) - 4\Phi (\ell S\ell ) +\Phi (\circledcirc \circledcirc \circledcirc \ell ) mod \ell .
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Proof. By Corollary 4.3 we have

a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ) =

\sum 
\sigma \in \scrL (\Phi ,\circledcirc \circledcirc \circledcirc \ell )

\prod 
v\in V (\circledcirc \circledcirc \circledcirc \ell )

( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)!.

Setting f(\sigma ) :=
\prod 

v\in V (\circledcirc \circledcirc \circledcirc \ell )
( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)!, this rewrites to

a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ) =

\sum 
\sigma \in \scrL (\Phi ,\circledcirc \circledcirc \circledcirc \ell )

f(\sigma ) .

We now use the action \Vdash of \BbbZ 2
\ell on the subset \scrL (\Phi ,\circledcirc \circledcirc \circledcirc \ell ) of \scrL (\circledcirc \circledcirc \circledcirc \ell ), given by permuting

the elements of a fracture \rho according to the coordinate shift induced by an element
(i, j) \in \BbbZ 2

\ell . Restricting this action to \scrL (\Phi ,\circledcirc \circledcirc \circledcirc \ell ) is well defined since the action does
not change the isomorphism class19 of \circledcirc \circledcirc \circledcirc \ell \sharp \rho . In particular, we have that f(\sigma ) = f(\rho )
whenever \sigma and \rho are in the same orbit of the action. This allows us to rewrite as
follows; the sum is taken over all orbits [\sigma ] of the group action:

a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ) =

\sum 
[\sigma ]

\#[\sigma ] \cdot f(\sigma ).

Since \ell is a prime, the group order of \BbbZ 2
\ell is a power of \ell . As the size of every orbit

must divide the group order, we can ignore all orbits which are not fixed points, that
is, \sigma for which \#[\sigma ] \not = 1, if we take the sum modulo \ell . All 15 fixed points are explicitly
given in Observation 5.3. Let us now compute the coefficients of each collection of
fixed points that induce the same graph, up to isomorphism; we use Fermat's little
theorem---recall that \ell is a prime.
\bfsansM \bfsansa \bfsanst \bfsansc \bfsansh \bfsansi \bfsansn \bfsansg : One fixed point \rho satisfies \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim =M2\ell 2 . The contribution to a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) is
thus

1 \cdot f(\rho ) \cdot \Phi (M2\ell 2) = (( - 1)4 - 1 \cdot (4 - 1)!)\ell 
2

\Phi (M2\ell 2) = - 6\Phi (M2\ell 2) mod \ell .

\bfsansM \bfsansa \bfsanst \bfsansc \bfsansh \bfsansi \bfsansn \bfsansg \bfsansa \bfsansn \bfsansd \bfsansc \bfsansy \bfsansc \bfsansl \bfsanse \bfsanss : Two fixed points \rho satisfy \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim =M\ell 2 + \ell C\ell . The contribution
to a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) is thus

2 \cdot f(\rho ) \cdot \Phi (M\ell 2 + \ell C\ell ) = 2 \cdot (( - 1)3 - 1 \cdot (3 - 1)!)\ell 
2

\Phi (M\ell 2 + \ell C\ell ) = 4\Phi (M\ell 2 + \ell C\ell ) mod \ell .

\bfsansW \bfsanse \bfsansd \bfsansg \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg : Four fixed points \rho satisfy \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = \ell 2P2. The contribution to
a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) is thus

4 \cdot f(\rho ) \cdot \Phi (\ell 2P2) = 4 \cdot (( - 1)3 - 1 \cdot (3 - 1)!)\ell 
2

\Phi (\ell 2P2) = 8\Phi (\ell 2P2) mod \ell .

\bfsansC \bfsansy \bfsansc \bfsansl \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg \bfsansI : One fixed point \rho satisfies \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = 2\ell C\ell . The contribution to
a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) is thus

1 \cdot f(\rho ) \cdot \Phi (2\ell C\ell ) = (( - 1)2 - 1 \cdot (2 - 1)!)\ell 
2

\Phi (2\ell C\ell ) = - \Phi (2\ell C\ell ) mod \ell .

\bfsansC \bfsansy \bfsansc \bfsansl \bfsanse \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg \bfsansI \bfsansI : Two fixed points \rho satisfy \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = \ell C2\ell . The contribution to
a\Phi ,\circledcirc \circledcirc \circledcirc \ell 

(\top ) is thus

2 \cdot f(\rho ) \cdot \Phi (\ell C2\ell ) = 2 \cdot (( - 1)2 - 1 \cdot (2 - 1)!)\ell 
2

\Phi (\ell C2\ell ) = - 2\Phi (\ell C2\ell ) mod \ell .

19Note that while the action can change the isomorphism class as a \circledcirc \circledcirc \circledcirc \ell -colored graph, the prop-
erty \Phi only depends on the underlying uncolored graph, which is unchanged, and thus \scrL (\Phi ,\circledcirc \circledcirc \circledcirc \ell ) is
indeed invariant under the action.
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\bfsansS \bfsansu \bfsansn \bfsansp \bfsansa \bfsansc \bfsansk \bfsansi \bfsansn \bfsansg : Four fixed points \rho satisfy \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim = \ell S\ell . The contribution to a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ) is

thus

4 \cdot f(\rho ) \cdot \Phi (\ell S\ell ) = 4 \cdot (( - 1)2 - 1 \cdot (2 - 1)!)\ell 
2

\Phi (\ell S\ell ) = - 4\Phi (\ell S\ell ) mod \ell .

\bfsansT \bfsanso \bfsansr \bfsansu \bfsanss : One fixed point \rho satisfies \circledcirc \circledcirc \circledcirc \ell \sharp \rho \sim =\circledcirc \circledcirc \circledcirc \ell . The contribution to a\Phi ,\circledcirc \circledcirc \circledcirc \ell 
(\top ) is thus

1 \cdot f(\rho ) \cdot \Phi (\circledcirc \circledcirc \circledcirc \ell ) = (( - 1)1 - 1 \cdot (1 - 1)!)\ell 
2

\Phi (\circledcirc \circledcirc \circledcirc \ell ) =\Phi (\circledcirc \circledcirc \circledcirc \ell ) mod \ell .

Taking the sum of the previous terms (modulo \ell ) concludes the proof.

We proceed with a similar lemma for the Cayley graph expanders.

Lemma 5.7. Let \scrG = \{ G1,G2, . . .\} denote the family of Cayley graph expanders
given in subsection 5.1.2, and let \Phi denote a computable graph property. For i\geq 2 we
have

a\Phi ,Gi
(\top ) =\Phi (a0 \cdot Cb0 + a1 \cdot Cb1) +\Phi (a2 \cdot C2b2) +\Phi (a3 \cdot C2b3) +\Phi (Gi) mod 2 .

Moreover, the numbers aj , bj are all powers of 2 and aj \geq 8.

Proof. By Corollary 4.3 we have

a\Phi ,Gi
(\top ) =

\sum 
\rho \in \scrL (\Phi ,Gi)

\prod 
v\in V (Gi)

( - 1)| \rho v|  - 1 \cdot (| \rho v|  - 1)!.

Setting f(\rho ) :=
\prod 

v\in V (Gi)
( - 1)| \rho v|  - 1 \cdot (| \rho v|  - 1)!, this rewrites to

a\Phi ,Gi(\top ) =
\sum 

\rho \in \scrL (\Phi ,Gi)

f(\rho ) .

As before, the action of the 2-group \scrK i leaves the set \scrL (\Phi ,Gi) invariant, and modulo 2
the contribution of all elements \rho not fixed under \scrK i vanishes. Thus we only consider
the fixed points \rho = (\rho v)v\in V (Gi), for which \rho v is independent of v.

From the formula of f(\rho ) it is easy to see that f(\rho ) = 1 mod 2 if \rho has at most
two blocks and f(\rho ) = 0 mod 2 otherwise. Thus only the fractures \rho from cases 1
to 8 of Lemma 5.4 can give a nontrivial contribution to a\Phi ,Gi

(\top ). The fixed point \rho 
contributes if and only if \Phi (Gi\sharp \rho ) = 1. Finally, since the pairs of cases 4,5 and 6,7
lead to isomorphic graphs Gi\sharp \rho , any possible contributions from these cancel modulo
2, and we are left with the four summands above.

5.2. 3-group Cayley graph expanders and suitable graph properties.
The proof of our classification for minor-closed properties will require a separate
treatment of properties that are false on cycles. Formally, we consider suitable graph
properties; recall that Ck denotes the cycle of length k.

Definition 5.8. A graph property \Phi is called suitable if there exists k \geq 3 such
that \Phi (Ck) = 0.

Our goal in this subsection is to show that certain suitable and minor-closed graph
properties yield nonzero values of the coefficient function for the family of 4-regular
3-group Cayley graph expanders constructed in Theorem 3.7. This will later allow us
to infer hardness by Lemma 4.8.

For the formal statement, we call a path with two edges a wedge, and we define
a wedge packing of size k, denoted by kP2, as the graph by a (disjoint) union of k
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 447

wedges. Furthermore, we say that a graph property \Phi has bounded wedge-number if
there is a constant d such that \Phi (kP2) = 0 for each k\geq d. Otherwise, \Phi has unbounded
wedge-number .

Now, given a family \scrG = \{ G1,G2, . . .\} of expander graphs, we recall that \scrH [\Phi ,\scrG ]
denotes the set of all Gi such that a\Phi ,Gi

(\top ) \not = 0.

Lemma 5.9. Let \Phi be a minor-closed graph property. If \Phi is suitable and of
unbounded wedge-number, then there exists a family \scrG = \{ G1,G2, . . .\} of 4-regular
3-group Cayley graph expanders such that \scrH [\Phi ,\scrG ] is infinite.

Proof. We prove the lemma for the family \scrG = \{ G1,G2, . . .\} constructed in The-
orem 3.7.

Since \Phi is suitable, there exists t such that \Phi (Ct) = 0. Now choose any i such that
the orders of the groups H1

i , H
2
i , H

3
i , and H

4
i (from Theorem 3.7) are at least t. We

will show that for each such choice of i, the coefficient function a\Phi ,Gi
(\top ) is nonzero.

Since, by Theorem 3.7, the orders of the four groups are unbounded, the coefficient
function will then be nonzero infinitely often, proving that \scrG is an obstruction.

Recall that

a\Phi ,Gi
(\top ) =

\sum 
\sigma \in \scrL (\Phi ,Gi)

\prod 
v\in V (Gi)

( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)! .

Recall further that \scrL (\Phi ,Gi) is the set of fractures \rho of Gi such that Gi\sharp \rho satisfies \Phi .
The graph Gi is 4-regular, and every vertex v \in V (Gi) corresponds to a coset of

the quotient group \Gamma /Ni. Moreover, every v is adjacent to vv0, vv
 - 1
0 , vv1, and vv

 - 1
1 ,

where v0 and v1 are the generators of \Gamma /Ni. It will be convenient to label the edges
incident to v by

\vartriangleright = \{ v, vv0\} ,\vartriangleleft = \{ v, vv - 1
0 \} ,\vartriangle = \{ v, vv1\} ,\triangledown = \{ v, vv - 1

1 \} .

Thus a fracture of Gi is a tuple \rho = (\rho v)v\in V (Gi) of partitions of the set \{ \vartriangleright ,\vartriangleleft ,\vartriangle ,\triangledown \} .
Similarly as in section 5.1.2, we observe that the quotient group \Gamma /Ni acts on the

graph Gi by setting g \vdash v := gv for each g \in \Gamma /Ni and v \in V (Gi) = \Gamma /Ni. Moreover,
this action is transitive, and for each g \in \Gamma /Ni, the function g \vdash  \star is an automorphism
of Gi.

The action \vdash extends to an action \Vdash of \Gamma /Ni on the set \scrL (\Phi ,H): Given g \in \Gamma /Ni

and \rho \in \scrL (\Phi ,H), the fracture g \Vdash \rho is obtained from \rho by permuting its entries
according to the automorphism g \vdash  \star . Again, similarly as in section 5.1.2, this action
is well defined since H\sharp \rho is isomorphic to H\sharp (g \Vdash \rho ). Thus H\sharp (g \Vdash \rho ) satisfies \Phi if
and only if H\sharp \rho does. In particular, setting

f(\sigma ) :=
\prod 

v\in V (Gi)

( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)! ,

we have that f(\sigma ) = f(\rho ) whenever \sigma and \rho are in the same orbit.
This enables us to rewrite

a\Phi ,Gi(\top ) :=
\sum 
[\rho ]

\#[\rho ] \cdot f(\rho ) ,

where the sum is over all orbits [\rho ] of the action. We will proceed by considering
a\Phi ,Gi

(\top ) mod 3. Recall that the size of any orbit must divide the order of the group.
Since \Gamma /Ni is a 3-group, only orbits of size 1, i.e., fixed points, survive modulo 3. Due
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448 PEYERIMHOFF ET AL.

to transitivity of the group action on the vertices, the only fixed points are fractures
\rho for which all \rho v are equal. In what follows, we will thus abuse notation and write,
e.g., \rho = \{ \{ \vartriangleright ,\vartriangleleft \} ,\{ \vartriangle \} ,\{ \triangledown \} \} for the fixed point \rho in which \rho v = \{ \{ \vartriangleright ,\vartriangleleft \} ,\{ \vartriangle \} ,\{ \triangledown \} \} for
all v \in V (Gi).

We will analyze the contribution to a\Phi ,Gi
(\top ) (modulo 3) of any possible fixed

points in the subsequent series of claims.

Claim 5.10. If \vartriangleleft and \vartriangleright are in the same block of \rho , then \rho /\in \scrL (\Phi ,Gi).

Proof. If \vartriangleleft and \vartriangleright are in the same block, then Gi\sharp \rho contains the (simple) cycle
Cb given by

e\rightarrow v0 \rightarrow v20 \rightarrow \cdot \cdot \cdot \rightarrow vb - 1
0 \rightarrow e ,

where b is the order of v0 (and thus equal to the order of H1
i ). By our choice of i,

we have b \geq t. Consequently Ct \prec Gi\sharp \rho . Since \Phi (Ct) = 0 and \Phi is minor-closed, we
conclude that \Phi (Gi\sharp \rho ) = 0 and thus \rho /\in \scrL (\Phi ,Gi).

Claim 5.11. If \vartriangle and \triangledown are in the same block of \rho , then \rho /\in \scrL (\Phi ,Gi).

Proof. Analogously to the previous claim, substitute v0 by v1, and H
1
i by H2

i .

Claim 5.12. \{ \{ \vartriangle ,\vartriangleright \} ,\{ \triangledown ,\vartriangleleft \} \} /\in \scrL (\Phi ,Gi).

Proof. The fractured graph Gi\sharp \{ \{ \vartriangle ,\vartriangleright \} ,\{ \triangledown ,\vartriangleleft \} \} contains the (simple) cycle C2b

given by

e\rightarrow v - 1
1 \rightarrow v - 1

1 v0 \rightarrow v - 1
1 v0v

 - 1
1 \rightarrow (v - 1

1 v0)
2 \rightarrow \cdot \cdot \cdot \rightarrow (v - 1

1 v0)
b - 1 \rightarrow e ,

where b is the order of v - 1
1 v0 (and thus equal to the order of H3

i ). By our choice of i,
we have 2b\geq t. Consequently Ct \prec Gi\sharp \rho . Since \Phi (Ct) = 0 and \Phi is minor-closed, we
conclude that \Phi (Gi\sharp \rho ) = 0 and thus \rho /\in \scrL (\Phi ,Gi).

Claim 5.13. \{ \{ \vartriangle ,\vartriangleleft \} ,\{ \triangledown ,\vartriangleright \} \} /\in \scrL (\Phi ,Gi).

Proof. Analogously to the previous claim, substitute v - 1
1 by v1, and H3

i by
H4

i .

