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Abstract: Imaging birefringent interferometers are used to measure plasma flow in 2-D via the
Doppler shift of a spectral emission line. Applications include plasma physics study in fusion
energy experiments and in the Earth’s upper atmosphere. We present a new, to the best of our
knowledge, method for wavelength calibration that does not require measurement at the rest
wavelength of the targeted spectral line, nor measurement using a tuneable laser source. This is
useful when such light sources are not available. Fringes measured at known wavelengths from
the emission lines of gas-discharge lamps are used to constrain an instrument model which can
generate the required calibration data. In the process, optical path difference, dispersion and
misalignments are characterized. The “2π ambiguity” of interferogram phase data is handled
using circular statistics, allowing the wavelength span of the calibration lines to far exceed
the unambiguous measurement range of the instrument. The technique is demonstrated to an
accuracy of ±1 pm (±0.7 km/s flow-equivalent) over a 40 nm visible wavelength range.
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1. Introduction

Two-beam interferometers are used to measure the flow speed of plasma via the Doppler-shifted
wavelength of an emitted spectral line [1–4]. According to the principles of Fourier transform
spectroscopy, flow of the light-emitting plasma along the interferometer line-of-sight causes a
proportionate shift in the phase of the measured interference fringes. Birefringent interferometers
offer an alternative to traditional double-path interferometers, with the advantage that they are
less sensitive to vibration and easier to assemble [5]. In the last decade, imaging birefringent
interferometers have found routine use in nuclear fusion energy research, on magnetically-confined
plasma experiments such as the tokamak [4,6–11]. In this field, the technique is better known
as “coherence imaging”. These instruments typically target the spectral lines in the visible
wavelength range that are emitted by ions in the edge plasma region. The 2-D flow data, captured
at <1 kHz rates, supports the study of particle and energy transport in the reactor. The instruments
are compact and affordable to research institutions, and can provide better spatial coverage than
is typically practical for grating spectrometers. The same technique has been demonstrated for
measuring wind speeds in the upper atmosphere [12,13]. However the lower speeds (<200 m/s)
compared to the edge of fusion experiments (<40 km/s) make this application more challenging.
A large interferometer delay, on the order of 103 or 104 waves, is required to achieve sensitivity
to Doppler shifts of this size.
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Calibrating the zero-point of these flow measurements requires a fringe image measured at the
rest-frame wavelength of the targeted emission line. For some lines it is practical to take this
measurement directly using a gas-discharge lamp. For other lines, the measurement requires a
tuneable laser and precision wavemeter [14–16]. If an appropriate light source is not available,
then another approach is required. In the earth’s atmosphere, this can mean measuring along
anti-parallel lines of sight and taking an average [3], or else by assuming that the wind speed
in the vertical direction is negligible [2]. In previous work on fusion experiments, the plasma
has been assumed to be stationary in the reactor’s initial breakdown phase [4] or else assumed
stationary along a particular line of sight [7]. These assumptions can be difficult to verify. They
can also constrain the instrument view, require periodic changes in the view to calibrate, or can
require that an additional view be incorporated into the instrument design.

This paper presents a new method for absolute wavelength calibration of birefringent inter-
ferometers, useful when a tunable monochromatic light source at the appropriate wavelength is
not available. The method is analogous to the standard calibration procedure for a grating spec-
trometer: measure spectral lines at known wavelengths and constrain a model of the instrument
response across the wavelength range. A key difference with this work is the need to measure
each spectral line separately, each measurement being a phase image that must be reproduced by
the model. Previous work on model-fitting to birefringent interferometer fringe images has been
limited to single wavelengths or to a narrow wavelength range by the inherent “2π ambiguity” of
the phase data [14,17]. We handle this ambiguity using circular statistics, allowing measurements
to be made over a wide wavelength range relative to the unambiguous measurement range of
the interferometer. Our work is motivated by application to the UK’s MAST Upgrade tokamak
[18], where we seek to measure flows to ±1km/s accuracy. While we restrict our discussion
and demonstration to interferometers producing fringes in the spatial domain (across a camera’s
sensor), the principles of the calibration method apply similarly to fringes produced in the time
domain.

This paper proceeds as follows. Section 2 outlines the flow measurement principle for imaging
birefringent interferometers. Section 3 describes the interferometer hardware used in this work.
Section 4 then describes a framework for model-fitting to wrapped phase data. Section 5 presents
an experimental demonstration of the calibration method. Section 6 is a critical discussion of the
method compared to the existing alternative and finally Section 7 summarises the paper.

