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a b s t r a c t

We study symmetric diffusion operators on metric measure spaces. Our main
question is whether essential self-adjointness or Lp-uniqueness are preserved under
the removal of a small closed set from the space. We provide characterizations of
the critical size of removed sets in terms of capacities and Hausdorff dimension
without any further assumption on removed sets. As a key tool we prove a non-
linear truncation result for potentials of nonnegative functions. Our results are
robust enough to be applied to Laplace operators on general Riemannian mani-
folds as well as sub-Riemannian manifolds and metric measure spaces satisfying
curvature-dimension conditions. For non-collapsing Ricci limit spaces with two-
sided Ricci curvature bounds we observe that the self-adjoint Laplacian is already
fully determined by the classical Laplacian on the regular part.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider generators L of symmetric diffusion semigroups on metric measure spaces M and investigate
hether or not the removal of a small closed subset Σ ⊂ M leads to a loss of essential self-adjointness or
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Lp-uniqueness. Recall that in general an operator, given on a dense a priori domain A in L2(M), may have
ifferent self-adjoint extensions, and each such extension encodes a specific type of boundary condition. We
ssume that the restriction L|A of the generator L to a suitable a priori domain A is essentially self-adjoint,
.e., that the operator L|A has a unique self-adjoint extension, namely L. This property may be viewed as the
niqueness of the quantum system determined by L|A, [81, Section X.1 p. 135]. Since in general no classical

notion of differentiability is available, we introduce a number of abstract conditions the a priori domain
A should satisfy. Cutting out a small closed set Σ from M , one can restrict L to the space A(M \ Σ ) of
those elements of A whose support lies in the complement of Σ . If Σ is small enough, it is ‘ignored by the
operator’ and L|A(M\Σ) has the same unique self-adjoint extension L. In this case we say that Σ is removable
(from the point of view of operator extensions). If Σ is too large, the operator perceives it as a boundary at
which different boundary conditions can be imposed. The critical size of Σ can be characterized in terms of
capacities and Hausdorff (co-)dimension. A very similar logics applies to Lp-uniqueness, that is, the question
whether the extension to the generator of a strongly continuous semigroup on Lp is unique.

One motivation to study the removable sets in general metric measure spaces comes from recent
developments of geometric analysis under synthetic lower curvature bound such as Alexandrov spaces, Ricci
limit spaces and RCD spaces. If M satisfies such assumptions and has empty boundary (in an adequate
sense), then it can be decomposed into a regular part R that is equipped with an open manifold structure,
and a singular part S that is a closed set having no manifold structure, but its size in terms of the Hausdorff
dimension is controlled (see, e.g., [24,28,61,78]). If the singular part S is removable, then the diffusion
operator is already fully determined only by its behavior on the regular part R, where it can be treated
using classical theory. See Theorem 12.9 for the case of Ricci limit spaces.

We first provide a general result, Theorem 4.3, it characterizes the critical size of Σ in terms of capacities
based on A, cf. Section 3. We then prove the equivalence of these capacities and capacities based on resolvent
operators as commonly used in potential theory, these capacities are more amenable objects in connection to
Hausdorff measures. Our key tool for this comparison of capacities is an estimate for truncations of potentials
with respect to the graph norm of the generator, Theorem 6.1. After making the link to Hausdorff measures in
Sections 8 and 9, we apply our results to Riemannian manifolds, sub-Riemannian manifolds and RCD∗(K,N)
spaces in Sections 10–12.

For Sobolev spaces and elliptic operators on Euclidean domains the connection between capacities and
removable sets is a classical topic, [4,48,69–74]. In this context removability had typically referred to the
extendability of solutions, see [3, Section 2.7]. The uniqueness or non-uniqueness of self-adjoint extensions
of Schrödinger operators after the removal of a single point had been addressed in [81, Theorem X.11].
The uniqueness of Markovian self-adjoint extensions of operators had been studied in [94], see also [36,40];
this type of uniqueness is the correct notion to guarantee the uniqueness of associated symmetric diffusion
processes. Clearly essential self-adjointness implies the uniqueness of Markovian self-adjoint extensions.
For Laplacians and their powers on Euclidean spaces the connection between uniqueness of self-adjoint
extensions, capacities of removed sets and Hausdorff codimension were spelled out in more detail in [11,54].
In [53] related Lp-uniqueness results were established on infinite-dimensional spaces. First results on essential
self-adjointness and removable sets for the Laplacian on Riemannian manifolds were provided in [29], where
Σ was assumed to be a single-point set, and in [67], where Σ was assumed to be a smooth submanifold.

Our results are structure-free in the sense that we do not assume Σ to have any specific structure (such as
being a smooth submanifold). This structure-free characterization extends the aforementioned results in the
case of the Euclidean space to the case of general Riemannian manifolds as well as singular spaces including
sub-Riemannian manifolds and metric measure spaces. For instance, if (M, g) is a complete Riemannian
manifold of dimension d ≥ 4, µ denotes the Riemannian volume and ∆µ the classical Laplacian, then we

observe that for any closed set Σ ⊂ M , we obtain the following characterization of the critical size:
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(i) If d > 4, µ(Σ ) = 0 and ∆µ|C∞
c (M\Σ) is essentially self-adjoint, then Hd−4+ε(Σ ) = 0 for all ε > 0.

If d = 4, µ(Σ ) = 0 and ∆µ|C∞
c (M\Σ) is essentially self-adjoint, then Hh(Σ ) = 0 for any Hausdorff

function h satisfying
∫ 1

0 h(r)drr < +∞.
(ii) If d > 4 and Hd−4(Σ ) < +∞ or d = 4 and Hh2(Σ ) < +∞, then ∆µ|C∞

c (M\Σ) is essentially self-adjoint.

Here Hs denotes the s-dimensional Hausdorff measure, Hh a generalized Hausdorff measure with Hausdorff
function h, and h2(r) := (1+log+

1
r )−1, r > 0. See Section 8 for definitions and Theorem 10.12 in Section 10

for the result. Our structure-free results work well also for metric measure spaces M . In particular, they are
robust enough to deal with the singular sets that arise in non-collapsing Ricci limit spaces with two-sided
Ricci curvature bounds, see Theorem 12.9.

We proceed as follows. In Section 3 we introduce related (2, p)-capacities capA
2,p of a similar type as

in [48,73] and use them to characterize the critical size of Σ at which a loss of Lp-uniqueness occurs, see
Theorem 4.3 in Section 4. This includes the discussion about the essential self-adjointness of L|A(M\Σ)
as the special case p = 2. Under the assumption that the associated Markov semigroup (Pt)t>0 is strong
Feller, we then introduce a different well-known type of (2, p)-capacities Cap2,p in Section 6, now based on
associated resolvent operators Gλ, [3, Section 2.3]. These capacities are more suitable to discuss connections
to Hausdorff measures and dimensions later on, so it is desirable to show they are equivalent to the capacities
capA

2,p. The dominance of capA
2,p over Cap2,p is easy to see, Corollary 5.3, but the opposite inequality is not

at all automatic. It can be proved (Corollary 6.3) if one has a truncation property at the level of the operator
domain D(L); for p = 2 it is of the form

∥F ◦Gλf∥D(L) ≤ c ∥f∥L2(M) , f ∈ Cc(M), f ≥ 0,

where F is a suitable function in C2(R). In Theorem 6.1 in Section 6 we establish such a truncation property
under the assumption that the semigroup satisfies√

Γ (Ptf) ≤ c1 e
c2t

√
t

Pαtf

for f as above and with 1 ≤ α < 2; we refer to this condition as (LG). Rewritten in terms of heat kernels,
it is seen to be a kind of logarithmic gradient estimate, see (LG′) in Section 6. The truncation result in
Theorem 6.1 is not at all trivial - recall that even in the Euclidean case Sobolev spaces W 2,p are not stable
under compositions with smooth bounded functions, [3, Theorem 3.3.2]. It is a partial generalization of a
well-known truncation property for Bessel-potentials, [3, Theorem 3.3.3], which follows by a method due
to Maz’ya, [69], combined with a multiplicative estimate for derivatives of potentials in terms of maximal
functions. The proof for the Euclidean case employs gradient estimates for resolvents and the Hardy–
Littlewood maximal inequality, see [2, Lemma 1], [3, Proposition 3.1.8], [49]. For manifolds and metric
measure spaces estimates for semigroups or heat kernels and their gradients are well-studied and widely used.
This motivates us to formulate a proof of Theorem 6.1 using (LG) and the semigroup maximal inequality,
see Section 7. In Sections 8 and 9 we connect the capacities Cap2,p to Hausdorff measures and dimensions,
provided that volume measure and resolvent densities admit suitable asymptotics respectively estimates,
Lemmas 8.3 and 9.1. We provide applications to complete Riemannian manifolds M in Section 10; in this
case A = C∞

c (M) is a natural choice. For p = 2 a characterization of the critical size of Σ in terms of
capC

∞
c (M)

2,2 is valid without further assumptions, Theorem 10.1. For p ̸= 2 and for characterizations in
terms of the capacities Cap2,p we assume volume doubling and a gradient estimate, see Theorems 10.2,
10.4 and 10.5. For a characterization of essential self-adjointness in terms of Hausdorff measures we can
again drop all additional assumptions, see Theorem 10.12. This result is proved using localizations to small
enough balls, and as mentioned before, it generalizes the former results in [29,67] in the sense that Σ may

now be an arbitrary closed set. In the case of manifolds of dimension 4 the size of Σ on a logarithmic
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scale determines whether essential self-adjointness is lost or not, and one can find positive and negative
examples, see Remark 10.14. Applications to sub-Riemannian manifolds are discussed in Section 11, see
Theorems 11.1 and 11.2, links to [1] are pointed out in Remark 11.3. In Section 12 we discuss the natural
Laplacian L on RCD∗(K,N) spaces and its restriction to an abstract core A, see (71) and Proposition 12.4.

e obtain characterizations of the critical size of Σ for essential self-adjointness and Lp-uniqueness in terms
f capacities, Theorem 12.5, and for the case of (Ahlfors) regular measures or CAT(0)-spaces also in terms
f Hausdorff measures, Theorems 12.6 and 12.8. An interesting application appears for Gromov–Hausdorff
imits of non-collapsing manifolds, [27,28]: Since by the results in [60] the singular part S of the limit space

is known to have finite Hausdorff measure of codimension four, the operator L|Ac(R) on the regular part
R = M \S is essentially self-adjoint with unique self-adjoint extension L. Since L|Ac(R) extends the classical
Laplacian ∆µ|C∞

c (R) on the regular part and C∞
c (R) is seen to be dense in Ac(R) with respect to the graph

orm, it follows that also ∆µ|C∞
c (R) is essentially self adjoint on L2(M) with unique self-adjoint extension

.

. Basic setup, notation and preliminaries

Let (M,ϱ) be a locally compact separable metric space and let µ a nonnegative Radon measure on M

ith full support. We write Lp(M) := Lp(M,µ), 1 ≤ p ≤ +∞ for the Lp-spaces of µ-classes of p-integrable
functions on M with respect to µ and similarly, Lp(A) := Lp(A,µ|A) if A is a Borel subset of M .

Let (L,D(L)) be a non-positive definite densely defined self-adjoint operator on L2(M) and let (E ,D(E))
be its quadratic form, i.e. the unique densely defined closed quadratic form on L2(M) satisfying

E(f, g) = − ⟨Lf, g⟩L2(M) , f ∈ D(L), g ∈ D(E). (1)

Endowed with the norm
∥f∥D(E) :=

(
E(f, f) + ∥f∥2

L2(M)

)1/2

the form domain D(E) is a Hilbert space. Given λ > 0, we equip the operator domain D(L) with the Hilbert
space norm

∥f∥D(L) := ∥(λ− L)f∥L2(M) . (2)

From (1) and the Cauchy–Schwarz inequality for E it is immediate that this norm is equivalent to the graph
norm of L. The parameter λ will always remain fixed, we therefore suppress it from notation; suitable choices
will be addressed later.