The only partitions of \{ \vartriangle ,\triangledown ,\vartriangleleft ,\vartriangleright \} not covered by one of the previous four claims
are the finest partition \bot = \{ \{ \vartriangle \} ,\{ \triangledown \} ,\{ \vartriangleleft \} ,\{ \vartriangleright \} \} , as well as the following four:

\bullet \rho 1 = \{ \{ \vartriangle ,\vartriangleleft \} ,\{ \triangledown \} ,\{ \vartriangleright \} \} ,
\bullet \rho 2 = \{ \{ \vartriangle ,\vartriangleright \} ,\{ \triangledown \} ,\{ \vartriangleleft \} \} ,
\bullet \rho 3 = \{ \{ \triangledown ,\vartriangleleft \} ,\{ \vartriangle \} ,\{ \vartriangleright \} \} ,
\bullet \rho 4 = \{ \{ \triangledown ,\vartriangleright \} ,\{ \vartriangle \} ,\{ \vartriangleleft \} \} .

First note that \bot \in \scrL (\Phi ,Gi) since \Phi has unbounded wedge-number, the fractured
graph of \bot is a matching, and every matching is a minor of a sufficiently large wedge
packing. However, the contribution from \bot still vanishes, since we have

f(\bot ) =
\prod 

v\in V (Gi)

( - 1)4 - 1 \cdot (4 - 1)! = 0 mod 3 .

Finally, we observe that Gi\sharp \rho j is a wedge packing for j = 1, . . . ,4. Since \Phi is
minor-closed and of unbounded wedge-number, we obtain that \Phi (Gi\sharp \rho j) = 1 and thus
Gi\sharp \rho j \in \scrL (\Phi ,Gi) for j = 1, . . . ,4. The latter implies

a\Phi ,Gi(\top ) = 4 \cdot 
\prod 

v\in V (Gi)

( - 1)3 - 1 \cdot (3 - 1)! = 2| V (Gi)| mod 3 ,

concluding the proof, since 2| V (Gi)| \not = 0 mod 3.
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5.3. p-group Cayley graph expanders and forests. While the property of
being a forest is minor-closed and will thus be covered by our classification for minor-
closed graph properties, we nevertheless treat this case separately. The reason for the
latter is the fact that the coefficient function of this property turns out to not vanish
modulo p for any prime p\geq 3, which has strong implications for modular counting as
discussed in section 6.3.

Since the case of 3-group Cayley graph expanders was covered in the previous
subsection---note that the property of being a forest is suitable and of unbounded
wedge-number---we focus on p\geq 5 in what follows.

The crucial ingredients of our proof are the p-group Cayley graph expanders
with p - 2 generators constructed in Theorem 3.10. In particular, the relatively low
degree of 2(p  - 2) provides us with additional control over their coefficient in the
color-prescribed homomorphism basis and ultimately allows us to establish that those
Cayley graph expanders have nonzero coefficients modulo p.

Let \Gamma be a finite group, let S0 \subseteq \Gamma be a set of m generators, and let S = \{ g\pm 1 : g \in 
S0\} \subseteq \Gamma be the associated symmetric set of 2m generators.20 Let G= \scrC (\Gamma , S) be the
associated Cayley graph. Similarly as in the proof of Lemma 5.9, we have an action
of \Gamma on G which extends to the fractures of G. We write \scrL (\Phi ,G)\Gamma for the set of fixed
points, i.e., fractures \sigma which are invariant under this action. As seen before, we can
interpret \sigma as a partition of the set S into blocks.

We begin with a general construction that will appear prominently later: Let
m \geq 1, and let S and S0 be as above. Then for any set partition \sigma of S, we define
a graph \scrH (\sigma ). It has a vertex wB for each block B of \sigma , and its set of (multi-)edges
E(\scrH (\sigma )) is given by

(5.2)
\Bigl\{ 
\{ wB ,wB

\prime 
\} : one multiedge for each g \in S0 such that g \in B,g - 1 \in B\prime 

\Bigr\} 
.

Note that we see \scrH (\sigma ) as a graph with possible loops and possible multiedges. In
particular, the graph \scrH (\sigma ) has preciselym edges. An alternative construction of \scrH (\sigma )
is by taking the matching Mm on the vertex set S defined by the involution s \mapsto \rightarrow s - 1

on S and identifying all vertices in the same block of the partition \sigma .
The following two lemmas will be needed below.

Lemma 5.14. Let m\geq 1, and let S be a finite set with 2m elements. Given any
(simple) graph T with m edges, the number of set partitions \sigma of S such that \scrH (\sigma ) is
isomorphic to T is given by 2mm!/| \sansA \sansu \sanst (T )| .

Proof. Given the data above, consider the two sets

M0 = \{ \sigma : \sigma partition of S such that \scrH (\sigma )\sim = T\} ,

M =
\Bigl\{ 
(\sigma ,\varphi ) : \sigma partition of S, and \varphi :\scrH (\sigma )

\sim  - \rightarrow T isomorphism
\Bigr\} 
.

In the lemma we want to count the number of elements of M0, but as an auxiliary set
we use M , which explicitly records the data of the isomorphism \varphi :\scrH (\sigma )

\sim  - \rightarrow T . First,
we note that the automorphism group \sansA \sansu \sanst (T ) acts on M , where \eta \in \sansA \sansu \sanst (T ) sends the
pair (\sigma ,\varphi ) to (\sigma , \eta \circ \varphi ). We claim that the action is free: since \varphi is an isomorphism,
the equality \eta \circ \varphi = \varphi implies that \eta is the identity. Thus the orbits of the action all
have cardinality | \sansA \sansu \sanst (T )| . On the other hand, we observe that the map

M \rightarrow M0, (\sigma ,\varphi ) \mapsto \rightarrow \sigma 

20In particular, we require that for g \in S0 we have g - 1 /\in S0.
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450 PEYERIMHOFF ET AL.

is surjective and the fibers of this map are precisely the orbits of the above action
of \sansA \sansu \sanst (T ). Indeed, the surjectivity is clear from the definition, and given (\sigma ,\varphi ) and
(\sigma ,\varphi \prime ) in the fiber of \sigma , we have that the automorphism \eta = \varphi \prime \circ \varphi  - 1 of T satisfies
\eta \cdot (\sigma ,\varphi ) = (\sigma ,\varphi \prime ). Combining these two observations we see

| M | = | M0| \cdot | \sansA \sansu \sanst (T )| .

Thus to conclude we need to show that | M | = 2mm!. To do this observe that we can
identify the elements of S with the vertices of the matching Mm in such a way that
there is an edge \{ g, g - 1\} for each g \in S0. Given a partition \sigma of S, note that we
can see \scrH (\sigma ) as the quotient of Mm obtained by identifying the vertices belonging
to the blocks of \sigma . In particular there is a canonical, well-defined quotient map
q\sigma : Mm \rightarrow \scrH (\sigma ). Let \sansS \sansu \sansr (Mm, T ) be the set of surjections from Mm to the graph
T (where we mean graph homomorphisms that are surjective, hence bijective, on the
set of edges). Then we have a map

G : \sansS \sansu \sansr (Mm, T )\rightarrow M, \psi \mapsto \rightarrow (\sigma = \{ \psi  - 1(w) :w \in V (T )\} ,\psi ) ,

where \psi : \scrH (\sigma ) \rightarrow T is the unique map such that \psi = \psi \circ q\sigma . A short computation
shows that G is a bijection with inverse given by

G - 1 :M \rightarrow \sansS \sansu \sansr (Mm, T ), (\sigma ,\varphi ) \mapsto \rightarrow \varphi \circ q\sigma .

Thus the proof is finished once we show that | \sansS \sansu \sansr (Mm, T )| = 2mm!. But this is easy to
see: to specify a surjection fromMm to T we exactly have to give a bijection from the
set of edges of Mm to the m edges of T (for which we have m! possibilities), and for
each of these edges we have two choices of orientation in our map (giving the factor
of 2m), because T is a simple graph.

Lemma 5.15. Given n\geq 1 we have

(5.3)
\sum 

T tree on
n vertices

1

| \sansA \sansu \sanst (T )| 
=
nn - 2

n!
,

where the sum goes over isomorphism classes of trees T .

Proof. For the proof we use Cayley's formula: the number of labeled trees \widehat T on
n vertices is given by nn - 2. The natural action of the symmetric group Sn on the n
vertices induces an action on the set of labeled trees \widehat T , and the stabilizer of such a
tree is equal to its automorphism group. Moreover, two labeled trees \widehat T1, \widehat T2 are in the
same orbit if and only if their underlying unlabeled graphs are isomorphic. Thus

nn - 2 =
\sum 

T tree on
nvertices

| Sn| 
| \sansA \sansu \sanst (T )| 

= n! \cdot 
\sum 

T tree on
nvertices

1

| \sansA \sansu \sanst (T )| 

by the orbit stabilizer theorem.

Now recall that G is the Cayley graph of \Gamma and S. We show that the fractured
graph G\sharp \sigma is a forest if and only if \scrH (\sigma ) is.

Lemma 5.16. There exists a natural graph homomorphism

(5.4) \Psi :G\sharp \sigma \rightarrow \scrH (\sigma ), vB \mapsto \rightarrow wB

which is surjective and a local isomorphism (i.e., the edges incident to vB map bijec-
tively to the edges at wB). Moreover, the graph G\sharp \sigma is a forest if and only if \scrH (\sigma )
is.
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Proof. First we show that \Psi is a well-defined graph homomorphism. Given v \in 
V (G) = \Gamma , the edges of G incident to v are given by \{ v, vg\} for g \in S. Then, given a
block B of \sigma , the edges incident to vB inside G\sharp \sigma are in bijection with B and given
by

\{ vB , (vg)B
\prime 
\} for g \in B,g - 1 \in B\prime .

Compared to the edges (5.2) of \scrH (\sigma ) we see that \Psi is not only a well-defined graph
homomorphism but in fact, as claimed above, a local isomorphism. Finally, the sur-
jectivity (both on vertices and edges) is also clear.

To see the last claim, first assume that G\sharp \sigma is not a forest, and let C be a a
circular walk without backtracking21 inside G\sharp \sigma . Under the homomorphism \Psi it
maps to a circular walk \Psi (C), and, since \Psi is a local isomorphism, there is again no
backtracking in \Psi (C). Thus, the graph \scrH (\sigma ) is not a forest.

Conversely let C \prime in \scrH (\sigma ) be a circular walk without backtracking starting at
some vertex wB . Choose a vertex vB0 in the preimage of wB under \Psi , and let C in
G\sharp \sigma be the unique lift of the walk C \prime . By this we mean that we start at vB0 , and for
the first edge taken by the path C \prime from wB , we take the unique edge incident to vB0
mapping to it. Iterating the process for the subsequent edges of C \prime we obtain the walk
C, which terminates at some vertex vB1 . The whole process can now itself be iterated:
we continue the walk C by concatenating it with the unique lift of C \prime starting this
time at vertex vB1 , terminating at vB2 , and we can continue from there. In this way
we can obtain an arbitrarily long walk in the graph G\sharp \sigma . But note that this walk
involves no backtracking (since the original walk C \prime in \scrH (\sigma ) had no backtracking and
\Psi is a local isomorphism). Thus, since the graph G\sharp \sigma is finite, the infinite walk must
contain a circular subwalk which, as seen before, involves no backtracking. Thus G\sharp \sigma 
is not a forest.

Proposition 5.17. Let p \geq 5 be a prime, \Gamma a finite p-group, and S0 \subseteq \Gamma a set
of q = p - 2 generators such that S = \{ g\pm 1 : g \in S0\} has 2q elements. Then for the
property \Phi of being a forest, we have a\Phi ,G(\top ) \not = 0 mod p.

Proof. Recall that the number a\Phi ,G(\top ) is given by

a\Phi ,G(\top ) =
\sum 

\sigma \in \scrL (\Phi ,G)

\prod 
v\in V (G)

( - 1)| \sigma v|  - 1 \cdot (| \sigma v|  - 1)! .

As before, when evaluating modulo p, we can reduce to the fractures \sigma \in \scrL (\Phi ,G)\Gamma 
invariant under the action of \Gamma . Such \sigma can be interpreted as partitions of the set S.
Rewriting the above formula we have

a\Phi ,G(\top )\equiv 
\sum 

\sigma \in \scrL (\Phi ,G)\Gamma 

\Bigl( 
( - 1)| \sigma |  - 1 \cdot (| \sigma |  - 1)!

\Bigr) | V (G)| 
mod p .

Since | V (G)| = | \Gamma | is a power of p by the assumption that \Gamma is a p-group, by Fermat's
little theorem we have u| V (G)| \equiv u mod p for all integers u so that we can remove the
exponent | V (G)| in the formula above. Looking at the index set of the sum, we note
that for \sigma \in \scrL (\Phi ,G)\Gamma with | \sigma | > p we have that p divides the term (| \sigma |  - 1)! inside

21A walk is a sequence of vertices w0,w1, . . . ,w\ell such that wi - 1 and wi are connected by an
edge for i= 1, . . . , \ell . We say that the walk is without backtracking if there does not exist an i such
that wi - 1 =wi+1.
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452 PEYERIMHOFF ET AL.

the sum, so that the corresponding summands vanish modulo p. On the other hand,
for the property \Phi of being a forest, we have by Lemma 5.16 that a partition \sigma of S
is contained in \scrL (\Phi ,G)\Gamma if and only if \scrH (\sigma ) is a forest.

The graph\scrH (\sigma ) has | S0| = p - 2 edges and | \sigma | many vertices, where, as seen above,
we can assume | \sigma | \leq p. If \scrH (\sigma ) is a forest, then the number of trees it contains (the
connected components) is its Euler characteristic | V (\scrH (\sigma ))|  - | E(\scrH (\sigma ))| = | \sigma |  - (p - 2).
For | \sigma | \leq p - 2, the graph \scrH (\sigma ) has at least as many edges as it has vertices, and thus
it can never be a forest. We are left with two cases:22

\bullet Case I : | V (\scrH (\sigma ))| = | \sigma | = p - 1, which forces \scrH (\sigma )\sim = T to be a tree T .
\bullet Case II : | V (\scrH (\sigma ))| = | \sigma | = p, which forces \scrH (\sigma ) \sim = T1 + T2 to be a union

of two trees T1, T2. We remark for later that, since the total number p of
vertices is odd, the two trees T1, T2 cannot be isomorphic (since one has odd
and one has even number of vertices). Therefore we have

(5.5) | \sansA \sansu \sanst (T1 + T2)| = | \sansA \sansu \sanst (T1)| \cdot | \sansA \sansu \sanst (T2)| .

Denote by \scrL I,\scrL II the set of partitions of S corresponding to Cases I, II above. Then
the current status of the calculation is that

a\Phi ,G(\top )\equiv 
\sum 

\sigma \in \scrL \mathrm{I}\sqcup \scrL \mathrm{I}\mathrm{I}

( - 1)| \sigma |  - 1 \cdot (| \sigma |  - 1)! mod p

\equiv 
\sum 
\sigma \in \scrL \mathrm{I}

( - 1)p - 2 \cdot (p - 2)! +
\sum 
\sigma \in \scrL \mathrm{I}\mathrm{I}

( - 1)p - 1 \cdot (p - 1)! mod p

\equiv  - | \scrL I|  - | \scrL II| mod p ,(5.6)

where we used that p is odd and, due to Wilson's theorem, we have

 - (p - 2)!\equiv (p - 1) \cdot (p - 2)!\equiv (p - 1)!\equiv  - 1 mod p .

To count the number of elements \sigma \in \scrL I, we can group them according to the
isomorphism class T of the tree \scrH (\sigma ). Then, by Lemma 5.14 we have

| \scrL I| = 2p - 2(p - 2)!
\sum 

T tree on
p - 1 vertices

1

| \sansA \sansu \sanst (T )| 
= 2p - 2(p - 2)!

(p - 1)p - 3

(p - 1)!
= 2p - 2(p - 1)p - 4 .

