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Exact discrete symmetries, if nonlinearly realized, can reduce the ultraviolet sensitivity of a given theory.
The scalars stemming from spontaneous symmetry breaking are massive without breaking the discrete
symmetry, and those masses are protected from divergent quadratic corrections. This is in contrast to
nonlinearly realized continuous symmetries, for which the masses of pseudo-Goldstone bosons require an
explicit breaking mechanism. The symmetry-protected masses and potentials of those discrete Goldstone
bosons offer promising physics avenues, both theoretically and in view of the blooming experimental
search for axionlike particles. We develop this theoretical setup using invariant theory and focusing on the
maximally natural minima of the potential. For these, we show that typically a subgroup of the ultraviolet
discrete symmetry remains explicit in the spectrum, i.e. realized “à la Wigner”; this subgroup can be either
Abelian or non-Abelian. This suggests telltale experimental signals for those minima: at least two (three)
degenerate scalars produced simultaneously if Abelian (non-Abelian), while the specific ratios of
multiscalar amplitudes provide a hint of the full ultraviolet discrete symmetry. Examples of exact
ultraviolet A4 and A5 symmetries are explored in substantial detail.
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I. INTRODUCTION

How is it possible to obtain scalar particles which are
naturallymuch lighter than theoverall scale of the theory?This
question is at the heart of the electroweak hierarchy problem
and of other open fine-tuning issues in particle physics. We
address it here using exact hidden (also known as sponta-
neously broken) nonlinearly realized discrete symmetries.
Outstanding tensions and conundra of the StandardModel

of particle physics (SM) have often instead been confronted
using exact hidden continuous symmetries. The delicate
issue is then that, for the theory to be realistic, the resulting
massless Nambu-Goldstone bosons (GBs) must somehow
acquire a small mass: they must become pseudo Nambu-
Goldstone bosons (PGBs). Examples of the latter include
the axion that may solve the strong CP problem [1–3],

the Majoron if the neutrino masses are dynamical Majorana
ones [4], theories of extra dimensions in which the Wilson
loop around a compact dimension acts like an axion in four
dimensions [5,6], or the plethora of U(1) PGBs which often
appear in string-inspired phenomenological models [7,8].
Furthermore, the Higgs itself may be a PGB of some strong
dynamics at very high energies [9–11].
Small masses of PGBs in continuous—nonlinearly

realized—symmetries must arise from an arbitrary explicit
breaking of the continuous symmetry. Those masses are
therefore necessarily proportional to the parameters of the
explicit breaking mechanism, and in this sense the con-
struction may be technically natural if those parameters are
small. In practice, this often leads to fine-tunings and new
hierarchy problems, spoiling the naturalness and beauty of
the solutions. Tensions arise because, in most construc-
tions, data require the PGBs masses to be extremely small
compared to the overall scale of the theory.
Exact but nonlinearly realized discrete symmetries have

the potential to substantially ameliorate and restabilize that
situation. The point is that discrete symmetries, when
nonlinearly realized, can render trivial the only possible
invariant quadratic of the scalar fields involved in the
nonlinear constraint. The low-energy theory is then pro-
tected from being quadratically sensitive to very high—
ultraviolet (UV)—scales, even in the presence of marginal
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couplings. Nevertheless, the discrete symmetry does admit
scalar invariants of higher dimension. In other words, it
permits nonzero masses for the scalars which implement the
nonlinear scenario, without breaking the discrete symmetry.
We will denote these massive scalar fields “discrete Nambu-
Goldstone bosons” (DGBs). This name underscores the
relation of these scalars with the PGBs of the continuous
group(s) in which the discrete group can be embedded, to be
developed below. The relevant point is that while the GBs of
exact continuous symmetries are exactlymassless, theDGBs
get masses even if the discrete symmetry is exact.
Furthermore, the discrete invariance has the potential to

strongly separate theDGBmasses from the high-energy scale
of the theory.Akey ingredient to assess the smallness ofDGB
masses is the dimensionality of the first scalar invariant in
their—discrete-symmetry invariant—potential.Wewill argue
that (in a large class ofUVcompletions of themechanism) the
higher its dimension, the smaller their coefficients are
expected to be, and thus the smaller the DGB masses.
It is illustrative to consider the discrete symmetry groups

that can be embedded in a given continuous group and their
fate under explicit breaking. Under explicit breaking of the
continuous group, either all its discrete subgroups undergo
as well explicit breaking (as in the customary constructions
of PGBs) or alternatively some discrete subgroup may
remain untouched. It is in this second option that preserved
exact UV discrete symmetry provides the enhanced UV
protection. Furthermore, it can also provide the strong
suppression of the PGBmasses, that is, of the DGBmasses,
as we will develop. From this point of view, the discrete
symmetries under discussion are not introduced ad hoc as
an extra ingredient but are part of a continuous symmetry.
Simply, the potential that breaks explicitly the continuous
group is required to be invariant under one of its discrete
subgroups instead of being the most general one. The
higher the mass dimension of the first term in the potential
which breaks the continuous symmetry but is allowed by
the discrete invariance, the lighter the PGB can be. A global
continuous symmetry G may then be viewed as an
approximate symmetry induced by an exact discrete invari-
ance D (which may be a subgroup of G).1 It is in this
context that the concept of DGBs makes sense (i.e., they are
a subset of the set of possible PGBs). This may also have a
bearing on the analysis of an immediate consequence of
spontaneously broken discrete symmetries: the existence of
topological defects, in particular domain walls which
typically have important cosmological consequences.2

The fact that spontaneously broken discrete symmetries
can improve the UV convergence of theories with PGBs
was first argued in Ref. [24]. The case of Abelian discrete
ZN groups [for which U(1) is the obvious approximate
continuous symmetry] has been explored in Refs. [24–26],
where it was shown that a lighter-than-usual QCD axion is
a valid solution to the strong CP problem. Here we develop
instead the much richer case of non-Abelian UV discrete
symmetries, for which a first attempt appeared in Ref. [27].
The latter considered a scalar triplet of A4, showing that no
low-energy physical effects can stem from the A4 invariant
quadratic in the scalar fields, and instead the first relevant
invariant is cubic. Our analysis of this particular scenario is
different and provides novel results: we will show that
explicit symmetries may survive in the low-energy spec-
trum and interactions. Next, the bulk of the paper explores
various new realizations of A4, A5 and other discrete
symmetries. One general question to also be addressed
here is how to naturally obtain very high dimensionality for
the first discrete-symmetry scalar invariants, that is, how to
obtain even further suppressed DGB masses.
As theoretical tool we will use effective field theory

(EFT) and invariant analysis rather than commit to specific
UV models. The basis of the game is to find the minima
of the discrete symmetry invariants that can be built out of
the scalar representation(s) at hand. The most general
potential will be an arbitrary function of all such possible
invariants. We focus here on the natural minima of the
potential, that is, the minima whose locations are less or not
at all dependent of the values of the parameters of the
potential [28,29]. Nevertheless, for illustrative purposes we
will also show in detail the cancellation of UV divergences
among different diagrams, within two specific UV com-
plete models.
In addition, the identification of which Abelian or non-

Abelian discrete symmetries remain exact at low energies
(i.e., realized à la Wigner in the spectrum) for the
maximally natural minima will be shown to have a major
bearing on the possible telltale experimental signals of the
mechanism. Specifically, the degeneracies of the PGB
spectra and the predicted ratios of multiscalar amplitudes
will be analyzed.

II. NONLINEARLY REALIZED DISCRETE
SYMMETRIES

We will analyze in this work scalar fields which
belong to irreducible real representations of discrete sym-
metries. Consider a generic scalar field Φ in an irreducible
m-dimensional real representation of the discrete symmetry
group D, Φ≡ ðϕ1;ϕ2…ϕmÞ. A nonlinearity constraint can
be expressed as the requirement that, at low energies, the
fields satisfy the quadratic restriction

ΦTΦ ¼ ϕ2
1 þ ϕ2

2 þ � � � þ ϕ2
m ¼ f2; ð2:1Þ

1This view matches well with the perspective that no global
symmetry is ultimately fundamental, as they are expected to be
broken and destabilized at least by gravity [12–15], while exact
discrete ones become more easily harmless, for instance via
gauging.

2The case of spontaneously broken Z2 symmetry has been
extensively studied in the literature [16–18], and non-Abelian
domain walls have been analyzed in Refs. [19–23].
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where f is a constant with mass dimension one.
Equation (2.1) reduces by one the number of independent
degrees of freedom of the low-energy theory. These are
m − 1 spin zero particles, which would be the massless
GBs of spontaneously broken continuous symmetries, and
are the DGBs of discrete symmetries, which will be shown
to be massive while the discrete symmetry remains exact.
Let us consider the model-independent tool of EFT. The

DGB scale is defined by f in Eq. (2.1), and its associated
scale Λ ∼ 4πf will weigh down effective operators of mass
dimension larger than four, for instance all those containing
momentum insertions other than kinetic energy terms.
Naive dimensional analysis (NDA) [30–32] will be used
to formulate the EFT. To this end, the nonlinear constraint
above can be expressed in terms of a dimensionless
functional U, which is a function of the m − 1 low-energy
degrees of freedom:

U ≡Φ
f
; with UTU ¼ 1; ð2:2Þ

and one can apply the Callan-Coleman-Wess-Zumino
construction [33,34] to parametrize the DGB inside U.
This function is the real equivalent of the customary pion
field parametrization of nonlinearly realized continuous
symmetries.3 A possible choice for U reads

fU≡Φðπ1;…; πm−1Þ ¼

0
BBBBB@

ϕ1

ϕ2

..

.

ϕm

1
CCCCCA

¼ exp

2
666664
1

f

0
BBBBB@

0 � � � 0 π1

..

. ..
. ..

. ..
.

0 � � � 0 πm−1

−π1 � � � −πm−1 0

1
CCCCCA

3
777775

0
BBBBB@

0

0

..

.

f

1
CCCCCA;

ð2:3Þ
where π1…πm−1 denote the m − 1 physical DGB degrees
of freedom. Whatever the parametrization, the important
point is that we focus on the dynamics of the DGB degrees
of freedom including the impact of the possible terms in
their symmetry-invariant scalar potential. The DGB
Lagrangian can be parametrized as

LDGB ¼ f2Λ2L̃
�
∂

Λ
;U;cα;Lα

�
¼ Λ4

ð4πÞ2 L̃
�
∂

Λ
;U;cα;Lα

�
;

ð2:4Þ

where Λ ¼ 4πf has been assumed,4 the tilde signals here
and in what follows dimensionless functions, and the
compact notation recalls that derivative terms are sup-
pressed by powers of Λ in NDA, while U does not scale.
The dimensionless cα and Lα coefficients will weigh down,
respectively, the invariants in the DGB potential and terms
involving derivatives, i.e.

LDGB ¼ f2

4
½∂μUT

∂μU� − VDGB þ L=∂; ð2:5Þ

where VDGB denotes the potential

VDGB ≡ f2Λ2ṼðU; cαÞ ¼
Λ4

ð4πÞ2 ṼðU; cαÞ; ð2:6Þ

with ṼðU; cαÞ a dimensionless function. All terms con-
taining ∂μU components—except the kinetic term—are
encoded in L=∂:

L=∂ ¼ L1½∂μUT
∂
μU�2 þ L2½∂μUT

∂νU�½∂μUT
∂
νU� þ � � � ;

ð2:7Þ

where dots stand for both higher-order terms built up purely
of U derivatives and mixed terms made out of both U
derivatives and nonderivative insertions of U (e.g.,Q

i<j<k Ui∂μUj∂
μUk). For the purely derivative terms,

NDA suggests coefficients L̂α ∼Oð1Þ or slightly smaller,
related to the customary Li above by powers of 4π, e.g.
L̂1 ≡ ð4πÞ2L1, L̂2 ≡ ð4πÞ2L2.

5 The coefficients of mixed
scalar-derivative terms in L=∂, as well as those in the DGB

potential cα, are instead expected to be strongly suppressed
because of the constraints stemming from the UV discrete
symmetry, though, as argued further below.
The analysis of the terms involving derivatives will be

deferred to subsequent work (except for qualitative com-
ments in the phenomenological analysis further below). We
will focus next instead in the complete scalar potential
invariant under the UV discrete symmetry, as it sources the
DGB masses. Several representative discrete groups and
representations will be considered.

III. SCALARS IN A TRIPLET OF A4

In the example in Ref. [27], a triplet of A4 was studied,
Φ≡ ðϕ1;ϕ2;ϕ3Þ⊺. This case is analyzed in detail in this

3For instance, in spontaneously global SUðNÞ the function
U ¼ exp iπ⃗iλi=f, where π denote the pion fields, λi the group
generators and f the PGB scale, is customarily used, i.e.
U†U ¼ 1.

4Strictly speaking Λ ≤ 4πf [30].
5In NDA the first operator in Eq. (2.7) would be written

as L̂1Λ4=ð4πÞ2½ð∂UT=ΛÞð∂U=ΛÞ�2 ¼ L̂1=ð4πÞ2½∂UT
∂U�2, from

which the relations among the coefficients follow. The value L1 ∼
10−2 − 10−3 measured from data is thus consistent with L̂1 ∼ 1,
as expected because NDA is designed precisely so that the 4π
factors from radiative corrections are consistent with NDA
coefficients of order one.
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section, where we will also expand on the analysis tools
used throughout this paper. Details on the group theory
considerations and subsequent analysis are provided in an
ancillary Mathematica file.