We also make use of the variational definition for L. Let (D(E))∗ be the topological dual of D(E). For any
∈ D(E) we can define Lf as a member of (D(E))∗ by

Lf(g) := −E(f, g), g ∈ D(E). (3)

e then observe by a simple application of the Riesz representation theorem and the density of D(E) in
2(M) that

D(L) =
{
f ∈ D(E) : Lf ∈ L2(M)

}
. (4)

We assume that (E ,D(E)) is a Dirichlet form on L2(M), [40], and that it admits a carré du champ, in
ther words, that there is a bilinear nonnegative definite map Γ from D(E) ∩L∞(M) × D(E) ∩L∞(M) into
L1(M) such that

1 {E(fh, g) + E(f, gh) − E(fg, h)} =
∫

h Γ (f, g) dµ, f, g, h ∈ D(E) ∩ L∞(M),
2 M

4
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[19, Chapter I, Definition 4.1.2 and Proposition 4.1.3]; recall that by the Markov property the space
D(E) ∩ L∞(M) is an algebra, [19, Chapter I, Corollary 3.3.2]. Using truncations and approximation one
can naturally extend Γ to a bilinear map from D(E) × D(E) into L1(M).

We further assume that (E ,D(E)) is regular and strongly local, [40, Section 3.2]. One then refers to its
enerator (L,D(L)) as symmetric diffusion operator. Strong locality implies that if f ∈ D(L) is constant on
n open set U ⊂ M then Lf = 0 µ-a.e. on U . It also implies that if f ∈ D(E)∩Cc(M) and its support supp f
s contained in an open set U , then Γ (f, f) = 0 µ-a.e. on U c. In particular, we have E(f, g) =

∫
M

Γ (f, g) dµ
or all f, g ∈ D(E) ∩ Cc(M). Moreover, by the Markov property and strong locality, D(E) is stable under
aking compositions F (f1, . . . , fn) of elements fi ∈ D(E) with functions F ∈ C1(Rn) satisfying F (0) = 0
nd having uniformly bounded first derivatives. The carré obeys the chain rule

Γ (F (f1, . . . , fn), g) =
n∑
i=1

∂F

∂xi
(f1, . . . , fn)Γ (fi, g) µ-a.e. (5)

or any f1, . . . , fn, g ∈ D(E) and F as stated, see [19, Chapter I, Proposition 3.3.1 and Corollary 6.1.3] or [40,
heorem 3.2.2]. For n = 1 this remains true for Lipschitz F with F (0) = 0, see [19, Chapter I, Corollary
.1.2].

Let (Pt)t>0 be the unique symmetric Markov semigroup generated by (L,D(L)), [19,33,40], also referred
o as symmetric diffusion semigroup. The restriction of (Pt)t>0 to L1(M)∩L∞(M) extends to a contraction
emigroup (P (p)

t )t>0 on each Lp(M), 1 ≤ p ≤ +∞, strongly continuous for 1 ≤ p < +∞, [33, Theorem
1.4.1]. Clearly P

(2)
t = Pt. For any 1 ≤ p < +∞ the generator (L(p),D(L(p))) of (P (p)

t )t>0 on Lp(M) is the
smallest closed extension of the restriction of L to the a priori domain

Dp := {f ∈ D(L) ∩ Lp(M) : Lf ∈ Lp(M)} . (6)

Clearly L(2) = L. Also for p ̸= 2 we endow each D(L(p)) with the norm

∥f∥D(L(p)) :=
(λ− L(p))f


Lp(M)

. (7)

The space D(L(1)) ∩ L∞(M) is an algebra, and we have

Γ (f, g) = 1
2

{
L(1)(fg) − fL(1)g − gL(1)f

}
(8)

for any f, g ∈ D(L(1)) ∩ L∞(M), seen as an L1(M)-identity, [19, Chapter I, Theorem 4.2.1].
If A is a vector space of real-valued Borel functions on M and U ⊂ M is an open set, then we write A(U)

to denote the subspace of A consisting of functions with support contained in U . Clearly A(M) = A. We
write Ac and Ac(U) for the subspaces of A respectively A(U) consisting of compactly supported functions.

We write Lp+(M) for the cone of nonnegative elements in Lp(M). By L0(M) we denote the space of
µ-equivalence classes of Borel functions on M and by B(M) (respectively Bb(M)) the space of Borel functions
(respectively bounded Borel functions) on M . If S is a vector space of µ-classes of functions on M , we write
f ∈ B(M) ∩ S (respectively f ∈ Bb(M) ∩ S) to say that the µ-class of f is in S. Set inclusions and other
statements involving functions and classes are silently understood in a similar manner. We use the shortcut
notation Γ (f) := Γ (f, f), similarly for other symmetric bilinear quantities.

3. Capacities based on spaces of functions

Let A be a vector space of real-valued Borel functions on M . Given a compact set K ⊂ M we write ωA
K

for the set of functions u ∈ A such that u = 1 on an open neighborhood of K.
5
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Suppose that 1 < p < ∞ and A ⊂ D(L(p)). For any compact set K ⊂ M we define the (2, p)-capacity
apA

2,p(K) of K with respect to A by

capA
2,p(K) := inf

{
∥u∥p

D(L(p))
: u ∈ ωA

K

}
(9)

ith capA
2,p(K) := +∞ if ωA

K = ∅. For general sets E ⊂ M we then set

capA
2,p(E) = sup

{
capA

2,p(K) : K ⊂ E, K ⊂ M compact
}
. (10)

arly references on definition (9) on Euclidean spaces are [48,70–72,74], detailed comments can be found
n [3, Section 2.9]. In comparison with [48] identity (9) means that we use [48, Theorem 2.1] as a definition;
he identity in [48, Definition 1.1] then follows as a result, see Proposition 3.2. Only Proposition 3.1(i) and
ondition (B) below will be used in the following sections. Propositions 3.1(ii) and 3.2 are stated to make
lear that (9) and (10) are in line with [48].

roposition 3.1. Suppose that 1 < p < ∞ and A ⊂ D(L(p)).

(i) If E1 ⊂ E2 ⊂ M then capA
2,p(E1) ≤ capA

2,p(E2).
(ii) For any K ⊂ M compact we have capA

2,p(K) = inf
{

capA
2,p(G) : K ⊂ G, G open

}
.

roof. For compact sets (i) is obvious from (9), and by (10) it extends to general sets. Statement (ii) follows
s [3, Proposition 2.2.3]: Suppose K is compact and ε > 0. By (i) we may assume that capA

2,p(K) < +∞.
hen there is some u ∈ A such that ∥u∥pD(L(p)) < capA

2,p(K) + ε and u = 1 on an open neighborhood U

f K. Let G be a relatively compact open neighborhood of K such that G ⊂ U . Clearly u ∈ ωA
G

, so that
apA

2,p(G) ≤ capA
2,p(G) ≤ ∥u∥pD(L(p)). Thus, we obtain capA

2,p(K) ≤ capA
2,p(G) ≤ capA

2,p(K) + ε. □

We say that condition (B) is satisfied if

For any compact K ⊂ M the set ωA
K is nonempty. (B)

In the manifold case with A = C∞
c (M) it is implied by the existence of smooth bump functions.

Condition (B) will be used in the later sections, in the present section it is used only for Proposition 3.2
below.

Suppose that 1 < p < +∞ is fixed and A ⊂ D(L(p)). Given f ∈ Lq(M), 1
p + 1

q = 1, we define (λ− L(q))f
s a linear functional on A by

(λ− L(q))f(g) :=
∫
M

f(λ− L(p))g dµ, g ∈ A,

nd, mimicking classical definitions in the theory of Schwarz distributions, define the support suppA(λ −
(q))f of (λ − L(q))f with respect to A as the set of all x ∈ M with the property that for any open
eighborhood Ux of x there is some g ∈ A(Ux) such that (λ − L(q)f)(g) ̸= 0. The set suppA(λ − L(q))f

is seen to be closed. If (B) is satisfied, f ∈ Lq(M) and suppA(λ − L(q))f is compact, then we can define
(λ − L(q))f)(1) := ((λ − L(q))f)(g) with an arbitrary function g ∈ A satisfying g = 1 on an open
eighborhood of suppA(λ− L(q))f . The following observation reconnects to [48, Definition 1.1].

roposition 3.2. Suppose that condition (B) is satisfied, 1 < p < ∞ and A ⊂ D(L(p)). Then

capA
2,p(E)1/p = sup

{
|((λ− L(q))f)(1)| : f ∈ Lq(M), ∥f∥Lq(M) ≤ 1, (11)

suppA(λ− L(q))f compact and contained in E
}

or any E ⊂ M , where 1 + 1 = 1.
p q

6
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Proof. We can follow [48, Theorem 2.1]: If c(E) denotes the right-hand side of (11), then

c(E) = sup {c(K) : K ⊂ E, K compact} , E ⊂ M. (12)

ince obviously c(E) ≥ c(K) for any compact K ⊂ E, the inequality ≥ in (12) is clear. On the other hand,
or any ε > 0 we can find f as in (11) such that c(E) ≤ |((λ− L(q))f)(1)| + ε. Since K := suppA(λ− L(q))f
tself is compact, the preceding is bounded by c(K) + ε and in particular, by the supremum in (12) plus ε.
etting ε go to zero gives ≤ in (12). Consequently it suffices to verify (11) for compact sets K in place of E.

Let K be a compact set. If f ∈ Lq(M), ∥f∥Lq(M) ≤ 1 and suppA(λ − L(q))f ⊂ K, then for any g ∈ ωA
K

e have

|
⟨

(λ− L(q))f,1
⟩

| = |
⟨

(λ− L(q))f, g
⟩

| = |
⟨
f, (λ− L(p))g

⟩
| ≤

(λ− L(p))g

Lp(M)

y the Hölder inequality, and therefore c(K) ≤ capA
2,p(K)1/p. Now suppose h ∈ ωA

K . By the Hahn–Banach
heorem, there is some f ∈ Lq(M) with ∥f∥Lq(M) ≤ 1 such that⟨

f, (λ− L(p))φ
⟩

= 0, φ ∈ A(M \K), (13)

nd ⟨
f, (λ− L(p))h

⟩
= inf

{(λ− L(p))(h− φ)

Lp(M)

: φ ∈ A(M \K)
}

= capA
2,p(K)1/p, (14)

ee [82, Corollary 3 of Theorem III.6]. From (13) it follows that suppA(λ − L(q))f ⊂ K, and with (14) we
arrive at capA

2,p(K)1/p =
⟨
(λ− L(q))f,1

⟩
≤ c(K). □

Remark 3.3. The capacity capA
2,p is not expected to be a Choquet capacity, see [48, p. 184].

4. Lp-Uniqueness and removable sets

Let (L0,A0) be a linear operator on Lp(M). We call it Lp-unique if its domain A0 is dense in Lp(M) and
there is at most one strongly continuous semigroup on Lp(M) whose generator extends (L0,A0). See [36,
Chapter I, Definition 1.3]. If p = 2 and (L0,A0) is symmetric and semibounded, then it is L2-unique if and
only if A0 is dense in L2(M) and (L0,A0) is essentially self-adjoint, [36, Chapter I, Corollary 1.2].

In the sequel we assume that the Lp-uniqueness holds for the restrictions L(p)|A of the globally defined
operators L(p) from Section 2 to a given space of real-valued Borel functions A and investigate whether the
removal of a small closed subset Σ of M leads to a loss of Lp-uniqueness or not. To prepare the discussion
we formulate structural conditions on A.

The first condition guarantees certain boundedness and multiplication properties:

The space A is a subalgebra of Bb(M) ∩ L1(M), contained in D(L(1)), (L∞)

and such that Γ (f) ∈ L∞(M) and Lf ∈ L∞(M) for all f ∈ A.

Remark 4.1. If (L∞) holds and A ⊂ D(L), then A ⊂ Dp for all 1 ≤ p < +∞.

Given 1 < p < +∞ we consider the following condition.