2. Measurement principle

Figure 1(a) defines the relevant geometry of a plane-parallel uniaxial birefringent crystal plate:
thickness L, cut angle γ and orientation ρ. Figure 1(b) then defines the relevant geometry of a
light ray incident on such a plate: incidence angle α and azimuthal angle β. A simple imaging
birefringent interferometer consists of a uniaxial crystal sandwiched between two co-aligned
(or crossed) polarizers [5,19] with orientations as shown in Fig. 1(c). After the first polarizer,
the crystal resolves the light into orthogonally polarized ordinary (o) and extraordinary (e) rays
which, experiencing refractive indices no and ne, propagate at different speeds and along different
paths through the crystal. The two rays are resolved into a common polarization state by the
second polarizer and are brought to a focus on a camera sensor by an imaging lens that is focused
to infinity. When the rays interfere at the sensor, the phase delay ϕ between them is a function
[20] of ne, no, γ, L, α, (β − ρ) and wavelength λ.

To produce an interferogram in the spatial domain, ϕ is modulated across the sensor plane. If
the imaging lens has focal length fl and is considered thin, then point p = (x, y) on the sensor
maps to α as

α(p) = arctan
(︃√︂(x − ∆x)2 + (y − ∆y)2

fl

)︃
, (1)
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Fig. 1. (a) A plane-parallel, uniaxial birefringent plate of thickness L. A principal section
contains the crystal optic axis (COA) and the surface normal n̂. Orientation angle ρ is
between the principal section and the x-axis. Cut angle γ is between the COA and the front
face. (b) The plane of incidence contains the incident ray and n̂. Incidence angle is α
and azimuthal angle is β. (c) The layout of a simple imaging birefringent interferometer.
Orientation markings indicate polarizer transmission axes and the crystal’s principal section.
(d) The corresponding interferometer delay contours across the camera sensor plane modeled
for γ = 0° (a waveplate). (e) For γ = 45°.

and maps to β as
β(p) = atan2(y − ∆y, x − ∆x) + π. (2)

Here, atan2(. . . ) is the two-argument arctangent function and the π term appears since the
lens produces an inverted image. Terms ∆x and ∆y account for small rotational misalignment of
the crystal: ∆x ≡ flψy and ∆y ≡ flψx. Crystal tilt angle about the x-axis is ψx, in the clockwise
direction when the x-axis points towards the observer. Crystal tilt angle about the y-axis is ψy,
in the anti-clockwise direction when the y-axis points towards the observer. For a waveplate
(γ = 0°) in air the expression for ϕ is [20]:

ϕ(p, λ) =
2πL
λ

(︃√︂
n2

o − sin2 α(p) −
√︁

n2
en2

o − [n2
e − (n2

e − n2
o) sin2(β(p) − ρ)] sin2 α(p)
no

)︃
. (3)

At normal incidence (α = 0°), this reduces to the familiar

ϕ =
2πL(ne − no)

λ
. (4)

Combining Eqs. (1), (2) and (3), we can model ϕ(p, λ) across the sensor plane. Figure 1(d)
shows the hyperbolic ϕ contours characteristic of a waveplate. Figure 1(e) then shows the roughly
linear ϕ contours of a crystal with γ = 45°. Linear phase ramps like this are commonly used as a
spatial carrier wave in fusion applications [7–9].

For the setup shown in Fig. 1(c) observing an unpolarized source, it can be shown using
Mueller calculus (or Jones calculus) that the spectral flux reaching a pixel centered at point p on
the sensor plane is

I ′λ(p, λ) ≈
Iλ(p, λ)

4
(1 + cos ϕ(p, λ)). (5)

Here, Iλ(p, λ) is the spectral flux reaching the first polarizer, relevant to the pixel in question.
Delay ϕ is assumed constant across each pixel’s area. If the observed source has velocity
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v and emits a spectral line with rest-frame wavelength λ0, then the flux reaching the pixel
S(p) =

∫ ∞

0 I ′λ(p, λ)dλ can be written:

S(p) ≈ I(p)
4

(︂
1 + ζ cos

[︂
ϕ0(p) + ϕ̂0(p)

v · l̂(p)
c

]︂ )︂
. (6)