A. The invariants

For a given representation Φ of the UV discrete
symmetry, the most general potential VðΦÞ can be
expressed as a function of all possible invariants built
out of that representation. Invariant theory of finite groups
simplifies our task by noting that, for the discrete groups we
will study, the invariants form a polynomial ring [35,36].
The number of independent invariants must match the
number of independent degrees of freedom of the repre-
sentation. For an A4 triplet of real scalars, the potential can
be indeed constructed as a function of the following three
invariants:

I2 ¼
X

ϕ2
i ¼ ϕ2

1 þ ϕ2
2 þ ϕ2

3; ð3:1Þ

I3 ¼
Y
i<j<k

ϕiϕjϕk ¼ ϕ1ϕ2ϕ3; ð3:2Þ

I4 ¼
X

ϕ4
i ¼ ϕ4

1 þ ϕ4
2 þ ϕ4

3; ð3:3Þ

which are often called primary invariants, plus a fourth—
secondary—invariant of mass-dimension six which is a
nonpolynomial function of these three. The equation which
relates secondary and primary invariants is often referred to
in the literature as a syzygy [37,38], which in this case reads

−4I2
6 ¼ −2I3

4 þ 5I2
4I

2
2 − 4I4I4

2 þ 36I4I2
3I2 þ I6

2

− 20I2
3I

3
2 þ 108I4

3: ð3:4Þ

This sixth-order invariant coincides in fact with the
determinant of the Jacobian for the three primary invariants
above (up to a trivial normalization):

detJ ¼ 8I6ðϕÞ ¼ ðϕ2
1 − ϕ2

2Þðϕ2
1 − ϕ2

3Þðϕ2
2 − ϕ2

3Þ; ð3:5Þ

where

J ≡ ∂ðI2; I3; I4Þ
∂ðϕ1;ϕ2;ϕ3Þ

: ð3:6Þ

It follows from the above that the understanding of the
behavior of I2, I3 and I4 will provide essential informa-
tion for the characterization of the general poten-
tial Vðϕ1;ϕ2;ϕ3Þ.
At energies E < Λ, the nonlinear constraint in Eq. (2.1)

implies

I2jðjΦj2¼f2Þ ¼ f2UTU ¼ ϕ2
1 þ ϕ2

2 þ ϕ2
3 ¼ f2; ð3:7Þ

a constraint which is crucial for the UV (in)sensitivity of the
low-energy effective theory to quadratic divergences: the
only possible quadratic scalar invariant becomes trivial at
low energies. In other words, no quadratic correction to the
DGB masses can arise at any order from physics dynamics
at scales higher than Λ.6

B. The potential

The most general analytic potential can be expressed as a
polynomial of the primary and secondary invariants. Taking
into account that I2 does not contribute to the potential for
the DGB, and that even powers of the secondary invariant
I6 can be expressed in terms of the others via the syzygy in
Eq. (3.4), the most general analytic potential for the DGB
reads

VDGB ¼ f2Λ2
X∞
a;b;c

ĉabc

�
I3

f3

�
a
�
I4

f4

�
b
�
I6

f6

�
c

with a; b ∈ N and c ¼ 0; 1; ð3:8Þ
where the ĉabc coefficients are defined in NDA7 and where
the In=fn dependence stems from the U dependence
in Eq. (2.6). Note that in this case the complete VDGB
potential—i.e., including all possible invariants of any
order—is a function8 of only two nontrivial invariants (I3

and I4) after the nonlinearity constraint and the syzygy are
taken into account, which is consistent with the fact that a
real triplet scalar sources two DGB degrees of freedom.
The main results in this paper apply to that complete

potential; that is, they do not rely on any expansion or
truncation of the potential and we will focus on its most
natural minima. From this perspective, the reader can skip
the illustrative discussion that comes next and go directly to
Sec. III B 3 if wished.
It can be argued, though, that the lower-dimension terms

are expected to dominate the DGB effective potential of
spontaneously broken discrete symmetries [27], as we
proceed to discuss next. For illustrative purposes, let us
expand Eq. (3.8) as follows:

VDGB ¼ f2Λ2

�
ĉ3

I3

f3
þ ĉ4

I4

f4
þ ĉ6

I6

f6
þ ĉ7

I7

f7
� � �

�
; ð3:9Þ

6Other nonlinearity constraints that also preserve the A4

symmetry are possible [39]. Alternative choices include ϕ2
1 þ

exp ðiωÞϕ2
2 þ exp ði2ωÞϕ2

3 ¼ 0, where ω is a phase, or ϕ4
1 þ

ϕ4
2 þ ϕ4

3 ¼ cte. Those choices would not provide protection from
quantum quadratic divergences, though. We thank F. Feruglio for
this comment.

7Recall that in NDA, the weight of fields and couplings is an
overall factor of the Lagrangian Λ2f2 ¼ Λ4=ð4πÞ2, and scalings
∂=Λ, 4πϕ=Λ for a generic scalar field, 4πA=Λ for a gauge field A,
and 4πΨ=ðΛÞ3=2 for a fermion field.

8This function may be nonpolynomial if any ĉa;b;1 ≠ 0, i.e. if
Eq. (3.8) includes the secondary invariant.
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which can be rewritten in a more customary notation as

VDGB ¼ c3ΛI3 þ c4I4 þ c6
I6

Λ2
þ c7

I7

Λ4
þ � � � ; ð3:10Þ

where cn ≡ ð4πÞn−2ĉn. In these equations any In>6 can be
expressed in terms of lower-dimensional ones, e.g.
I7 ¼ I3I4, and dots indicate terms with higher-dimension
invariants. The relation with Eq. (3.8) is given by ĉ3 ¼ ĉ100,
ĉ4 ¼ ĉ010, ĉ6 ¼ ĉ011, ĉ7 ¼ ĉ110, etc.
Were all ĉi coefficients of the same order, all terms in the

series would contribute on equal grounds to the DGB
potential. In particular, DGB masses will be shown to stem
from all terms in the potential which do not contain I6. For
generic ĉi ∼Oð1Þ or slightly smaller, the resulting pion
masses would be ∼Λ (instead of much smaller as expected
for PGBs). This is as expected for generic fields in a theory
with a given overall scale, unless a symmetry protects the
size of the mass terms, as we will analyze next for the case
under study.
Indeed, while NDA is designed so that the coefficients

on the EFT are expected to be Oð1Þ or slightly smaller, this
is not yet the case for the ĉα defined above, though, because
a stronger source of suppression can be expected in the
presence of an exact discrete invariance. Its enforcement in
the couplings of Φ to the beyond the Standard Model
(BSM) fields (which are dynamic at energy scales above Λ)
typically leads to a particular structure of the EFT couplings
at lower energies, for instance a powerlike dependence on
those BSM couplings. The situation is somewhat like
that for little Higgs models [40–43] or clockwork con-
structions [44–49]: a chain of interactions is required to
enforce invariant operators so that, while the individual
couplings of the BSM theory may be slightly smaller than
one, the effective operator coefficient is a power of them,
ensuring strong exponential suppressions. A similar sit-
uation can be expected in the presence of discrete sym-
metries. Indeed, the enforcement of the UV exact discrete
symmetry in the couplings ofΦ to the BSM fields results in
a typical dependence of the form

ĉn ∼ ϵn; ð3:11Þ

where ϵ is a small quantity ϵ < 1. For instance, in the
scenario with an UVAbelian discrete symmetry explored in
Refs. [24,25] it was identified ϵ ∼ ðmu=mdÞ, where mu and
md denote, respectively, the up and down quark masses,
and the DGB mass exhibited a ∼ðmu=mdÞn suppression.
Such n-dependent exponential suppression via a small

parameter has also been shown to appear in specific UV
completions of non-Abelian discrete invariance; see
Ref. [27]. In the latter, a real scalar triplet of A4 is
considered, Φ, with Yukawa couplings y to exotic heavy
fermions with mass M ≥ Λ: n is then the number of exotic
fermion exchanges among Φ fields needed to obtain an
effective scalar operator invariant under the discrete

symmetry, and in consequence the effective operator
coefficients obey ĉn ∼ yn. More in detail, the NDA analysis
of that case indicates a potential of the form

V ¼ M4

ð4πÞ2
X
n

�
ŷ
4πΦ
M

�
n
¼ M4

ð4πÞ2
X
n

�
y
Φ
M

�
n

¼ Λ2f2
X
n

yn
�
Λ
M

�
n−4

�
Φ
Λ

�
n
; ð3:12Þ

with y≡ 4πŷ. It follows that in this example ĉn in Eq. (3.9)
is given by

ĉn ∼ yn
�
Λ
M

�
n−4

; ð3:13Þ

which shows that all operator coefficients are suppressed by
powers of the Yukawa coupling as yn as far as y < 1, and the
operators with n ≥ 4 are additionally suppressed by the ratio
of scales whenever Λ < M; the larger n, the stronger the
suppression. For the particular case of scenarios which
admit cubic scalar invariants—as in the case studied in this
section—it also follows that y < 4πðΛ=MÞ1=3 is necessary
and sufficient to obtain DGB masses mDGB smaller than the
EFT scale, i.e. m2

DGB < Λ2, as desired. This requirement
does not apply in other scenarios to be discussed below,
where the UV discrete symmetry will forbid cubic scalar
invariants. The above is only one specific example of how the
(hierarchical) suppression of the coefficients of the EFT can
arise when an exact discrete symmetry is present. The
suppression by the scale that generates the invariant oper-
ators, M, can also be of interest in cases explored in later
sections, in which the leading invariant is a nonrenormaliz-
able operator. If M is even mildly larger than Λ, then ĉn
naturally inherits a large suppression without relying on
y < 1. Whether the scale M is separated from or coincides
with Λ is a detail of the UV model building, however, and
from here on we will keep our discussion more general.
An important question is that of the quantum stability of

small ĉn coefficients. They are indeed necessarily stable if
assumed small, because in the limit in which they are taken
to zero the Lagrangian exhibits a larger—continuous—
symmetry; see Sec. III B 1.
In summary, a hierarchical ordering with n of the

coefficients of the invariant scalar operators may be
naturally at play in the presence of a UV discrete symmetry
which remains exact at all scales—albeit spontaneously
broken. The consequence is that the lowest-order scalar
invariants should provide a good approximation to the
whole EFT potential. This property also underlies the
interest of scenarios in which the lowest-order nontrivial
scalar invariant corresponds to very large n, for which an
even stronger suppression of the DGB masses can be
expected. A simple scenario of this type will be presented in
the next section.
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1. Embedding in a continuous group: SO(3)

It is illuminating to consider the embedding of the
discrete groups under consideration in continuous ones.
In a nutshell, the results in this paper could be presented for
pedagogical reasons as a study of spontaneously broken
continuous symmetries supplemented with an explicit
breaking potential which is invariant under some of the
discrete subgroups of the continuous symmetry, instead of
being the customary most general one.
From this point of view, all terms in the DGB potential

preserve the discrete symmetry but break explicitly the
continuous symmetry of the embedding group. That is, all
coefficients ĉα in VDGB [Eq. (3.9)] are parameters that break
that continuous symmetry.9 From this perspective, it is
natural that they are smaller than one, because they herald
the explicit breaking of a continuous global symmetry, like
the usual breaking parameter of chiral Lagrangians which is
proportional to the quark masses: mq=Λ < 1. In conse-
quence, the putative GBs acquire small masses. The crucial
advantage of these DGBs with respect to generic PGBs is
that, even if there are marginal operators breaking the
continuous symmetry in the UV, their contribution to the
low-energyDGB potential will amount to contributions only
to cn>2 coefficients: no quadratic divergences can arise
through radiative contributions. This will hold as long as
the first invariant that breaks the continuous symmetry while
respecting the discrete one has dimension larger than two,
which is preciselywhat happens in theUVdiscrete symmetry
scenarios studied here. In this context, whenever the DGB
potential is solely generated via these suppressed radiative
corrections, one can argue that the exact discrete symmetry is
inducing the existence of an approximate continuous one. In
other words, the restrictions that discrete symmetries impose
on the allowed operators of the Lagrangian induce the
existence of approximate continuous symmetries.
The smallest continuous group that can contain A4 as

subgroup with a scalar triplet is SO(3) (see Table I), with Φ
being thus a triplet of both groups. The only possible
pattern of spontaneous symmetry breaking (SSB) of SO(3)
with scalar fields in the 3 representation is SOð3Þ → SOð2Þ.
This would source two GB degrees of freedom below the
SSB scale, two “pions.” The only possible quadratic term
invariant under the A4 discrete symmetry, I2, is also SO(3)
invariant and it will yield no contribution to the pion
masses. In contrast, I3; I4; I6… are invariants of A4 only:
they break explicitly the continuous SO(3) symmetry. That
is, by requiring that the potential that breaks explicitly SO
(3) is invariant under one of its discrete subgroups, the
quadratic sensitivity to high scales is absent, as advertised,
while the pions of the continuous theory acquire a mass
from operators with dimension three [27] (with coupling
c3) and larger.