The space A is contained in D(L(p)) and the operator Lp|A is Lp-unique. (Cp)

Recall that a subspace of the domain of a closed operator is said to be a core if the closure of the restriction
of the operator to this subspace agrees with the initially given closed operator. It is well known that (Cp)
is equivalent to saying that A is a core for (Lp,D(Lp)), [36, Chapter I, Appendix A, Theorem 1.2]. If (Cp)
holds, then the closure of Lp|A is (L(p),D(L(p))); in the special case p = 2 it follows that (L,D(L)) with
D(L) = D(E) ∩ D((L| )∗) is the unique self-adjoint extension of L| .
A A

7
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Remark 4.2. If (Cp) holds and Ac is dense in A with respect to
 ·


D(L(p)), then Lp|Ac is Lp-unique with
losure (L(p),D(L(p))), where Ac was defined in the beginning of p.6.

We formulate yet another condition needed for p ̸= 2; for p = 2 it is always satisfied.

There is a constant c(p) > 0 such that (Γp)Γ (f)1/2

Lp(M)

≤ c(p) ∥f∥D(L(p)) for all f ∈ A.

ow suppose that Σ ⊂ M is a closed set. We write M̊ := M \Σ . For elliptic operators L on Euclidean spaces
t is well known that the Lp-uniqueness of L|C∞

c (M̊) can be characterized in terms of the (2, p)-capacity of
, see for instance [48,73,75] and the references listed in [3, Section 2.9]. The following theorem is a general

ersion of this fact, applicable to manifolds and metric measure spaces.

heorem 4.3. Let 1 < p < +∞ and assume that condition (Cp) holds.

(i) Suppose that also (B) holds. If Σ ⊂ M is closed, µ(Σ ) = 0 and L|A(M̊) is Lp-unique, then we have
capA

2,p(Σ ) = 0.
(ii) Suppose that also (L∞) and (Γp) hold. If Σ ⊂ M is compact and capA

2,p(Σ ) = 0, then we have µ(Σ ) = 0
and L|A(M̊) is Lp-unique with closure (L(p),D(L(p))). If Ac is dense in A with respect to ∥ · ∥D(L(p)),
then the conclusion remains true for general closed Σ ⊂ M ; in this case also L|Ac(M̊) is Lp-unique with
closure (L(p),D(L(p))).

roof. We verify (i). Since the operator L|A(M̊) is densely defined and closable in Lp(M), and its smallest
losed extension coincides with (L(p),D(L(p))), the adjoint L∗ of L := (L|A(M̊))∗ equals L(p), [62, Chapter
II, Theorems 5.28 and 5.29]. Let (Σi)i≥1 be a sequence of compact sets Σi ⊂ Σ such that

capA
2,p(Σ ) = sup

i
capA

2,p(Σi), (15)

y (10) such a sequence exists. For fixed i let fi ∈ A be such that fi = 1 on a neighborhood of Σi, by
ondition (B) such f exists. Since A ⊂ D(L(p)) we can find g ∈ Lp(M) such that ⟨Lh, fi⟩ = ⟨h, g⟩ for
ll h ∈ D(L). Because µ(Σi) = 0 we also have

⟨
Lh, fi|M̊

⟩
= ⟨h, g⟩ for all h ∈ D(L), in other words,

i|M̊ is an element of D(L∗) = D(L(p)). Accordingly there exists a sequence (fi,n)n≥1 ⊂ A(M̊) such
hat limn ∥fi − fi,n∥D(L(p)) = 0. The functions ei,n = fi − fi,n are elements of ωA

Σi
and consequently

apA
2,p(Σi) ≤ limn ∥ei,n∥p

D(L(p))
= 0. By (15) this implies capA

2,p(Σ ) = 0.
To see (ii), suppose that capA

2,p(Σ ) = 0. Then µ(Σ ) = 0, as follows straightforward from the definitions,
nd therefore Lp(M) = Lp(M̊). Denote by D(LM̊ ) the closure of L|A(M̊) in Lp(M). It suffices to prove
(LM̊ ) = D(L(p)). Since A(M̊) ⊂ A we have D(LM̊ ) ⊂ D(L(p)), and it remains to show that

D(LM̊ ) ⊃ D(L(p)). (16)

or any f ∈ D(L(p)) let (fn)n≥1 ⊂ A be such that fn → f in D(L(p)); if Σ is noncompact, then we
ay assume the fn have compact support. For any n the set Kn := Σ ∩ supp fn is compact and satisfies

apA
2,p(Kn) ≤ capA

2,p(Σ ) = 0. Accordingly we can find a sequence (en,l)l≥1 ⊂ ωA
Kn

such that en,l → 0 in
(L(p)) as l → ∞. Set fn,l = (1−en,l)fn. Then fn,l ∈ A by (L∞), and since (1−en,l) = 0 on a neighborhood

f Kn and fn = 0 on M \ supp fn, it follows that fn,l ∈ A(M̊). We have

∥fn,l − fn∥Lp(M) = ∥en,lfn∥Lp(M) ≤ ∥en,l∥Lp(M)∥fn∥L∞(M),

hich goes to zero as l → ∞. Moreover, using (8) we see that

p
∥Lfn,l − Lfn∥L (M)

8
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= ∥L(1)(en,lfn)∥Lp(M)

≤ ∥(L(1)en,l)fn∥Lp(M) + 2
(∫

M

|Γ (en,l, fn)|pdµ
)1/p

+ ∥en,lL(1)fn∥Lp(M)

≤ ∥Len,l∥Lp(M)∥fn∥L∞(M) + 2∥Γ (en,l)1/2∥Lp(M)∥Γ (fn)∥1/2
L∞(M) + ∥en,l∥Lp(M)∥Lfn∥L∞(M),

hich converges to zero as l → ∞ by (L∞); for p ̸= 2 we also use condition (Γp) on the second summand
n the last line. Hence the functions fn,l ∈ A(M̊) approximate f in D(L(p)), which shows that f ∈ D(LM̊ ),
nd consequently (16) holds. □

The density of Ac in A with respect to the graph norm follows if there is a suitable approximation of the
dentity. We say that condition (A) holds if

There is a sequence (hn)n≥1 ⊂ Ac such that 0 ≤ hn ≤ 1, hn ↑ 1 as n → ∞, (A)

sup
n

Γ (hn)1/2
L∞(M) < +∞ and sup

n

Lhn

L∞(M) < +∞.

e record the following observation for later use.

emma 4.4. Assume that (L∞) holds and A ⊂ D(L). Let 1 < p < +∞ and assume further that (Γp) holds
nd that A is dense in Lq(M), 1

p + 1
q = 1. Then (A) implies the density of Ac in A with respect to ∥ ·∥D(L(p)).

roof. Let g ∈ A. Then hng ∈ Ac, and using (8) we see that

∥(λ− L)(hng)∥Lp(M) ≤ λ ∥hn∥L∞(M) ∥g∥Lp(M) + ∥L(hng)∥Lp(M)

≤ λ ∥g∥Lp(M) + ∥Lhn∥L∞(M) ∥g∥Lp(M)

+ 2
Γ (hn)1/2

L∞(M)

Γ (g)1/2

Lp(M)

+ ∥hn∥L∞(M) ∥Lg∥Lp(M)

≤ c ∥g∥D(L(p))

with a constant c > 0 independent of g and n. In particular,

sup
n

∥(λ− L)(hng − g)∥Lp(M) < +∞,

so that by reflexivity and Banach–Alaoglu we can find a sequence (nk)k and a function g0 ∈ Lp(M) such
that

lim
k

⟨
(λ− L)(hnk

g − g) − g0, f
⟩

= 0, f ∈ Lq(M).

By Mazur’s lemma we may assume that

lim
N

 1
N

N∑
k=1

(λ− L)(hnk
g − g) − g0


Lp(M) = 0,

otherwise pass to a subsequence. On the other hand

lim
k

⟨
(λ− L)(hnk

g − g), f
⟩

= lim
k

⟨
(hnk

g − g), (λ− L)f
⟩

= 0, f ∈ A,

by the symmetry of L|A and dominated convergence, so that by the density of A in Lq(M) we have g0 = 0.
Setting g := 1 ∑N

h g we obtain a sequence (g ) ⊂ A such that lim g = g in D(L(p)). □
N N k=1 nk N N c N N

9
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f

5. Capacities via resolvents, and a first comparison

We recall another well-known definition of capacities and record a simple first comparison result for the
two types of capacities.

Recall that (Pt)t>0 denotes the symmetric Markov semigroup generated by (L,D(L)). For any λ > 0 we
write Gλ to denote the associated λ-resolvent operator, defined by

Gλf :=
∫ ∞

0
e−λtPtfdt (17)

or f ∈ L2(M). For any 1 ≤ p ≤ +∞ the restriction of Gλ to L1(M) ∩L∞(M) extends to a bounded linear
operator G(p)

λ : Lp(M) → Lp(M), and for all f ∈ Lp(M) an analog of (17) holds with G(p)
λ and (P (p)

t )t>0 in
place of Gλ and (Pt)t>0. For any 1 ≤ p < +∞ we have G(p)

λ = (λ− L(p))−1. Since in the sequel the meaning
will be clear from the context, we suppress the superscript (p) from notation.

We say that (Pt)t>0 is a strong Feller semigroup if for any t > 0 and any f ∈ L∞(M) we have
Ptf ∈ Cb(M), where Cb(M) is the space of continuous bounded functions on M . See e.g. [18, Section V.2].
In the following we assume that (Pt)t>0 is strongly Feller. Then

Pt(x,A) := Pt1A(x), t > 0, x ∈ M, A ⊂ M Borel, (18)

defines a (sub-)Markovian kernel (Pt(x, dy))t>0, and we have Ptf(x) =
∫
M
f(y)Pt(x, dy) for all t > 0, x ∈ M ,

f ∈ L∞(M). Clearly then also Gλf ∈ Cb(M) for all f ∈ L∞(M). For any f ∈ L0
+(M) we can define Gλf as

an element of L0
+(M) by (17) and taking limits of increasing sequences. The following is immediate.

Proposition 5.1. If (Pt)t>0 is strongly Feller, then for any f ∈ L0
+(M) and λ > 0 the function Gλf is

lower semicontinuous on M .

Standard definitions yield a second type of capacities, now based on resolvent operators associated with
the symmetric Markov semigroup. See [34,55] for (r, 2)-capacities and [39] for general (r, p)-capacities. By
Proposition 5.1 we can proceed similarly as in [3, Section 2.3]. For our purposes it is convenient to use the
λ-resolvent operators Gλ for λ > 0 as in Section 2. Since different choices of λ lead to comparable values for
the capacities and do not change our results, we suppress λ from notation.

For a set E ⊂ M let

Cap2,p(E) := inf
{

∥f∥pLp(M) : f ∈ Lp+(M) with Gλf(x) ≥ 1 for all x ∈ E
}
, (19)

with Cap2,p(E) := +∞ if no such f exists. The cone Lp+(M) can be replaced by the space Lp(M), that is,

Cap2,p(E) = inf
{

∥f∥pLp(M) : f ∈ Lp(M) with Gλf(x) ≥ 1 for all x ∈ E
}
, (20)

[3, p. 28], note that for f+ := f ∨ 0 we have ∥f+∥pLp(M) ≤ ∥f∥pLp(M) and Gλf ≤ Gλf+.
Proceeding as in [3, Section 2.3], we can observe the following basic properties.

Proposition 5.2. Let 1 < p < ∞ and assume that (Pt)t>0 is strongly Feller.

(i) If E1 ⊂ E2 ⊂ M then Cap2,p(E1) ≤ Cap2,p(E2).
(ii) For any E ⊂ M we have

Cap2,p(E) = inf
{

Cap2,p(G) : E ⊂ G, G ⊂ M open
}
.⋃∞ ∑∞
(iii) If Ei ⊂ M , i = 1, 2, . . . and E = i=1 Ei, then Cap2,p(E) ≤ i=1 Cap2,p(Ei).