Here in the third equality we used Lemma 5.15. Plugging into the formula above we
compute

 - | \scrL I| = - 2p - 2(p - 1)p - 4 \equiv  - 2p - 2( - 1)p - 4 \equiv 2p - 1 \cdot p+ 1

2
\cdot ( - 1)p - 3

\equiv p+ 1

2
mod p ,

where in the fourth congruence we used Fermat's little theorem.
We now turn to the sum in Case II. We are counting every forest twice by choosing

a numbering T1, T2 for the two trees in the forest. It is important that never T1 \sim = T2
as remarked above, so that for all forests we overcount with the factor 2. Then we
have

22As a reassurance to the reader, a priori, the graph\scrH (\sigma ) was allowed to have loops or multiedges.
However, any graph \scrH (\sigma ) having either of those is certainly not a forest (since it has a cycle of length
1 or 2, respectively), and thus from here on, only standard (simple) graphs appear.
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| \scrL II| =
1

2
\cdot 2p - 2(p - 2)!

p - 1\sum 
j=1

\sum 
T1 tree, j vertices,

T2 tree, p - j vertices

1

| \sansA \sansu \sanst (T1 + T2)| 

(5.7)

= 2p - 3(p - 2)!

p - 1\sum 
j=1

\left(  \sum 
T1 tree, j vertices

1

| \sansA \sansu \sanst (T1)| 

\right)  \cdot 

\left(  \sum 
T2 tree, p - j vertices

1

| \sansA \sansu \sanst (T2)| 

\right)  
= 2p - 3(p - 2)!

p - 1\sum 
j=1

jj - 2

j!
\cdot (p - j)p - j - 2

(p - j)!

= 2p - 3

p - 1\sum 
j=1

\bigl( 
jj - 2(p - j)p - j - 3 \cdot 

j\prod 
k=2

p - k

k

\bigr) 
,

where the first equality uses Lemma 5.14, the second uses the observation (5.5), and
the third uses Lemma 5.15. In the fourth equation we rearranged the factors of the
factorials.

To continue, we observe that the final formula (5.7) for | \scrL II| in fact is well defined
modulo p. That is, we never divide by a number divisible by p. Thus we are allowed
to evaluate and simplify this expression modulo p:

 - | \scrL II| = - 2p - 3

p - 1\sum 
j=1

\bigl( 
jj - 2(p - j)p - j - 3 \cdot 

j\prod 
k=2

p - k

k

\bigr) 
mod p

\equiv  - 1

4
2p - 1

p - 1\sum 
j=1

jj - 2( - j)p - j - 3 \cdot ( - 1)j - 1 mod p

\equiv 1

4

p - 1\sum 
j=1

jp - 5( - 1)p - 5 \equiv 1

4

p - 1\sum 
j=1

jp - 5 mod p .

To simplify the sum from j = 1 to p - 1, we observe that j ranges over \BbbF \times 
p . The map

\BbbF \times 
p \rightarrow \BbbF \times 

p , j \mapsto \rightarrow 2j is a bijection. Thus we have
(5.8)

16

p - 1\sum 
j=1

jp - 5 \equiv 16

p - 1\sum 
j=1

(2j)p - 5 \equiv 16 \cdot 2p - 5

p - 1\sum 
j=1

jp - 5 \equiv 2p - 1

p - 1\sum 
j=1

jp - 5 \equiv 
p - 1\sum 
j=1

jp - 5 mod p ,

where the last equality is again Fermat's little theorem. Subtracting the right-hand
side of (5.8) from the left-hand side, we see that that p divides 15 \cdot 

\sum p - 1
j=1 j

p - 5. If

p > 5, this implies that p divides
\sum p - 1

j=1 j
p - 5, and so by the previous computation we

conclude  - | \scrL II| \equiv 0 mod p.
We are now ready to plug in our computations in the formula (5.6) and to conclude

the proof. In the case p= 5 we obtain

a\Phi ,G(\top )\equiv  - | \scrL I|  - | \scrL II| \equiv 
5 + 1

2
+

1

4
\cdot 4\equiv 4 \not = 0 mod 5 .

On the other hand, for p > 5 we saw that the contribution from Case II vanishes,
and thus we have a\Phi ,G(\top ) = (p+ 1)/2 \not = 0 mod p. In any case we can conclude that
a\Phi ,G(\top ) does not vanish modulo p, finishing the proof.
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454 PEYERIMHOFF ET AL.

Corollary 5.18. Let \Phi be the property of being a forest. Then for every prime
p\geq 3 there exists a family of max\{ 4,2(p - 2)\} -regular p-group Cayley graph expanders
\scrG = \{ G1,G2, . . .\} such that

a\Phi ,Gi
(\top ) \not = 0 mod p

for infinitely many positive integers i.

Proof. The case p= 3 was treated in section 5.2 (the property of being a forest is
suitable and of unbounded wedge-number). For the case p\geq 5, we apply the previous
proposition to the Cayley graph expanders constructed in Theorem 3.10.

5.4. p-group Cayley graph expanders and bipartite graphs. So far, we
have only considered minor-closed graph properties. In the current section, we show
that our technique also applies to more general properties, using bipartiteness as an
example.

Similarly as in the previous section, we will use the graph \scrH (\sigma ) to prove that the
property of being bipartite has nonzero coefficients on Cayley graph expanders. The
central argument necessary for the latter is given by the following proposition.

Proposition 5.19. Let \Gamma be a finite group of odd order, let S0 \subseteq \Gamma be a set of
m generators, and let S = \{ g\pm 1 : g \in S0\} \subseteq \Gamma be the associated symmetric set of 2m
generators. Let G = \scrC (\Gamma , S) be the associated Cayley graph, and let \sigma be a partition
of S. Then, the graph G\sharp \sigma is bipartite if and only if \scrH (\sigma ) is.23

Proof. By Lemma 5.16 there is a well-defined graph homomorphism \Psi : G\sharp \sigma \rightarrow 
\scrH (\sigma ). Thus if \scrH (\sigma ) is bipartite with a partition V (\scrH (\sigma )) = L \sqcup R of the vertices,
then the partition V (G\sharp \sigma ) =\Psi  - 1(L)\sqcup \Psi  - 1(R) shows that G\sharp \sigma is bipartite.

For the converse direction, assume that \scrH (\sigma ) is not bipartite. This means that
there is a cycle

wB0 ,wB1 , . . . ,wB\ell =wB0 \in V (\scrH (\sigma ))

in \scrH (\sigma ) of odd length \ell , which can be specified by a starting vertex wB0 \in V (\scrH (\sigma ))
together with a choice of \ell elements g1, . . . , g\ell \in S of the generating set (corresponding
to the oriented edges that our cycle follows). Choose any v \in V (G\sharp \sigma ) = \Gamma ; then we
can lift the cycle above to a walk

vB0 , (v \cdot g1)B1 , . . . , (v \cdot g1 \cdot \cdot \cdot g\ell )B0 \in V (G\sharp \sigma )

in the graph G\sharp \sigma . Let o\geq 1 be the order of the element g1 \cdot \cdot \cdot g\ell in the group \Gamma , which
must be an odd number since it divides the order of the group which is assumed to
be odd. Then we can repeat the lifting procedure above o times (always starting the
lift at the endpoint of the previous walk) to obtain a walk in G\sharp \sigma of length o \cdot \ell which
is odd. The endpoint of this walk is the vertex

(v \cdot (g1 \cdot \cdot \cdot g\ell )o)B0 = vB0

that we started at, so indeed we found a walk of odd length (which must contain a
cycle of odd length), and so the graph G\sharp \sigma is not bipartite.

23The property of being bipartite extends naturally to graphs with loops and multiedges: a graph
H is bipartite if there is a partition V (H) =L\sqcup R of the vertices into two disjoint sets such that for
an edge connecting vertices v1, v2, one of them is in L and one of them is in R. This is easily seen
to be equivalent to the property that the graph has no odd cycle.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 455

Proposition 5.20. Let \Phi be the property of being bipartite, and let p \geq 3 be a
prime such that there exists a family \scrG = \{ G1,G2, . . .\} of (ni,6, c)-expanders for some
positive c such that the Gi are Cayley graphs for some p-groups \Gamma i. Then

a\Phi ,Gi
(\top ) \not = 0 mod p

for all positive integers i.

Proof. Since the graph Gi is a 6-regular Cayley graph for \Gamma i, there is a set S0 \subseteq \Gamma i

of three generators such that Gi = \scrC (\Gamma , S) for S = \{ g\pm 1 : g \in S0\} .
As before, when evaluating a\Phi ,Gi(\top ) modulo p, we can reduce to the fractures

\sigma \in \scrL (\Phi ,Gi)
\Gamma invariant under the action of \Gamma . Such a \sigma can be interpreted as a

partition of the set S. Rewriting the above formula we have

a\Phi ,Gi
(\top )\equiv 

\sum 
\sigma \in \scrL (\Phi ,Gi)\Gamma i

\Bigl( 
( - 1)| \sigma |  - 1 \cdot (| \sigma |  - 1)!

\Bigr) | V (G)| 
mod p .

Since | V (G)| = | \Gamma | is a power of p by the assumption that \Gamma is a p-group, by Fermat's
little theorem we have u| V (G)| \equiv u mod p for all integers u so that we can remove the
exponent | V (G)| in the formula above:

(5.9) a\Phi ,Gi
(\top )\equiv 

\sum 
\sigma \in \scrL (\Phi ,Gi)\Gamma i

( - 1)| \sigma |  - 1 \cdot (| \sigma |  - 1)! mod p .

By Proposition 5.19, the graph Gi\sharp \sigma is bipartite if and only if \scrH (\sigma ) is. In Table 1 we
list all possible isomorphism classes of bipartite graphs \scrH (\sigma ) as \sigma varies through the
partitions of the set S of size 6---here we use that our graphs are 6-regular. Summing
all the contributions to (5.9) we see a\Phi ,Gi

(\top ) = - 16 \not = 0 mod p .

Note that, for p = 5, a family of 6-regular expanders required in the previous
proposition exists by Theorem 3.10. In combination with Lemma 4.8, those ex-
panders will thus ultimately allow us to prove hardness of counting bipartite k-edge
subgraphs.

Remark 5.21. Instead of considering 6-regular expanders as above, we could
consider more generally (2m)-regular expanders for some m \geq 2 and use the same
method as in the proof of Proposition 5.20 to compute a\Phi ,Gi

(\top ) modulo p. The
results for the first few m, computed using the software SageMath [86], are as follows:

m 2 3 4 5 6
a\Phi ,Gi

(\top ) mod p 0  - 16 192  - 16576 1109760

From this we see two things: Firstly, 4-regular expanders (such as used in section
5.1.2) cannot be used to show hardness since for m = 2 the value of a\Phi ,Gi

(\top ) van-
ishes modulo p for all p. Secondly, for p = 2 the number a\Phi ,Gi(\top ) vanishes for all
m that we checked. If it vanishes for all m, then the question arises whether the
problem of counting bipartite k-edge subgraphs modulo 2 might actually be fixed-
parameter tractable or at least allow for a significant improvement over the brute-force
algorithm.

6. Hardness of exact counting. Building upon our analysis of the coefficient
function of the torus and the Cayley graph expanders above, we are now able to
present the proofs of our results on \#EDGESUB(\Phi ) with respect to exact counting.
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456 PEYERIMHOFF ET AL.

Table 1
List of bipartite graphs \scrH (\sigma ) for m = 3 generators; here we give the isomorphism class of

\scrH (\sigma ), the number of partitions \sigma with the corresponding isomorphism class, the number of blocks
of sigma, and the total contribution to a(\Phi ,Gi) mod p. The number of possible \sigma can be computed
by enumeration or via a variant ofLemma 5.14 where the graph is allowed to be a multigraph with
loops (using the correct notion of the automorphism group of such a graph).

6.1. Minor-closed properties. We begin with the classification for minor-
closed graph properties. Our goal is to show that \#EDGESUB(\Phi ) is hard whenever
\Phi is minor-closed, not trivially true, and of unbounded matching number. Our proof
relies on Lemma 4.8 and the analysis of the coefficient function in the previous section.
We need to treat the following cases separately; recall that \scrF (\Phi ) denotes the set of
(minimal) forbidden minors of \Phi .

I. Each graph in \scrF (\Phi ) has degree at least 3.
II. \Phi has bounded wedge-number.
III. \Phi is suitable and has unbounded wedge-number.
IV. \Phi is unsuitable, and \scrF (\Phi ) contains a graph of degree at most 2.

Observe that the cases are exhaustive.

6.1.1. Case (I): Forbidden minors of degree at least 3.
Lemma 6.1. Let \Phi denote a minor-closed graph property which is not trivially

true, and assume that \scrF (\Phi ) does not contain a graph of degree at most 2. Then
the problem \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard and, assuming ETH, cannot be solved
in time

f(k) \cdot | G| o(k/ logk)

for any function f .
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 457

Proof. Let \scrG = \{ G1,G2, . . .\} denote the family of Cayley graph expanders given
in subsection 5.1.2 We show that \scrH [\Phi ,\scrG ] is infinite---this proved the claim by Lemma
4.8. Since \Phi is not trivially true, the set \scrF is nonempty. Thus let F denote an
arbitrary graph in \scrF . By Fact 2.3, there is an index j such that for all i \geq j, the
graph Gi contains the complete graph on \#V (F ) vertices (and thus also F ) as a
minor. In other words, \Phi (Gi) = 0 for all i \geq j. By Lemma 5.7, we have that for all
i\geq 2

a\Phi ,Gi
(\top ) =\Phi (a0 \cdot Cb0 + a1 \cdot Cb1) +\Phi (a2 \cdot C2b2) +\Phi (a3 \cdot C2b3) +\Phi (Gi) mod 2 .

Hence, for i\geq max\{ 2, j\} , we have

a\Phi ,Gi(\top ) =\Phi (a0 \cdot Cb0 + a1 \cdot Cb1) +\Phi (a2 \cdot C2b2) +\Phi (a3 \cdot C2b3) mod 2 .

Finally, we rely on the premise of the lemma, implying that each graph in \scrF has a
vertex of degree at least 3. Consequently, no graph in \scrF can be a minor of a cycle
packing. Thus \Phi (a0 \cdot Cb0 +a1 \cdot Cb1) =\Phi (a2 \cdot C2b2) =\Phi (a3 \cdot C2b3) = 1, and, consequently,
a\Phi ,Gi(\top ) = 1 mod 2 for each i\geq max\{ 2, j\} .

6.1.2. Case (II): Properties of bounded wedge-number. For properties
of bounded wedge-number (but unbounded matching-number), we do not rely on
complexity monotonicity but instead on a more classical reduction from counting
(edge-colorful) k-matchings. Furthermore, we prove hardness for the colored version,
which will be required in an intermediate step of Case (IV).

Recall that a wedge, denoted by P2, is a path with two edges, and a k-wedge
packing , denoted by kP2, is the disjoint union of k wedges. Recall further that a
graph property \Phi has bounded wedge-number if there exists a constant d such that
\Phi (kP2) = 0 for all k\geq d.

In what follows, we write \#COLMATCH for the problem of counting edge-colorful
k-matchings; that is, on input of a graph G with k edge-colors, the goal is to compute
the number of k-matchings in G that contain each color precisely once. The problem
\#COLMATCH is known to be hard [26, Theorem III.1].24 Observe that \#COLMATCH

is equivalent to the problem \#COLSUBSUB(\Psi ) for the property \Psi of excluding P2 as
a minor.

Lemma 6.2. Let \Phi be a minor-closed graph property. If \Phi has unbounded match-
ing number but bounded wedge-number, then \#COLSUBSUB(\Phi ) is \#\sansW [\sansone ]-hard and,
assuming ETH, cannot be solved in time

f(k) \cdot | G| o(k/ logk)

for any function f .

Proof. We construct a parameterized Turing reduction from \#COLMATCH to
\#COLSUBSUB(\Phi ) such that, additionally, on input G with k edge-colors, every or-
acle query (G\prime , k\prime ) satisfies | G\prime | \in O(| G| ) and k\prime \in O(k). Both \#\sansW [\sansone ]-hardness and
the conditional lower bound then transfer from \#COLMATCH (see [24, section 5.2] and
[26, Theorem III.1]).