Here, we have defined the shorthand ϕ0(p) ≡ ϕ(p, λ0) and I(p) ≡
∫ ∞

0 Iλ(p, λ)dλ. Unit vector
l̂(p) is the line-of-sight vector at the source and c is the speed of light. The group delay

ϕ̂0(p) ≡ −λ0
∂ϕ(p, λ)
∂λ

|︁|︁|︁
λ0

, (7)

approximates dispersion to first order [6,19,21]. The constant of proportionality between ϕ0(p)
and ϕ̂0(p) is typically of order 1. Equation (6) represents an interferogram whose phase is the
sum of two terms, the first corresponding to a stationary source emitting at λ0 and the second
corresponding to the Doppler shift. For brevity, Eq. (6) ignores the inhomogeneous source
volume of a plasma [21] and omits an additional phase term due to asymmetry in the emission
spectrum [6].

The phase Φ recovered from the interferogram, corresponding to the pixel centered at p, is
inherently wrapped into the interval (−π, π] rad. Rearranging Eq. (6), flow is recovered from Φ
using:

v · l̂(p)
c

≈
W[Φ − ϕ0(p)]

ϕ̂0(p)
. (8)

Here, W[. . . ] represents the operation of wrapping within the (−π, π] rad interval. To avoid
ambiguity, ϕ0 is chosen such that the phase shift does not exceed π rad for the maximum expected
|v · l̂(p)|. Choice of ϕ0 is also informed by fringe visibility ζ and by data analysis tractability for
measurements of an inhomogeneous source volume [21].

From Eq. (8), the flow measurement requires two calibration images: phase delay ϕ0(p) and
group delay ϕ̂0(p). Since ϕ0(p) only needs to be known modulo 2π rad, it can be measured
directly with an extended monochromatic source emitting at λ0. To measure ϕ̂0(p), that source
can be tuned about λ0. These procedures can be realized with a tunable laser and precision
wavemeter [7,14–16]. Alternatively, both parameters can, in principle, be measured via the
interferometer’s white light interference pattern using a high-resolution grating spectrometer
[21]. However, this is a challenging measurement to make for an imaging system. Since |v| ≪ c,
the flow measurement is far more sensitive to absolute error in ϕ0(p) than in ϕ̂0(p). It follows that
regular calibration of ϕ0(p) is required to track changes in ambient temperature and alignment,
while a single measurement of ϕ̂0(p) for each assembled interferometer is typically sufficient
[7]. Our calibration method proposes that both parameters be simulated using an optimized
instrument model rather than measured directly, removing the need for a tunable coherent source.

The next section describes the experimental setup and instrument model used in this work.

3. Instrument model

The interferometer used to demonstrate our calibration method has a pixelated phase mask
(PPM) design [22–24]. This design generates a pixelated interferogram that maximizes the
spatial resolution of the recovered phase image [23]. Figure 2(a) is a labelled photograph of the
instrument, with the schematic in Fig. 2(b) showing the interferometer components and their
orientations. The polarized camera sensor used here (Sony IMX250MZR CMOS sensor [25]) has
an array of pixel-sized wire-grid polarizers bonded directly to the chip, oriented in the repeating
2 × 2 pixel pattern shown in Fig. 2(c). We use m to index the camera pixels according to their
polarizer orientation and refer to each 2 × 2 pixel block as a superpixel. If Eq. (6) is re-derived
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for this configuration, interferogram phase now includes an additional pixel-dependent term:
mπ/2 rad. Figure 2(d) shows an 8 × 8 pixel crop of the resulting interferogram image measured
using an extended, monochromatic source. Since the source is uniform in its brightness and
wavelength, the observed signal variation is due to delay modulation only. Interferogram phase
Φ for a superpixel can be recovered, wrapped within (−π, π] rad, using the ‘4-bucket algorithm’
[22]:

Φ ≈ arctan
(︃
S3 − S1
S0 − S2

)︃
. (9)

Here, Sm is the signal of the m-th pixel within the given superpixel. Phase images are recovered
at superpixel resolution using this algorithm (for a detector-limited system) and example images
will be shown in Section 5. It should be noted that our calibration method applies similarly to
interferometer designs that instead modulate delay using arbitrarily-cut crystal plates [8,9,14,26],
Savart plates [6–8,11] or Wollaston prisms [5,13,27].