10
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(iv) The capacity Cap2,p is a Choquet capacity. In particular, for any E ⊂ M we have

Cap2,p(E) = sup
{

Cap2,p(K) : K ⊂ E, K ⊂ M compact
}
.

roof. We can follow the same arguments as used in [3, Propositions 2.3.4, 2.3.5 and 2.3.12]: Statement
i) is immediate, (ii) and (iii) can be seen as in [3, Propositions 2.3.5 and 2.3.6]. Since Cap2,p(∅) = 0 and
e already know (i) and (ii), a proof of (iv) is achieved if we can verify that for any increasing sequence
Ei)i≥1 of subsets Ei ⊂ M we have Cap2,p(

⋃∞
i=1 Ei) = limi→∞ Cap2,p(Ei), see [3, Theorem 2.3.11 and

he comments following it]. This can be shown as in [3, Proposition 2.3.12]: One inequality is trivial by
onotonicity. For the other we may assume that limi→∞ Cap2,p(Ei) is finite. Then uniform convexity implies

hat the sequence (fEi)i≥1 of capacitary functions fEi for the sets Ei converges in Lp(M) to a limit f ≥ 0
ith ∥f∥pLp(M) = limi→∞ Cap2,p(Ei), cf. [3, Corollary 1.3.3, Theorem 2.3.10]. Using closure properties in
p(M), [3, Proposition 2.3.9], together with (iii), one can then show that Gλf ≥ 1 Cap2,p-quasi everywhere
n E and conclude that ∥f∥pLp(M) ≥ Cap2,p(E). □

A first comparison of the capacities capA
2,p and Cap2,p is now straightforward.

orollary 5.3. Let A be a vector space of real-valued functions satisfying condition (B). Suppose that
< p < ∞, A ⊂ D(L(p)) and (Pt)t>0 is strongly Feller. Then for any set E ⊂ M we have

Cap2,p(E) ≤ capA
2,p(E). (21)

roof. By (10) and Proposition 5.2(iv) it suffices to verify the respective inequality for compact sets
⊂ M . Let K be compact, we may assume that capA

2,p(K) < +∞. Let ε > 0. By (9) can find u ∈ ωA
K

uch that ∥u∥pD(L(p)) ≤ capA
2,p(K) + ε. Since ωA

K ⊂ D(L(p)) we have u = Gλf with some f ∈ Lp(M). If now
⊂ M is an open neighborhood of K such that u = 1 on U , then, by noting (20), it holds that

Cap2,p(K) ≤ Cap2,p(U) ≤ ∥f∥pLp(M) = ∥u∥pD(L(p)) ≤ capA
2,p(K) + ε. □

. Truncations of potentials, and a second comparison

An inequality opposite to (21) is less trivial. To prove it, we first establish a norm estimate for truncations
f potentials.

We say that (Pt)t>0 satisfies condition (LG) if there are constants c1 > 0, c2 > 0 and 1 ≤ α < 2 such
hat for any nonnegative f ∈ Cc(M) and any t > 0 we have

√
Γ (Ptf) ≤ c1 e

c2t
√
t

Pαtf µ-a.e. on M . (LG)

Condition (LG) can be verified for large classes of manifolds and metric measure spaces, see the comments
at the end of this section and the examples in Sections 10, 11, and 12.

The following theorem is a generalization of well-known truncation estimates for potentials on Euclidean
spaces, [2–4,49,69]. We provide a proof in Section 7.

Theorem 6.1. Assume that (Pt)t>0 is a strong Feller semigroup satisfying (LG). Let F ∈ C2(R+) be a
function such that

sup |ti−1F (i)(t)| ≤ L, i = 0, 1, 2, (22)

t>0

11
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with a constant L > 0, where F (i) denotes the ith derivative of F . Then for any 1 < p < +∞, any λ > 2
2−α c2

and any nonnegative f ∈ Lp(M) we have F ◦Gλf ∈ D(L(p)) and

∥F ◦Gλf∥D(L(p)) ≤ c3 ∥f∥Lp(M) (23)

with a constant c3 > 0 depending only on c1, c2, L, λ, α and p. For all λ > 2
2−α c2 and all nonnegative

f ∈ Cc(M) we have L(F ◦Gλf) ∈ L∞(M) and ∥L(F ◦Gλf)∥L∞(M) ≤ c3 ∥f∥L∞(M) with a constant c3 > 0
epending only on c1, c2, L, λ and α.

emark 6.2. If (LG) is assumed for all nonnegative f ∈ L1(M) ∩L∞(M), then also the stated results in
he case p = +∞ hold for all such f .

Theorem 6.1 allows to establish an inequality opposite to (21), provided that A is rich enough to contain
uitable truncations of potentials. To an increasing function F ∈ C2(R) with 0 ≤ F ≤ 1, F (t) = 0 for all
≤ t0 with some fixed 0 < t0 < 1 and F (t) = 1 for all t ≥ 1 we refer as a C2-truncation. Any C2-truncation
atisfies (22). Consider the following condition on A:

There is a C2-truncation F such that F ◦Gλf ∈ A (F)

for any nonnegative f ∈ L1(M) ∩ L∞(M).

The next corollary is similar to the less straightforward part of [3, Proposition 2.3.13 and Corollary 3.3.4];
t follows by analogous arguments as used there.

orollary 6.3. Assume that (Pt)t>0 is a strong Feller semigroup satisfying (LG) and let A be a vector space
f real-valued Borel functions satisfying (B) and (F). Suppose further that 1 < p < ∞ and A ⊂ D(L(p)). Then
or all E ⊂ M we have

capA
2,p(E) ≤ cp3 Cap2,p(E),

here c3 > 0 is as in (23).

roof. As in the proof of Corollary 5.3 we may assume that E = K is compact. Given ε > 0 let
∈ Lp(M) be nonnegative with Gλf > 1 on K and such that ∥f∥pLp(M) < Cap2,p(K) + ε. Fix x0 ∈ M

nd let fn(x) := 1B(x0,n)(x)(f(x) ∧ n). Then all Gλfn are continuous, Gλfn ≤ Gλfn+1 for all n and
λf = supnGλfn. By the Dini–Cartan lemma, [52, Lemma 2.2.9], we can find n so that Gλfn > 1 on
. Clearly also ∥fn∥pLp(M) ≤ Cap2,p(K) + ε. By condition (F) we can find a C2-truncation F such that
◦Gλfn = 1 on a neighborhood of K and F ◦Gλfn ∈ A. By (9) and (23), capA

2,p(K) ≤ ∥F ◦Gλfn∥pD(L(p)) ≤
p
3 ∥fn∥pLp(M) ≤ cp3(Cap2,p(K) + ε). □

If the symmetric Markov semigroup (Pt)t>0 is strongly Feller, then for any t > 0 and x ∈ M the Borel
easure Pt(x, dy) defined in (18) has a density pt,x ∈ L1(M) with respect to µ, [40, Exercise 4.2.1]. By [96,
heorem 2] the integrals pt(x, y) :=

∫
M
pt/2,x(z)pt/2,y(z)µ(dz) then define a (unique) heat kernel for (Pt)t>0,

hat is, a real valued function (t, x, y) ↦→ pt(x, y) on (0,+∞) ×M ×M such that for any t > 0 the function
x, y) ↦→ pt(x, y) is measurable, we have

Ptf(x) =
∫
M

pt(x, y)f(y)µ(dy), t > 0, x ∈ M, f ∈ L2(M),

t(x, y) = pt(y, x) for all t > 0 and x, y ∈ M and

pt+s(x, y) =
∫

pt(x, z)ps(z, y)µ(dz), s, t > 0, x, y ∈ M. (24)

M

12
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The strong Feller property also implies that for any t > 0 and y ∈ M the function pt(·, y) is lower
semicontinuous.

In presence of a heat kernel pt(x, y) condition (LG) follows from a (relaxed) logarithmic gradient estimate.
e say that pt(x, y) satisfies condition (LG′) if there are constants c1 > 0, c2 > 0 and 1 ≤ α < 2 such that√

Γ (pt(x, ·))(y)
pαt(x, y) ≤ c1 e

c2t
√
t

(LG′)

for all t > 0 and µ-a.a. x, y ∈ M .

Proposition 6.4. If (Pt)t>0 admits a heat kernel pt(x, y) and satisfies (LG′), then (Pt)t>0 satisfies (LG).

roof. By (24) we have pt(x, ·) ∈ L2(M) for all t > 0 and x ∈ M . Since pt(x, ·) = Pt/2pt/2(x, ·), semigroup
egularization implies that pt(x, ·) ∈ D(E), see for example [40, Lemma 1.3.3] or [33, Theorem 1.4.2].

Let f ∈ Cc(M) be a nonnegative function. The element Ptf of D(E) is the integral of the D(E)-valued
unction y ↦→ pt(·, y) with respect to the measure f(y)µ(dy). For any nonnegative φ ∈ Cc(M) the map

g ↦→ ∥g∥φ :=
∫
M

√
Γ (g)(x)φ(x)µ(dx) (25)

efines a seminorm on D(E). By Cauchy–Schwarz and contractivity in L2(M) it satisfies ∥g∥φ ≤ ∥φ∥L2(M)
(g)1/2, and in particular, it is continuous on D(E). The corresponding triangle inequality for D(E)-valued

ntegrals gives
∥Ptf∥φ =

∫
M

pt(·, y)f(y)µ(dy)

φ

≤
∫
M

∥pt(·, y)∥φ f(y)µ(dy).

ince this is true for any such φ, Fubini’ theorem and (LG′) yield√
Γ (Ptf)(x) ≤

∫
M

√
Γ (pt(x, ·))(y)f(y)µ(dy) ≤ c1 e

c2t
√
t

∫
M

pαt(x, y)f(y)µ(dy) = c1 e
c2t

√
t
Pαtf(x)

for µ-a.e. x ∈ M . □

7. Proof of the truncation estimate

The main tool to prove Theorem 6.1 is the following logarithmic type Lp-estimate for potentials of
nonnegative functions.

Proposition 7.1. Assume that (Pt)t>0 is strongly Feller and satisfies (LG). Then for any λ > 2
2−α c2, any

< p ≤ +∞ and any nonnegative f ∈ Cc(M) the function u = Gλf satisfies 1{u>0}
Γ(u)
u ∈ Lp(M) and1{u>0}

Γ (u)
u


Lp(M)

≤ c4 ∥f∥Lp(M) (26)

ith a constant c4 > 0 depending only on c1, c2, α, λ and p.

The proof of Proposition 7.1 uses the Lp-boundedness of the semigroup maximal function in the sense
f Rota and Stein, see [14, Lemma 1.6.2], [88, Corollary 2] or [89, Chapter III, Section 3, p.73, Maximal
heorem]. For our purposes the following form of this result is suitable: For any 1 < p ≤ +∞ there exists a

onstant c(p) > 0 such that supPtf

Lp(M) ≤ c(p) ∥f∥Lp(M) , f ∈ L1(M) ∩ L∞(M). (27)
t>0
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The case p = +∞ is immediate with c(+∞) = 1 since each Ptf is continuous and µ has full support.
A second tool to prove Proposition 7.1 is the following pointwise multiplicative estimate based on (LG).

ince the µ-null sets on which the estimate (LG) does not need to hold may depend on t, we use an additional
egularization by the strong Feller semigroup (Pt)t>0.

emma 7.2. Assume that (Pt)t>0 has the strong Feller property and satisfies (LG). Then for any λ > 2
2−α c2

here is a constant c5 > 0 depending only on c1, c2, α and λ such that for all nonnegative f ∈ Cc(M), all
, t > 0 and all x ∈ M we have∫ ∞

0
e−λtPs(

√
Γ (Ptf))(x)dt ≤ c5 (PsGλf(x))1/2

(
sup
t>0

Ptf(x)
)1/2

. (28)

roof. By the strong Feller property and (LG) the functions Ps(
√
Γ (Ptf)) and Ps+αtf are continuous for

any s, t > 0, so that by the positivity of Ps we have

Ps(
√
Γ (Ptf))(x) ≤ c1e

c2t
√
t

Ps+αtf(x) (29)

or all x ∈ M . We may now assume that x is such that supt>0 Ptf(x) > 0, otherwise the right-hand side of
29) is zero for any s, t > 0 and (28) is trivial. For arbitrary fixed δ > 0 the sum of integrals∫ ∞

0
e(c2−λ)tt−1/2Ps+αtf(x)dt =

∫ δ

0
e(c2−λ)tt−1/2Ps+αtf(x)dt+

∫ ∞

δ

e(c2−λ)tt−1/2Ps+αtf(x)dt (30)

dominates the left-hand side of (28) up to a factor c1. By the hypothesis on λ we can find α < β < 2 such
that λ > β′

β−α c2, where 1
β + 1

β′ = 1. This implies that λ(1 − α
β ) > c2 and λ(1 − α

β′ ) > c2. By Hölder’s
nequality the first summand on the right-hand side of (30) is bounded by(∫ δ

0
e
c2βt−λ(1− α

β′ )βt
t−β/2Ps+αtf(x)dt

)1/β (∫ δ

0
e−λαtPs+αtf(x)dt

)1/β′

≤ δ1/β−1/2

(1 − β
2 )1/βα1/β′

(
sup
t>0

Ptf(x)
)1/β (∫ ∞

0
e−λτPs+τf(x)dτ

)1/β′

.