Since \Phi has bounded wedge-number, we have \Phi (dP2) = 0 for some nonnegative
integer d. Let s be the minimum nonnegative integer such that

\exists b\geq 0 : \Phi (sP2 +Mb) = 0 .

24To be precise, [26, Theorem III.1] establishes hardness if G has at least k edge-colors. The case
of G having precisely k edge-colors is shown to be hard in [24, section 5.2].
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458 PEYERIMHOFF ET AL.

We have that s \leq d (for b = 0), and observe further that s > 0, as \Phi has unbounded
matching number and is minor-closed. Let furthermore b(s) be the minimum over all
b such that \Phi (sP2 +Mb) = 0. This enables us to construct the reduction as follows:

Let G be the input of \#COLMATCH, that is, G has k edge-colors, and the goal is
to compute the number of edge-colorful k-matchings in G.

We set G\prime :=G+(s - 1)P2+Mb(s) and color (s - 1)P2+Mb(s) with 2(s - 1)+b(s) =
\#E((s - 1)P2 +Mb(s)) fresh colors. Setting k\prime := k+ 2(s - 1) + b(s) we observe that
every k\prime -edge-colorful set A\prime of edges of G\prime decomposes into

A\prime =A \.\cup E((s - 1)P2 +Mb(s)) ,

where A is a k-edge-colorful set of edges in G. We claim that the number of edge-
colorful k-matchings in G is equal to \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\prime \rightarrow G\prime ).

To verify the latter claim, we prove that \Phi (G\prime [A\prime ]) = 1 if and only if A is a
matching: If A is a matching, then \Phi (G\prime [A\prime ]) = \Phi ((s  - 1)P2 + Mk+b(s)) = 1, by
our choice of s. If A is not a matching, then G[A] contains a single wedge P2 as a
subgraph. Consequently G\prime [A\prime ] contains sP2 +Mb(s) as a minor. Then \Phi (G[A\prime ]) = 0
by our choice of b(s).

Our reduction thus computes G\prime and returns \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\prime \rightarrow G\prime ) by query-
ing the oracle. Since s, and thus b(s) are fixed and independent of the input, we
additionally obtain the desired conditions on the size of G\prime and k\prime , which concludes
the proof.

6.1.3. Case (III): Suitable properties of unbounded wedge-number. For
minor-closed graph properties that are suitable and of unbounded wedge-number, we
will use our 4-regular 3-group Cayley graph expanders, the coefficients of which have
been analyzed in Lemma 5.9. Similarly as in Case (II), we will establish hardness for
the colored version.

Lemma 6.3. Let \Phi be a minor-closed graph property. If \Phi is suitable and of
unbounded wedge-number, then \#COLSUBSUB(\Phi ) is \#\sansW [\sansone ]-hard and, assuming ETH,
cannot be solved in time

f(k) \cdot | G| o(k/ logk)

for any function f .

Proof. The proof follows immediately by Lemma 5.9 and Lemma 4.8.

6.1.4. Case (IV): Unsuitable properties. In what follows, we write \scrF 2(\Phi )
for the set of forbidden minors of \Phi that have degree at most 2. We show that
an unsuitable minor-closed property \Phi can be reduced from a suitable property \Psi 
whenever \scrF 2(\Phi ) is nonempty.

Lemma 6.4. Let \Phi be a minor-closed graph property. If \scrF 2(\Phi ) \not = \emptyset but \Phi is
unsuitable, then there exists a graph property \Psi such that

1. \Psi is minor-closed and of unbounded matching number,
2. \Psi is suitable, and
3. \#COLSUBSUB(\Psi )\leq fpt

T \#COLSUBSUB(\Phi ), and, on input G and k, every oracle
query (G\prime , k\prime ) of the reduction satisfies | G\prime | \in O(| G| ) and k\prime \in O(k).

Proof. Since \Phi is not suitable, it is true on arbitrarily large cycles Ck. Since
any finite union of paths is a minor of a sufficiently large cycle, any such union also
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 459

satisfies \Phi . Now any graph F \in \scrF 2 is a union of circles and paths,25 and by the
argument above, it must contain at least one circle. Using again that \Phi is not suitable,
we infer that each graph in \scrF 2(\Phi ) is the union of a cycle and a nonempty path-cycle
packing. Since \scrF 2(\Phi ) \not = \emptyset , we can choose F \in \scrF 2(\Phi ) such that the number of cycles
in F is minimal among all graphs in \scrF 2(\Phi ). Thus F = C + R for a cycle C and a
(nonempty) path-cycle packing R. We define

\Psi (H) = 1 :\leftrightarrow \Phi (H +R) = 1 .

Let us now prove items 1--3:

1. First assume that \Psi (H) = 1 and H \prime \prec H; thus H \prime +R\prec H +R. Then

\Psi (H) = 1\Rightarrow \Phi (H +R) = 1\Rightarrow \Phi (H \prime +R) = 1\Rightarrow \Psi (H \prime ) = 1 .

The second implication holds as \Phi is minor-closed. Consequently, \Psi is minor-
closed as well.
Next assume for contradiction that \Psi has bounded matching number. Then
there exists a positive integer d such that \Psi (Md) = 0 which implies that
\Phi (Md +R) = 0. Since Md +R is of degree 2, and every minor of a graph of
degree 2 has degree at most 2, one of the graphs in \scrF 2(\Phi ) must be a minor of
Md +R. Observe that every minor of Md +R contains strictly fewer cycles
than F (= C + R). However, we choose F in such a way that the number
of its cycles is minimal among all graphs in \scrF 2(\Phi ), which yields the desired
contradiction.

2. Since 0 = \Phi (F ) = \Phi (C +R) we immediately obtain that \Psi (C) = 0. Hence \Psi 
is suitable.

3. Let r = \#E(R). The reduction is straightforward: Given G with k edge-
colors for which we wish to compute \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Psi , k\rightarrow G), we construct
G\prime as follows: We add a disjoint copy of R to G and color the edges of R
arbitrarily with r fresh colors, yielding a k + r-edge-colored graph G\prime of size
| R| + | G| \in O(| G| )---recall that | R| is a constant. Then every k + r-edge-
colorful subset of edges in G\prime consists precisely of all edges of R and a k-
edge-colorful subset of edges in G. By definition of \Psi , we immediately obtain
that

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Psi , k\rightarrow G) =\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k+ r\rightarrow G\prime ) ,

which completes the reduction.
With all cases verified, the proof is concluded.

6.1.5. Proof of the classification.
Theorem 6.5. Let \Phi be a minor-closed graph property. If \Phi is trivially true or

of bounded matching number, then \#EDGESUB(\Phi ) is fixed-parameter tractable. Oth-
erwise, \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard and, assuming ETH, cannot be solved in time

f(k) \cdot | G| o(k/ logk)

for any function f .

25We see an isolated vertex as a path of length 0.
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Proof. The (fixed-parameter) tractability part of the classification was shown in
Proposition 1.3.

Thus assume that \Phi is not trivially true and of unbounded matching number.
Then \scrF (\Phi ) is nonempty. If \scrF 2(\Phi ) is empty, then the result follows from Lemma 6.1.
Hence consider the case \scrF 2(\Phi ) \not = \emptyset .

We will show that the colorful version \#COLSUBSUB(\Phi ) satisfies the desired lower
bound: a (tight) reduction to the uncolored version \#EDGESUB(\Phi ) given by Lemma
4.7.

If \Phi has bounded wedge-number, then we apply Lemma 6.2. If \Phi is of unbounded
wedge-number and suitable, then we apply Lemma 6.3. If \Phi is unsuitable, then we
apply Lemma 6.4 which yields a (tight) reduction

\#COLSUBSUB(\Psi )\leq fpt
T \#COLSUBSUB(\Phi )

for a minor-closed and suitable property \Psi of unbounded matching number. Now
depending on whether \Psi has bounded wedge-number we, again, obtain hardness either
by Lemma 6.2 or by Lemma 6.3.

6.2. Selected natural properties and criteria for hardness. In this sec-
tion, we will first present a concise criterion for graph properties \Phi which, if satisfied,
immediately yields \#\sansW [\sansone ]-hardness of \#EDGESUB(\Phi ). Afterwards, we present hard-
ness results for a selected set of properties listed in Main Theorem 2. In what follows,
we write \ell H for the graph consisting of \ell disjoint copies of H.

We begin with a criterion that relies on the coefficient of the torus which was
stated as Theorem 1.4 and which we restate for convenience.

Theorem 1.4. Let \Phi denote a computable graph property, and assume that
infinitely many primes \ell satisfy the equation26

 - 6\Phi (M2\ell 2) + 4\Phi (M\ell 2 + \ell C\ell ) + 8\Phi (\ell 2P2) - \Phi (2\ell C\ell ) - 2\Phi (\ell C2\ell )

(1.3)

 - 4\Phi (\ell S\ell ) +\Phi (\circledcirc \circledcirc \circledcirc \ell ) \not = 0 mod \ell .

Then \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard.

Proof. By Lemma 5.6, we have that \scrH [\Phi ,\circledcirc \circledcirc \circledcirc ] is infinite for \Phi that satisfy (1.3).
\#\sansW [\sansone ]-hardness thus follows by Lemma 4.8.

While it is easier to apply, recall that the torus cannot yield (almost) tight con-
ditional lower bounds. If such fine-grained lower bounds are sought, it is necessary to
choose a proper family of Cayley graph expanders as demonstrated by the examples
given in Main Theorem 2, which we restate for convenience.

Main Theorem 2. Consider the following graph properties.
\bullet \Phi C(H) = 1 if and only if H is connected.
\bullet \Phi B(H) = 1 if and only if H is bipartite.
\bullet \Phi H(H) = 1 if and only if H is Hamiltonian.
\bullet \Phi E(H) = 1 if and only if H is Eulerian.
\bullet \Phi CF (H) = 1 if and only if H is claw-free.

For each \Phi \in \{ \Phi C ,\Phi B ,\Phi H ,\Phi E ,\Phi CF \} , the problem \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard.
Further, unless ETH fails, \#EDGESUB(\Phi ) cannot be solved in time f(k) \cdot | G| o(k/ logk)
for any function f .

26We write + for (disjoint) graph union and \ell H for the graph consisting of \ell disjoint copies
of H. Further, we set \Phi (H) = 1 if H satisfies \Phi and \Phi (H) = 0 otherwise.
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Proof. We begin with the properties \Phi C ,\Phi H ,\Phi E , and \Phi CF ; the case of bipar-
titeness is proved separately further below. Our proof proceeds by applying Lemma
5.7 to show a\Phi ,Gi

(\top ) \not = 0 for each of the properties \Phi , allowing us to conclude using
Lemma 4.8.

For \Phi \in \{ \Phi C ,\Phi H ,\Phi E\} , observe that the graphs a0 \cdot Cb0 + a1 \cdot Cb1 , a2 \cdot C2b2 , and
a3 \cdot C2b3 are each disconnected (and hence not Hamiltonian, nor Eulerian either) if
ai \geq 8 for i = 1,2,3. Further, the graphs Gi are connected since Cayley graphs
are connected.27 Thus, the graphs Gi are also Eulerian, since they are 4-regular.
Moreover, Cayley graphs of p-groups are Hamiltonian [92]. Thus, by Lemma 5.7, we
have that, for i\geq 2,

a\Phi ,Gi
(\top ) =\Phi (a0 \cdot Cb0 + a1 \cdot Cb1) +\Phi (a2 \cdot C2b2) +\Phi (a3 \cdot C2b3) +\Phi (Gi) = 1 mod 2 .

Consequently, \scrH [\Phi ,\scrG ] is infinite if \Phi \in \{ \Phi C ,\Phi H ,\Phi E\} . By Lemma 4.8, we obtain both
\#\sansW [\sansone ]-hardness and the conditional lower bound.

For \Phi = \Phi CF we can perform a similar analysis: observe that cycle packings are
always claw-free. On the other hand, for each i > 2, the graphs Gi do contain an
(induced) claw. To see this, let e\scrK i

denote the neutral element of \scrK i, and consider
the vertices of Gi associated to e\scrK i

, v0, v1, and v - 1
1 . While e\scrK i

is adjacent to the
remaining three cosets, it is easy to check by hand that v0, v1, and v

 - 1
1 constitute an

independent set in Gi.
Consequently, by Lemma 5.7, we have that, for i > 2,

a\Phi ,Gi
(\top ) =\Phi (a0 \cdot Cb0 + a1 \cdot Cb1) +\Phi (a2 \cdot C2b2)

+\Phi (a3 \cdot C2b3) +\Phi (Gi) = 3+ 0= 1 mod 2 .

Thus, \scrH [\Phi CF ,\scrG ] is infinite. By Lemma 4.8, we hence obtain both \#\sansW [\sansone ]-hardness
and the conditional lower bound.

Finally, for the property \Phi = \Phi B of being bipartite, we invoke Proposition 5.20
and use the 6-regular 5-group Cayley graph expanders given by Theorem 3.10. Again,
in combination with Lemma 4.8, this yields the desired lower bounds.

6.3. A comment on modular counting. It was shown in the conference ver-
sion [70] that our technique of proving lower bounds for \#EDGESUB(\Phi ) via the coeffi-
cients of Cayley graph expanders in the homomorphism basis also applies to modular
counting. More precisely, let us write \#pEDGESUB(\Phi ) for the problem of, given G and
k, computing \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) mod p. Observing that the reduction sequence in
section 4 applies to counting modulo p as well28 and relying on known hardness results
for counting color-prescribed homomorphisms modulo p, the following criterion was
established for \#pEDGESUB(\Phi ).

Lemma 6.6 (see [70]). Let \Phi be a computable graph property, and let furthermore
\scrG = \{ G1,G2, . . .\} be a family of (ni, d, c)-expanders for some positive integers c and d.
If for infinitely many i we have

a\Phi ,Gi(\top ) \not = 0 mod p ,

27Recall that our definition of Cayley graphs enforces the set S to be a set of generators of the
group.

28The matrix in Lemma 4.5 is triangular with 1s on the diagonal and thus nonsingular over \sansG \sansF [p]
for any prime p.
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then \#pEDGESUB(\Phi ) is \sansM \sanso \sansd p\sansW [\sansone ]-hard29 and, assuming the randomized ETH, cannot
be solved in time f(k) \cdot | G| o(k/ logk) for any function f .

Due to the length of this paper, we decided to not include an introduction to
parameterized modular counting. However, we wish to emphasize one particular con-
sequence of our treatment of forests in subsection 5.3 on the complexity of modular
counting: Let us write \#pForests for the problem of, given a graph G and a positive
integer k, computing the number of forests with k edges in G, modulo p; the param-
eterization is given by k. Similarly, we write \#pBases for the problem of, given a
linear matroid M of rank k in matrix representation, computing the number of bases
of M , modulo p; the parameterization is given by the rank k of M .

Theorem 6.7. Given a prime number p \geq 3, the problems \#pForests and
\#pBases are \sansM \sanso \sansd p\sansW [\sansone ]-hard and, assuming the randomized ETH, cannot be solved
in time

f(k) \cdot | G| o(k/ logk) (resp., f(k) \cdot | M | o(k/ logk))

for any function f .

Proof. We prove the lower bound for \#pForests; a parsimonious reduction to
\#pBases follows easily by (deterministic) polynomial-time matroid truncation: Given
a graph G, the number of k-forests in G is equal to the number of k-independent sets
in the graphic matroid M(G) (which is a linear matroid). A k-truncation of M(G)
is a matroid M of rank k whose bases are in one-to-one correspondence to the k-
independent sets of M(G) and, thus, to the k-forests in G. We refer the reader to
[59] for a detailed exposition of k-truncations and, in particular, for a deterministic
algorithm which, on input of a linear matroid and a positive integer k, computes a
(linear) k-truncation of the matroid in polynomial time.