Fig. 2. (a) The imaging birefringent interferometer used to demonstrate the wavelength
calibration technique in this work. (b) Schematic showing the transmission axis orientation
of the polarizer and the fast axis orientations of the waveplates. (c) The repeating 2 × 2
pattern of pixelated polarizers on the camera sensor, with orientation indicated by index m.
(d) An 8 × 8 pixel crop from a fringe image corresponding to a uniform, monochromatic
scene created using an integrating sphere and a Cd spectral lamp.

The instrument shown in Fig. 2(a) is a modified version of the coherence imaging instrument
deployed on the MAST and MAST Upgrade tokamaks [7,24]. Lens 1 is the objective, forming
an intermediate image at its back focal plane. Lens 2 is a relay, sending collimated light through
the interferometer, and Lens 3, focused at infinity, forms an image on the sensor. The lenses have
focal lengths f1 = 40 mm, f2 = 105 mm and f3 = 150 mm. A motorized, programmable filter
wheel houses the bandpass interference filters required to isolate single spectral emission lines
for measurement. All components are mounted within 50 mm cage mounts, except the camera
which is mounted directly to Lens 3. The camera sensor has format 2448 × 2048 and a pixel
dimension of 3.45 µm [25]. The birefringent material used is barium borate BaB2O4 in its alpha
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crystalline phase (α-BBO). Two waveplates are used in this work, with measured thicknesses of
4.48 ± 0.05 mm and 9.79 ± 0.05 mm.

Dispersion in birefringent materials is appreciable — α-BBO birefringence ne − no ≈ − 0.125
varies almost 10% over the visible wavelength range. This variation is modeled using the
Sellmeier equation

ne,o(λµ) =

√︄
Ae,o +

Be,o

λ2
µ + Ce,o

+ De,oλ
2
µ, (10)

where ne,o(λµ) are the refractive indices as a function of wavelength (in microns) and Ae,o, Be,o, Ce,o
and De,o are material-specific coefficients. “The refractive index of most materials with good
homogeneity can be modeled to a few parts in 105 over their entire transparent region with a
Sellmeier fit of a few terms” [28].

Combining Eqs. (1), (2), (3) and (10) with the positions of the camera superpixel centers allows
phase images captured by the PPM interferometer to be modeled for any wavelength. However,
nominal values for the model parameters are not accurate enough to generate usable calibration
images and so must be optimized using measurements. The choice of which parameters to
optimize in the fit is determined by the specifics of the instrument setup and by the accuracy
required. For example, for an ideal setup the crystal tilt angle model values would not need to be
optimized. For the Sellmeier coefficients, multiple sets are available for α-BBO and β-BBO,
from the academic literature [29–33] and from manufacturers [34,35]. However, no information
is available as to the accuracy of these coefficients. If the spread in available coefficient values is
taken as being representative of their uncertainty, then modeling suggests that the coefficients are
not sufficiently accurate to model phase shifts over a >5 nm wavelength range to the ±1 km/s
accuracy target. This means that one or more of the coefficient values must be optimized to match
data measured over a wider wavelength range. Correlations between model parameters also
informs which parameters should be optimized. For example, crystal thickness L and Sellmeier
coefficient values inferred from a fit to phase will be highly correlated with one another. In
other words, the data gives relatively little information about their true values. This shouldn’t
worry us though as our concern here is the predictive power of the model, not the the universal
applicability of our parameter values. For the instrument and targeted accuracy of this work, a fit
to 8 parameters was sufficient to reproduce the measured data: ρ, ψx, ψy, f3, Ae, Be, Ce and De.
Initial values and assumptions made about these parameters will be given in Section 5.

Next, we describe the method used to fit this instrument model to measured phase data.

4. Fitting to wrapped phase data

Measurements of interferogram phase are wrapped into the interval (−π, π] rad, introducing
ambiguity and discontinuities. Unwrapping to recover an unambiguous, continuous signal requires
a sufficiently low noise level and high sampling rate [19,36]. For an optimized interferometer,
the unambiguous measurement range for wavelength shifts will approximate the maximum
anticipated Doppler shift. This is ∼ 0.1 nm for the visible light emitted at the edge plasma
of fusion experiments—smaller than the typical wavelength separation of the bright spectral
lines used in spectrometer calibration. We therefore need to handle this ambiguity carefully to
interpret measurements made over a wide (≫ 0.1 nm) wavelength range. A Bayesian framework
is well-suited for this, since prior knowledge of the model parameters can be used to remove the
ambiguity in a self-consistent way.