For the second summand in (30) we can swap the roles of β and β′ and use the fact that β′ > 2 to deduce
he analogous bound

δ1/β′−1/2

(β′
2 − 1)1/β′α1/β

(
sup
t>0

Ptf(x)
)1/β′ (∫ ∞

0
e−λτPs+τf(x)dτ

)1/β
.

Now the choice
δ =

∫∞
0 e−λτPs+τf(x)dτ

supt>0 Ptf(x) (31)

ields the claimed inequality. □

We prove Proposition 7.1.

roof. Let ε > 0. Since Γ (u) ∈ L1(M) we have lims→0 Ps(
√

Γ (u)) =
√
Γ (u) in µ-measure, so that Fatou’s

emma yields ∫
{u>ε}

Γ (u)p

up
φ dµ ≤ lim inf

s→0

∫
{u>ε}

(Ps
√
Γ (u))2p

up
φ dµ (32)

or any 1 ≤ p < +∞ and any nonnegative φ ∈ L∞(M).

14
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The integral
∫∞

0 e−λtPtf dt converges in D(E). For any nonnegative ψ ∈ L1(M) ∩ L∞(M) and s > 0 we
consider the seminorm g ↦→ ∥g∥Psψ =

∫
M

√
Γ (g)Psψ dµ on D(E) as defined in (25). By the symmetry of the

emigroup, the triangle inequality for integrals of D(E)-valued functions and Fubini, we have∫
M

ψ Ps
√

Γ (Gλf) dµ = ∥Gλf∥Psψ
=
∫ ∞

0
e−λtPtf dt


Psψ

≤
∫ ∞

0
e−λt ∥Ptf∥Psψ

dt

=
∫
M

ψ

∫ ∞

0
e−λtPs

√
Γ (Ptf) dt dµ.

Since ψ was arbitrary, it follows that

Ps
√
Γ (Gλf) ≤

∫ ∞

0
e−λtPs

√
Γ (Ptf) dt

-a.e. on M . Therefore we have∫
{u>ε}

(Ps
√
Γ (u))2p

up
φ dµ ≤

∫
{u>ε}

φ

up

(∫ ∞

0
e−λtPs

√
Γ (Ptf)dt

)2p
dµ

≤ c2p
5

∫
{u>ε}

φ

up
(Psu)p

(
sup
t>0

Ptf
)p
dµ, (33)

he second inequality follows using Lemma 7.2.
Clearly we have lims→0(Psu)p = up in µ-measure. In the case that 1 < p < +∞ it suffices to

consider the choice φ ≡ 1, for which the integrand of the last integral in (33) admits the majorant
ε−p ∥u∥pL∞(M)

(
supt>0 Ptf

)p. By (27) this majorant is integrable, and the dominated convergence theorem
gives

lim
s→0

∫
{u>ε}

1
up

(Psu)p
(

sup
t>0

Ptf
)p
dµ =

∫
{u>ε}

(
sup
t>0

Ptf
)p
dµ. (34)

ombining (32), (33) and (34) and using (27) we obtain∫
{u>ε}

Γ (u)p

up
dµ ≤ c2p

5 c(p) ∥f∥pLp(M) ,

nd letting ε go to zero we arrive at (26). Similarly, we have

lim
s→0

∫
{u>ε}

φ

u
(Psu)

(
sup
t>0

Ptf
)
dµ =

∫
{u>ε}

φ
(

sup
t>0

Ptf
)
dµ

or any nonnegative φ ∈ L∞(M) ∩ L1(M), note that in this case ε−1 ∥u∥L∞(M) ∥f∥L∞(M) φ provides an
ntegrable majorant. This gives∫

{u>ε}

Γ (u)
u

φ dµ ≤ c2
5

∫
{u>ε}

φ
(

sup
t>0

Ptf
)
dµ ≤ c2

5 ∥f∥L∞(M) ∥φ∥L1(M)

or any such φ. Using the standard decomposition and approximation and letting ε → 0, we find that⏐⏐⏐⏐⏐
∫

{u>0}

Γ (u)
u

φ dµ

⏐⏐⏐⏐⏐ ≤ c2
5 ∥f∥L∞(M) ∥φ∥L1(M)

or arbitrary φ ∈ L1(M). Consequently 1{u>0}
Γ(u)
u is an element of L∞(M) and its L∞(M)-norm is bounded

by c2
5 ∥f∥L∞(M). □

To prove Theorem 6.1 we combine Proposition 7.1 with the chain rule. The standard chain rule for
generators says that if F ∈ C2(R) is such that F (0) = 0, F ′(0) = 0 and F ′′ is bounded, then for any
u ∈ D(L) we have

F (u) ∈ D(L(1)) and L(1)F (u) = F ′(u)Lu+ F ′′(u)Γ (u); (35)
see [19, Chapter I, Corollary 6.1.4]. The following variant is in line with Maz’ya’s original proof of the
quantitative estimate (23), it allows F ′′ to be singular at zero. See [2,69].
15
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Lemma 7.3. Assume that (Pt)t>0 is a strong Feller semigroup satisfying (LG). Let F be as in Theorem 6.1,
λ > 2

2−α c2 and let u = Gλf with nonnegative f ∈ Cc(M). Then F (u) ∈ D(E) and

LF (u)(v) =
∫
M

(Lu)F ′(u)vdµ+
∫

{u>0}
F ′′(u)Γ (u)vdµ, v ∈ D(E). (36)

Proof. Clearly u is in D(E)∩Cb(M), hence also F (u) is in this space by (22) and the Markov property. Let
ε > 0. Set Fε(t) := F (t) −F ′(ε)t. Since F ′

ε(t) = F ′(t) −F ′(ε) and F ′′
ε = F ′′ is bounded by L/ε on the range

of u ∨ ε, the Markov property also implies that F ′
ε(u ∨ ε) ∈ D(E) ∩ Cb(M), and on {u > ε} this function

quals F ′
ε(u) µ-a.e. Making use of (5) we observe that∫

{u>ε}
Γ (Fε(u), v)dµ =

∫
{u>ε}

F ′
ε(u ∨ ε)Γ (u, v)dµ

=
∫

{u>ε}
Γ (u, F ′

ε(u ∨ ε)v)dµ−
∫

{u>ε}
vΓ (u, F ′

ε(u ∨ ε))dµ

= −
∫
M

(Lu)F ′
ε(u ∨ ε)vdµ−

∫
{u>ε}

vF ′′
ε (u)Γ (u, u)dµ

or any v ∈ D(E). Taking limits as ε → 0, using the continuity of F ′, dominated convergence and
roposition 7.1 we obtain

LF (u)(v) = −E(F (u), v) = −
∫

{u>0}
Γ (F (u), v)dµ−

∫
{u=0}

Γ (F (u), v)dµ

=
∫
M

(Lu) F ′(u)vdµ+
∫

{u>0}
F ′′(u)Γ (u, u)vdµ−

∫
{u=0}

Γ (F (u), v)dµ

or any v ∈ D(E). The last integral in the last line is zero, because it is bounded in modulus by(∫
{u=0} Γ (u)dµ

)1/2
E(v)1/2 and

∫
{u=0} Γ (u) dµ = 0, as follows for instance from [19, Chapter I, Theorem

.2.3 and Theorem 7.1.1 and its proof]. This proves (36). □

We can now prove Theorem 6.1.

roof. As before let u = Gλf . Suppose first that f is a nonnegative element of Cc(M). Clearly u ∈ D(L)
nd also F (u) ∈ Lp(M) for any 1 < p ≤ +∞. By Cauchy–Schwarz, (22) and Proposition 7.1 we have⏐⏐ ∫

M

Lu F ′(u)vdµ
⏐⏐ ≤ L ∥Lu∥L2(M) ∥v∥L2(M)

nd ⏐⏐ ∫
{u>0}

F ′′(u)Γ (u) v dµ
⏐⏐ ≤ c4 L ∥f∥L2(M) ∥v∥L2(M)

or all v ∈ D(E), and using the chain rule (36) and the density of D(E) in L2(M) it follows that LF (u) ∈
2(M). Therefore F (u) ∈ D(L) by (4). A similar argument yields LF (u) ∈ Lp(M), 1 < p ≤ +∞. For all
< p < +∞ we therefore have F (u) ∈ Dp ⊂ D(L(p)) by (6). To see (23) for 1 < p < +∞, note that

ombining (36) and Proposition 7.1 gives

∥(λ− L)F (u)∥Lp(M) ≤ λ L ∥u∥Lp(M) + ∥LF (u)∥Lp(M) (37)

≤ λ L ∥u∥Lp(M) + L ∥Lu∥Lp(M) + L
1{u>0}

Γ (u)
u


Lp(M)

≤ (3 + c4)L ∥f∥Lp(M) ,

which is (23). The estimate for p = +∞ follows similarly.

16



M. Hinz, J. Masamune and K. Suzuki Nonlinear Analysis 234 (2023) 113296
For 1 < p < +∞ we can now extend (23) similarly as in [3, Theorem 3.3.3]. Suppose that f ∈ Lp+(M)
and let (fn)n be a sequence of nonnegative functions fn ∈ Cc(M) such that limn fn = f in Lp(M). Then
also

lim
n

∥F ◦Gλfn − F ◦Gλf∥Lp(M) ≤ L lim
n

∥Gλfn −Gλf∥Lp(M) = 0

by (22), the mean value theorem and the boundedness of Gλ on Lp(M). Set

gn := (λ− L(p))F ◦Gλfn.

By (23) we have ∥gn∥Lp(M) ≤ c4 supn ∥fn∥Lp(M) ≤ c4 ∥f∥Lp(M) for all n, hence we may assume that (gn)n
converges to some g weakly in Lp(M). As a consequence,

∥Gλg∥D(L(p)) = ∥g∥Lp(M) ≤ c4 ∥f∥Lp(M) .

Since by weak convergence also limn F ◦ Gλfn = limnGλgn = Gλg weakly in Lp(M), we must have
F ◦Gλf = Gλg. □

8. From finite Hausdorff measure to zero capacity

Sufficient conditions for a set to have zero (2, p)-capacity can be stated in terms of its Hausdorff measure
respectively dimension. For Euclidean spaces these results are standard, [3, Chapter 5], we provide adapted
versions for metric measure spaces.

The discussion in Section 6 and well-known facts, [40, Lemma 4.2.4], give the following.

Proposition 8.1. Let (Pt)t>0 be strongly Feller and λ > 0. Then gλ(x, y) :=
∫∞

0 e−λtpt(x, y) dt defines a
function gλ : M ×M → [0,+∞] that is symmetric and jointly measurable in (x, y), and we have

Gλf(x) =
∫
M

gλ(x, y)f(y)µ(dy), x ∈ M, (38)

for any f ∈ L0
+(M). For any y ∈ M the function gλ(·, y) is lower-semicontinuous on M .