Now observe that \#pForests is equal to the problem \#pEDGESUB(\Phi ) for \Phi 
being the property of being a forest. Hence we can apply Lemma 6.6 to the Cayley
graph expanders given by Corollary 5.18---the latter satisfy that the coefficients are
a\Phi ,Gi

(\top ) are nonzero modulo p infinitely often.

We leave it as an open question whether or not the case of p= 2, that is, counting
k-forests modulo 2, is fixed-parameter tractable.

7. Approximate counting of small subgraph patterns. Recall that we
identified \#EDGESUB(\Phi ) as an inherently hard problem in the case when we aim
for exactly counting the solutions. In particular, we established \#\sansW [\sansone ]-hardness for
any nontrivial minor-closed property \Phi of unbounded matching number. For this
reason, the section below deals with the complexity of approximating the number
of solutions. Tractability of approximating the solutions of parameterized counting
problems is given by the notion of an FPTRAS.

Definition 7.1 (FPTRAS [6, 65]). Let (P,\kappa ) denote a parameterized counting
problem. A fixed-parameter tractable randomized approximation scheme (FPTRAS)
for (P,\kappa ) is a randomized algorithm \BbbA that, given x\in \Sigma \ast and rational numbers \varepsilon > 0
and 0< \delta < 1, computes an integer z such that

\sansP \sansr [ (1 - \varepsilon )P (x)\leq z \leq (1 + \varepsilon )P (x) ]\geq 1 - \delta .

29\sansM \sanso \sansd p\sansW [\sansone ]-hard problems are at least as hard as counting k-cliques modulo p with respect to
parameterized Turing-reductions.
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The running time of \BbbA must be bounded by f(\kappa (x)) \cdot \sansp \sanso \sansl \sansy (| x| ,1/\varepsilon , log(1/\delta )) for some
computable function f .

Indeed, we can show that \#EDGESUB(\Phi ) allows an FPTRAS for every minor-
closed property \Phi . In fact, we prove the following general criterion, which implies the
existence of an FPTRAS for minor-closed properties.

Main Theorem 4. Let \Phi denote a computable graph property. If \Phi satisfies
the matching criterion and the star criterion, or if \Phi has bounded treewidth, then
\#EDGESUB(\Phi ) admits an FPTRAS.

We start with the case of \Phi satisfying both the matching and the star criteria.
For readers familiar with the meta-theorem of Dell, Lapinskas, and Meeks [30], we
point out that their method cannot be used to achieve the desired goal in the current
setting: the results in [30, section 1.3] imply that \#EDGESUB(\Phi ) admits an FP-
TRAS whenever the edge-colorful decision version of EDGESUB(\Phi ) is fixed-parameter
tractable; in the latter, we expect as input a graph G with k different edge-colors,
and the goal is to decide whether there is a subset A of edges containing each color
exactly once such that G[A] satisfies \Phi (w.r.t. the underlying uncolored graph). Thus,
if we could show that the edge-colorful decision version is fixed-parameter tractable
for properties satisfying the matching and the star criteria, Main Theorem 4 would
follow.

However, the latter cannot be true (unless \sansF \sansP \sansT =\sansW [\sansone ]) since the following prop-
erty \Phi induces a \sansW [\sansone ]-hard colorful decision version while satisfying both the match-
ing and the star criteria: \Phi (H) = 1 if and only if H is either a star, a matching, or
the union of a clique and a triangle. \sansW [\sansone ]-hardness follows from a reduction from
finding edge-colorful k-cliques in a graph, which is known to be \sansW [\sansone ]-hard.30 The
reduction is straightforward: given a graph G with

\bigl( 
k
2

\bigr) 
edge colors, we construct a

graph G\prime by adding a triangle with three fresh colors to the graph. Then G\prime con-
tains a colorful

\bigl( 
k
2

\bigr) 
+ 3-edge-subset A that satisfies \Phi if and only if G contains an

edge-colorful k-clique. The latter is true since any colorful
\bigl( 
k
2

\bigr) 
+ 3-edge-subset must

contain the triangle with the three fresh colors and can thus induce neither a star nor a
matching.

Being unable to rely on the colorful decision version, we thus use a different
approach using Ramsey's theorem, similar to the one in [65]. More precisely, we use
the following consequence.

Lemma 7.2. Let k \geq 4 denote a positive integer, and let G denote a graph with
at least R(k, k) edges. Then G contains either K1,k or Mk as a subgraph.

Proof. We apply Ramsey's theorem to the line graph L(G) of G: The vertices
of L(G) are the edges of G, and two vertices e and e\prime of L(G) are adjacent if and
only if e \cap e\prime \not = 0. Since L(G) contains at least R(k, k) vertices, Ramsey's theorem
implies that L(G) either contains an independent set or a clique of size k. Note that
a k-independent set of L(G) corresponds to a k-matching in G and that a k-clique
in L(G) corresponds to a star K1,k in G; the latter requires that k \geq 4 since the line
graph of a triangle is a triangle (and thus a clique) as well.

The subsequent observation enables our Monte Carlo algorithm to only rely on
``fixed-parameter tractable many"" samples.

30The vertex-colorful clique problem is \sansW [\sansone ]-hard (see Chapter 13 in [27]) and reduces to the
edge-colorful clique problem by assigning an edge \{ u, v\} the color \{ c(u), c(v)\} , where c(u) and c(v)
are the vertex-colors of u and v.
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464 PEYERIMHOFF ET AL.

Lemma 7.3. Let k \geq 4 denote a positive integer, and let G denote a graph with
at least R(k, k) edges. Assume a subset A of k edges is sampled uniformly at random.
We have

\sansP \sansr [G[A]\sim =Mk \vee G[A]\sim =K1,k ]\geq 
\biggl( 
R(k, k)

k

\biggr)  - 1

.

Proof. Set m = | E(G)| and r = R(k, k). It is convenient to assume that A is
sampled as follows: we first choose r edges uniformly at random, denote this set by
S, and afterwards obtain A by choosing k edges among S uniformly at random; of
course, we need to show that this yields a uniform distribution. Let B denote any
k-edge subset of G. By the law of total probability, we have that

\sansP \sansr [A=B ] =
\sum 

T\in (E(G)
r )

\sansP \sansr [S = T ] \cdot \sansP \sansr [A=B | S = T ]

=
\sum 

T\in (E(G)
r )

\biggl( 
m

r

\biggr)  - 1

\cdot \sansP \sansr [A=B | S = T ] .

Note that \sansP \sansr [A=B | S = T ] =
\bigl( 
r
k

\bigr)  - 1
if B \subseteq T , and \sansP \sansr [A=B | S = T ] = 0 otherwise.

Consequently

\sansP \sansr [A=B ] =\#\{ T \subseteq E(G)| B \subseteq T \wedge \#T = r\} \cdot 
\biggl( 
m

r

\biggr)  - 1\biggl( 
r

k

\biggr)  - 1

=

\biggl( 
m - k

r - k

\biggr) \biggl( 
m

r

\biggr)  - 1\biggl( 
r

k

\biggr)  - 1

=

\biggl( 
m

k

\biggr)  - 1

.

Now let \scrE denote the event G[A]\sim =Mk \vee G[A]\sim =K1,k, and note that for every r-edge

subset T of G we have that \sansP \sansr [\scrE | S = T ]\geq 
\bigl( 
r
k

\bigr)  - 1
since, by the previous lemma, G[T ]

contains either Mk or K1,k as a subgraph. We conclude that \sansP \sansr [\scrE ] is equal to

\sum 
T\in (E(G)

r )

\sansP \sansr [S = T ] \cdot \sansP \sansr [\scrE | S = T ] =

\biggl( 
m

r

\biggr) \biggl( 
m

r

\biggr)  - 1

\cdot \sansP \sansr [\scrE | S = T ]\geq 
\biggl( 
r

k

\biggr)  - 1

,

which concludes the proof.

For our FPTRAS, we use the following (consequence of a) Chernoff bound.

Theorem 7.4 (see Theorem 11.1 in [68]). Let X1, . . . ,Xt denote independent
and identically distributed indicator random variables with expectation \eta =E[Xi], and
let 0< \varepsilon , \delta < 1 denote positive rationals. If t\geq (3 ln(2/\delta ))/(\varepsilon 2\eta ), then

\sansP \sansr 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 1t \cdot 
t\sum 

i=1

Xi  - \eta 

\bigm| \bigm| \bigm| \bigm| \bigm| < \varepsilon \eta 
\Biggr] 
\geq 1 - \delta .

Lemma 7.5. Let \Phi denote a computable graph property satisfying both the match-
ing criterion and the star criterion. Then \#EDGESUB(\Phi ) has an FPTRAS.

Proof. By assumption, there is a constant c\prime such that \Phi is true for all matchings
and stars of size at least c\prime ; we set c=max(c\prime ,4). Our FPTRAS \BbbA is constructed as
follows: If k < c or if | E(G)| \leq R(k, k), then we solve the problem (exactly) by the
naive brute-force algorithm. Otherwise, we take

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

29
.2

34
.7

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 465

Algorithm 1 An FPTRAS for \#EDGESUB(\Phi ), where \Phi satisfies the matching and
the star criteria.

\biggl( 
R(k, k)

k

\biggr) 
\cdot 3 ln(2/\delta )

\varepsilon 2

many independent samples of k-edge sets A of G, each taken uniformly at random.
Finally, we output the fraction of those samples A such that \Phi (G[A]) = 1. Consult
Algorithm 1 for a visualization as pseudocode.

Let us first argue about the running time: if k < c, then the brute-force algorithm
takes time at most | G| c,31 and if | E(G)| \leq R(k, k), then the brute-force algorithm
takes time at most | G| + R(k, k)k. Otherwise, we iterate through the loop t times,
and each iteration can clearly be done in time f \prime (k) \cdot \sansp \sanso \sansl \sansy (| G| ) for some computable
function f \prime ---note that the factor f \prime (k) depends on the complexity of verifying whether
\Phi (G[A]) holds, which might require superpolynomial time in | G[A]| \in O(k). The
overall running time is thus bounded by

max

\biggl\{ 
| G| c, | G| +R(k, k)k,

\biggl( 
R(k, k)

k

\biggr) 
\cdot (3 ln(2/\delta ))/\varepsilon 2 \cdot f \prime (k) \cdot \sansp \sanso \sansl \sansy (| G| )

\biggr\} 
,

which is bounded by f(k) \cdot \sansp \sanso \sansl \sansy (| G| ,1/\varepsilon , log(1/\delta )) for some computable function f .
Next note that correctness is trivial in the case when the brute-force algorithm is

executed. Hence assume that k\geq c and | E(G)| >R(k, k). To avoid notational clutter,
we set r :=R(k, k) and m := | E(G)| . Now let Xi denote the indicator variable defined
to be 1 if the ith sample, denoted Ai, satisfies \Phi (G[Ai]) = 1, and Xi = 0 otherwise.

Observe that E[Xi] =\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) \cdot 
\bigl( 
m
k

\bigr)  - 1
for all i. In what follows, we thus

just set \eta := E[Xi]. Since \Phi is true for Mk and K1,k, by Lemma 7.3 we furthermore
have

\eta = \sansP \sansr [\Phi (G[A]) = 1 ]\geq \sansP \sansr [G[A]\sim =Mk \vee G[A]\sim =K1,k ]\geq 
\biggl( 
r

k

\biggr)  - 1

.

31| G| rather than | E(G)| since G might contain many isolated vertices.
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Consequently, t\geq (3 ln(2/\delta ))/(\varepsilon 2\eta ). By the previous Chernoff bound, we thus have

\sansP \sansr 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 1t \cdot 
t\sum 

i=1

Xi  - \eta 

\bigm| \bigm| \bigm| \bigm| \bigm| < \varepsilon \eta 
\Biggr] 
\geq 1 - \delta .

Finally, recall that X =
\sum t

i=1Xi, and observe that\bigm| \bigm| \bigm| \bigm| \bigm| 1t \cdot 
t\sum 

i=1

Xi  - \eta 

\bigm| \bigm| \bigm| \bigm| \bigm| < \varepsilon \eta 
\Rightarrow 

\bigm| \bigm| \bigm| \bigm| \bigm| Xt  - \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)\bigl( 
m
k

\bigr) \bigm| \bigm| \bigm| \bigm| \bigm| < \varepsilon \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)\bigl( 
m
k

\bigr) 
\Rightarrow 
\bigm| \bigm| \bigm| \bigm| Xt \cdot 

\biggl( 
m

k

\biggr) 
 - \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)

\bigm| \bigm| \bigm| \bigm| < \varepsilon \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) .

We conclude the proof by pointing out that the latter implies

(1 - \varepsilon ) \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)\leq X

t
\cdot 
\biggl( 
m

k

\biggr) 
\leq (1 + \varepsilon ) \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) .

For the case of \Phi having bounded treewidth, we rely on the following result of
Arvind and Raman; to this end, given a fixed positive integer T , let \#SUB(T ) denote
the problem that, on input of a graph H of treewidth at most T and an arbitrary
graph G, requires us to compute \#\sansS \sansu \sansb (H\rightarrow G).

Theorem 7.6 (see [6]). For each positive integer T , there is an FPTRAS for
\#SUB(T ) if it is parameterized by the size of the graph H.

Lemma 7.7. Let \Phi denote a computable graph property of bounded treewidth.
Then \#EDGESUB(\Phi ) admits an FPTRAS.

Proof. By assumption, there is a constant T such that the treewidth of each graph
H with \Phi (H) = 1 is at most T . Define g(k) := | \Phi k| , and observe that g is computable
as \Phi is.

Recall from (2.1) that for each G and k we have

\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) =
\sum 

H\in \Phi k

\#\sansS \sansu \sansb (H\rightarrow G).

We thus just use the FPTRAS from Theorem 7.6 to approximate (with probability
1 - \delta /g(k)) each term \#\sansS \sansu \sansb (H\rightarrow G) with H \in \Phi k and output the sum given by the
previous equation.

Observe that approximating each term \#\sansS \sansu \sansb (H\rightarrow G) takes time at most

f \prime (| H| ) \cdot \sansp \sanso \sansl \sansy (| G| ,1/\varepsilon , log(g(k)/\delta ))

for some computable function f \prime .
Since each H \in \Phi k has k edges, the overall running time is thus clearly bounded

by

f(k) \cdot \sansp \sanso \sansl \sansy (| G| ,1/\varepsilon , log(\delta ))

for some computable function f---note that f depends on \Phi , f \prime , and g, but the latter
three are independent of the input. Now let r denote the output of our algorithm. It
remains to show that

\sansP \sansr [ (1 - \varepsilon ) \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G)\leq r\leq (1 + \varepsilon ) \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) ]\geq 1 - \delta .
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 467

Write rH for the output of the FPRAS from Theorem 7.6 on input G, H, \varepsilon , and
\delta /g(k). Then

r=
\sum 

H\in \Phi k

rH ,

and the following holds for each H \in \Phi k :

\sansP \sansr [ (1 - \varepsilon ) \cdot \#\sansS \sansu \sansb (H\rightarrow G)\leq rH \leq (1 + \varepsilon ) \cdot \#\sansS \sansu \sansb (H\rightarrow G) ]\geq 1 - \delta /g(k) .

Since the outcomes rH are independent and g(k) = | \Phi k| , we have

\sansP \sansr [\forall H \in \Phi H : (1 - \varepsilon ) \cdot \#\sansS \sansu \sansb (H\rightarrow G)\leq rH \leq (1 + \varepsilon ) \cdot \#\sansS \sansu \sansb (H\rightarrow G) ]

\geq (1 - \delta /g(k))g(k) ,

which is at most (1 - \delta ) by Bernoulli's inequality.
Consequently, with probability at least (1 - \delta ), we have that

(1 - \varepsilon ) \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) = (1 - \varepsilon )
\sum 

H\in \Phi k

\#\sansS \sansu \sansb (H\rightarrow G)

=
\sum 

H\in \Phi k

(1 - \varepsilon ) \cdot \#\sansS \sansu \sansb (H\rightarrow G)

\leq 
\sum 

H\in \Phi k

rH(= r)

\leq 
\sum 

H\in \Phi k

(1 + \varepsilon ) \cdot \#\sansS \sansu \sansb (H\rightarrow G)

= (1 + \varepsilon )
\sum 

H\in \Phi k

\#\sansS \sansu \sansb (H\rightarrow G)

= (1 + \varepsilon ) \cdot \#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) ,

which concludes the proof.