A pertinent question is whether all finite groups allow an
embedding in a continuous group. Indeed, any finite groupD
is isomorphic to a subgroup of the symmetric group of m
elements, Sm, where m is precisely the order of D [51].
Therefore,D is also a subgroup of the continuous Lie groups
GLmðRÞ orGLmðCÞ and can in fact be realized as a subgroup
ofOðmÞ, and thus also as a subgroup of SOð2mÞ. There are,
on the other hand, cases in which the smallest embedding
continuous group turns out to be smaller. A familiar example
is that of the alternating group of 4 elements, A4, which is
obviously a subgroup of the permutation group S4: the
smallest continuous group which contains A4 is then SO(3).
In the presence of spontaneous symmetry breaking, both the
discrete symmetry and its continuous embedding group are
spontaneously broken. Our analysis, however, does not rely
on a specific choice of continuous group embedding.

2. Understanding the nature of quantum
quadratic protection

In order to better grasp the origin of the absence of
quadratic sensitivity of DGB, it is interesting to consider
specific examples of UV complete models where the
cancellation of the quadratic divergences becomes explicit.

A UV model with exotic fermions.—Let us consider a model
with a fundamental scalar triplet of A4, Φ, and a triplet of
fermions, Ψ≡ ðΨ1;Ψ2;Ψ3Þ⊺ (which was first studied in
Ref. [27]). There are two possible A4-symmetric Yukawa
interactions among the scalars and the fermions10 which
can be written as

Lint ¼

2
64yG

0
B@

½Ψ̄2;Ψ3�
½Ψ̄3;Ψ1�
½Ψ1;Ψ2�

1
CAþ y=G

0
B@

fΨ̄2;Ψ3g
fΨ̄3;Ψ1g
fΨ̄1;Ψ2g

1
CA
3
75
⊤

·Φ

¼ yGð½Ψ̄2;Ψ3�ϕ1 þ ½Ψ̄1;Ψ3�ϕ2 þ ½Ψ̄1;Ψ2�ϕ3Þ
þ y=GðfΨ̄2;Ψ3gϕ1 þ fΨ̄1;Ψ3gϕ2 þ fΨ̄1;Ψ2gϕ3Þ;

ð3:14Þ

TABLE I. Finite subgroups of SO(3) and their irreducible
representations [50].

Finite subgroups of SO(3)

Z2 ZN>2 D2n A4 S4 A5

Irreducible representations 1 1 1 1 1 1
10 2 2 10 10 3

100 100 30
3 2 4

3 5
30

9Analogous considerations apply to the coefficients of the
mixed derivative-nonderivative operators. 10See Ref. [52] for details on how to construct A4 singlets.
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which for small Yukawa couplings presents an approximate
continuous G≡ SOð3Þ symmetry. All interactions in this
Lagrangian have mass dimension four with a dimensionless
coefficient, i.e. they are marginal couplings, and one could
naively assume that these two Yukawa couplings would
generate UV sensitive pion masses. Nevertheless,

(i) The term proportional to yG preserves SO(3) and
thus cannot source a potential for the GBs of the
theory due to the Goldstone theorem. In other words,
any scalar potential would need to be a function of
the SO(3) primary invariant I2 ¼ ϕTϕ which does
not depend on the pions and this leads to a vanishing
pion potential.

(ii) The term proportional to y=G explicitly breaks SO(3)
but is invariant under A4. This term does source a
potential and masses for the pions of the theory, but
it does not lead to quadratic sensitivity to scales
heavier than that of the DGB Lagrangian.

In order to illustrate in detail the last statement, let us
compute explicitly the possible loops induced by yG and y=G
and obtain the cancellation of the divergences in both cases.
Expanding to second order in the pion fields,11 the SO(3)-
symmetric Yukawa interactions read

Lint;G ¼ yGπ1ðΨ2Ψ3 − Ψ̄3Ψ2Þ þ yGπ2ðΨ̄3Ψ1 − Ψ̄1Ψ3Þ

þ yGf

�
1 −

1

2

π21 þ π22
f2

�
ðΨ̄1Ψ2 − Ψ̄2Ψ1Þ þOðπ3Þ;

ð3:15Þ

and a very similar expression holds for the SO(3)-breaking
but A4-preserving Yukawa couplings:

Lint=G ¼ y=G

�
π1ðΨ̄2Ψ3 þ Ψ̄3Ψ2Þ þ π2ðΨ̄3Ψ1 þ Ψ̄1Ψ3Þ

þ f

�
1 −

1

2

π21 þ π22
f2

�
ðΨ̄1Ψ2 þ Ψ̄2Ψ1Þ

�
þOðπ3Þ:

The relevant Feynman diagrams for both Yukawa
Lagrangians are depicted in Fig. 1. We can now compute

the a priori divergent loop contributions to the mass of the
pions: these are guaranteed by symmetry to vanish for the
yG contributions, but they turn out to vanish for the y=G
contributions as well. Indeed, in both cases, the correlation
between the OðπiΨΨÞ interaction and the Oðπ2iΨΨÞ
interaction implies that the quadratic divergences stemming
from those two Feynman diagrams combine as

δm2
π1;2 ∝

1

2
yΛ2 −

y
2f

yfΛ2 ¼ 0; ð3:16Þ

where y is either yG or y=G. In the case of the [SO(3)-

breaking] y=G terms, the cancellation of quadratic divergen-

ces is a consequence of the unbroken discrete A4 symmetry.
This property can be traced back to the fact that the first A4

invariant that breaks the continuous symmetry is of
dimension three and thus requires the insertion of at least
three Yukawa couplings,12 i.e., m2

π1;2 ∝ y3=G while all con-

tributions ∝ y2=G must cancel out.

The conclusion is that, in order for the quadratic
divergences to cancel, one does not need to impose the
full SO(3) symmetry, but instead it is enough to impose
ultraviolet A4 invariance. In the latter case, other mass terms
survive for the DGBs, though. This is in contrast with
generic PGB with arbitrary SO(3)-breaking terms. For
instance, an explicit SO(3) breaking which also breaks
the A4 subgroup is given by

L=A4
¼ y=A4

ϕ1Ψ̄1Ψ1 ¼ y=A4
π1Ψ̄1Ψ1 þOðπ3Þ; ð3:17Þ

in which case only the UV divergent diagram on the left of
Fig. 1 is present and only for π1, and thus a divergent
contribution to the pion mass does remain:

δm2
π1 ∝

1

2
y2=A4

Λ2 ≠ 0: ð3:18Þ

FIG. 1. Diagrams a priori sourcing quadratic divergences, with y ¼ yG in the SO(3)-symmetric case in Eq. (3.15) and y ¼ y=G in the
SO(3)-breaking but A4-preserving case in Eq. (3.16). Only the diagram on the left for π1 is present instead for the explicit breaking in
Eq. (3.17) with y ¼ y=A4

.

12If the fermions have a bare mass term mψ , the mass of the
DGBs is m2

π1;2 ∝ y3=Gmψf. Otherwise an enhanced A4 × Z2 sym-

metry arises for which the first SO(3)-breaking invariant has
dimension four and thus mπ1;2 ∝ y4=Gf

2 [27].11ϕ1 ≃ π1, ϕ2 ≃ π2, ϕ3 ≃ f½1 − 1
2
ðπ21 þ π22Þ=f2�.
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A UV model with heavy scalars.—The example above with
exotic fermions is not unique. We consider next a BSM
scalar sector invariant under an exact ultraviolet A4 sym-
metry and inducing effective ϕn couplings. An example of
this kind where one can see at play the mechanism of
cancellation of quadratic sensitivity to high scales involves
the interaction of the A4 triplet ϕ with another scalar triplet
S which does not take a vacuum expectation value (VEV)
and has a large mass mS ≫ f. Let us assume that these
scalars interact through the following A4-symmetric and
SO(3)-violating quartic couplings13:

Lint=G ¼
λ=G
4
ðϕ2

1S
2
1 þ ϕ2

2S
2
2 þ ϕ2

3S
2
3Þ: ð3:19Þ

Assuming that the theory has a high-energy cutoffΛUV, one
can easily check that the quadratically divergent diagrams
in Fig. 2 arrange themselves in a way that they only
contribute to the I2 invariant, leaving the DGB masses
insensitive to the UV scale, as illustrated in Fig. 2.
The DGBs do not remain massless though, and a mass

term ∝ λ2=G is generated via loops through the invariant I4;

see Fig. 3.
An even more explicit manifestation of the cancellation

arises when one computes the interaction of the scalars Si
with the DGB themselves. Expanding again at second order
in the DGBs, Eq. (3.19) results in

Lint=G ≃ λ=G½π21S21 þ π22S
2
2 þ f2S23 − ðπ21 þ π22ÞS23� þOðπ3i Þ:

ð3:20Þ

The computation of the corresponding loops, depicted in
Fig. 4, shows that in this case the cancellation arises due to
a correlation among the quartic interactions with S1;2
ensured by the A4 symmetry.

3. Maximally natural extrema of an invariant potential

The description and discussion in this subsection will
apply as well to the other discrete representations and
groups to be explored later on.
In order to study the properties of the DGB and identify

the physical states, it is necessary to study the minima of the
potential. Looking at the most general potential in Eq. (3.8)
or (3.9), this may seem a colossal task given that the
coefficients are arbitrary. Nevertheless, one can study and
classify the natural extrema, those that are less or not at all
dependent on a specific combination of coefficients in the
potential but rather arise as a consequence of the symmetry.
A subset of the natural extrema we explore below will not
depend at all on the specific form or tuning of coefficients
in the potential, and these we will call maximally natural
(MaNa) extrema. The MaNa extrema are of particular
interest for the analysis of the minima of a physics
potential. These points are guaranteed to be (absolute or
local) extrema of the complete potential since they are
extrema of all the primary and secondary invariants.
Consider a generic potential VðxÞ for a set of n

independent scalar fields xi. If the potential preserves a
symmetry, it can be expressed as a function of just n
independent functions IiðxÞ invariant under the symmetry:
the primary invariants IiðxÞ.14 The most general potential

FIG. 2. Insensitivity of the DGB masses to the cutoff in the model with heavy scalars.

FIG. 3. Finite contribution to the DGB mass through the quartic invariant.

13We have repeated the exercise for all possible A4 invariant
couplings of the scalars S and confirmed that the same pattern of
cancellations holds.

14The inversion of the relation of the invariants in terms of the
variables is unique. One may then identify the inverse relation
xi ¼ xiðIjÞ and express any new invariant I0 in terms of the
independent set fIjg; I0 ¼ I0ðxiÞ ¼ I0ðxiðIjÞÞ.
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will be a function of all such possible invariants,
VðxÞ ¼ V½IiðxÞ�. It follows that all the extrema of the
potential (and among them the true vacuum) can be
obtained imposing

∂V
∂xj

¼
X
i

∂V
∂Ii

∂Ii
∂xj

¼
X
j

∂V
∂Ii

Jij ¼ 0: ð3:21Þ

This equation can be seen as the Jacobian matrix of the
change of variables from the fields to the invariants, Jji ≡
∂Ii=∂xj times the vector ∂V=∂Ii, and allows one to identify
two kinds of extrema of a potential.

(i) Model-dependent extrema.—If the rank of the Ja-
cobian is maximal, then the extremal points neces-
sarily correspond to a vanishing vector ∂V=∂Ii ¼ 0.
In consequence, the extrema will depend on the
specific parameters of the combination of invariants
that build the potential. This is the case, for example,
of the Higgs potential of the SM.

(ii) Natural extrema.—Those points that are extrema of
the invariants I i themselves and therefore corre-
spond to

det½Jji� ¼ 0; ð3:22Þ

that is, the rank of the Jacobian is less than
maximal. They are called natural extrema as they
are set by the symmetry (that determines the
invariants) and therefore depend less on the spe-
cific coefficients of the potential. In general terms,
the reduction of the rank implies the appearance of
symmetries left explicit, i.e. unbroken in the
spectrum.

The essential point of the analysis of the natural
extrema is that the space of the physical variables x
has no boundary, while the manifold spanned by IiðxÞ
does have boundaries. Figure 5 illustrates the manifold
and its boundaries for the particular case of a nonlinearly
realized A4 symmetry with a scalar triplet. Extrema of V
in the bulk of the manifold correspond to case (i) above
and are always model-dependent extrema, while extrema
on the boundaries are natural extrema [29]: they fall in
category (ii) above. The boundaries are characterized by
the rank of the Jacobian matrix being less than maximum
and are thus described by n − 1 dimensional manifolds
(e.g., surfaces, for n ¼ 3), each characterized by a
different little group (i.e., the set of transformations that
leave the corresponding extremum invariant). Such mani-
folds meet along n − 2 dimensional manifolds (e.g., lines)
which in turn meet along even lower dimensionality
manifolds (e.g., singular points), etc. Each of these
boundaries corresponds to a particular little group, with
again the smaller the rank of the Jacobian, the larger the
little group.
Indeed, those points whose little group is a maximal

subgroup15 of D are expected to be the most natural
minima [28]. Extrema of V on a given boundary [29] are
dubbed natural precisely because they are more natural
than the generic extrema in the interior of the manifold.
The former require the vanishing of only rankðJÞ ¼ n − k
derivatives of V with respect to the invariants given
that, on the boundary, the Jacobian J has k vanishing
eigenvectors (orthogonal to the boundary). Note as well
that the derivatives of the invariants must vanish on the
boundaries in the directions orthogonal to them, which
forces the existence of a singular point wherever n

FIG. 4. Cancellation of the UV divergences resulting from diagrams that could have contributed to the DGB masses in the model with
heavy scalars, Eq. (3.20).