For a set of data points D = {D1,D2 . . . } that is well described by a model f (θ) with
parameters θ = {θ1, θ2 . . . }, the likelihood function is written L(θ | D). In the absence of
prior knowledge, the most plausible parameter values are those that maximize L(θ | D). Prior
knowledge is accounted for using a prior probability density function (PDF) P(θ). The maximum
in the posterior PDF P(θ | D) ∝ L(θ | D)P(θ) then gives the most plausible parameter values,
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given all of the available information [37]:

θ̂MAP = arg min
θ

[P(θ | D)]. (11)

This is the maximum a posteriori (MAP) estimator.
Consider a single, wrapped phase data point Di with noise variance σ2

i . The ambiguity can be
accounted for in the likelihood function for Di using the von Mises distribution [38]:

L(θ | Di) ∝
exp(κi cos[Di − fi(θ)])

2πI0(κi)
. (12)

Here, κi ≈ 1/σ2
i is the concentration parameter, I0(. . . ) is the modified Bessel function of

order 0 and model fi(θ) corresponds to the ith data point. The von Mises distribution, plotted in
Fig. 3, is commonly used in circular statistics as a close approximation to the wrapped normal
distribution, which is less numerically tractable. We assume that the data points are statistically
independent, so the total likelihood is L(θ | D) =

∏︁
i L(θ | Di). By combining L(θ | D)

with a suitable prior and the model described in Sections 2 and 3, we can calculate the relative
probability of any possible θ values, given a set of measurements. For wrapped data, L(θ | D)

is infinitely multi-modal in model parameter space. The distance between neighboring (global)
modes along a particular dimension of parameter space can be considered the unambiguous
measurement range (UMR) of that parameter. Increasing the UMR reduces the amount of prior
information needed to leave a single, pronounced global mode in P(θ | D) and therefore a single
θ̂MAP estimate.

−2π 0 2π 4π

Di − fi(θ) (rad)

0

2

L(
θ
|D

i
)

κi = 1

κi = 40

κi = 1

κi = 40

Fig. 3. The von Mises distribution is a close approximation to the wrapped normal
distribution. We use it as the likelihood function for a single wrapped data point. Here, it is
plotted as a function of the residual between the data point and the model for two values of
concentration parameter κi.

For models with more than a few parameters, it is not practical to evaluate P(θ | D) on
a regular grid to find θ̂MAP. In this work we use Gibbs sampling instead—a Markov chain
Monte-Carlo (MCMC) technique where each step through parameter space is either accepted
or rejected using a criterion that favors travel towards regions of high probability [37]. The
sample density then converges to P(θ | D). To perform the sampling we use the Python package
“inference-tools” [39]. For wrapped data, P(θ | D) possesses many local maxima. To avoid
mistaking a local maximum for the global maximum, we use parallel tempering: running multiple
MCMC “chains” with different settings in parallel, and occasionally swapping their positions to
encourage transitions between local and global maxima [37]. In our problem, a useful way to
reduce the density of local maxima in parameter space is to model the phase difference between
wavelengths rather than the absolute phase. This can be seen by considering the simplified case
of normal ray incidence given in Eq. (4). Consider the problem of determining optical path
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difference (OPD) L(ne − no) from phase measurements made at two wavelengths λ1 and λ2.
Substituting Eq. (4) into Eq. (12) and evaluating L(θ | D), it can be shown that the distance
between neighboring local maxima in OPD parameter space is ∼ λ1 (∼ λ2) for a fit to absolute
phase. If, instead, the model used is the phase difference

2πL(ne − no)

(︃
1
λ2

−
1
λ1

)︃
, (13)

then this distance grows by a factor ∼ |λ2/(λ1 −λ2)|. This factor is up to 2300 for the wavelengths
measured in Section 5. For a set of more than two wavelengths, it is not important which
wavelength is selected as the phase reference for subtraction.

An important question for our calibration method is this: at how many wavelengths does the
phase need to be measured to unambiguously constrain the model parameter values? Firstly, for
the problem to be well-posed, the number of wavelengths must match or exceed the number of
dispersion model parameters (e.g., Sellmeier coefficients) to be constrained. Following previous
work in multi-wavelength interferometry [40,41], an estimate for the UMR of the OPD is given
by the largest (finite) beat wavelength (“synthetic wavelength”) across the set of wavelengths
measured:

u = max
(a,b)

|︁|︁|︁|︁ λaλb
λa − λb

|︁|︁|︁|︁. (14)