Proof of Main Theorem 4. Main Theorem 4 holds by Lemmas 7.5 and 7.7.

8. Detection of small subgraph patterns. In this section, we study the
complexity of the decision problem EDGESUB(\Phi ). As a first observation we observe
that EDGESUB(\Phi ) essentially subsumes the (parameterized) subgraph isomorphism
problem: consider, for instance, the property \Phi defined as \Phi (H) = 1 if and only if
H \sim =K\ell ,\ell for some positive integer \ell . Then EDGESUB(\Phi ) is equivalent to the problem
k-Biclique which was only recently shown to be \sansW [\sansone ]-hard by the seminal result of
Lin [58] after being unresolved for at least a decade.

More generally, let \scrH denote a class of graphs, and define EMB(\scrH ) as the problem
that asks, given a graph H \in \scrH and an arbitrary graph G, whether there is a subgraph
embedding from H to G; the parameterization is given by | H| . Plehn and Voigt [72]
proved EMB(\scrH ) to be fixed-parameter tractable whenever the treewidth of graphs in
\scrH is bounded by a constant. On the other hand, the question whether EMB(\scrH ) is
\sansW [\sansone ]-hard in all remaining cases is one of the ``most infamous"" [35, Chapter 33.1]
open problems in parameterized complexity. Since EDGESUB(\Phi ) subsumes32 EMB(\scrH )

32To be precise, EDGESUB(\Phi ) subsumes EMB(\scrH ) whenever \scrH does not contain two graphs with
the same number of edges, which is, however, true for most of the natural instances of the subgraph
isomorphism problem such as finding cliques, bicliques, cycles, paths, and matchings, to name only
a few.
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468 PEYERIMHOFF ET AL.

as we have seen in the case of k-Biclique, a complete classification of EDGESUB(\Phi )
seems to be elusive at the moment.

However, we identify the following tractable instances of EDGESUB(\Phi ), which
significantly extends the case of bounded treewidth.

Main Theorem 5. Let \Phi denote a computable graph property. If \Phi satisfies
the matching criterion or the star criterion, or if \Phi has bounded treewidth, then
EDGESUB(\Phi ) is fixed-parameter tractable.

In the case that \Phi satisfies the matching or the star criterion, fixed-parameter
tractability is obtained by a surprisingly simple win-win approach relying on the
treewidth and the maximum degree of a graph. Assume, for example, that \Phi is true
for all matchings. Now, given a graph G and an integer k, we can easily verify whether
G contains a maximum matching of size at least k. If the latter is true, G contains a
subgraph with k edges that satisfies \Phi . More interestingly, if the matching number of
G is bounded by k, then its vertex-cover number (and thus its treewidth) is bounded
by 2k, and we can efficiently use dynamic programming over a tree-decomposition
of small width of G to verify whether \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) \not = \emptyset . Formally, the latter
can be established by an easy application of Courcelle's theorem [22] as shown in the
following lemma.

Lemma 8.1. Let \Phi denote a computable graph property. There is a computable
function g and an algorithm \BbbA that, given a graph G and a positive integer k, correctly
decides whether \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) \not = \emptyset in time g(\sanst \sansw (G), k) \cdot | G| .

Proof. We use Courcelle's theorem as stated in [39, Theorem 11.37]. Thus it
remains to provide a monadic second-order sentence33 \varphi such that G satisfies \varphi if
and only if \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) \not = \emptyset . To this end, let H \in \Phi k, and assume that
V (H) = \{ 1, . . . , vH\} . Consider the following sentence:

\varphi H := \exists x1, . . . ,\exists xvH :
\bigwedge 
i\not =j

xi \not = xj \wedge 
\bigwedge 

\{ i,j\} \in E(H)

E(xi, xj) .

Observe that G satisfies \varphi H if and only if H is a subgraph of G. Consequently, we
set

\varphi :=
\bigvee 

H\in \Phi k

\varphi H .

Since the length of \varphi only depends on \Phi and k, the lemma holds by Courcelle's
theorem.

We are now able to establish fixed-parameter tractability of EDGESUB(\Phi ) when-
ever \Phi satisfies the matching criterion.

Lemma 8.2. Let \Phi denote a computable graph property that satisfies the matching
criterion. Then the problem EDGESUB(\Phi ) is fixed-parameter tractable.

Proof. Since \Phi satisfies the matching criterion, there is a constant c (only depend-
ing on \Phi ) such that \Phi (Mk) = 1 for all k\geq c. The fixed-parameter tractable algorithm
is constructed as follows:

Given a graph G and a positive integer k, we can assume that k \geq c, solving the
case k < c by brute-force enumeration of all k-subsets of edges. In the case k \geq c,

33We refer the reader to, e.g., Chapter 4 in [39] for an introduction to monadic second-order
logic.
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 469

we compute a maximum matching M of G in polynomial time by, e.g., the blossom
algorithm [37]. If | M | \geq k, then we can output 1, since any k-subset A of M satisfies
that \Phi (G[A]) = 1 by assumption.

In the remaining case, we can thus assume that the matching number of G is
bounded by k. Consequently, the vertex cover number of G is bounded by 2k. Since
the treewidth of a graph is bounded by its vertex cover number, we conclude that
\sanst \sansw (G) \leq 2k. Invoking the algorithm from the previous lemma thus yields an overall
running time bounded by

mO(1) + g(2k, k) \cdot | G| ,

which proves fixed-parameter tractability.

We continue with the case of \Phi satisfying the star criterion. To this end, we
require the following result, which is implicitly implied by the counting version of
the Frick--Grohe theorem [41]; we provide a proof based on the bounded search-tree
paradigm for completeness.

Lemma 8.3. Let \Phi denote a computable graph property. There is a computable
function g and an algorithm \BbbA that, given a graph G and a positive integer k, correctly
decides whether \sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow G) \not = \emptyset in time g(\sansd \sanse \sansg (G), k) \cdot | G| .

Proof. We check for each H \in \Phi k whether H is a subgraph of G and output 1 if
(and only if) at least one of those checks is positive.

Assume for a moment that H is connected. In this case, the strategy is very
simple: We guess a vertex v of G and search for a subgraph embedding of H in G
that includes v. Since H is connected and has k edges, the image of the subgraph
embedding can only contain vertices of distance at most k from v. This allows us to
search for a copy of H in the \leq k neighborhood of v by brute force, since the latter
contains at most \sansd \sanse \sansg (G)k vertices. The overall running time of finding a subgraph
isomorphic to H in G is thus bounded by | V (G)| \cdot \sansd \sanse \sansg (G)k.

The situation becomes slightly more complicated if H is not connected. We would
like to perform the previous strategy for each connected component of H, adding an
additional factor of k in the worst case. However, since a subgraph embedding needs
to be injective, we have to guarantee that we do not construct a solution that uses
vertices of G twice. This issue is solved by a standard application of color-coding: We
choose a function \sansc \sanso \sansl : V (G)\rightarrow V (H) uniformly at random. If G contains a subgraph
isomorphic toH, then with probability at least p(k)> 0 there is a subgraph embedding
\psi : V (H) \rightarrow V (G) such that additionally \sansc \sanso \sansl (\psi (v)) = v for each vertex v \in V (H),
and such a subgraph embedding can be found in time O(k \cdot | V (G)| \cdot \sansd \sanse \sansg (G)k) by
adapting the above strategy for every connected component H accordingly. Finally,
derandomization can be achieved by perfect hashing as shown in [3] (see also [39,
Chapter 13.3]).

Let us now establish fixed-parameter tractability of EDGESUB(\Phi ) whenever \Phi 
satisfies the star criterion.

Lemma 8.4. Let \Phi denote a computable graph property satisfying the star crite-
rion. Then the problem EDGESUB(\Phi ) is fixed-parameter tractable.

Proof. Since \Phi satisfies the star criterion, there is a constant c (only depending
on \Phi ) such that \Phi (K1,k) = 1 for all k\geq c. The fixed-parameter tractable algorithm is
constructed as follows:
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470 PEYERIMHOFF ET AL.

Given a graph G and a positive integer k, we can again solve the case k < c by
brute force and thus assume k\geq c. Then, we check whether G contains a vertex v of
degree at least k, in which case we can output 1, since any k-subset A of the incident
edges of v satisfies that \Phi (G[A]) = 1 by assumption.

In the remaining case, we can thus assume that \sansd \sanse \sansg (G) \leq k. Invoking the
algorithm from the previous lemma thus yields an overall running time bounded
by

mO(1) + g(k, k) \cdot | G| ,

which proves fixed-parameter tractability.

Proof of Main Theorem 5. In the case that \Phi satisfies the matching criterion or
the star criterion, the claim holds by Lemma 8.2 and Lemma 8.4. If \Phi has bounded
treewidth, then, given G and k, we can use the algorithm of Plehn and Voigt [72] for
each H \in \Phi k. Since the size of \Phi k is bounded by a function in k, the overall running
time still yields fixed-parameter tractability.

Our main result regarding minor-closed properties is now obtained by the com-
bination of our results in the realms of exact counting and approximate counting, as
well as decision.

Main Theorem 1. Let \Phi denote a minor-closed graph property.

1. Exact counting: If \Phi is either trivially true or of bounded matching number,
then the (exact) counting version \#EDGESUB(\Phi ) is fixed-parameter tractable.
Otherwise, the problem \#EDGESUB(\Phi ) is \#\sansW [\sansone ]-hard and, assuming the
ETH, cannot be solved in time f(k) \cdot | G| o(k/ logk) for any function f .

2. Approximate counting: The problem \#EDGESUB(\Phi ) always has an FPTRAS.
3. Decision: The problem EDGESUB(\Phi ) is always fixed-parameter tractable.

Proof. Note that each minor-closed property is computable (even in polynomial
time) by the Robertson--Seymour theorem [75]. The classification of exact counting
follows by Theorem 6.5. For approximate counting and decision, we claim that each
minor-closed property \Phi either has bounded treewidth or satisfies both the matching
and the star criteria. If the latter holds, then the existence of an FPTRAS for
approximate counting follows by Main Theorem 4, and the fixed-parameter tractable
algorithm for decision follows by Main Theorem 5.

To prove the claim, we assume that \Phi has unbounded treewidth; otherwise we are
done. In that case, by the excluded grid theorem [74], \Phi holds for a sequence of graphs
containing arbitrarily large grids as minors. Since every planar graph (including
matchings and stars) is a minor of a grid [76], and \Phi is minor-closed, we conclude
that \Phi holds for all matchings and all stars and thus satisfies both the matching and
the star criteria.

9. A parameterized Tutte polynomial. In the last part of the paper, we
take a step back and revisit exact counting: Recall that problem \#EDGESUB(\Phi ) can
be interpreted as the problem of evaluating a linear combination of subgraph counts,
given by

\#\sansE \sansd \sansg \sanse \sansS \sansu \sansb (\Phi , k\rightarrow \ast ) =
\sum 

H\in \Phi k

\#\sansS \sansu \sansb (H\rightarrow G) ,

where \Phi k is the set of all k-edge graphs that satisfy \Phi . In particular, each coefficient in
this linear combination is 0 or 1. We have seen that the values of \Phi on the fixed points
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 471

of certain group actions on (fractures of) Cayley graphs can be used to obtain explicit
criteria for (\#\sansW [\sansone ]-)hardness of \#EDGESUB(\Phi ). In the current section, we show
that the aforementioned method applies to the significantly more general problem of
computing weighted linear combinations of k-edge subgraph counts. More precisely,
we consider a natural parameterized variant of the Tutte polynomial and obtain an
exhaustive classification for the complexity of evaluating it at any rational coordinates.

Recall that the (classical) Tutte polynomial is defined as follows:

TG(x, y) :=
\sum 

A\subseteq E(G)

(x - 1)k(A) - k(E(G)) \cdot (y - 1)k(A)+\#A - \#V (G) ,

where k(S) is the number of connected components of the graph (V (G), S).
In this work, we consider the specialization of the Tutte polynomial to edge-subsets
of size k, which we call the parameterized Tutte polynomial :

T k
G(x, y) :=

\sum 
A\in (E(G)

k )

(x - 1)k(A) - k(E(G)) \cdot (y - 1)k(A)+k - \#V (G) .

We emphasize that the parameterized Tutte polynomial is related to a generalization
of the bases generating function for matroids investigated by Anari et al. in their work
on approximate counting (and sampling) via log-concave generating polynomials [5,
section 1.2].

Similarly to the classical counterpart due to Jaeger, Vertigan, and Welsh [49],
our goal is to understand the parameterized complexity of evaluating T k

G(x, y) for any
fixed pair of coordinates (x, y) when parameterized by k. Note that at points (x, y)
with x \not = 1, y \not = 1 we can write the polynomial as

T k
G(x, y) = (x - 1) - k(E(G))(y - 1)k - \#V (G)

\sum 
A\in (E(G)

k )

((x - 1) \cdot (y - 1))k(A) .

So, up to the global factor (x - 1) - k(E(G))(y - 1)k - \#V (G) (which can be computed in
linear time in the input size) in this region the polynomial is really just a polynomial
in the single variable z = (x - 1)(y  - 1). Still, we keep the variables x, y separate in
the treatment below. On the one hand, this facilitates comparisons to the classical
Tutte polynomial. On the other hand, we see some interesting behavior of T k

G(x, y)
at points with x= 1 or y = 1. Indeed, let us start by investigating the expressibility
of the parameterized Tutte polynomial in some individual points.

9.1. Interpretation in individual points. Recall that, given a graph G and
a subset A\subseteq E(G) of its edges, we write G(A) = (V (G),A) for the graph induced by
A. We emphasize the difference from the construction G[A] we saw before: the graph
G[A] is obtained from G(A) by removing all isolated vertices.

The most immediate information encoded in the parameterized Tutte polynomial
is the number of k-forests in a graph.

Observation 9.1. The number of forests with k edges in a graph G is given by
T k
G(2,1).

In particular, evaluating T k
G(2,1) is equivalent to evaluation \#\sansI \sansn \sansd \sansS \sansu \sansb (\Phi , k\rightarrow G)

for the (minor-closed) property of being acyclic.
For further individual points, it is convenient to consider the following modifica-

tion.
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Definition 9.2. Define the modified Tutte polynomial of a graph G as

\widetilde TG(x, y) := \sum 
A\subseteq E(G)

(x - 1)k(A) \cdot (y - 1)k(A)+\#A ,

so that \widetilde TG(x, y) = (x - 1)k(E(G))(y - 1)\#V (G)TG(x, y). Similarly we define the param-
eterized version as

\widetilde T k
G(x, y) :=

\sum 
A\in (E(G)

k )

(x - 1)k(A) \cdot (y - 1)k(A)+\#A .

As for its classical counterpart, we observe a deletion-contraction recurrence,
which enables us establish the properties at individual points. Setting \widetilde T - 1

G (x, y) = 0
we obtain the following lemma.

Lemma 9.3. Given a graph G and an edge e\in E(G) we have

\widetilde T k
G(x, y) =

\widetilde T k
G\setminus e(x, y) + (y - 1) \widetilde T k - 1

G/e (x, y)

for any k\geq 0 and similarly

\widetilde TG(x, y) = \widetilde TG\setminus e(x, y) + (y - 1) \widetilde TG/e(x, y) .