FIG. 5. Manifold defined by the I3ðΦÞ and I4ðΦÞ invariants
of A4, with Φ a triplet fulfilling ΦTΦ ¼ ϕ2

1 þ ϕ2
2 þ ϕ2

3 ¼ f2.
The little group which remains invariant at each natural extrema
is indicated.

15Given a group, a subgroup is maximal if the only subgroup
that contains it is the complete group itself, i.e. a subgroup that
can be included only in the full group.
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boundaries intersect. Therefore one should always find an
extremum at such intersections, which is where all
derivatives vanish. The natural minima at the boundary
intersections, that is, the zero-dimensional vertices of the
boundary, are what we have called the MaNa minima.
The MaNa minima are maximally natural in that their
position (the VEVs) do not rely on the values of the
parameters of the potential.
Each point P in the manifold of the invariants corre-

sponds in general to several possible vacuum expectation
values of the vectors Φ, which we will denote ΦP: they
constitute an orbit. Each element of the exact UV discrete
invariance group D either leaves the vector invariant (and
therefore belongs to its little group) or transforms the vector
into another element of the orbit. In consequence, the
following counting rule applies:

orderðLÞ × #ΦP ¼ orderðDÞ; ð3:23Þ

where #ΦP is the number of MaNa extrema for the
representation studied and L denotes the little group at ΦP.
In this work, we focus on the exploration of the MaNa

minima for each of the—spontaneously broken—discrete
groups to be considered.

4. MaNa extrema for the triplet of A4

In this scenario, considering the three degrees of freedom
at high energies, Φ≡ ðϕ1;ϕ2;ϕ3Þ⊺, the invariant manifold
would be three-dimensional. This is reduced to a two-
dimensional manifold when the nonlinear constraint
Eq. (3.7) is taken into account, which is the setup of
interest to explore the DGB potential. This invariant
manifold is that spanned by the set of two invariants
fI3; I4g which source all possible terms in the DGB
potential. This is depicted in Fig. 5: the points inside the
bulk of the manifold correspond to the rank two Jacobian,
the boundaries are lines, and the invariant little groups at
the MaNa extrema points—the vertices A, B and C—are
indicated.
The coordinates of the MaNa points in field space are

shown in Table II, together with the value of the invariants
and their exact—explicit—invariances. Note that the coor-
dinate values enforce the nonlinear constraint in Eq. (3.7),
as required. It is easy to check that Eq. (3.23) is satisfied:
2× 6ðfor AÞ ¼ 3× 4ðfor BÞ ¼ 3× 4ðfor CÞ ¼ 12, and the
number of extrema is 6þ 4þ 4 ¼ 14. The three MaNa
points A, B and C are related by A4 transformations. The
discrete symmetries that may remain explicit are typically a
maximal subgroup of the UV discrete group A4: this is the
case for Z3 identified for the extrema B and C in Table II,
which are both MaNa minima,16 while A is a saddle point

and its little group is Z2 (which is not a maximal subgroup
of A4).
The discrete symmetry is reflected in the geometrical

locations of the MaNa extrema in field space. For instance,
the Z3-symmetric minima arrange themselves in the shape
of two tetrahedrons, as depicted in Fig. 6.

Expansion in terms of low-energy degrees of freedom.—
The parametrization of the real scalar field Φ in terms of
physical DGBs in Eq. (2.3) spans in this case two low-
energy fields πi¼1;2:

Φðπ1;π2Þ ¼

0
B@
ϕ1

ϕ2

ϕ3

1
CA¼ exp

2
641
f

0
B@

0 0 π1

0 0 π2

−π1 −π2 0

1
CA
3
75
0
B@

0

0

f

1
CA:

ð3:24Þ

The expansion of the low-energy DGB Lagrangian in
Eq. (2.5) around the MaNa extrema in Table II, in terms
of these physical pions fields (DGBs), must be done
carefully. The point is that the minima in that table are
rotated with respect to the direction around which the pions
are defined in Eq. (3.24). In order to maintain the latter
parametrization consistently, it is necessary to apply a
three-dimensional real rotation R ∈ SOð3Þ that aligns each
MaNa point with the z direction in field-component space,
which corresponds to the unbroken generator. The invar-
iants can then be simply redefined as

I 0
iðΦÞ ¼ I iðR−1ΦÞ; ð3:25Þ

where Φ is as defined by Eq. (3.24); any MaNa extremum
Φs is therefore transformed into Φ0

s ¼ RΦs ¼ ð0; 0; fÞ⊤.

TABLE II. Location and symmetries of the MaNa extrema of
the manifold spanned by the invariants that build up the DGB
potential, for the case of a triplet scalar of A4. The values of the
invariants and the locations of the extrema are given in units of
the DGB scale f. The location in field space of the MaNa minima
is depicted in Fig. 6. The manifold is illustrated in Fig. 5.

MaNa extrema for a triplet of A4

Point I3 I4 ϕ1 ϕ2 ϕ3 Little group Nature

A 0 1 0 0 �1 Z2 Saddles
0 �1 0
�1 0 0

B 1

3
ffiffi
3

p 1
3

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p Z3 Minima

− 1ffiffi
3

p 1ffiffi
3

p − 1ffiffi
3

p

þ 1ffiffi
3

p − 1ffiffi
3

p ∓ 1ffiffi
3

p

C − 1

3
ffiffi
3

p 1
3

− 1ffiffi
3

p − 1ffiffi
3

p − 1ffiffi
3

p Z3 Minima
1ffiffi
3

p − 1ffiffi
3

p 1ffiffi
3

p

þ 1ffiffi
3

p 1ffiffi
3

p ∓ 1ffiffi
3

p

16Depending on the sign of the coefficient ĉi, these extrema are
either maxima or minima.
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The absence of this step has prevented Ref. [27] to identify
the surviving explicit symmetry of the spectrum, that we
unveil here to be Z3.

17 Therefore, Z3 is the symmetry that
should appear realized à la Wigner in the low-energy
spectrum for the MaNa minima of the potential, as
discussed next in further detail.
The expansion around any of the Z3 symmetric VEVs

[for instance ΦC ¼ − 1ffiffi
3

p ð1; 1; 1Þ] of the A4 invariants for

the scalar triplet in terms of physical pion fields, para-
metrized as in Eq. (3.24), yields

I3 ¼
fffiffiffi
3

p
�
−
f2

3
þ ðπ21 þ π22Þ −

1

3
ffiffiffi
2

p
f
ðπ31 − 3π1π

2
2Þ

−
17

24f2
ðπ21 þ π22Þ2

�
þ � � � ; ð3:26Þ

I4 ¼
4f2

3

�
f2

4
þ ðπ21 þ π22Þ þ

1ffiffiffi
2

p
f
ðπ31 − 3π1π

2
2Þ

−
29

24
ðπ21 þ π22Þ2

�
þ � � � ; ð3:27Þ

I6 ¼ −
4

3

ffiffiffi
2

3

r
f3ðπ32 − 3π21π2Þ þ � � � ; ð3:28Þ

where dots indicate terms of higher order in the pion fields,
and the nonlinear constraint (jΦj2 ¼ f2) in Eq. (3.7) is
automatically implemented (here and all through the rest of
the paper, the nonlinear constraint will be implicit when-
ever the DGB dynamics is analyzed). These equations
show that the DGB fields appear arranged in an irreducible
representation of the little group of the MaNa minima: a 2
of Z3. Indeed, two primary invariants exist for the latter
which, in the pion parametrization chosen, read

I ð2;Z3Þ
2 ¼ π21 þ π22; ð3:29Þ

I ð2;Z3Þ
3 ¼ π31 − 3π1π

2
2; ð3:30Þ

and those are precisely the field combinations exhibited by
Eqs. (3.26) and (3.27). There is also a secondary Z3

invariant (obtained via a syzygy)

I ð2;Z3Þ
30 ¼ π32 − 3π21π2; ð3:31Þ

whose pion dependence equals that for the secondary A4

invariant I6 in Eq. (3.28). In fact, the role of the two cubic

invariants I ð2;Z3Þ
3 and I ð2;Z3Þ

30 can be exchanged, or sub-
stituted by combinations of them, by changing the pion
parametrization in Eq. (3.24). Note that we have denoted
here the Z3 invariants as

I ðm;GÞ
n ; ð3:32Þ

where n indicates the mass dimension of the invariant,
G the invariance group and m the field representation.
This notation will be implemented all through the rest of
the paper, except for the triplet of A4, for which we will

maintain the simplified notation above, i.e. I2 ≡ I ð3;A4Þ
2 ,

I3 ≡ I ð3;A4Þ
3 , I4 ≡ I ð3;A4Þ

4 and I6 ≡ I ð3;A4Þ
6 .

C. Phenomenology of A4 DGBs

We have shown that an unbroken Z3 symmetry will be
realized à la Wigner in the DGB spectrum as long as the
VEVs of the scalar correspond to the MaNa extrema. Some
experimental consequences follow. We focus below in
those signals associated with the terms in the potential
discussed above. The detailed phenomenological analysis
for the interaction terms in the Lagrangian Eq. (2.5) which
involve derivatives will be left for later work, although the
pattern of signals will have strong similarities to those from
the potential terms, as argued further below.18

FIG. 6. Geometrical distribution in field space of the two
Z3-symmetric MaNa extrema of the DGB potential for a scalar
triplet of A4. Points B of Table II are depicted in green and points
C are in red.

17If one keeps the parametrization in Eq. (3.24) and expands
around the VEVs of the pion fields in Table II, hπ1i ¼ hπ2i ¼
ðf= ffiffiffi

2
p Þ cos−1 ð1= ffiffiffi

3
p Þ, as done in Ref. [27], the resulting kinetic

terms of the pions would not be canonically normalized. Upon
redefinition to canonically normalize the fields, our results are
recovered.

18To keep our discussion general enough, note that the
phenomenological analysis presented here assumes that the
global minimum of the potential is one of the MaNa extrema
identified above. It is possible that a deeper global minimum
arises in nature which depends instead on a precise combination
of couplings, though, and the analysis would depend in that case
on the value of the potential parameters.
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1. Degenerate spectrum

The first physical prediction stems from the pions being
in an irreducible doublet representation of Z3: two degen-
erate DGBs are expected:

m2
π1 ¼ m2

π2 : ð3:33Þ

Degeneracy introduces freedom into the definition of the
DGBs, though. They can be redefined by an arbitrary
rotation of angle β:

π1

π2
→

�
π̂1 ¼ π1 cos β þ π2 sin β

π̂1 ¼ π1 sin β − π2 cos β;
ð3:34Þ

which in turn redefines the Z3 invariants. For instance, for
the cubic ones,

I ð2;Z3Þ
3 → c3βI

ð2;Z3Þ
3 þ s3βI

ð2;Z3Þ
30

¼ ðπ31 − 3π1π
2
2Þ cos 3β þ ðπ32 − 3π21π2Þ sin 3β;

ð3:35Þ

I ð2;Z3Þ
30 → −s3βI

ð2;Z3Þ
3 þ c3βI

ð2;Z3Þ
30

¼ −ðπ31 − 3π1π
2
2Þ sin 3β þ ðπ32 − 3π21π2Þ cos 3β;

ð3:36Þ

where the shorthand notation c3β ≡ cosð3βÞ and s3β ≡
sinð3βÞ has been used. This means that the cubic inter-
actions correspond to an arbitrary linear combination of the

little group invariants I ð2;Z3Þ
3 and I ð2;Z3Þ

30 . The predictions for
the physical observables are reparametrization invariant,
though, as expected and illustrated further below.