Let M+(M) denote the cone of nonnegative Radon measures on M . The integral representation (38)
generalizes to

Gλν(x) :=
∫
M

gλ(x, y)ν(dy), x ∈ M, (39)

for any ν ∈ M+(M). For any x ∈ M the map µ ↦→ Gλν(x) is lower semicontinuous on M+(M) w.r.t. weak
convergence of measures. This follows using monotone convergence since by Proposition 8.1 the function
gλ(·, y) can be approximated pointwise by an increasing sequence of nonnegative continuous compactly
supported functions on M , [3, Proposition 2.3.2 (b)].

The following is a variant of a well-known dual representation of capacities. As in the preceding sections
we keep λ > 0 fixed.

Corollary 8.2. Let 1 < p < +∞, assume that (Pt)t>0 is strongly Feller. Then we have

Cap2,p(E)1/p = sup
{
ν(E) : ν ∈ M+(M), supp ν ⊂ E, ∥Gλν∥Lq(M) ≤ 1

}
for any E ⊂ M Borel, where 1

p + 1
q = 1.

Proof. The result follows from an application of the minimax theorem, [3, Theorem 2.4.1], to the bilinear
map (ν, f) ↦→

∫
M
Gλf dν =

∫
M
Gλν f dµ, where µ ranges over all Radon probability measures on M and f

over the closed unit ball in Lp(M), see [3, Theorem 2.5.1 and Corollary 2.5.2] or Corollary 10.10 below for
details. □
17
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Let h : [0,+∞) → [0,+∞) be a non-decreasing and right-continuous function, strictly positive on (0,+∞)
and having the doubling property h(2r) ≤ c h(r), r > 0, where c > 1 is a fixed constant. We call such h a

ausdorff function.
Let E ⊂ M . For any δ > 0 let Hh

δ (E) be the infimum over all sums
∑∞
i=1 h(diam(Ei)), where Ei ⊂ M

re sets with diam(Ei) < δ and such that E ⊂
⋃
iEi. This quantity is decreasing in δ, and its limit

Hh(E) := lim
δ→0

Hh
δ (E)

s called the Hausdorff measure of E with Hausdorff function h. See for instance [3,57,68, p. 132] or [74,
ection 7.2.3]. For s ≥ 0 and h(r) = rs we obtain the s-dimensional Hausdorff measure, for which we use
he traditional notation Hs. Recall that the Hausdorff dimension of E is defined as the unique nonnegative
eal number dimH E at which s ↦→ Hs(E) jumps from infinity to zero.

If gλ(x, y) admits adequate asymptotics, then the finiteness of a suitable Hausdorff measure of a set
implies that Cap2,p(Σ ) is zero. Given 1 < p < +∞ we consider the Hausdorff function hp defined by

p(0) := 0 and
hp(r) :=

(
1 + log+

1
r

)1−p
, r > 0, (40)

here log+ denotes the nonnegative part of log.

emma 8.3. Let (Pt)t>0 be strongly Feller and Σ ⊂ M a closed set. Let 1 < p < +∞, d > 0, assume that

lim inf
r→0

µ(B(x, r))
rd

> 0, x ∈ Σ , (41)

nd that
lim
r→0

inf
y,z∈B(x,r)

ϱ(y, z)d−2gλ(y, z) > 0, x ∈ Σ . (42)

f d > 2p and Hd−2p(Σ ) < +∞, then Cap2,p(Σ ) = 0. If d = 2p and Hhp(Σ ) < +∞, then we also have
ap2,p(Σ ) = 0.

emark 8.4.

(i) Clearly dimH Σ < d− 2p implies Hd−2p(Σ ) = 0.
(ii) By Proposition 5.2(i) and (iii) the conclusion of Lemma 8.3 remains true if (Σi)i≥1 is a sequence of

closed sets Σi such that Σ ⊂
⋃
i Σi and instead of Hd−2p(Σ ) < +∞ (resp. Hhp(Σ ) < +∞) we have

Hd−2p(Σi) < +∞ (resp. Hhp(Σi) < +∞) for all i.

Given 1 < p < +∞ and ν ∈ M+(M) we consider the Maz’ya–Khavin type nonlinear (2, p)-potential of ν
on (M,µ), defined by

V ν2,p(x) :=
∫
M

gλ(x, y)
(∫

M

gλ(z, y)ν(dz)
)q−1

µ(dy), x ∈ M, (43)

here 1
p + 1

q = 1. See [75, formula (2.1)] or [3, Definition 2.5.4], and see [25] for related definitions. By
Fubini’s theorem we have ∫

M

V ν2,p dν = ∥Gλν∥qLq(M) . (44)

Lemma 8.3 follows by versions of well-known arguments, cf. [68, Theorem 8.7].

roof. Suppose that d > 2p and Hd−2p(Σ ) < +∞ but Cap2,p(Σ ) > 0. Then Corollary 8.2 guarantees∫
ν
he existence of some ν ∈ M+(M) with supp ν ⊂ Σ and such that

M
V2,p dν ≤ 1 by (44). Accordingly

18
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there is a Borel set Σ0 ⊂ Σ with 0 < ν(Σ0) < +∞ such that V ν2,p(x) < +∞ for all x ∈ Σ0. For any such
x conditions (41) and (42) guarantee the existence of rx > 0 and cx > 0 such that µ(B(x, r)) ≥ cx r

d and
gλ(y, z) > cx ϱ(y, z)2−d for all 0 < r < rx and y, z ∈ B(x, r). For 0 < r < rx/3 we therefore have

V ν2,p(x) ≥
∫
B(x,r)

gλ(x, y)
(∫

B(y,2r)
gλ(y, z)ν(dz)

)q−1

µ(dy)

≥ cqx

∫
B(x,r)

ϱ(x, y)2−d

(∫
B(y,2r)

ϱ2−d(y, z)ν(dz)
)q−1

µ(dy)

≥ c r(2−d)q
∫
B(x,r)

ν(B(y, 2r))q−1µ(dy)

≥ c r(d−2p)(1−q)ν(B(x, r))q−1,

note that B(y, 2r) ⊃ B(x, r) for any y ∈ B(x, r) and that 2p(q − 1) = 2q. Since the integral in the first line
bove goes to zero as r → 0, we obtain

lim sup
r→0

ν(B(x, r))
rd−2p = 0, x ∈ Σ0,

nd by Egorov’s theorem there is a Borel set Σ1 ⊂ Σ0 with ν(Σ1) ≥ 1
2ν(Σ0) and such that for any ε > 0 we

an find rε > 0 that guarantees

ν(B(x, r)) ≤ ε rd−2p, x ∈ Σ1, 0 < r < rε.

ake ε > 0. Let A1, A2, . . . be Borel sets with ri := diam(Ai) < rε and Ai ∩ Σ1 ̸= ∅ for all i and such that
1 ⊂

⋃
iAi and

∑
i diam(Ai)d−2p ≤ Hd−2p(Σ1) + 1. For any i let xi be a point in Ai ∩ Σ1. Then

1
2ν(Σ1) ≤

∑
i

ν(B(xi, ri)) ≤ ε
∑
i

rd−2p
i ≤ ε (Hd−2p(Σ ) + 1).

Since ε > 0 was arbitrary, this would imply Hd−2p(Σ ) = +∞, a contradiction. In the case that d = 2p we
btain

V ν2,p(x) ≥ c

∫
B(x,r)

ϱ(x, y)−2pν(B(y, 2r))q−1µ(dy) ≥ c (− log r)ν(B(x, r))q−1

or any x ∈ Σ0 and small enough r, note that Fubini’s theorem (cf. [68, Theorem 1.15]) gives∫
B(x,r)

ϱ(x, y)−dµ(dy) =
∫ ∞

0
µ(B(x, t−1/d ∧ r))dt ≥ cx

∫ r−2d

r−d

dt

t
= cxd(− log r).

imilarly as before these inequalities imply that lim supr→0 ν(B(x, r)) hp(r)−1 = 0, and the result follows
y analogous arguments. □

emark 8.5. For Hajlasz–Sobolev spaces on metric spaces with doubling measure (condition (D) in
ection 10 below) results relating Hausdorff measures and (1, p)-capacities were provided in [64, Theorems
.13 and 4.15]. Results for (1, p)-capacities based on Newtonian Sobolev spaces can be found in [17, Chapter
]. For a complete metric space with doubling measure and supporting a p-Poincaré inequality these Sobolev
paces agree, and they also agree with Sobolev spaces based on Cheeger gradients (cf. Section 12), see for
nstance [51, Theorem 12.3.14]. The main difference between the results in [64] and our results in this and
ater sections is that we relate Hausdorff measures and (2, p)-capacities (that is, capacities at the level of
enerators).
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9. From zero capacity to zero Hausdorff measure

We also provide a version of the opposite implication that zero capacity implies zero Hausdorff measure
of sufficiently large dimension.

Lemma 9.1. Let (M,ϱ) be complete, (Pt)t>0 strongly Feller,

gλ(x, y) ≤ c6 ϱ(x, y)2−d x, y ∈ M, (45)

nd
µ(B(x, r)) ≤ c7 r

d, x ∈ M, r > 0, (46)

ith positive constants c6 and c7. Let Σ ⊂ M be a closed set.

(i) If d > 4 and ε > 0, then Cap2,2(Σ ) = 0 implies Hd−4+ε(Σ ) = 0. If d = 4, M is bounded and h is a
Hausdorff function satisfying ∫ 1

0
h(r)dr

r
< +∞, (47)

then Cap2,2(Σ ) = 0 implies Hh(Σ ) = 0.
(ii) Suppose that 1 < p < +∞, d > 2p and ε > 0. For p ̸= 2 assume in addition that

µ(B(x, r)) ≥ 1
c7
rd, x ∈ M, r > 0. (48)

Then Cap2,p(Σ ) = 0 implies Hd−2p+ε(Σ ) = 0.

Our proof of Lemma 9.1(ii) for p ̸= 2 employs a result from [79], and we assume (48) to ensure its
pplicability.

emark 9.2.

(i) Clearly Hd−2p+ε(Σ ) = 0 implies that dimH Σ ≤ d− 2p.
(ii) For any ε > 0 the functions h(r) = rε and h(r) = (1 + log+

1
r )−1−ε satisfy (47).

Lemma 9.1(i) can be shown using (45), (46) and standard arguments, [68, Theorem 8.9].