Proof. In the definition of \widetilde T k
G we split the sum over A\in 

\bigl( 
E(G)

k

\bigr) 
as

(9.1)\widetilde T k
G(x, y) =

\sum 
A\in (E(G)

k )
e \not \in A

(x - 1)k(A) \cdot (y - 1)k(A)+\#A +
\sum 

A\in (E(G)
k )

e\in A

(x - 1)k(A) \cdot (y - 1)k(A)+\#A .

The subsets A \in 
\bigl( 
E(G)

k

\bigr) 
with e \not \in A are naturally identified with the subsets

A \in 
\bigl( 
E(G\setminus e)

k

\bigr) 
, and we have G(A) = (G \setminus e)(A). Thus the first sum in (9.1) is

equal to \widetilde T k
G\setminus e(x, y). On the other hand, the subsets A \in 

\bigl( 
E(G)

k

\bigr) 
with e \in A are

naturally identified with the subsets A\prime \in 
\bigl( 
E(G/e)
k - 1

\bigr) 
by A \mapsto \rightarrow A\prime = A \setminus \{ e\} , and we

have k(A) = k(A\prime ) (in their respective graphs G and G/e). Thus the second sum-
mand in (9.1) equals (y  - 1) \widetilde T k - 1

G/e (x, y), with the factor (y  - 1) coming from the fact

that \#A = \#A\prime + 1 in the above correspondence. The deletion-contraction formula
for the (unparameterized) modified Tutte polynomial is obtained by summing over
all k.

Using the previous recurrence, the following transformation encapsulates the re-
lation between the parameterized and the classical Tutte polynomial.

Proposition 9.4. Given a graph G and k\geq 0 we have

(9.2)

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G(x, y) =
\sum 

A\in (E(G)
k )

\widetilde TG(A)(x, y) .

Proof. We prove the statement by induction on the number of edges. For E(G) =
\emptyset the two sides are zero for k \not = 0 and equal to \widetilde T 0

G(x, y) =
\widetilde TG(x, y) for k= 0.

We show the induction step using the deletion-contraction relations above. Let
G denote a graph with at least one edge e. Then we have
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k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G(x, y)(9.3)

=

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G\setminus e(x, y) +

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot (y - 1) \widetilde T \ell  - 1

G/e (x, y) .(9.4)

Furthermore, since \#E(G) =\#E(G\setminus e)+1, we can use the usual recursion of binomial
coefficients to see

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G\setminus e(x, y)

=

k\sum 
\ell =0

\biggl( 
\#E(G \setminus e) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G\setminus e(x, y) +

\biggl( 
\#E(G \setminus e) - \ell 

(k - 1) - \ell 

\biggr) 
\cdot \widetilde T \ell 

G\setminus e(x, y)

=
\sum 

A\in (E(G\setminus e)
k )

\widetilde T(G\setminus e)(A)(x, y) +
\sum 

A
\prime \in (E(G\setminus e)

k - 1 )

\widetilde T
(G\setminus e)(A\prime 

)
(x, y) ,

where we have used the induction step. For the second summand in (9.4) we make
the index shift \ell \prime = \ell  - 1 and obtain

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot (y - 1) \widetilde T \ell  - 1

G/e (x, y)

=

k - 1\sum 
\ell 
\prime 
=0

\biggl( 
\#E(G/e) - \ell \prime 

(k - 1) - \ell \prime 

\biggr) 
\cdot (y - 1) \widetilde T \ell 

\prime 
G/e(x, y)

=
\sum 

A
\prime \in (E(G/e)

k - 1 )

(y - 1) \widetilde T
(G/e)(A

\prime 
)
(x, y) .

Combining the last two equations we can conclude using suitable identifications, for
instance, identifying the A\in 

\bigl( 
E(G)

k

\bigr) 
with e\in A with A\prime \in 

\bigl( 
E(G\setminus e)
k - 1

\bigr) 
via A \mapsto \rightarrow A\prime =A\setminus \{ e\} 

and using

(G \setminus e)(A\prime ) =G(A) \setminus e and (G/e)(A\prime ) =G(A)/e .

Then we see that (9.4) equals\sum 
A\in (E(G\setminus e)

k )

\widetilde T(G\setminus e)(A)(x, y) +
\sum 

A
\prime \in (E(G\setminus e)

k - 1 )

\widetilde T
(G\setminus e)(A\prime 

)
(x, y) + (y - 1) \widetilde T

(G/e)(A
\prime 
)
(x, y)

=
\sum 

A\in (E(G)
k )

e \not \in A

\widetilde TG(A)(x, y) +
\sum 

A\in (E(G)
k )

e\in A

\widetilde TG(A)(x, y)

=
\sum 

A\in (E(G)
k )

\widetilde TG(A)(x, y) .

Using Proposition 9.4 we can now present combinatorial interpretations of the
specialization of T k

G(x, y) to some individual points.

Chromatic polynomial. For x= 1 - c, y= 0 the modified Tutte polynomial \widetilde TG(x, y)
encodes the chromatic polynomial \chi G(c) (see, for instance, [49, Chapter 2]), so we see
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474 PEYERIMHOFF ET AL.

that the \widetilde T \ell 
G(1 - c,0) (for 0 \leq \ell \leq k) contain the information of the number of pairs

(A,\sigma ) with A\subseteq E(G) with \#A= k and \sigma a c-coloring on G(A):

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G(1 - c,0) =\#

\biggl\{ 
(A,\sigma ) :A\in 

\biggl( 
E(G)

k

\biggr) 
, \sigma c-coloring on G(A)

\biggr\} 
.

Acyclic orientations. For x = 2, y = 0 the Tutte polynomial TG(x, y) specializes
to the number of acyclic orientations of G. We have \widetilde T k

G(2,0) = ( - 1)\#V (G)T k
G(2,0).

Thus the \widetilde T \ell 
G(2,0) (for 0 \leq \ell \leq k) contain the information of the number of pairs

(A,\vec{}\eta ), where A\subseteq E(G) with \#A= k and \vec{}\eta is an acyclic orientation on G(A). Indeed,
multiplying (9.2) with ( - 1)\#V (G) we obtain

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot T \ell 

G(2,0)

=\#

\biggl\{ 
(A,\vec{}\eta ) :A\in 

\biggl( 
E(G)

k

\biggr) 
, \vec{}\eta acyclic orientation on G(A)

\biggr\} 
.

k-edge sets inducing an even number of components.
Proposition 9.5. Given a graph G and a positive integer k, we have

1

2

\biggl( \biggl( 
\#E(G)

k

\biggr) 
+ ( - 1)k(E(G))T k

G(0,2)

\biggr) 
=\#\{ A\subseteq E(G) : \#A= k \wedge k(A) = 0 mod 2\} .

Proof. Let E =E(G). We have

1

2

\biggl( \biggl( 
\#E

k

\biggr) 
+ ( - 1)k(E)T k

G(0,2)

\biggr) 
=

1

2

\left(   \biggl( \#E
k

\biggr) 
+ ( - 1)k(E)

\sum 
A\in (Ek)

( - 1)k(A)+k(E)

\right)   
=

1

2

\left(   \sum 
A\in (Ek)

1 + ( - 1)k(A)

\right)   .

But observe that the summand above is 0 for k(A) odd and 2 for k(A) even. Thus
after summing and dividing by 2 we count the subsets A with the graph G(A) having
an even number of components.

k-edge sets of even Betti number. The (first) Betti number34 of a graph is defined
as b1(G) = k(E(G)) +\#E(G) - \#V (G) (cf. [7, Chapter 4]).

Proposition 9.6. Given a graph G and a positive integer k, we have

1

2

\biggl( \biggl( 
\#E(G)

k

\biggr) 
+ T k

G(2,0)

\biggr) 
=\#\{ A\subseteq E(G) : \#A= k \wedge b1(G(A)) = 0 mod 2\} .

34The first Betti number is also called the circuit rank, cyclomatic number, cycle rank, or nullity.
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Proof. We have

1

2

\biggl( \biggl( 
\#E(G)

k

\biggr) 
+ T k

G(2,0)

\biggr) 
=

1

2

\left(   \biggl( \#E(G)

k

\biggr) 
+

\sum 
A\in (E(G)

k )

( - 1)k(A)+\#A - \#V (G)

\right)   
=

1

2

\left(   \sum 
A\in (E(G)

k )

1 + ( - 1)b1(G(A))

\right)   ,

where we use b1(G(A)) = k(A)+\#A - \#V (G). But observe that the summand above
is 0 for b1(G(A)) odd and 2 for b1(G(A)) even. Thus after summing and dividing by
2 we count the subsets A with G(A) having even Betti number.

9.2. Classification for rational coordinates. We now classify the complexity
of computing T k

G(x, y) for each pair of rational coordinates x and y. Formally, for each
such pair, we consider the parameterized problem which expects as input G and k
and outputs the value T k

G(x, y); the parameterization is given by k. Let us start with
the following easy fact.

Lemma 9.7. For any y \in \BbbQ , the problem of computing T k
G(1, y) is fixed-parameter

tractable.

Proof. Observe that T k
G(1, y) = 0 unless there is A \subseteq E(G) of size k such that

k(A) = k(E(G)). In other words, G has a spanning subgraph of k edges. Consequently,
G can have at most 2k vertices, implying that G has at most

\bigl( 
2k
2

\bigr) 
\leq 4k2 many edges.

Therefore an algorithm for computing T k
G(1, y) is obtained as follows: Given G and

k, first check whether | V (G)| > 2k, and output 0 in that case. Otherwise, obtain
T k
G(x, y) by naively computing the sum, which takes time

O

\biggl( \biggl( 
4k2

k

\biggr) 
\cdot | G| 

\biggr) 
,

concluding the proof.

Next, similarly to the classical counterpart [49], we obtain a trivial algorithm for
coordinates x and y that lie on the hyperbola (x - 1)(y - 1) = 1.

Lemma 9.8. Let x and y denote rational numbers such that (x - 1)(y  - 1) = 1.
Then the problem of computing T k

G(x, y) is solvable in polynomial time (and thus
fixed-parameter tractable as well).

Proof. Observe that, given (x - 1)(y - 1) = 1, and setting V = V (G) and E =E(G),
we have

T k
G(x, y) =

\sum 
A\in (Ek)

(x - 1)k(A) - k(E) \cdot (y - 1)k(A)+k - \#V = (x - 1) - k(E)(y - 1)k+\#V

\biggl( 
\#E

k

\biggr) 
,

which can be computed trivially.

In what follows, we show that computing T k
G(x, y) is \#\sansW [\sansone ]-hard for all remaining

rational coordinates x and y. First, it is convenient to rewrite the quantity k(A) as
follows: given an edge-subset A of a graph G, recall that G[A] is the graph obtained
from (V (G),A) by deleting isolated vertices. Let us write \sansc \sansc (H) for the number of
connected components of a graph H.
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476 PEYERIMHOFF ET AL.

Fact 9.9. Let G denote a graph, and let A denote a subset of edges of G. We
have

k(A) = \sansc \sansc (G[A]) +\#V (G) - \#V (G[A]) .

Similarly as in the case of \#EDGESUB(\Phi ), our goal is to reduce from a linear
combination of (color-preserving) homomorphism counts. For this reason, we again
consider an easy modification by excluding the term (x - 1)\#V (G) - \sansc \sansc (G); more precisely,
consider

\widehat T k
G(x, y) :=

\sum 
A\subseteq (E(G)

k )

(x - 1)\sansc \sansc (G[A]) - \#V (G[A]) \cdot (y - 1)\sansc \sansc (G[A]) - \#V (G[A])+k ,

and observe that

T k
G(x, y) = (x - 1)\#V (G) - \sansc \sansc (G) \cdot \widehat T k

G(x, y) .

In particular \widehat T k
G(x, y) is trivially interreducible with T k

G(x, y) if x \not = 1. Next we
introduce an (H-)colored version of the parameterized Tutte polynomial; given an
edge-subset A of a k-edge-colored graph, we write \sansc \sansf \sansu \sansl (A) if A contains each of the k
colors precisely once.

Definition 9.10 (colorful parameterized Tutte polynomial). Let G denote a
k-edge-colored graph. We define

\sansc \sanso \sansl - \widehat T k
G :=

\sum 
A\subseteq (E(G)

k )
\sansc \sansf \sansu \sansl (A)

(x - 1)\sansc \sansc (G[A]) - \#V (G[A]) \cdot (y - 1)\sansc \sansc (G[A]) - \#V (G[A])+k

as the colorful parameterized Tutte polynomial.

The next lemma allows us to reduce the colorful version to the uncolored
version.

Lemma 9.11. Let G denote a k-edge-colored graph, and assume that the set of
colors is [k]. For each pair (x, y) we have

\sansc \sanso \sansl - \widehat T k
G(x, y) =

\sum 
J\subseteq [k]

( - 1)\#J \cdot \~T k
G\setminus J(x, y) ,

where G\setminus J is the graph obtained from G by deleting all edges colored with an element
of J .

Proof. The proof follows by the inclusion-exclusion principle (similarly as in
Lemma 4.7) and the fact that, given a k-edge-subset A of G, deleting edges in E(G)\setminus A
does not change the quantity

(x - 1)\sansc \sansc (G[A]) - \#V (G[A]) \cdot (y - 1)\sansc \sansc (G[A]) - \#V (G[A])+k .

Next, we express \sansc \sanso \sansl - \widehat T k
G as a linear combination of color-preserving homomor-

phisms counts. More precisely, given an H-colored graph G such that H has k edges,
we implicitly assume the k-edge-coloring of G induced by its H-coloring. Further,
given a fracture \rho of a graph H, we set r(\sigma ) := \sansc \sansc (H\sharp \sigma ) - \#V (H\sharp \sigma ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

7/
23

 to
 1

29
.2

34
.7

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 477

Lemma 9.12. Let H denote a graph with k edges. For every H-colored graph G,
we have

\#\sansc \sanso \sansl - \widehat T k
G(x, y) =

\sum 
\sigma \in \scrL (H)

(x - 1)r(\sigma ) \cdot (y - 1)r(\sigma )+k \cdot 
\sum 
\rho \geq \sigma 

\mu (\sigma ,\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G) ,

where the relation \leq and the M\"obius function \mu are over the lattice of fractures \scrL (H).

Proof. Every colorful k-edge-subset A of G induces a fracture of H, similarly as
we have seen in section 4. In particular, if A and A\prime induce the same fracture \sigma , then
G[A]\sim =G[A\prime ]\sim =H\sharp \sigma . Writing [\sigma ] for the equivalence class of the induced fracture \sigma ,
we obtain

\#\sansc \sanso \sansl - \widehat T k
G(x, y) =

\sum 
\sigma \in \scrL (H)

(x - 1)r(\sigma ) \cdot (y - 1)r(\sigma )+k \cdot \#[\sigma ] .

Next observe that \#[\sigma ] = \#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (H\sharp \sigma \rightarrow H G). Finally, we have already seen
in (the proof of) Lemma 4.1 that

\#\sansC \sanso \sansl \sansE \sansd \sansg \sanse \sansS \sansu \sansb (H\sharp \sigma \rightarrow H G) =
\sum 
\rho \geq \sigma 

\mu (\sigma ,\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (H\sharp \rho \rightarrow H G) ,

which concludes the proof.

The following lemma establishes that the coefficient of the torus does not vanish
apart from a few exceptions, which eventually allows us to prove \#\sansW [\sansone ]-hardness.

Lemma 9.13. Let \ell > 2 denote a prime, and let (x, y) \in \BbbQ 2. There is a unique
and computable function a\ell (x,y) from fractures of \circledcirc \circledcirc \circledcirc \ell to rational numbers such that

\sansc \sanso \sansl - \widehat T 2\ell 2

 \star =
\sum 

\rho \in \scrL (\circledcirc \circledcirc \circledcirc \ell )

a\ell (x,y)(\rho ) \cdot \#\sansH \sanso \sansm \sansc \sansp (\circledcirc \circledcirc \circledcirc \ell \sharp \rho \rightarrow \circledcirc \circledcirc \circledcirc \ell 
 \star ) .