This can be seen by deriving an expression for L(θ | D) using the model in Eq. (4). Let δ be a
width characteristic of the prior uncertainty in the OPD. If δ ≪ u then the fitting problem is likely
well-posed. For the set of wavelengths measured in Section 5, u = 10−3 m and, for the α-BBO
waveplates used in this work, δ<10−4 m. While this is a useful heuristic for gauging ambiguity, a
numerical simulation of P(θ | D) as a function of OPD (using the nominal θ values to generate
a synthetic data set) is more conclusive. Clearly then, the wavelengths chosen must contain a
sufficiently close pair to remove the ambiguity, while also spanning the wavelength range of
interest for the calibration. The choice of wavelengths is also determined by the availability of
bright spectral sources in the range of interest.

We now turn to the full problem of fitting to phase images. The spatial variation in the images
generally contains important information about the model parameters that would be lost if an
image measured at one wavelength were to be subtracted from all of the the other images prior to
fitting. This information can be retained by instead subtracting a scalar phase value corresponding
to normal ray incidence at a single wavelength. The model used for fitting can then be written

fjk(θ) = ϕ(pj, λk, θ) − ϕ(pα=0°, λref, θ). (15)

Here, j indexes superpixel center position pj, k indexes wavelength λk, pα=0° is the position on
the sensor plane corresponding to normal incidence through the waveplate and λref is the chosen
reference wavelength. The dependence of delay ϕ due to a waveplate (Eq. (3)) on θ has here
been made explicit. The corresponding data used for fitting can be written

Djk = Φjk − Φref. (16)

Here, Φjk is the phase measured at the jth superpixel and kth wavelength. Φref is an estimate of
phase at normal incidence (α = 0°) extracted from the phase image measured at λref by averaging
over a 10 × 10 superpixel window centred approximately at pα=0°. Substituting Eqs. (15) and
(16) into Eq. (12) gives us the point likelihood L(θ | Djk) and total likelihood L(θ | D) is then
calculated as a product over indices j and k.

With the fitting methodology described, we next present an experimental demonstration.
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5. Experimental demonstration

We will test the wavelength calibration method using spectral lines emitted by standard cadmium
and zinc hollow cathode gas-discharge lamps. Figure 4(a) plots the relative intensities of eight
lines emitted by atomic Cd and Zn in the 465–515 nm wavelength range, as measured using a
Czerny–Turner spectrometer. The six lines targeted for measurement with the interferometer have
their precise wavelengths shown. For our purposes, these lines may be treated as thin singlet lines
with known wavelengths [42], though uncertainty in the wavelength could be factored into the
analysis. To provide an extended light source, the lamps illuminated an integrating sphere with a
diameter of 6 inches, into whose entrance port the interferometer viewed. Four interference filters
with appropriate bandpass transmission profiles were chosen, as plotted in Fig. 4(a). Nominal
out-of-band transmission for these filters is 10−4. To isolate a line for measurement, each filter
must sufficiently suppress the neighboring lines such that their influence on the measured phase
is negligible. Although filters 1 and 4 were not specifically procured for this work, they do meet
the criterion for isolation. The 2-inch diameter filters were mounted in the motorized filter wheel
shown in Fig. 2(a). An interference fringe image was measured at each of the six wavelengths in
sequence for both the 4.48 mm and 9.79 mm α-BBO waveplates.
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Fig. 4. (a) Measured transmission profiles of the bandpass filters and measured intensities
(normalized) of the spectral lines used in the wavelength calibration. The precise wavelength
values (in air) shown are from NIST [42] (b) and (c) plot the phase data and fit as a function
of wavelength, for the centre point of each measured image, for two α-BBO waveplates.

Ambient temperature drift causes a proportionate fringe phase drift via the waveplate’s thermal
expansion and the thermo-optic effect. Without thermal stabilization, a short measurement
window was important to minimize systematic error. Camera exposures and filter selection
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were automated, allowing data collection within a 3 minute window. Automated monitoring
of the phase at a single wavelength in the 20 minutes before and after the acquisition of the
calibration data suggests a linear drift of ≈ 0.01 rad during the acquisition. This corresponds to a
temperature change of ∼ 0.02°C [30]. A first order correction to the calibration data was applied
by interpolating the monitoring data in time.

The six raw phase images for the 4.48 mm waveplate are plotted in the left column of Fig. 5.
The standard deviation of the noise on a single phase data point was σ ≈ 0.01 rad, estimated
using the spread of values in the flat central region of the phase images. The phase at the centre
of the images is plotted for a reduced wavelength range for both waveplates in Fig. 4(b) and 4(c).