Proof of Lemma 9.1(i). We first consider the case d > 4. By (45) and (46) we have

∥Gλν∥2
L2(M) ≤ c

∫
M

∫
M

ϱ(x, z)4−dν(dz)ν(dx) (49)

or any ν ∈ M+(M) with c > 0 depending only on c6 and c7. This can be seen from (46) and elementary
stimates, see [12, Proposition 4.12]: With r := 1

2ϱ(x, z) one finds that∫
M

ϱ(x, y)2−dϱ(y, z)2−dµ(dy) ≤ r2−d
∫
B(x,r)

ϱ(x, y)2−dµ(dy) (50)

+ r2−d
∫
B(z,3r)\B(x,r)

ϱ(y, z)2−dµ(dy) +
∫
M\B(z,3r)

ϱ(y, z)4−2dµ(dy),

hich does not exceed c ϱ(x, z)4−d, and (49) follows by Fubini.
Now suppose that ε > 0 and Hd−4+ε(Σ ) > 0. By Frostman’s lemma for complete separable metric

paces, see [68, Theorem 8.8 and comments on p. 117], there is some ν ∈ M+(M) with 0 < ν(Σ ) < +∞,
d−4+ε
upp ν compact and contained in Σ , and there is a constant c > 0 such that ν(B(x, r)) ≤ c r , for
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all x ∈ Σ and r > 0. This, together with (49), implies ∥Gλν∥L2(M) < +∞ and therefore Cap2,2(Σ )1/2 ≥
(Σ ) ∥Gλν∥−1

L2(M) > 0 by Corollary 8.2; this contradicts Cap2,2(Σ ) = 0.
In the case that d = 4 and M is bounded, (50) gives∫

M

ϱ(x, y)−2ϱ(y, z)−2µ(dy) ≤ c
(
1 + log+

1
ϱ(x, z)

)
, x, y ∈ M.

f we had Hh(Σ ) > 0 with h as indicated, Frostman’s lemma would guarantee the existence of some
ν ∈ M+(M) with value and support as before and ν(B(x, r)) ≤ c h(r) for all x ∈ Σ and r > 0. See
for instance [3, Theorem 5.1.12], the statement remains valid under the present hypotheses. The preceding
would produce the same contradiction because

∥Gλν∥2
L2(M) ≤ c

∫
M

∫
M

(
1 + log+

1
ϱ(x, z)

)
ν(dz)ν(dx) < +∞,

ote that for any fixed x ∈ M the inner integral is bounded by∫
B(x,1)

(
1 + log+

1
ϱ(x, z)

)
ν(dz) +

∫
M\B(x,1)

(
1 + log+

1
ϱ(x, z)

)
ν(dz) ≤ c

∫ 1

0
h(r)dr

r
+ 2ν(M).

ere we have used that∫
B(x,1)

(− log ϱ(x, z))ν(dz) =
∫ ∞

0
ν(B(x, e−t))dt =

∫ 1

0
ν(B(x, r))dr

r
≤ c

∫ 1

0
h(r)dr

r
. □

For any s ≥ 0 and ν ∈ M+(M) let

Usν(x) :=
∫
M

ϱ(x, y)−sν(dy), x ∈ M, (51)

enote the Riesz type potential of ν of order s on M . The right-hand side of (49) equals the square of the
2-norm of U2−dν. Lemma 9.1(ii) follows similarly as (i) if the Lp-norm of U2−dν can be controlled suitably.
iven 1 < p < +∞, s ≥ 0 and a nonnegative Radon measure ν on M , we define the Wolff type nonlinear

-potential of ν of order s on (M,µ) by

Ẇ ν
s,p(x) :=

∞∑
j=−∞

2jsq
∫
B(x,2−j)

(
ν(B(y, 2−j))

)q−1
µ(dy), x ∈ M, (52)

where 1
p + 1

q = 1, see [3, Definitions 4.5.1 and 4.5.3] and [50] for the classical case. We have the following
ersion of Wolff’s inequality, [50, Theorem 1].

roposition 9.3. Let 1 < p < +∞, assume that (46) and (48) hold and that 0 < s < d. Then there is a
onstant c > 0 such that

∫
M

(Usν)q dµ ≤ c
∫
M
Ẇ ν
s,p dν for any ν ∈ M+(M).

A short proof of Proposition 9.3 is given at the end of this section, it relies on a metric measure space
version of the Muckenhoupt–Wheeden inequality, [77], shown in [79, Corollary 2.2]. The definition (52) of
Ẇ ν
s,p as potentials of homogeneous type is chosen for an easy fit with the Riesz type potentials (51) and

maximal functions used in [79, Corollary 2.2].
Lemma 9.1(ii) now follows as in the Euclidean case, [3, Theorem 5.1.13].

Proof of Lemma 9.1(ii). Suppose that Hd−2p+ε(Σ ) > 0. Then, again by Frostman’s lemma, there is some
ν ∈ M+(M) with 0 < ν(Σ ) < +∞, supp ν compact and contained in Σ , and such that ν(B(x, r)) ≤ crd−2p+ε

or all x ∈ Σ and r > 0. This implies

−j q−1 −j(d−2)q jd −jεq/p
(ν(B(x, 2 ))) ≤ c 2 2 2 .
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By (46) and since ν(B(x, 2−j)) ≤ ν(Σ ) for j < 0, we see that for any x ∈ Σ we have

Ẇ ν
d−2,p(x) ≤ c

∞∑
j=0

2−jεq/p + c ν(Σ )q/p
−1∑

j=−∞
2j(d−2p)q/p =: S < +∞.

By (45) we have Gλν ≤ cUd−2ν, so that ∥Gλν∥Lq(M) ≤ cS1/qν(Σ )1/q by Proposition 9.3 and the preceding.
sing Corollary 8.2 we obtain the contradicting fact that

Cap2,p(Σ )1/p ≥ ν(Σ )
∥Gλν∥Lq(M)

≥ ν(Σ )1/p

c S1/q > 0. □

Proposition 9.3 can be proved following the method in [3, Corollary 3.6.3 and Theorem 4.5.2]. Given s > 0
nd ν ∈ M+(M), let

Msν(x) := sup
r>0

r−sν(B(x, r)), x ∈ M, (53)

enote the maximal function of ν of order s.

roof. From (46) and (48) it is immediate that µ is a doubling measure (cf. (D) below) and( r
R

)−s µ(B(x, r))
µ(B(x,R)) ≤ c

( r
R

)d−s
, x ∈ M, 0 < r < R.

We may therefore apply [79, Corollary 2.2], which shows that with a constant c > 0 we have

∥Usν∥qLq(M) ≤ c ∥Msν∥qLq(M) (54)

or all ν ∈ M+(M).
For any r > 0 we can find j ∈ Z such that 2−j−1 < r ≤ 2−j , and if ν ∈ M+(M) and x ∈ M then

r−sν(B(x, r)) ≤ 2−s2jsν(B(x, 2−j)), and taking suprema, we see that

Msν(x) ≤ c
(2jsν(B(x, 2−j))

)
j∈Z


ℓ∞

≤ c
(2jsν(B(x, 2−j))

)
j∈Z


ℓq

for any x ∈ M . Taking qth moments, using (46) and Fubini, we obtain

∥Msν∥qLq(M) ≤ c

∫
M

∞∑
j=−∞

2jsq
(
ν(B(y, 2−j))

)q
µ(dy)

= c

∞∑
j=−∞

2jsq
∫
M

(
ν(B(y, 2−j))

)q−1
∫
M

1B(y,2−j)(x)ν(dx)µ(dy)

= c

∫
M

⎛⎝ ∞∑
j=−∞

2jsq
∫
B(x,2−j)

(
ν(B(y, 2−j))

)q−1
µ(dy)

⎞⎠ ν(dx)

= c

∫
M

Ẇ ν
s,pdν.

Combination with (54) now yields the result. □

10. Riemannian manifolds

We provide results on essential self-adjointness and Lp-uniqueness on Riemannian manifolds after the
removal of a set Σ .
22
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10.1. Essential self-adjointness and capacities

Let (M,g, µ) be a weighted manifold in the sense of [47, Definition 3.17], that is, M = (M,g) is a complete
Riemannian manifold and µ a Borel measure which has a smooth and positive density with respect to the
Riemannian volume. Riemannian manifolds appear as the special case that the density is identically one, so
that µ is the Riemannian volume. The distance ϱ as in Section 2 is the geodesic distance on M . We point
out that M is assumed to be second countable, [47, Definition 3.2]. Throughout the entire section we silently
assume that M is connected.

We consider the Dirichlet integral on M , defined by

E(f, g) :=
∫
M

⟨∇f,∇g⟩TM dµ,

where f, g are elements of D(E) = W 1
0 (M), defined as the closure of the space C∞

c (M) of smooth compactly
supported functions on M in the space W 1(M) of all u ∈ L2(M) with |∇u| ∈ L2(M) and endowed with the
Hilbert norm determined by

∥u∥2
W1(M) = ∥u∥2

L2(M) + ∥∇u∥2
L2(M) .

Clearly Γ (f, g)(x) = ⟨∇f(x),∇g(x)⟩TxM
, x ∈ M . The operator (L,D(L)) is the Dirichlet Laplacian on M ,

i.e. the Friedrichs extension of the classical Laplace operator ∆µ|C∞
c (M), [47, Section 3.6]. If M is complete,

then this self-adjoint extension is unique, see [47, Theorem 11.5] or [90, Theorem 2.4]. The domain D(L) of
L is

W 2
0 (M) =

{
u ∈ W 1

0 (M) : ∆µu ∈ L2(M)
}
, (55)

[47, Theorem 4.6]. With the choice A(U) = C∞
c (U) for any open U ⊂ M conditions (B), (L∞) and (C2) are

satisfied. In the sequel Σ will always denote a subset of M and M̊ := M \ Σ its complement.
The following characterization of the critical size of Σ in terms of the capacities cap2,2 is immediate from

Theorem 4.3.

Theorem 10.1. Let M be a complete weighted manifold and Σ ⊂ M a closed subset. Then we have
capC

∞
c (M)

2,2 (Σ ) = 0 if and only if µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is essentially self-adjoint.

Additional conditions allow a result in terms of the capacities Cap2,2. The measure µ is said to satisfy
the doubling condition (D) if there is a constant cD > 1 such that

µ(B(x, 2r)) ≤ cDµ(B(x, r)), x ∈ M, r > 0. (D)

The heat semigroup (Pt)t>0 on M is strongly Feller, [47, Theorems 7.13 and 7.15]. Its heat kernel pt(x, y)
is said to satisfy the gradient upper estimate (G) if there is some c > 0 such that

|∇ypt(x, ·)|(y) ≤ c√
tµ(B(x,

√
t))

(G)

or all x, y ∈ M and t > 0. By [32, Proposition 2.1], [46, Theorem 1.1] and [65], (D) and (G) imply Li-Yau
ype heat kernel estimates [45,65,83], that is,

1
c8µ(B(y,

√
t))

exp
(

−c9
ϱ(x, y)2

t

)
≤ pt(x, y) ≤ c8

µ(B(y,
√
t))

exp
(

−ϱ(x, y)2

c9t

)
(LY)

or all x, y ∈ M and t > 0 with universal constants c > 1 and c > 1; see [32, p. 687].
8 9
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Theorem 10.2. Let M be a complete weighted manifold and Σ ⊂ M a closed subset.

(i) If µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is essentially self-adjoint, then Cap2,2(Σ ) = 0.

(ii) Suppose that (D) and (G) hold. If Cap2,2(Σ ) = 0, then µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is essentially

self-adjoint.

roof. Statement (i) follows from Corollary 5.3 and Theorem 10.1. Under (D) condition (G) is equivalent
o the estimate

|∇ypt(x, ·)|(y) ≤ c√
tµ(B(x,

√
t))

exp
(

−ϱ(x, y)2

c′t

)
, (56)

valid for all x, y ∈ M and t > 0; here c and c′ are universal positive constants. This follows using the upper
estimate in (LY) together with [35, Theorem 1.1]. Combining the lower estimate in (LY) with (56) and using
(D), we obtain (LG′) with α = 1. Using the hypothesis and Corollary 6.3 we see that capA

2,2(Σ ) = 0 with
A = D(L) ∩ C∞

b (M).
We claim that this implies capC

∞
c (M)

2,2 (Σ ) = 0. If so, then (ii) follows by Theorem 10.1. By (10) it suffices
to prove the claim for compact Σ . Let φ ∈ ω

C∞
c (M)

Σ and given ε > 0, choose v ∈ ωA
Σ such that ∥v∥2

D(L) ≤ ε.
hen φv ∈ ω

C∞
c (M)

Σ and

∥φv∥L2(M) + ∥L(φv)∥L2(M) ≤ ∥φ∥L∞(M) ∥v∥L2(M) + 2
Γ (φ)1/2

L∞(M)E(v)1/2 (57)
+ ∥φ∥L∞(M) ∥Lv∥L2(M) + ∥∆µφ∥L∞(M) ∥v∥L2(M)

≤ cφ

(
∥v∥L2(M) + ∥Lv∥L2(M)

)
with

cφ := 2
(
∥φ∥L∞(M) +

Γ (φ)1/2
L∞(M) + ∥∆µφ∥L∞(M)

)
;

we have used (8). Consequently ∥φv∥2
D(L) ≤ c ∥v∥2

D(L) and therefore also capC
∞
c (M)

2,2 (Σ ) ≤ c ε with c > 0
independent of ε, and this proves the claim. □

Remark 10.3. Another proof of (56) could be formulated using [31, Theorem 4.9] together with (D) and
(LY).