2. Simultaneous production

The second prediction is that, unlike for usual axionlike
particle (ALPs), DGBs are not expected to be produced
alone. This is an unavoidable consequence of the fact
that the pion fields belong to nontrivial irreducible multip-
lets, as long as the SM fields do not carry charges under

the discrete symmetry. In any collision or decay sourcing
DGBs, at least two DGBs are then expected to be
simultaneously produced.
Consider for illustration a generic interaction Lagrangian

between SM fields which are singlets of the discrete
symmetry—encoded in an operator OSM—and the DGBs
stemming from the A4 invariant in the scalar potential with
lowest dimension, I3:

Lint ∝
1

MmOSMI3; ð3:37Þ

where m is some integer power which depends on the
dimensionality ofOSM andM denotes here the high-energy
scale of the UV complete theory where both sectors would
be connected. Some expected topologies for DGB produc-
tion from SM processes which follow from Eq. (3.26) are
illustrated in Fig. 7. The simultaneous emission of two or
three degenerate DGBs are thus the simplest processes.
While the two DGBs are physically distinct fields, they

are degenerate. The latter means that they cannot be
individually distinguished in experiments. The DGB
observables will be given by the sum of the probabilities
for each possible individual final DGB state. This is like
QCD in which the three colors of a quark cannot be
experimentally separated even in the perturbative regime,
and thus the perturbative QCD cross sections typically
require one to compute the probabilities for each possible
channel with given initial and final colors, to average over
color in the initial state, and to sum over all possible final
color configurations. Therefore, for the example in
Eq. (3.37) the probability will be proportional to

ProbðSM → nπÞ ∝
X

i;j…l¼1;2

jAðSM → πiπj…πl|fflfflfflfflffl{zfflfflfflfflffl}
n

Þj2;

ð3:38Þ

where n denotes the number of DGBs produced [i.e. n ¼ 2,
3 or 4 for the example in Eq. (3.37)]. Upon this proviso, it is
easy to check that the physical observables are invariant
under field reparametrizations, as they should, i.e. be

FIG. 7. Production of DGBs from SM collisions for a triplet of nonlinearly realized A4. The SM fields and interactions appear in black,
and the DGBs are shown in red.
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independent of the arbitrary parameter β in Eqs. (3.34) and
(3.36). While this is trivial for the two-DGB processes in
Fig. 7(a), the three-DGB processes in Fig. 7(b) are shown to
be β invariant only upon implementation of the sum
in Eq. (3.38).
The third prediction depends on a particular structure of

the relative probabilities for multi-DGB channels, which
may point to the full UV discrete symmetry. For the real
scalar triplet of A4 and assuming that, to a good approxi-
mation, nature’s DGB interactions can be described by the
lowest-dimension nontrivial operator, i.e. as in Eq. (3.37),
it follows that the cross sections σðSM → nπÞ for two-,
three-, and four-DGB production processes can be calcu-
lated using the interactions of Eq. (3.26) and

σðASMBSM → nπÞ ¼
Z

1

2EA2EBjvA − vBj
× jAðASMBSM → nπÞj2dΠn; ð3:39Þ

where EA;B and vA;B are the energies and velocities,
respectively, of the initial SM particles and dΠn is the
differential n-body phase space. Interestingly, the expan-
sion of the I3 invariant in terms of the pions in Eq. (3.26)
predicts certain specific relations among the n-pion
interactions. Neglecting momentum-dependent OSM in
Eq. (3.37), the integral reduces to calculating the n-body
final state phase space, and we can write

σðSM → 2πÞ
σðSM → 3πÞ ¼ 2f2

Π2

Π3

;
σðSM → 3πÞ
σðSM → 4πÞ ¼

36f2

19ð17Þ2
Π3

Π4

:

ð3:40Þ

In the mπ → 0 limit, we find

σðSM → 2πÞ
σðSM → 3πÞ ¼ 64π2

f2

E2
CM

;

σðSM → 3πÞ
σðSM → 4πÞ ¼

6ð24πÞ2
19ð17Þ2

f2

E2
CM

: ð3:41Þ

Information about the initial state cancels out when taking
the above ratios, and so Eq. (3.41) holds for any number of
particles in the initial state and also gives the ratios of decay
rates ΓðSM → nπÞ. These ratios are specific to the I3

invariant under consideration [see Eq. (3.26)] and thus may
constitute an interesting tool to disentangle the full UV
discrete symmetry. Remarkably, the invariants of the
potential provide a handle to infer (at least partially) the
UV discrete symmetry from the low-energy observables.
This is an improvement over the case of nonlinearly
realized continuous symmetries, in which the full UV
symmetry cannot be extracted from the dynamics of
PGBs below the SSB scale [53].
In this illustration, the SM sector is assumed to be a

singlet of the unbroken UV discrete symmetry D. Were

some SM fields to carry charges under that symmetry,
single DGB production and other channels would open.
The theoretical construction would require one to embed
SM fields in representations of the discrete group, which is
a major task left for future work.

3. Experimental signals from interactions
with derivative couplings

Although we have focused above on the signals stem-
ming from the terms in the (discrete-symmetry invariant)
potential, further signals are expected from the terms in the
DGB Lagrangian Eq. (2.5) containing Φ derivatives, such
as for instance the interaction term

Lint ∝
1

Mm OSM
∂μΦT

∂
μΦ: ð3:42Þ

It should be not expected a priori for these terms to have
coefficients suppressed due to the UV discrete symmetry,
as they are also allowed by the embedding continuous
symmetry; see Eq. (2.7). Nevertheless, they will exhibit the
differentiating characteristics of its momentum depend-
ence, which is a tool to disentangle them from those
stemming from scalar invariants discussed in the previous
subsection. They will share, though, the main character-
istic, i.e. to lead to the simultaneous production of at least
two DGBs, with no single DGB event, as far as the SM
fields are uncharged under the discrete symmetry.
Analogous considerations hold for the interactions involv-
ing mixed derivative and nonderivative DGB terms. We
leave to future work a detailed phenomenological analysis
of the interaction terms involving DGB derivatives. These
comments apply as well to the rest of the UV discrete
symmetry scenarios to be discussed below.

4. Counting the number of DGBs produced
in experiment

A typical signal of an ALP (or generic dark matter
particle) is the observation of events with missing energy in
excess of the SM background, assuming that neutral
particle is stable or can escape the detector before decaying.
The question of how to count how many degenerate
invisible particles are simultaneously produced in a colli-
sion has been already addressed [54,55] in two cases:
degenerate particles with mass negligible compared to the
collision energy and degenerate but massive particles.
It was shown that the distribution of visible (SM)

particles suffices to infer the number of invisible particles
ejected, without the need to reconstruct specific character-
istics of the invisible sector. The key is the end-point
behavior of certain observables, which has a strong power-
law dependence on the number of invisible particles in the
event. This method has the strength and clarity of a purely
kinematic analysis, as it relies on the property that, in the
end point of observables for the visible particles, the
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invisible ones must be produced either parallel to each other
(if massless) or at rest. Possible discriminators include the
end point of the invariant mass and/or the invariant trans-
verse mass of the visible particles, among others. In
particular, the distributions for one versus more than one
emitted invisible particles differ widely.
This approach, designed to hunt for multicomponent

dark matter, can be translated to the setup of this work.
In summary, the absence of events with just one invisible
(e.g., missing energy) track and the appearance instead
of multi-invisible tracks is the first experimental telltale
signal consistent with a BSM theory UV protected by the
mechanism explored in this paper.19 This is the case
whenever the nontrivial irreducible representations of the
theory are lighter than the possible singlet ones, a pattern
that holds through all the examples studied in this work.

5. Inference of the underlying discrete symmetry

It may not be possible to infer the complete UV discrete
symmetry from only the low-energy part of the spectrum
and interactions. The question is whether one can identify
the explicit à la Wigner symmetry remaining, which by
consistency would allow one to at least delineate the set of
possible UV invariances. More importantly, they can be the
lighthouse signal of an UV stable BSM theory with scalars.
Once the number of degenerate DGBs is experimentally

established, it may be possible to identify the final discrete
symmetry of the spectrum because the precise relative
weights of the terms cubic in DGB fields, and of each set of
terms of higher order, is a trademark of the final explicit
symmetry and representation. In the case discussed of a
doublet of Z3, these are the combinations in parentheses in
Eqs. (3.26)–(3.28).
Under the further assumption that the lowest-dimension

invariant dominates the potential, the relative weights of the
two-, three-, four-, etc., DGB amplitudes can provide hints
of the complete invariant at play, as illustrated above. The
point is that those ratios are a feature of the complete UV
discrete symmetry D, not of the explicitly realized one.
That is, although there is not a one-to-one correspondence
between the amplitudes that follow from the first terms of a
leading invariant and a particular UV discrete symmetry,
the possibilities typically narrow down to a very reduced set
of UV symmetries. This type of analysis has been illus-
trated for the real triplet of A4 in Eqs. (3.41) above and will
be further illuminated below, upon the comparison with the
signals expected from alternative UV discrete scenarios.

D. A related symmetry: S4
The case of the non-Abelian UV discrete symmetry S4 is

close to that of A4, as S4 ¼ A4 × Z2. For a triplet of real
scalars, there will again be three primary invariants

(corresponding to two for the DGB potential, taking into
account the nonlinearity constraint). For S4 there are two
possible triplet representations, 3 and 30. The interest of a
triplet of S4 as compared with a triplet of A4 is twofold.

(i) Further suppressed DGB masses for the 30 repre-
sentation.—In this case, the three primary invariants
are of dimension two, four and six, fI2; I4; I6g. For
the DGB potential, as I2 ¼ f2 upon imposing the
nonlinearity condition, the first operator contributing
to the DGB masses is I4, and furthermore the most
general renormalizable potential reduces to this
invariant.

(ii) The predicted DGB spectrum can have non-
Abelian properties. Indeed, the discrete symmetries
exhibited by the MaNa minima (for both the 3 and 30
cases), include (very simple) non-Abelian ones:
e.g., S3 ¼ Z3 × Z2.

The S4 theory also allows us to showcase how different
exact UV discrete symmetries may be disentangled at low
energies. While both S4 and A4 predict the same number of
degenerate DGBs (two), the assumption that the leading
term of the DGB potential corresponds to the lowest-
dimensional invariant leads to different ratios among the
multi-DGB amplitudes stemming from pure scalar invar-
iants: for S4 the DGB potential is expected to be dominated
by I4 and therefore the ratios depend on the coefficients in
Eq. (3.27) (the cubic invariant is absent) while for A4 those
ratios are fixed by I3, as studied in (3.41). For instance, the
following cross-section ratios hold for the triplet of S4
developed around its Z3-symmetric vacuum:

σðSM → 2πÞ
σðSM → 3πÞ ¼ 2ð8πÞ2 f2

E2
CM

;

σðSM → 3πÞ
σðSM → 4πÞ ¼

27ð8πÞ2
53371

f2

E2
CM

; ð3:43Þ

to be compared with the analogous ones in Eq. (3.41) for
the triplet of A4.
We refer to the Appendix for the technical analysis and

the detailed classification of the S4 MaNa extrema. The
next two sections will instead focus on examples that
demonstrate automatically very suppressed DGB masses or
non-Abelian symmetric spectra.

IV. SCALARS IN A TRIPLET OF A5

This section analyzes the case of an exact (albeit non-
linearly realized) A5 invariance with scalars in a 3 or a 30
representation. It will be shown how this discrete symmetry
may further protect the DGB masses, as the first possible
discrete invariant contributing to the generic potential scalar
is of higher dimension than that for the A4 (and S4) triplets
discussed in the previous section.

19The case in which some SM particles would carry discrete
symmetry charges may lead to a different pattern.
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A. Invariants and potential

As the high-energy (the low-energy) theory has three
(two) dynamical scalar degrees of freedom, we expect
again three (two) primary invariants to describe the scalar
physics at those energies.
For a real scalar triplet, the most general scalar potential

invariant under the UV A5 symmetry will be expressed as a
function of all possible A5 invariants built out of that
representation. The dimension and quantity of the primary
and secondary invariants follows from the Molien generat-
ing function [56,57].20 All other analytical invariants will
be polynomial combinations of the primary and secondary
invariants. The Molien functions for the 3 and 30 of A5 are
identical and read

FA5
ð1; 3; λÞ ¼ 1þ λ15

ð1 − λ2Þð1 − λ6Þð1 − λ10Þ ; ð4:1Þ

which implies three primary invariants of order 2, 6, and 10,
together with a syzygy that allows one to construct a 15th-
order secondary invariant in terms of the primary invariants.
For their explicit construction, one can profit from the fact
that A4 is a subgroup of A5 [52]. In consequence, the three
primary invariants for the 3 of A5 can be written in a
compact way as combinations of the three primary A4

invariants (I2, I3, I4) and the secondary A4 invariant (I6)
given in Eqs. (3.1)–(3.4):

I ð3;A5Þ
2 ¼ I2; ð4:2Þ

I ð3;A5Þ
6 ¼ 22I2

3 þ I2I4 − 2
ffiffiffi
5

p
I6; ð4:3Þ

I ð3;A5Þ
10 ¼ I2

2I4 þ 38I2
3I4 −

7

11
I3
2I4 −

128

11
ffiffiffi
5

p I2
2I6

þ 6ffiffiffi
5

p I4I6: ð4:4Þ

The invariants for the 30 representation of A5 are exactly the
same as for the 3.

Once again, the quadratic invariant I ð3;A5Þ
2 will not

contribute to the DGB potential, given that the nonlinearity
constraint in Eq. (3.7) also holds here. This theory is
therefore protected from quadratic instabilities via quantum
corrections induced by physical scales in the theory heavier
than Λ. Furthermore, the first invariant which can induce a
mass for the DGBs now has dimension six:

VDGB ¼ f2Λ2

�
ĉ6

I6

f6
þ ĉ10

I10

f10
þ ĉ12

I2
6

f12
þ ĉ15

I15

f15
…

�
;

ð4:5Þ

and thus the DGB masses are expected to be weighted
down by a strong ϵ6 suppression factor due to the UV
discrete symmetry; see Eq. (3.11) and the subsequent
discussion. Therefore, the DGB masses are much more
suppressed than in the case of A4 with a scalar triplet (which
exhibited an ϵ3 suppression).
Furthermore, note that in this case the physical impact

of the complete potential should be well approximated
by just one invariant, I6, given the strong hierarchy
of the potential coefficients: the impact of the other primary

invariant, I ð3;A5Þ
10 , the secondary invariant I ð3;A5Þ

15 , and the
rest of the terms, can be disregarded here altogether given
their very high suppression.