Moreover, if both the denominators of x, y and the numerators35 of x - 1 and (x - 
1)(y - 1) - 1 are not divisible by \ell , then a\ell (x,y)(\top ) \not = 0.

Proof. The first claim follows immediately from the previous lemma. For the
second claim, we rely on the following fact from commutative algebra.

Fact 9.14. Let q \in \BbbZ denote a nonzero integer; then the localization \BbbZ [1/q] of \BbbZ 
at q is the set

\BbbZ [1/q] =
\biggl\{ 
u\in \BbbQ : \exists v \in \BbbZ ,m\in \BbbN with u=

v

qm

\biggr\} 
of rational numbers which can be brought to a denominator which is a power of q.
The subset \BbbZ [1/q] of \BbbQ is closed under addition and multiplication. Let furthermore \ell 
denote a prime not dividing q, implying that q has an inverse q - 1 mod \ell . Then there
is a well-defined map

\BbbZ [1/q]\rightarrow \BbbZ \ell ,
v

qm
\mapsto \rightarrow v \cdot (q - 1)m,

and this map is compatible with addition and multiplication.

35In both cases, we refer to denominators and numerators of the corresponding shortened frac-
tions.
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478 PEYERIMHOFF ET AL.

Let us now collect the coefficients of \#\sansH \sanso \sansm \sansc \sansp (\circledcirc \circledcirc \circledcirc \ell \rightarrow \circledcirc \circledcirc \circledcirc \ell 
 \star ) in the sum appearing in

Lemma 9.12. Completely similar to Corollary 4.3 we obtain

(9.5) a\ell (x,y)(\top ) =
\sum 

\sigma \in \scrL (\circledcirc \circledcirc \circledcirc \ell )

(x - 1)r(\sigma )(y - 1)r(\sigma )+2\ell 2
\prod 

v\in V (\circledcirc \circledcirc \circledcirc \ell )

( - 1)| \sigma v|  - 1(| \sigma v|  - 1)!\in \BbbQ .

Note that in this expression we have for the exponents of x - 1 and y - 1 that r(\sigma )\leq 0
but r(\sigma )+ k\geq 0. Let q denote the least common multiple of the denominators of x, y
and the numerator of x - 1; then we have that (x - 1)\pm 1 and (y - 1) are elements in
\BbbZ [1/q]. By the assumption that \ell does not divide q together with Fact 9.14 above,
we can see these expressions (and thus the entire sum (9.5)) as an element of \BbbZ \ell .
Now recall the 15 fixed points of the action of \BbbZ 2

\ell on the fractures of \circledcirc \circledcirc \circledcirc \ell as given
by Observation 5.3. Counting modulo \ell allows us to rely on the same analysis as
presented in the proof of Lemma 5.6, which yields that a\ell (x,y)(\top ) is, modulo \ell , equal
to

 - 6R(M2\ell 2) + 4R(M\ell 2 + \ell C\ell ) + 8R(\ell 2P2) - R(2\ell C\ell ) - 2R(\ell C2\ell ) - 4R(\ell S\ell ) +R(\circledcirc \circledcirc \circledcirc \ell ) ,

where R(H) := (x - 1)\sansc \sansc (H) - \#V (H) \cdot (y - 1)2\ell 
2+\sansc \sansc (H) - \#V (H).

Consequently, we have

a\ell (x,y)(\top ) = - 6(x - 1)2\ell 
2 - 4\ell 2 \cdot (y - 1)2\ell 

2+2\ell 2 - 4\ell 2

+ 4(x - 1)\ell 
2+\ell  - 3\ell 2 \cdot (y - 1)2\ell 

2+\ell 2+\ell  - 3\ell 2

+ 8(x - 1)\ell 
2 - 3\ell 2 \cdot (y - 1)2\ell 

2+\ell 2 - 3\ell 2

 - 1(x - 1)2\ell  - 2\ell 2 \cdot (y - 1)2\ell 
2+2\ell  - 2\ell 2

 - 2(x - 1)\ell  - 2\ell 2 \cdot (y - 1)2\ell 
2+\ell  - 2\ell 2

 - 4(x - 1)\ell  - 2\ell 2 \cdot (y - 1)2\ell 
2+\ell  - 2\ell 2

+ 1(x - 1)1 - \ell 2 \cdot (y - 1)2\ell 
2+1 - \ell 2 mod \ell .

The first simplification is obtained by observing that the first and the third terms
and the second, fifth, and sixth terms, respectively, contain the same monomial.
Consequently, we have that (modulo \ell )

a\ell (x,y)(\top ) =+ 2(x - 1) - 2\ell 2

 - 2(x - 1) - 2\ell 2+\ell \cdot (y - 1)\ell 

 - (x - 1) - 2\ell 2+2\ell \cdot (y - 1)2\ell 

+ (x - 1)1 - \ell 2 \cdot (y - 1)\ell 
2+1.

Using Fermat's little theorem, we obtain

a\ell (x,y)(\top )

=2(x - 1) - 2  - 2(x - 1) - 2 \cdot (y - 1) - (y - 1)2 + (y - 1)2 mod \ell 

=2(x - 1) - 2 \cdot (1 - (x - 1) \cdot (y - 1)) mod \ell .

The assumption that the denominator of x (which is the numerator of (x - 1) - 2) and
the numerator of (x - 1)(y  - 1) - 1 are not divisible by \ell implies that each factor in
the product 2(x  - 1) - 2 \cdot (1  - (x  - 1) \cdot (y  - 1)) gives a nonzero residue class mod \ell .
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PARAMETERIZED COUNTING AND CAYLEY GRAPH EXPANDERS 479

Since \ell is a prime, their product is still nonzero in \BbbZ \ell , and thus the original rational
number a\ell (x,y)(\top ) is likewise nonzero, concluding the proof.

We are thus able to rely on complexity monotonicity to establish hardness as
promised.

Lemma 9.15. Let (x, y) denote a pair of rational numbers such that (x - 1)(y  - 
1) \not = 1 and x \not = 1. Then the problem of computing T k

G(x, y) is \#\sansW [\sansone ]-hard.

Proof. Let \scrH [x, y] denote the set of all \circledcirc \circledcirc \circledcirc \ell such that \ell is prime and both the
denominators of x and y as well as the numerators of x  - 1 and (x  - 1)(y  - 1)  - 1
are not divisible by \ell . Since x and y are fixed, the latter is true for infinitely many
primes \ell , and thus \scrH [x, y] contains tori of unbounded size. In particular, it contains
graphs with arbitrary large grid minors and has thus unbounded treewidth [74], and
hence, the problem \#HOM(\scrH [x, y]) is \#\sansW [\sansone ]-hard by the classification of Dalmau and
Jonsson [28].

Completely analogously to the proof of Lemma 4.8, the problem \#HOM(\scrH [x, y])
reduces to computing \sansc \sanso \sansl - \widehat T k

G(x, y) via complexity monotonicity (Lemma 4.6), since
the coefficients of the tori do not vanish by the previous lemma.

Next, reducing to the uncolored version \widehat T k
G(x, y) can be done via Lemma 9.11,

and, finally, \widehat T k
G(x, y) is trivially interreducible with T k

G(x, y) whenever x \not = 1.

At last, we are able to prove this section's dichotomy theorem.

Theorem 9.16. Let (x, y) denote a pair of rational numbers. The problem of
computing T k

G(x, y) is fixed-parameter tractable if x = 1 or (x  - 1)(y  - 1) = 1 and
\#\sansW [\sansone ]-hard otherwise.

Proof. The fixed-parameter tractable cases follow from Lemmas 9.7 and 9.8, and
the \#\sansW [\sansone ]-hard cases follow from the previous lemma.

As an immediate consequence, the computation of each individual point consid-
ered in subsection 9.1 is \#\sansW [\sansone ]-hard. Moreover, observe that the transformation

k\sum 
\ell =0

\biggl( 
\#E(G) - \ell 

k - \ell 

\biggr) 
\cdot \widetilde T \ell 

G(x, y) =
\sum 

A\in (E(G)
k )

\widetilde TG(A)(x, y) ,

given by Proposition 9.4, is invertible in the sense that the numbers\sum 
A\in (E(G)

\ell )

\widetilde TG(A)(x, y)

for \ell = 0, . . . , k reveal \widetilde T k
G(x, y). Consequently, we obtain \#\sansW [\sansone ]-hardness of the infor-

mation encoded in all considered individual points as well.

Corollary 9.17. The following problems are \#\sansW [\sansone ]-hard when parameterized
by k:

\bullet Given G and k, compute the number of k-edge subsets A of G such that G(A)
has an even number of components.

\bullet Given G and k, compute the number of pairs (A,\sigma ) such that A is a k-edge
subset of G and \sigma is a c-coloring of G(A). Here c\geq 2 is a fixed integer.

\bullet Given G and k, compute the number of pairs (A,\vec{}\eta ) such that A is a k-edge
subset of G and \vec{}\eta is an acyclic orientation of G(A).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\bullet Given G and k, compute the number of k-edge subsets A of G such that G(A)
has even Betti number.

9.2.1. Comparison to the classical dichotomy and real fixed-parameter
tractable cases. In this section, we ask which of the fixed-parameter tractable cases
allow for a polynomial-time algorithm. We can answer this question under the as-
sumption \sansP \not = \#\sansP by considering the classical dichotomy of Jaeger, Vertigan, and
Welsh.36

Theorem 9.18 (see [49]). Let (x, y) be a pair of rational numbers. Then comput-
ing TG(x, y) is solvable in polynomial time if (x, y)\in \{ (1,1), ( - 1, - 1), (0, - 1), ( - 1,0)\} 
or if (x - 1)(y - 1) = 1. In all other cases the problem is \#\sansP -hard.

First, we observe that the parameterized dichotomy coincides with the classical
dichotomy, except for the three points ( - 1, - 1), (0, - 1), and ( - 1,0), in which the pa-
rameterized Tutte polynomial is (\#\sansW [\sansone ]-)hard to compute but the nonparameterized
one is polynomial-time solvable. The latter indicates that taking the sum only over
the k-edge subsets can, in fact, make the problem harder.

However, the nonparameterized Tutte polynomial always reduces to the parame-
terized Tutte polynomial via polynomial-time Turing reductions, since we can compute
T 0
G(x, y)+\cdot \cdot \cdot +T\#E(G)

G (x, y) which is equal to TG(x, y). Thus any point (x, y) in which
the nonparameterized Tutte polynomial is \#\sansP hard and in which the parameterized
Tutte polynomial is fixed-parameter tractable constitutes a ``real"" fixed-parameter
tractable case. In particular, the latter shows that each point on the line x= 1 yields
a real fixed-parameter tractable case, except for the point (1,1), which needs special
treatment. More precisely, we have to determine whether computing T k

G(1,1) is not
only fixed-parameter tractable (see Lemma 9.7) but also polynomial-time solvable.
To this end, observe that

T k
G(1,1) =

\Biggl\{ 
TG(1,1), k=\#V (G) - k(E(G)),

0, k \not =\#V (G) - k(E(G)),

since, for x= y= 1, we have

(x - 1)k(A) - k(E(G))(y - 1)k(A)+\#A - \#V (G) = 0 ,

unless \#A = \#V (G)  - k(E(G)). Thus, in point (1,1), the parameterized Tutte
polynomial can be computed in polynomial time by relying on the algorithm given by
Theorem 9.18 in the case k=\#V (G) - k(E(G)) and outputting 0 otherwise.

Finally, recall that by Lemma 9.8, the case (x  - 1)(y  - 1) = 1 allows for
a polynomial-time algorithm. The complete picture is hence given by the fol-
lowing refined classification; consider Figure 1 for a depiction of the tractable
cases.

Main Theorem 7. Let (x, y) denote a pair of rational numbers. The problem
of computing T k

G(x, y) is solvable in polynomial time if x = y = 1 or (x  - 1)(y  - 
1) = 1, fixed-parameter tractable, but \#\sansP -hard if x = 1 and y \not = 1 and \#\sansW [\sansone ]-hard
otherwise.

9.3. Approximating the parameterized Tutte polynomial. In the very
last part of this paper, we identify rational points (x, y) for which T k

G(x, y) can be

36We state their classification only for rational numbers but point out that the full dichotomy
includes all complex pairs.
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approximated efficiently. Recall from Definition 7.1 that an FPTRAS for a parame-
terized counting problem (P,\kappa ) is a (randomized) algorithm \BbbA which, on input I, \varepsilon ,
and \delta , outputs a value z with probability

\sansP \sansr [ (1 - \varepsilon )P (I)\leq z \leq (1 + \varepsilon )P (I) ]\geq 1 - \delta 

in time f(\kappa (I)) \cdot \sansp \sanso \sansl \sansy (| I| , \varepsilon  - 1, log(1/\delta )) for some computable function f . If f is a
polynomial as well, then \BbbA is called an FPRAS (cf. [68, Definition 11.2]).

We have to be careful when speaking about approximating T k
G(x, y) since the

latter can have negative values. One way of dealing with negative valued functions is to
require that an FPTRAS/FPRAS outputs a pair (z, s) such that z is an approximation
of the absolute value and s is the sign; that is, we require that with probability at
least (1 - \delta ), we have

(1 - \varepsilon )| T k
G(x, y)| \leq z \leq (1 + \varepsilon )| T k

G(x, y)| and s= \sanss \sansi \sansg \sansn (T k
G(x, y)) .

We are now able to establish a region of rational points for which the parameter-
ized Tutte polynomial admits an FPTRAS or even an FPRAS; the proof is a simple
consequence of the work of Anari et al. on approximate counting via log-concave
polynomials [5].

Main Theorem 8. Let (x, y) denote a pair of rational numbers satisfying the
condition 0\leq (x - 1)(y - 1)\leq 1. Then T k

G(x, y) has an FPTRAS. If additionally x \not = 1
or y= 1, then T k

G(x, y) even has an FPRAS.

Proof. The case x = 1 is a trivial consequence of Main Theorem 7. If x = 1,
then exact counting is fixed-parameter tractable, and thus there is an FPTRAS. We
consider two cases for the remaining points.

First, consider y = 1. If x = 1 as well, then we obtain by Main Theorem 7 a
polynomial-time algorithm for exact counting and thus an FPRAS. Otherwise, we
have that T k

G(x,1) is equal to\sum 
A\in (E(G)

k )

(x - 1)k(A) - k(E(G)) \cdot 0k(A)+k - \#V (G) =
\sum 

A\in (E(G)
k )

G(A) acyclic

(x - 1)k(A) - k(E(G)) ,

since k(A) + k  - \#V (G) = 0 if and only if G(A) is acyclic. Recall that k(A) is the
number of connected components of G(A)(= (V (G),A)), and observe that for acyclic
sets of edges A with | A| = k, we have k(A) =\#V (G) - k. Consequently,

T k
G(x,1) = (x - 1)\#V (G) - k - k(E(G)) \cdot \#\{ A\subseteq E(G)| \#A= k \wedge G(A) acyclic\} .

Since computing the number of acyclic edge-subsets of size k admits an FPRAS [4,
5], we can conclude this case.

In the remaining case, we have x \not = 1 and y \not = 1 (and thus 0< (x - 1)(y - 1)\leq 1).
Let q = (x - 1)(y  - 1), and let G denote a graph with edges E = [m], that is, G has
m edges labeled with 1, . . . ,m. Consider the polynomial

fG,k,q(x1, . . . , xm) :=
\sum 

A\in (Ek)

q - \sansr \sansk (A)
\prod 
i\in A

xi ,

where \sansr \sansk (A) :=\#V (G) - k(A) is the rank of A with respect to the graphic matroid of
G. Anari et al. have established the existence of an FPRAS for evaluating fG,k,q(1m)
whenever 0< q\leq 1 [5, section 1.2]. Now observe that

T k
G(x, y) = (x - 1)\#V (G) - k(E(G))(y - 1)k \cdot fG,k,q(1m) .
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Since neither x= 1 nor y = 1, we conclude that an FPRAS for fG,k,q(1m) yields the
desired FPRAS for T k

G(x, y).
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