To test the predictive power of the optimized model, data from 5 wavelengths was used to
constrain the fit while the data measured at 472.2 nm was withheld. Table 1 lists the starting values
and prior PDF widths used for each parameter. The starting values used for the extraordinary
α-BBO Sellmeier coefficients, and the fixed values for the ordinary coefficients, come from
[34]. The prior PDF width for the extraordinary coefficients was set at 40% of the starting value,
which comfortably reproduces the spread in available coefficient values. The phase images were
downsampled in each dimension by a factor 50 prior to fitting to improve performance. Each fit
was run for 200,000 steps on a desktop PC and typically converged after ∼50,000 steps, taking
around 30 hours total on a standard desktop PC. Each fit was repeated ten times and found to be
reproducible for a range of starting parameters selected from the range of available Sellmeier
coefficient sets.

Table 1. Model parameter values before and after fitting to the measured
phase images for both waveplates tested.a

Parameter Prior width 4.48 mm waveplate 9.79 mm waveplate

Start θ̂MAP Start θ̂MAP

ρ (°) 0.0 0 88.56 0 -1.2

ψx (°) 2 0 0.164 0 -0.194

ψy (°) 2 0 -0.159 0 0.076

f3 (mm) 10 150 140.4 150 146.8

Ae 0.95 2.3753 2.407 2.3753 2.359

Be (µm2) 0.0049 0.01224 0.00866 0.01224 0.0130

Ce (µm2) 0.0067 -0.01667 -0.0386 -0.01667 -0.0162

De (µm−2) 0.0061 -0.01516 0.0238 -0.01516 -0.0204

aρ is waveplate orientation, ψx and ψy are waveplate tilt angles about the x-axis and y-axis
respectively, f3 is the focal length of the imaging lens and Ae, Be, Ce and De are the
extraordinary Sellmeier coefficients for α-BBO. The fixed values used for the ordinary
Sellmeier coefficients are Ao = 2.7471, Bo = 0.01878 µm2, Co = −0.01822 µm2 and
Do = −0.01354 µm−2. The starting values for the extraordinary coefficients and the fixed
values for the ordinary coefficients are taken from [34].

The θ̂MAP parameter values produced by the fits are listed in Table 1. Figure 5 plots the
contours of the optimized model atop the measured phase in the left column and plots the residuals
between measured and modeled phase in the right column. Figure 4 plots the modeled phase at
the image centre as a function of wavelength, clearly showing the large number of phase wraps
between some of the wavelengths measured. The residuals have standard deviation σ ≈ 0.02 rad
corresponding to a flow speed of ≈ 0.7 km/s for the wavelengths considered. The residual mean
is smaller than this for all wavelengths except 467.8 nm, where it is comparable. Importantly, the
residual is consistent for the 472.2 nm data that was not used to constrain the fit, indicating the
model’s predictive accuracy. Results for the 9.79 mm waveplate have comparable flow-equivalent
residuals to the 4.48 mm waveplate. When the process was repeated with different wavelengths
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Fig. 5. Left column: measured fringe phase images at six wavelengths. Black contours
show the data and white contours show the fit. Right column: the corresponding residuals
between data and fit, with histograms on the colorbars. Data corresponds to the 4.48 mm
α-BBO waveplate.
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withheld from during the fit, the results were comparable. Table 1 lists the θ̂MAP parameter values
for fits to both the waveplate thicknesses tested. Figure 6 then plots the kernel density estimate of
the posterior PDF P(θ | D) for the 4.48 mm waveplate, from which the parameter (co)variance
values can be inferred. The expected correlation between Sellmeier coefficient model parameter
is observed.
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Fig. 6. A kernel density estimate of the posterior PDF P(θ | D) for the fit to the 4.48
mm α-BBO waveplate data shown in Figs. 4 and 5, generated using the Markov chain
Monte-Carlo samples from the distribution. The 8-dimensional P(θ | D) is shown as 28
marginalized joint distributions, one across each parameter pair. Parameter symbols and
units are defined in Table 1. The red dot indicates the maximum a posteriori estimate θ̂MAP.