1. Embedding in a continuous group: SO(3)

Like A4, A5 is a subgroup of SO(3), for which
two irreducible triplet representations are possible; see
Table I. Again, the only possible pattern of SSB of the
continuous group with those representations is SOð3Þ →
SOð2Þ, and consequently two physical pion fields, π1
and π2, would survive at low energies; see Eqs. (3.7)
and (3.24).
The highly suppressed potential coefficients and their

strong hierarchy imply that an exact (and spontaneously
broken) UV A5 symmetry induces the existence of an
approximate continuous (spontaneously broken) SO(3)
invariance, which is explicitly broken to a very mild extent.
This leads to highly suppressed PGB masses as compared
with the overall effective scale Λ.
As stated before, in what follows we do not rely on any

particular choice of continuous group among those in
which the discrete group can be embedded.

2. MaNa extrema

There are a total of 62 MaNa extrema of the A5 invariants
described above. They can be classified as follows.

(i) 12 stable extrema with Z5 as their little group.—
They are the vertices of a dodecahedron in Fig. 8(a).

(ii) 20 stable extrema with Z3 as their little group.—
Geometrically, they are the vertices of an icosahe-
dron in Fig. 8(b).

(iii) 30 saddle points with Z2 as their little group.—A
total of 20 lie at the midpoints of the edges of the
icosahedron.

The counting constraint in Eq. (3.23) works out nicely,
60 ¼ 12 × 5 ¼ 20 × 3 ¼ 30 × 2, and also the number of
extrema is consistent, 62 ¼ 12þ 20þ 30. Table III
shows the location in field space of some representatives
of the MaNa extrema, together with the value of the
invariants at those points and their exact (explicit)
invariances.
The locations in field space of the ensemble of the MaNa

extrema are depicted in Fig. 8. The manifold defined by the
20For comprehensive reviews of this formalism see

Refs. [58,59].
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two A5 primary invariants relevant for the potential is
depicted in Fig. 9.
The set of Z3-symmetric points and the set of

Z5-symmetric points cannot be simultaneously minima
or maxima. Depending on the sign of the ĉi coefficients,
either one of the other are minima, while the Z2-symmetric
extrema are always saddle points. It is interesting to note
that the larger the symmetry at a MaNa minima, the deeper
the potential well at that point.

The expansion of the invariant I ð3;A5Þ
6 in terms

of DGBs around the Z3-symmetric MaNa minimum
ΦB ¼ 1ffiffi

3
p ð1; 1; 1Þ⊤ yields the following contribution to

the potential:

I ð3;A5Þ
6 ¼ 32

9
f4
�
31

96
f2 − ðπ21 þ π22Þ þ

10
ffiffiffi
2

p

24f
ðπ31 − 3π1π

2
2Þ

þ
ffiffiffiffiffi
30

p

4f
ðπ32 − 3π21π2Þ þ

31

12f2
ðπ21 þ π22Þ2

�
; ð4:6Þ

which is a combination of the quadratic and the two cubicZ3

invariants for a doublet representation; see Eqs. (3.29)–
(3.31). If the potential can be approximated by this lowest

invariant (with the appropriate sign VDGB ∼ −I ð3;A5Þ
6 ), this

Z3-symmetric point will correspond to a minimum.

TABLE III. Location and symmetries of a few representative
MaNa extrema for the case of a triplet scalar of A5. The values of
the invariants and the locations are normalized to f ¼ 1. The
location in field space of the ensemble of MaNa minima is
depicted in Fig. 8. The manifold is illustrated in Fig. 9.

MaNa extrema for a triplet of A5

ϕ1 ϕ2 ϕ3

Point I6 I10 (representatives) Little group Nature

A 1
5

− 472
1375 �

ffiffiffiffiffiffiffiffiffi
5− ffiffi

5
p
10

q
0 ∓

ffiffiffiffiffiffiffiffiffi
5þ ffiffi

5
p
10

q
Z5 Minima

B 31
27

328
891

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p Z3 Minimaffiffiffiffiffiffiffiffiffi
3þ ffiffi

5
p
6

q
0

ffiffiffiffiffiffiffiffiffi
3− ffiffi

5
p
6

q
0 0 �1

C 1 4
11

ð−1þ ffiffi
5

p Þ
4

− 1
2

ð1þ ffiffi
5

p Þ
4

Z2 Saddles

FIG. 9. The manifold defined by the I ð3;A5Þ
6 ðΦÞ and I ð3;A5Þ

10 ðΦÞ
invariants of the nonlinearly realized A5 with a scalar triplet. The
MaNa extrema correspond to the singular points of this manifold:
A, B and C.

FIG. 8. Geometrical distribution in field space of the MaNa extrema which are invariant under Z5 (a) and Z3 (b). The field values are
given in units of f.
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In contrast, the expansion of I ð3;A5Þ
6 around the Z5-

symmetric MaNa minimum ΦA yields

I ð3;A5Þ
6 ¼ 32

5
f4
�
f2

32
þ ðπ21 þ π22Þ −

31

12f2
ðπ21 þ π22Þ2

−
1

4f3
ðπ51 − 10π31π

2
2 þ 5π1π

4
2Þ
�
; ð4:7Þ

showing that the nature of this family of MaNa extrema is
revealed by terms which are of fifth order in the pion
dependence, reflecting the five-point symmetry of the
theory. Indeed, the Molien function for the irreducible
doublet representation of Z5 reads

FZ5
ð1; 2; λÞ ¼ 1þ λ5

ð1 − λ2Þð1 − λ5Þ ; ð4:8Þ

which implies two primary invariants of mass dimension
two and five:

I ð2;Z5Þ
2 ¼ π21 þ π22 ð4:9Þ

I ð2;Z5Þ
5 ¼ π51 − 10π31π

2
2 þ 5π1π

4
2; ð4:10Þ

plus a secondary invariant also of dimension five:

I ð2;Z5Þ
5 ¼ π52 − 10π21π

3
2 þ 5π41π2: ð4:11Þ

The expansions in terms of DGBs for I ð30;A5Þ
6 are identical

to those for I ð3;A5Þ
6 . Again, the physical results can be easily

proven to be independent of changes of parametrization of
the DGB fields [see Eq. (3.34)], as they should be.

B. Phenomenological signals with an A5 triplet

Given the Z5 symmetry at the MaNa minimum with the
largest little group, the signals to be expected mirror those
obtained earlier for the A4 case (see Sec. III C).

(i) Two degenerate DGBs, as befits the only irreducible
representation of ZN with real fields and dimension
larger than one (the 2).—Their masses are expected
to be naturally more suppressed than those for the A4

case, though, as compared with the overall UV scale,
as explained above.

(ii) The simultaneous emission of two, four or five
degenerate DGBs in SM initiated processes is
expected (as long as the SM fields are singlets of
the UV discrete symmetry). No events with only one
DGB emitted are then expected, nor with three (in
contrast to the A4 scenario).

The latter property can be illustrated with the generic
interaction Lagrangian

Lint ∝
1

Mm OSMI ð3;A5Þ
6 þ � � � ; ð4:12Þ

expanded around the DGB fields at the MaNa minimum
with the largest little group, which we showed above to
exhibit a à la Wigner Z5 symmetry. The expansion around
this minimum—see Eq. (4.7)—shows that no tree-level
production topology is expected with three DGBs emitted
(unlike for the UV A4 case), and the first vertex with an odd
number of DGBs involves five DGBs. This is illustrated in
Fig. 10. The considerations about reparametrization invari-
ance and the production probability in Eq. (3.38) apply as
well in this case.
In consequence, this scenario yields a Z5-symmetric

spectrum resulting in telltale relative probabilities for multi-
DGB channels from the interaction in Eq. (4.12), which are
null for three DGB production. Using Eq. (3.38), we find

σðSM → 2πÞ
σðSM → 4πÞ ¼

18f4

19ð31Þ2
Π2

Π4

;

σðSM → 4πÞ
σðSM → 5πÞ ¼

19ð31Þ2f2
3ð45Þ2

Π4

Π5

: ð4:13Þ

Evaluating the final state phase space gives explicitly

σðSM → 2πÞ
σðSM → 4πÞ ¼

216ð4πÞ4
19ð31Þ2

f4

E4
CM

;

σðSM → 4πÞ
σðSM → 5πÞ ¼

19ð31Þ2ð8πÞ2
ð45Þ2

f2

E2
CM

: ð4:14Þ

These are to be compared with Eq. (3.41) for the Z5-
symmetric spectrum (stemming from a scalar triplet of a
UV A5 symmetry) developed in the previous section.

FIG. 10. Production of DGBs from SM collisions, for a triplet of nonlinearly realized A5. While events with three DGBs are absent,
those with five DGBs are characteristic of this kind of DGBs whenever the Z5-symmetric MaNa minimum are the absolute minimum.
The color code is that of Fig. 7.
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Analogous remarks to those in Sec. III C 3 for the signals
expected from interaction terms containing ∂μU compo-
nents apply in this case.

1. Generalization to low-energy ZN symmetric spectra

The examples above have been constrained to triplet
(real) scalar representations of simple UV discrete sym-
metries, nonlinearly realized,21 which we showed lead to
MaNa minima with explicit Z3 or Z5 symmetry (or
involving them). Larger irreducible representations of
various UV discrete symmetries could be considered along
the same lines, which may leave a low-energy spectra
invariant under some ZN symmetry.
The important point is that, whatever the value of N, the

only irreducible representations of ZN—aside from singlets
—are doublets,22 whose lowest-dimensional invariant has
dimension two. This implies that whenever the final
preserved discrete symmetry of the spectrum is Abelian,
i.e. ZN , two degenerate DGBs (or several sets of them) are
to be expected, and no events with just one invisible (e.g.,
missing energy) track should be found among the leading
signals, as far as the SM is a singlet of the discrete
symmetry. Furthermore, the characteristic telltale produc-
tion topology for the absolute minimum is that of N-point
DGB interactions.
The experimental methods discussed in Sec. III C 4 to

disentangle how many invisible particles are ejected in a
collision or decay are valid for any N. The relative
probabilities of events with different numbers of DGBs
contain information which a priori can allow one to
identify the surviving discrete symmetry of the low-energy
spectrum and interactions, as exemplified above. This in
turn may delimitate by consistency the set of possible UV
discrete invariances which are ultimately responsible for
the increased UV convergence of the BSM theory.
A qualification is pertinent here for the case of large UV

discrete groups. The UV protection under study relies on a
nonlinear realization of the discrete symmetry D for an
irreducible m-dimensional real representation of the group,
and this leads to m − 1 DGBs at low energies. Large
discrete groups may not have irreducible representations of
dimension smaller than four, though (e.g.,m ≥ 5 for A6). If
the surviving explicit symmetry of the spectrum is Abelian,
it follows then that the m − 1 low-energy DGB degrees of
freedom will belong to a reducible representation. The
latter is expected to decompose as a combination of DGB
doublets (for m odd) or a combination of doublets plus a
singlet (for m even). The examples that we have analyzed

suggest that the singlet may be typically heavier than the
doublets. In summary, the leading experimental signals
(with SM fields uncharged under D) are still characterized
then by the absence of single ALP emission and the
simultaneous emission of (sets of) two degenerate ALPs,
as a telltale of an Abelian-symmetric spectrum.
A pertinent question is whether the prediction of

simultaneous DGB production could be broken in favor
of emission of a single DGB instead, for instance if
the UV symmetry were to be classically exact but
anomalous (assuming the SM sector is uncharged under
the discrete group).23 This cannot happen, though, as the
non-Abelian UV symmetries discussed are subgroups of
continuous ones, which cannot be anomalous because the
non-Abelian generators are traceless. This remark only
depends on the non-Abelian character of the UV discrete
symmetry and in consequence applies as well to the next
section.

V. SCALARS IN A QUADRUPLET OF A5:
NON-ABELIAN SYMMETRY

OF THE SPECTRUM

The analysis in the two previous sections led to predict
low-energy spectra explicitly symmetric under Abelian
groups, e.g. Z3 and Z5 (except for the case of S3 from
S4 which led to low-energy consequences similar to those
for Abelian little groups), as long as the scalar VEVs
correspond to the MaNa minima. The physical DGBs to be
detected are then degenerate ones belonging to the largest
irreducible representation of any ZN group: the 2, while the
interactions could allow one to disentangle the precise
Abelian group, i.e. to identify N.
We address here whether the explicit (i.e., à la Wigner)

discrete symmetry of the spectrum can be non-Abelian
instead, and what would then be the differentiating signals.
A nontrivial case shown below to realize this scenario is an
EFT built out of a real scalar field in a 4 of A5.

A. Invariants and potential

For four independent degrees of freedom at high ener-
gies, four primary A5 invariants are expected, with all other
possible invariants being a function of those. Indeed, the
Molien function for a quadruplet of A5 reads

FA5
ð1; 4; λÞ ¼ 1þ λ10

ð1 − λ2Þð1 − λ3Þð1 − λ4Þð1 − λ5Þ ; ð5:1Þ

which indicates four primary invariants with mass dimen-
sion two, three, four and five. We choose the particular
realization of the 4 representation of A5, fϕ1;ϕ2;ϕ3;ϕ4g,
to be that for which one of its A4 subgroups lives in the

21Which happen to be contained in SO(3).
22Rotations of angle 2π=N in the plane R2 are always a

representation of ZN with real fields. Such a rotation has no
invariant subspace and thus it is irreducible and of dimension two.
This is not the case rotations in Rn>2. In consequence, the only
irreducible representations for any ZN are doublets and singlets.

23We thank Anson Hook for a question prompting this
consideration.
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three first components of the quadruplet, i.e. fϕ1;ϕ2;ϕ3g
forms a triplet of the A4 subgroup. The A5 invariants
can then be written in terms of polynomials constructed
with the invariants I2, I3 and I4 for the 3 of A4 [see
Eqs. (3.1)–(3.3)] plus ϕ4:

I ð4;A5Þ
2 ¼ I2 þ ϕ2

4; ð5:2Þ

I ð4;A5Þ
3 ¼ I3 −

ϕ4

2
ffiffiffi
5

p I2 þ
ϕ3
4

2
ffiffiffi
5

p ; ð5:3Þ

I ð4;A5Þ
4 ¼ I4 þ

12ffiffiffi
5

p I3ϕ4 þ
12

5
I2ϕ

2
4 þ

ϕ4
4

5
; ð5:4Þ

I ð4;A5Þ
5 ¼ I4ϕ4 −

1

2
I2ϕ4 −

4ffiffiffi
5

p I3ϕ
2
4 −

ϕ3
4

5
I2 þ

ϕ5
4

50
: ð5:5Þ

The nonlinear constraint reads in this case

I ð4;A5Þ
2 ¼ ΦTΦ ¼ ϕ2

1 þ ϕ2
2 þ ϕ2

3 þ ϕ2
4 ¼ f2; ð5:6Þ

and thus the first explicit breaking of the continuous
symmetry will appear through a cubic A5 invariant. In
other words, as in all previous scenarios, the theory is
protected from quadratic corrections at the quantum level.
In the spirit of EFT, the generic potential can thus be

written as

VDGB ¼ f2Λ2

�
ĉ3

I3

f3
þ ĉ4

I4

f4
þ ĉ5

I5

f5
þ ĉ6

I6

f6
…

�
; ð5:7Þ

where I6 is formed out of primary invariants I6 ¼ I2
3. The

manifold of invariants spanned by the set of primary

invariants fI ð4;A5Þ
3 ; I ð4;A5Þ

4 ; I ð4;A5Þ
5 g is analyzed next, subject

to the nonlinearity constraint Eq. (5.6).

1. Embedding in a continuous group: SO(4)

While the scenarios explored in previous sections with
scalar triplets could all be embedded in SO(3), for a
quadruplet of A5 the smallest continuous embedding
corresponds to SO(4). From the point of view of the
continuous symmetry, this theory is again insensitive to
quadratic divergences, while the first contributions to the
pion masses stem from the dimension three A5-symmetric
invariant.

2. MaNa extrema

There are a total of 30 MaNa extrema for the invariant
potential built out of the 4 representation of A5:

(i) ten A4-symmetric MaNa extrema and
(ii) 20 MaNa extrema with S3 as their little group;

i.e., all MaNa extrema are non-Abelian as desired. The
counting rule in Eq. (3.23) works out nicely after one
realizes that all the A4-symmetric points do not belong to
the same orbit, since transformations under A5 are only able
to relate among themselves half of them. The same applies
to the set of S3-symmetric points. In consequence, there are
four different orbits in total which all comply neatly with
the counting criterium.
Representatives of each MaNa extremum are shown in

Table IV. The manifold spanned by the three primary
invariants of this scenario is depicted in Fig. 11.
Expansion in terms of low-energy degrees of freedom.—

We will use again the standard pion parametrization in
Eq. (2.3) to project the results in Table IV in terms of the
three low-energy DGBs:

TABLE IV. Location and symmetries of some representative MaNa extrema for the case of a real scalar field in a
quadruplet of A5. All dimensional entries are normalized to f ¼ 1. The complete manifold is illustrated in Fig. 11.

MaNa extrema for a quadruplet of A5

ϕ1 ϕ2 ϕ3 ϕ4

Point I3 I4 I5 (representatives) Little group Nature

A 1

2
ffiffi
5

p 1
5

1
50

0 0 0 1 A4 Minima

− ffiffi
5

p
4

− ffiffi
5

p
4

− ffiffi
5

p
4

1
4

B − 1

2
ffiffi
5

p 1
5

− 1
50

0 0 0 −1ffiffi
5

p
4

ffiffi
5

p
4

ffiffi
5

p
4

− 1
4

C 1
3
ffiffiffiffi
30

p 31
30 − 4

25

ffiffi
2
3

q ffiffiffiffi
5
24

q ffiffiffiffi
5
24

q ffiffiffiffi
5
24

q ffiffi
3
8

q
S3 Saddles

−
ffiffi
5
6

q
0 0 − 1ffiffi

6
p

D − 1

3
ffiffiffiffi
30

p 31
30 4

25

ffiffi
2
3

q
−

ffiffiffiffi
5
24

q
−

ffiffiffiffi
5
24

q
−

ffiffiffiffi
5
24

q
−

ffiffi
3
8

q
ffiffi
5
6

q
0 0 1ffiffi

6
p
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Φðπ1;π2;π3Þ ¼ exp

2
66641f

0
BBB@

0 0 0 π1

0 0 0 π2

0 0 0 π3

−π1 −π2 −π3 0

1
CCCA

3
7775

0
BBB@

0

0

0

f

1
CCCA:

ð5:8Þ

In order to obtain physically meaningful results, one must
rotate those points among the MaNa extrema in Table IV
which do not point in the (0,0,0,1) direction chosen for the
pion parametrization, as described in Eq. (3.25) albeit with
a four-dimensional rotation in parameter space. Two types
of extrema appear, both exhibiting non-Abelian invarian-
ces, described next.
MaNa extrema with A4 as their little group.—The

minima in this class are stable. For them, the low-energy
spectrum exhibits an exact (à la Wigner) non-Abelian A4

symmetry. Consider for illustration the representative MaNa
extremum ΦB ¼ ð0; 0; 0;−1Þ. In terms of the DGB degrees
of freedom, the three primary invariants relevant for the
potential take the form

I ð4;A5Þ
3 ¼

ffiffiffi
5

p
f

4

�
−
2f2

5
þ ðπ21 þ π22 þ π23Þ −

4ffiffiffi
5

p
f
π1π2π3 −

41

60f2
ðπ21 þ π22 þ π23Þ2

�
; ð5:9Þ

I ð4;A5Þ
4 ¼ 2f2

�
f2

10
þ ðπ21 þ π22 þ π23Þ þ

6ffiffiffi
5

p
f
π1π2π3 þ

1

2f2
ðπ41 þ π42 þ π43Þ−

43

30f2
ðπ21 þ π22 þ π23Þ2

�
; ð5:10Þ

I ð4;A5Þ
5 ¼ f3

4

�
2f2

25
þ ðπ21 þ π22 þ π23Þ þ

16ffiffiffi
5

p
f
π1π2π3 −

4

f2
ðπ41 þ π42 þ π43Þþ

19

60f2
ðπ21 þ π22 þ π23Þ2

�
: ð5:11Þ

If the DGB potential can be approximated by the
lowest relevant invariant (with the appropriate sign

VDGB ∼ −I ð4;A5Þ
3 ), the A4-symmetric point will correspond

to a minimum. The expressions above show that the
low-energy theory exhibits an exact A4 symmetry for a 3
representation.

(i) The low-energy spectrum consists of a triplet of
degenerate scalars fπ1; π2; π3g. This is in contrast
with the spectrum of two degenerate DGBs found
whenever the exact symmetry of the low-energy
theory was a discrete Abelian group of any order.

(ii) The invariants in terms of fπ1; π2; π3g in Eqs. (5.9)–
(5.11) are combinations of those for a 3 representa-
tion of A4; see for instance Eqs. (3.1)–(3.3).

MaNa extrema with S3 as their little group.—These are
saddle points. It is worth it to remark, though, that the
saddle character stems exclusively from the cubic invariant

I ð4;A5Þ
3 . Specifically, denoting by ΦA;B and ΦC;D the

extrema in Table IV with little groups, respectively,
invariant under A4 and S3, the correspondence is

I ð4;A5Þ
3 jΦA;B

→ minima;

I ð4;A5Þ
3 jΦC;D

→ saddles:

Therefore, if some constraint were to forbid I3, a stable
DGB theory constructed around the S3 invariant extrema
would be possible. In that case, the low-energy spectrum
would arrange itself in a 1þ 2 of S3: the triplet degeneracy
would be lifted; a doublet and a singlet representation could
be then expected. This would open new avenues for model
building and lead to a very different phenomenology. We
do not pursue this path here, as extra symmetries would
have to be advocated to sustain such a construction. In their
absence, the non-Abelian spectra suggest at least three
degenerate DGBs to be detected, in contrast with two
degenerate DGBs for Abelian symmetric spectra.

B. Phenomenological signals from an A5 quadruplet

Once again, one finds the absence of quadratic sensi-
tivity of the DGB potential to ultraviolet scales and DGB

FIG. 11. Manifold defined by I ð3;A5Þ
3 ðΦÞ, I ð3;A5Þ

4 ðΦÞ and

I ð3;A5Þ
5 ðΦÞ invariants of A5 when Φ is a SO(4) triplet

fulfilling ϕ2
1 þ ϕ2

2 þ ϕ2
3 þ ϕ2

4 ¼ f2.
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masses whose size can be further separated from the scale
of the effective theoryΛ, as compared with the expectations
for generic PGBs from nonlinearly realized and explicitly
broken symmetries. The essential low-energy property of
this ultraviolet A5 scenario is the explicit non-Abelian A4

symmetry of the low-energy theory, realized by a triplet of
DGBs, as long as the scalar VEV corresponds to the MaNa
minimum with the largest little group.

(i) Three degenerate DGBs are expected. This is in
stark contrast with the Abelian-symmetric (ZN)
spectra found in previous sections, which predicted
in all cases a doublet of degenerate DGBs.

(ii) No eventswith a singleALP-like particle are expected
(as long as the SM fields are singlets of the UV
discrete symmetry). The experimental telltale signals
would be then the simultaneous emission of two, three
or four degenerate DGBs in SM initiated processes. In
number of DGBs emitted, the event topologies are
therefore alike to those for the Z3 symmetric low-
energy spectrum of anA4 UVinvariant theory, but the
relative weights of the amplitudes for multi-DGB
emission could allow one to differentiate the two
cases; see Eq. (3.28) versus Eq. (5.9).

In order to illustrate this last point, consider the inter-
action between SM fields (singlets of the discrete sym-

metry) and I ð4;A5Þ
3 :

Lint ∝
1

Mm OSMI ð4;A5Þ
3 þ � � � : ð5:12Þ

It follows from Eq. (3.38) that the A4-symmetric spectrum
(which has resulted from the quadruplet of a UV A5

invariant theory) lead to the experimental ratios:

σðSM → 2πÞ
σðSM → 3πÞ ¼

15f2

4

Π2

Π3

;
σðSM → 3πÞ
σðSM → 4πÞ ¼

6f2

ð41Þ2
Π3

Π4

;

ð5:13Þ
σSM → 2πÞ
σðSM → 3πÞ ¼ 120π2

f2

E2
CM

;

σðSM → 3πÞ
σðSM → 4πÞ ¼

�
24π

41

�
2 f2

E2
CM

; ð5:14Þ

to be compared with the rations expected for a Z3-
symmetric spectrum (from a triplet of a UV A4 invariant
theory) [see Eq. (3.41)] and with those expected for a Z5-
symmetric spectrum (from a triplet of a UV A5 invariant
theory) in Eq. (4.14).
Analogous remarks to those in Sec. III C 3 for the signals

expected from interaction terms containing ∂μU compo-
nents apply in this case.