The optimized model parameters also allow us to calculate group delay ϕ̂0 for the instrument.
Measurements of ϕ̂0 for the two waveplates tested have been published in previous work [7],
where they were measured using a tuneable laser at 460.9 nm. Values for ϕ̂0 at this wavelength
generated using the posterior PDF P(θ | D) are 1412 ± 1 waves and 3091 ± 2 waves for the
4.48 mm and 9.79 mm waveplates respectively. The corresponding values from the previous
work are 1401 ± 10 waves and 3142 ± 16 waves respectively. Roughly 10 waves of discrepancy
can be expected due to instrument misalignment evident in the data from the previous work.
However, this cannot fully explain the discrepancy in the two results for the 9.79 mm waveplate.
The uncertainty values in these ϕ̂0 estimates were found by modeling ϕ̂0 for 1000 samples of θ
from the fits.
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6. Discussion

The method described here must be compared to the standard for absolute wavelength calibration
of Doppler flow measurements: using a tuneable laser to directly illuminate the instrument at
the appropriate wavelength. The systematics in this work limited the calibration accuracy to
±0.7 km/s flow equivalent. This is comparable to the accuracy achieved by laser-calibrated
interferometers used in fusion experiments [10,16]. The advantage of using lamps (and the
motivator for this work) is the substantially lower hardware cost. As well as being a cheaper
source than a laser, lamps do not require precision wavelength measurement. That said, this
method is less direct and has limitations that will now be discussed.

Accuracy is limited by the agreement between modeled and measured phase. An etalon effect
in the filter is the likely cause of the periodic residual pattern clearly visible at 508.6 nm and
somewhat visible at 467.8 nm and 468.0 nm (Fig. 5). Other contributors across all wavelengths
could include crystal inhomogeneity, non-flat surfaces, and image distortion. An investigation
into non-ideal crystal behaviour could feasibly be carried out and incorporated into the model.
Alternatively (or additionally), higher tolerances for homogeneity and flatness could be specified
during procurement. Similarly, distortion could be incorporated using a standard distortion
model, or by replacing the thin-lens approximation with a ray-traced model. If the systematics
could be confidently considered to be unchanging wavelength, as was observed between 472.2 nm
and 481.1 nm in Fig. 5, then they could be subtracted from from the modeled phase to improve
accuracy.

It was found in this work that the available BBO Sellmeier coefficients could not accurately
reproduce the measured phase shift data over the wavelength range tested. As mentioned in
Section 3, this is to be expected based on the spread in values across the available coefficient
sets. For other birefringent materials used in interferometry (e.g., lithium niobate or yttrium
orthovanadate) the available Sellmeier coefficients may be sufficiently accurate.

Although the MCMC sampling required to perform the fit took ∼ 10 hours, this is for a single
desktop PC running non-optimized Python code. It is also likely that the optimization algorithm
used here —the parallel-tempered Gibbs sampling discussed in Section 4— is sub-optimal at
sampling a complex PDF with many local maxima like this one. Figure 6 appears to show some
evidence of local maximum sampling for the De parameter. There is therefore large scope for
improving the computational and algorithmic efficiency of the method, which could reduce
analysis time significantly.

While the accuracy demonstrated here meets our ±1km/s target, it does not approach the
accuracy required for atmospheric windspeed measurements.

7. Summary

We have presented a new method for absolute wavelength calibration of imaging birefringent
interferometers for the spectroscopic measurement of ionised gas flows. These instruments are
currently deployed on nuclear fusion experiments around the world and are being investigated
for application to measurements of the upper atmosphere. Instead of measuring the “zero-flow”
reference image directly with a source at the rest-frame wavelength of the targeted spectral line,
we propose using an instrument model to simulate the reference image. Due to uncertainties
in the instrument parameters, this requires fitting the model to measurements made at a small
number of nearby wavelengths. The key development here is a framework for model-fitting to
fringe phase measurements made over a wavelength range much wider than the unambiguous
measurement range of the instrument. This allows standard lamp sources to be used for the
calibration. The fitting framework is based on established statistical techniques and requires
making modest assumptions about about the instrument model parameters. The method was
validated by showing that measurements of 5 lines across a 40 nm wavelength range were
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enough to accurately predict the phase at a wavelength within that range. The accuracy achieved
corresponded to ±0.7 km/s flow equivalent. This is comparable to the accuracy reported in fusion
experiments that use a tuneable laser source to calibrate the measurement directly. The method
represents a significant reduction in calibration hardware costs, but requires a sophisticated data
analysis routine. Difficulties are foreseen reaching the higher accuracy required to measure the
slower flows of the upper atmosphere.
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