VI. CONCLUSIONS

The symmetry-protected masses of discrete Nambu-
Goldstone bosons offer promising theoretical avenues to

soften the ultraviolet sensitivity of BSM theories. We have
discussed how exact—albeit nonlinearly realized—discrete
symmetries allow one to give masses to those scalars
without explicitly breaking the discrete symmetry.
Examples of nonlinearly realized UV Abelian discrete

symmetries (ZN) have been previously developed in
depth, showing that a much lighter than usual axion can
result [24–26]. Here we focus instead on the much richer
case of UV non-Abelian symmetries. We illustrated
the theoretical analysis for various simple non-Abelian
discrete groups with a real scalar field in an irreducible
representation.
The nonlinearity condition itself, quadratic in the scalar

fields, implies the absence of quadratic sensitivity to high
scales for the DGB masses, because no other quadratic
form is allowed by the symmetry. By the same token, the
UV discrete invariance has the potential to strongly
separate the DGB masses from the scale of the effective
theory. A key ingredient to assess the smallness of DGB
masses is the dimensionality of the first scalar operator in
the DGB potential that is invariant under the UV discrete
symmetry. The higher its dimension, the stronger the mass
suppression expected. We showed how this depends on the
group and the representation, illustrating this effect with
some simple cases. The first discrete scalar invariant of the
DGB potential may already appear at cubic order, or
quartic, or even appear only at the nonrenormalizable level,
thus guaranteeing extremely suppressed DGB masses.
The model-independent approach of EFT and invariant

analysis has been used. In all cases, we have focused on the
MaNa minima of the potential, that is, those points that are
guaranteed to be extrema and are independent of the values
of the parameters in the potential. All such extrema have
been identified, together with the manifolds spanned by the
invariants, for various irreducible real representations of A4,
A5 and S4, as representative examples.
For the sake of theoretical illustration, we have discussed

as well the connection with the customary analysis of pion
masses in spontaneously broken global continuous theo-
ries, which always require additional arbitrary potentials
that break explicitly the continuous symmetry. The findings
in this paper could be then simply viewed as the result of
requiring the potential for explicit breaking to remain
invariant under a discrete subgroup of the continuous
symmetry. That is, no discrete group is added ad hoc,
while exact invariance under a subgroup of the global
symmetry itself is required [e.g., A4 or A5 for SO(3)]. The
point is that exact discrete symmetries often generate
approximate continuous symmetries and, when nonlinearly
realized, the corresponding PGB masses are protected: not
only do the quadratically divergent contributions to their
masses from putative higher scales cancel exactly but also
the generated potential may acquire an exponential sup-
pression, which is controlled by the dimensionality of the
first invariant operator that breaks the continuous symmetry
but preserves the discrete one. Nevertheless, our results did
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not rely on any choice of continuous group embedding.
In order to better illustrate the mechanism, we have also
explicitly computed the cancellation of the quadratic diver-
gent diagrams in two UV complete models of DGBs whose
realization involved either fermions or scalars.
We have also shown that the low-energy theory around

the MaNa extrema remains explicitly invariant under a
discrete subgroup of the UV discrete symmetry, which is
identified. That is, the spectra of DGBs are shown to exhibit
an explicit—i.e., à la Wigner—discrete symmetry. The
latter may be Abelian (e.g., Z3, Z5 in some examples
studied) or non-Abelian (e.g., A4, S3). This results in
tantalizing telltale experimental signals.

(i) Doublets of degenerate (DGB) scalars are to be
expected for Abelian symmetric low-energy theo-
ries. In contrast, three or more degenerate DGBs are
possible for low-energy non-Abelian symmetric
spectra.24

(ii) No event with single DGB emission is expected, as
long as the SM fields are singlets under the discrete
symmetries. The simultaneous emission of two,
three or more DGBs are to be expected in this case
from SM initiated processes.

(iii) The relative weights of multi-DGB emission provide
hints of the exact discrete UV symmetry: the analysis
of the low-energy DGB spectrum and interactions
cannot identify the UV symmetry unequivocally, but
it can delineate the possibilities by consistency.

While the first two points above are not exclusive signals of
a discrete symmetry (as they could be expected for exotic
particles charged under an exact and explicit new sym-
metry), it is the ensemble of the three points that would
allow one to see the presence in nature of a protective
discrete symmetry.
Note as well that the second point above is at variance

with usual ALP searches, for which single ALP emission is
the first signal hunted (e.g., a single missing energy track if
the ALP is stable or too long-lived to decay within the
detector). Would the SM fields be charged under the UV
discrete symmetry, the DGB degeneracy would remain
untouched, while different experimental detection patterns
can follow (to be developed elsewhere). In the flourishing
realm of ALP searches, it is a pertinent quest to hunt for the
sets of observables indicated, as a possible trademark of an
unbroken but hidden discrete symmetry, and thus of a BSM
theory with enhanced UV protection.
Theoretical applications of the results in this paper

could range from the search for UV stable theories of
multicomponent dark matter, to the solution or alleviation
of other fine-tuning and hierarchy issues in the known
physics laws.
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APPENDIX: BRIEF SUMMARY OF S4

As advanced at the end of Sec. III, the scenario with an
ultraviolet S4 symmetry is closely related to that of A4, but
it presents some suggestive differences, discussed next for
its two triplet representations, 3 and 30.

1. S4 in its 3 representation

The Molien function for the 3 of S4 reads

F S4ð1; 3; λÞ ¼
1

ð1 − λ2Þð1 − λ3Þð1 − λ4Þ ; ðA1Þ

which indicates the same primary invariants as for the 3 of
A4, of dimension two, three and four: I2, I3, I4 in
Eqs. (3.1)–(3.3). The Molien function for the 30 represen-
tation is the same except that it has a factor of ð1þ λ6Þ in
the numerator; in other words, the difference is that the
secondary invariant I6 defined in Eq. (3.4) by a syzygy of
the A4 triplet is forbidden for S4. As a consequence,
differences between both theories arise only at the non-
renormalizable level through this six-dimensional operator.
It follows in turn that the MaNa extrema of the potential are
the same as those of A4, although their little groups are
extended because of the larger size of the group. That is, the

24Two degenerate pions can also stem from very small non-
Abelian symmetries at low energy, such as S3. The key is the
dimensionality of the irreducible representations of the UV
symmetry.
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manifold of invariants is that in Fig. 5 albeit with the
symmetries at the MaNa extrema changed as in Table V.
In terms of the pions as defined by Eq. (3.24), the

absence of I6 translates into the exclusion of one of the Z3-
invariant combinations of order 3 introduced by Eqs. (3.30)
and (3.31). Even though both expressions can be reshuffled
as in Eq. (3.36) due to pion degeneracy, this results in the
presence of a single combination of both operators in the
Lagrangian regardless of the basis chosen. From another
point of view, this is a consequence of the extended S3
invariance of the formerly Z3-symmetric MaNa extrema B
and C, which is more stringent in forbidding combinations
of the pions. Interestingly then, S3 is a non-Abelian group
—although the smallest existing one—and it will remain
explicitly realized in the spectrum in this case. Subtle
differences at subleading orders in the production rates or
scattering cross sections predicted by both theories might
follow, but at leading order the physical predictions
stemming from the 3 of A4 and S4 are identical.

2. The 30 of S4
The 30 is of considerable more interest, with more unique

features that stem from its structural differences in relation
to the 3 of A4 [52]. Looking at the Molien function

F S4ð1; 30; λÞ ¼
1þ λ9

ð1 − λ2Þð1 − λ4Þð1 − λ6Þ ; ðA2Þ

one immediately spots the similarities and differences with
the former cases. First of all, the invariant of order 3 is
forbidden, so nontrivial contributions to the potential will
appear only at themarginal level. Explicitly, the invariants are

I ð30;S4Þ
2 ðϕÞ ¼ ϕ2

1 þ ϕ2
2 þ ϕ2

3;

I ð30;S4Þ
4 ðϕÞ ¼ ϕ4

1 þ ϕ4
2 þ ϕ4

3;

I ð30;S4Þ
6 ðϕÞ ¼ ðϕ1ϕ2ϕ3Þ2; ðA3Þ

meaning that the third-order invariant has been substituted by

its square; instead ofI3 wehave I
ð30;S4Þ
6 ¼ I2

3. The nontrivial
secondary invariant is of order 9 and thus extremely sup-
pressed. As it happened in A4, it can be found to be
proportional to the determinant of the Jacobian of theprimary
invariants. We define

detJ ð30;S4Þ ¼ −16I ð30;S4Þ
9 ¼ −16ϕ1ϕ2ϕ3ðϕ2

1 − ϕ2
2Þ

× ðϕ2
2 − ϕ2

3Þðϕ2
1 − ϕ2

3Þ: ðA4Þ

The set ofMaNa extrema is enlarged in this case; one can see
from Fig. 13 that the structure of the invariant manifold has
indeed changed. Now there are

(i) six MaNa extrema A with V4 ¼ Z2 × Z2 as their
little group, which are stable;

(ii) eight MaNa extrema B with S3 ¼ Z2 × Z3 as their
little group, which are stable; and

(iii) 12 MaNa extrema C with Z2 as their little group,
which are saddles.

TABLE V. Symmetries of the MaNa extrema for an invariant
potential for the 3 of S4, where A, B and C are the points defined
for A4 in Table II with the corresponding manifold as depicted
in Fig. 5.

Point Little group

A V4 ¼ Z2 × Z2

B V4 ¼ Z3 × Z2

C S3 ¼ Z3 × Z2

FIG. 12. Geometrical distribution in field space of the S3-
symmetrical MaNa extrema (B) with a 30 of S4.

FIG. 13. Manifold defined by I ð30;S4Þ
4 ðΦÞ and I ð30;S4Þ

6 ðΦÞ
invariants of S4 when Φ is in the 30 of S4 and fulfills
ϕ2
1 þ ϕ2

2 þ ϕ2
3 ¼ f2.
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Table VI contains all the relevant information about all
these points, including some representatives for each case.
The positions of the S3-invariant MaNa extrema in field
space are displayed in Fig. 12.

a. Expansion in terms of pions

There are two sets of stable MaNa extrema, denoted A
and B in the manifold in Fig. 13. Therefore, two different
realizations in terms of the physical DGBs are possible:
either A or B is a minimum, depending on the sing
of the ĉi coefficients. Assuming that the full potential

can be approximated by the first invariant VDGB ∼ −I ð3;S3Þ
4 ,

the V4-symmetric minima in B are global minima, con-
sistent with the Michel-Radicati result [28].

b. Expanding around A

On defining the DGBs around the V4-invariant MaNa
extremum ΦB ¼ ð0; 0; 1Þ⊤, the contributions to the poten-
tial will read

I ð30;S4Þ
4 ¼ f4 − 2f2ðπ21 þ π22Þ

þ 8

3
ðπ21 þ π22Þ2 − 2π21π

2
2 þOðπ51Þ; ðA5Þ

I ð30;S4Þ
6 ¼ π21π

2
2 þOðπ5i Þ; ðA6Þ

where the pions are arranged followed the pattern dictated
by V4 invariance. Using the Molien function formalism one
can easily see that the two primary invariants of the doublet

of V4 are indeed I ð2;V4Þ
2 ¼π21þπ22 and I ð2;V4Þ

4 ¼π21π
2
2. Con-

sequently, this case forbids the production of an odd

number of pions to all orders, distinguishing its predicted
signal from all others that are discussed in this paper.

c. Expanding around B

The expansion around a S3-symmetric MaNa extremum
yields a quite different outcome:

I ð30;S4Þ
4 ¼ f4

3
þ 4

3
f2ðπ12 þ π22Þ − 2

3
fðπ31 − 3π1π

2
2Þ

−
29

18
ðπ21 þ π22Þ2 þOðπ5i Þ; ðA7Þ

I ð30;S4Þ
6 ¼ f6

27
−
2

9
f4ðπ21 þ π22Þ −

f3

27
ðπ31 − 3π1π

2
2Þ

þ 53

108
f2ðπ21 þ π22Þ2 þOðπ5i Þ; ðA8Þ

where the primary invariants of the doublet of S3 are

precisely I ð2;S3Þ
2 ¼ π21 þ π22 and I ð2;S3Þ

3 ¼ π31 − 3π1π
2
2.

Contrarily to what happens in the case of Z3, there is no
further allowed combination of order 3, so subtle variances
are expected again with respect to the physical predictions
coming from the Z3 invariant points of A4. The pions are in
fact arranged in the same structures as for the S3-symmetric
minima from the 3 of S3, but this case is anyhow different
in that the leading contribution comes from the marginal
order operator.

3. Phenomenological signals from a triplet of S4
Since the lowest-order invariant relevant for the DGB

potential is now I4, the leading interaction between SM
fields and pure DGB scalar invariants—under the same
assumptions as used when considering the 3 of A4; see
Eq. (3.37)—reads

L ¼ 1

MmOSMI4; ðA9Þ

leading to a different prediction for the production
ratios. The results around the S3-invariant minima have
already been presented in Eq. (3.43). If nature settles
instead around the V4 minima, the expected production
rates are unique in that those for an odd number of
pions are forbidden. The first expected production ratio
is then

σðSM → 2πÞ
σðSM → 4πÞ ¼

27ð8π2Þ
19 · 29

f4

E4
CM

: ðA10Þ

TABLE VI. MaNa critical points of the invariants of the 30 of
S4. The manifold of primary invariants relevant for the DGB
potential is depicted in Fig. 13.

MaNa extrema for the 30 of S4
ϕ1 ϕ2 ϕ3

Point I ð30;S4Þ
4 I ð30;S4Þ

6 (representatives) Little group Nature

A 1
3

1
27

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p S3 Minima

− 1ffiffi
3

p − 1ffiffi
3

p − 1ffiffi
3

p

B 1 0 0 0 �1 V4 Minima
0 �1 0
�1 0 0

C 1
2

0 � 1ffiffi
2

p 0 � 1ffiffi
2

p Z2 Saddles
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