10.2. Lp-Uniqueness and capacities

Suppose that M is a complete Riemannian manifold and 1 < p < +∞. Clearly also condition (Cp) is
satisfied for A(U) = C∞

c (U), see [90, Theorem 3.5]. For compact M also the validity of condition (Γp) is
well known, see [85] and [90, Section 6]. A sufficient condition for the validity of (Γp) on a general (possibly
non-compact) manifold M is the Lp-gradient bound

∥ |∇Ptf |∥Lp(M) ≤ c(p)√
t

∥f∥Lp(M) , f ∈ C∞
c (M), (Gp)

for the heat semigroup (Pt)t>0; the sufficiency follows from [32, Proposition 3.6] and its proof. Further
sufficient conditions could be formulated using the results in [13,30]. The following is then immediate from
Theorem 4.3.

Theorem 10.4. Let M be a complete Riemannian manifold, Σ ⊂ M closed, and 1 < p < +∞.

(i) If µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is Lp-unique, then capC

∞
c (M)

2,p (Σ ) = 0.
(ii) Suppose that M is compact or (Gp) holds. If capC

∞
c (M)

2,p (Σ ) = 0, then µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is

Lp-unique on M .
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It is straightforward to see that (LG) implies (Gp), therefore also (LG′) implies it and the following can
be seen similarly as Theorem 10.2.

Theorem 10.5. Let M be a complete Riemannian manifold, Σ ⊂ M closed, and 1 < p < +∞.

(i) If µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is Lp-unique, then Cap2,p(Σ ) = 0.

(ii) Suppose that (D) and (G) hold. If Σ is closed and Cap2,p(Σ ) = 0, then ∆µ|C∞
c (M̊) is Lp-unique.

10.3. Localized arguments for compact sets

For compact Σ we can rely on localized estimates to arrive at a variant of Theorem 10.2(ii) that does not
need (D) or (G). We establish it using truncated Laplace transforms of the semigroup and related capacities.
Let B ⊂ M be a domain (a connected open subset) with smooth boundary ∂B and let pBt (x, y) denote the
Neumann heat kernel on B. Given 0 < T ≤ +∞ and λ > 0 let

gB,Tλ (x, y) :=
∫ T

0
e−λtpBt (x, y) dt, x, y ∈ B,

and consider
GB,Tλ f(x) :=

∫
B

gB,Tλ (x, y)f(y) µ(dy) (58)

for f ∈ L2(B). Obviously GBλ := GB,∞λ is the λ-resolvent operator for the Neumann Laplacian (LB ,D(LB))
on B. Also (58) induces bounded linear operators GB,Tλ on Lp(B), 1 ≤ p ≤ +∞. For any 1 ≤ p < +∞ and
f ∈ Lp(B) we have GB,Tλ f ∈ D(LB,(p)), where LB,(p) is the Lp-realization of the Neumann Laplacian on B,
and (λ− LB,(p))GB,Tλ f = f − e−λTPBT f , where (PBt )t>0 denotes the Neumann heat semigroup on B.

Let Ω ⊂ B be an open set. For compact K ⊂ Ω we define

CapB,T2,p (K,Ω) := inf
{

∥f∥pLp(B) : f ∈ Lp+(B) with f = 0 µ-a.e. on B \ Ω

and GB,Tλ f(x) ≥ 1 for all x ∈ K
}
.

We provide variants of Theorem 6.1 and Corollary 6.3 in terms of the operators GB,T and the capacities
CapB,T2,p (·,Ω). The boundary ∂B ⊂ M of B is said to be infinitesimally convex [16], if its second fundamental
form is nonnegative definite at all of its points.

Theorem 10.6. Let M be a complete Riemannian manifold and B ⊂ M a smooth bounded domain such
that ∂B is infinitesimally convex. Let Ω be open and such that Ω ⊂ B and write T := dist(Ω , ∂B)2. Suppose
hat F ∈ C2(R+) is a function satisfying (22). Then for any 1 < p < +∞, λ > 1

T and nonnegative f ∈ Lp(Ω)
e have F ◦GB,Tλ f ∈ D(LB,(p)) andF ◦GB,Tλ f


D(LB,(p)) ≤ c3 ∥f∥Lp(B) . (59)

ith a constant c3 > 0 independent of f .

To prove Theorem 10.6 we use the following Lemma 10.7. The assumption λ > 1
T in Theorem 10.6 ensures

hat δ in (65) is smaller than T , so that we can verify Lemma 10.7 by similar arguments as used to prove
emma 7.2.

emma 10.7. Let f ∈ Cc(Ω) and suppose all other hypotheses of Theorem 10.6 are in force. Then there is
constant c5 > 0, independent of f , such that∫ T

0
e−λt

√
Γ (PBt f)(x)dt ≤ c5

(
GB,Tλ f(x)

)1/2(
sup
t>0

PBt f(x)
)1/2

(60)

for all x ∈ B.
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Since M is complete B is relatively compact and can therefore be covered by finitely many relatively
compact coordinate charts. Consequently we can find c > 1 such that

1
c
rd ≤ µ(B(y, r)) ≤ c rd, y ∈ Ω , 0 < r <

√
T , (61)

here d is the dimension of M . There are constants c8 > 1 and c9 > 1 such that
1
c8
t−d/2 exp

(
−c9

ϱ(x, y)2

t

)
≤ pBt (x, y) ≤ c8 t

−d/2 exp
(

−ϱ(x, y)2

c9t

)
(62)

or all 0 < t < T , y ∈ Ω and x ∈ B. The upper bound in (62) is due to [65, Theorem 3.2], applied to B and
ombined with (61). The lower bound in (62) is a consequence of [65, Theorem 2.3] together with standard
rguments, [33], involving the conservativeness of the Neumann heat semigroup on B and (61). Since for
ny 0 < t < T and any y ∈ Ω we have

√
t < dist(y, ∂B), [97, Theorem 2.1] yields the logarithmic gradient

estimate
|∇yp

B
t (x, ·)|(y)
pBt (x, y)

= |∇y log pBt (x, ·)|(y) ≤ cB,T√
t

(
1 + ϱ(x, y)√

t

)
(63)

or all x ∈ B, y ∈ Ω and 0 < t < T ; here cB,T > 0 is a constant depending on B and T . See also [58,87] and
he references cited there. We use these ingredients to prove Lemma 10.7.

roof. Set χt(x, y) := 1 + ϱ(x,y)√
t

. By (63) we have∫ T

0
e−λt

∫
B

|∇yp
B
t (x, ·)|(y)f(y)µ(dy)dt ≤ cB,T

∫ T

0
e−λtt−1/2

∫
B

χt(x, y)pBt (x, y)f(y)µ(dy)dt,

nd for any 0 < δ < T we can split the integral on the right-hand side similarly as in (30) into two integrals
ver (0, δ) × B and [δ, T ) × B, respectively. Hölder’s inequality with 1 < β < 2 and 1

β + 1
β′ = 1 and with

espect to µ(dy)dt gives∫ δ

0
e−λtt−1/2

∫
B

χt(x, y)pBt (x, y)f(y)µ(dy)dt (64)

≤
(∫ δ

0

∫
B

e−λtt−β/2χt(x, y)βpBt (x, y)f(y)µ(dy)dt
)1/β(∫ δ

0

∫
B

e−λtpBt (x, y)f(y)µ(dy)dt
)1/β′

.

sing (62) it follows that for any γ > 1 and 1
γ + 1

γ′ = 1 we have

χt(x, y)βpBt (x, y) ≤ c8 t
−d/2 χt(x, y)β exp

(
−c9

ϱ(x, y)2

c2
9γt

)
exp
(

−ϱ(x, y)2

c9γ′t

)
≤ c

c8
(c2

9γt)−d/2 exp
(

−c9
ϱ(x, y)2

c2
9γt

)
≤ c pB

c2
9γt

(x, y)

with a constant c > 0 independent of x, y and t. For the second inequality note that the function
s ↦→ (1 + s)β exp

(
− s2

c9γ′
)

is bounded on [0,+∞). Consequently the right-hand side of (64) is bounded by(
c

∫ δ

0
e−λtt−β/2PB

c2
9γt
f(x)dt

)1/β(
GB,Tλ f(x)

)1/β′

≤ c′ δ1/β−1/2
(

sup
t>0

PBt f(x)
)1/β(

GB,Tλ f(x)
)1/β′

.

We can proceed similarly for the integral over [δ, T ). Choosing

δ =
GB,Tλ f(x)

supt>0 P
B
t f(x)

(65)

nd using the estimates in the proof of Proposition 6.4 we arrive at (60). □

Now Theorem 10.6 follows quickly.
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Proof. For f ∈ Cc(Ω) Proposition 7.1 and Lemma 7.3 hold with GB,Tλ f in place of Gλf . As in the
roof of Theorem 6.1 we obtain LBF (u) ∈ Lp(M) for u = GB,Tλ f and arbitrary nonnegative f ∈ Cc(Ω)

f 1 < p ≤ +∞, and for 1 < p < +∞ also F (u) ∈ D(LB,(p)). Similarly as in (37) we see that such f satisfy
(λ− LB)F (u)


Lp(B) ≤ (3 + e−λT + c5)L ∥f∥Lp(B). The extension to f ∈ Lp(Ω) follows as in the proof of

heorem 6.1. □

As a consequence, we obtain a variant of Theorem 10.2(ii). Here and in later occurrences of GB,Tλ or
apB,T2,p (·,Ω) we agree to always use λ > 1

T .

Corollary 10.8. Let M be a complete Riemannian manifold and B ⊂ M a smooth bounded domain such
hat ∂B is infinitesimally convex. Let Ω be open and such that Ω ⊂ B and write T := dist(Ω , ∂B)2. If Σ ⊂ Ω

s closed and CapB,T2,2 (Σ ,Ω) = 0, then capC
∞
c (M)

2,2 (Σ ) = 0. In this case ∆µ|C∞
c (M̊) is essentially self-adjoint.

roof. Given ε > 0 let f ∈ L2(B) be nonnegative, zero µ-a.e. on B \ Ω , with GB,Tλ f > 1 on Σ and such
hat ∥f∥2

L2(B) < ε. Let (fn)n≥1 ⊂ Cc(Ω) be an increasing sequence of nonnegative functions approximating
pointwise from below. As in the proof of Corollary 6.3 we can find n such that GB,Tλ fn > 1 on Σ and
fn∥2

L2(B) < ε. If F is a C2-truncation, then the function v := F ◦GB,Tλ fn is in D(LB)∩C∞(B) and satisfies
v = 1 on a neighborhood of Σ . By (59) we have ∥v∥2

D(LB) ≤ c2
3 ∥fn∥2

L2(B). Now choose φ ∈ ω
C∞

c (Ω)
Σ .

Then φv ∈ ω
C∞

c (Ω)
Σ , and proceeding as in (57) we obtain ∥φv∥2

D(LB) ≤ c ∥v∥2
D(LB). This implies that

capC
∞
c (M)

2,2 (Σ ) < c ε with c > 0 independent of ε. □

For later use we provide variants of Lemmas 8.3 and 9.1. Recall (40).

Lemma 10.9. Let 1 < p < +∞, let M be a complete Riemannian manifold of dimension d and B ⊂ M a
smooth bounded domain such that ∂B is infinitesimally convex. Let Ω be open and such that Ω ⊂ B and write

:= dist(Ω , ∂B)2. Suppose that Σ ⊂ Ω is closed. If d > 2p and Hd−2p(Σ ) < +∞, then CapB,T2,p (Σ ,Ω) = 0.
f d = 2p and Hhp(Σ ) < +∞, then we also have CapB,T2,p (Σ ,Ω) = 0.

Proof. Integrating the lower estimate in (62) gives gB,Tλ (y, z) ≥ c ϱ(y, z)2−d for all y, z ∈ Ω . One can now
follow the proof of Lemma 8.3 using (61), the obvious analogs of (43) and (44) and the following variant of
Corollary 8.2. □

Corollary 10.10. Let M , B, Ω and T be as in Lemma 10.9. Then for any 1 < p < +∞ and any compact
set K ⊂ Ω we have

CapB,T2,p (K,Ω)1/p = sup
{
ν(K) : ν ∈ M+(K),

GB,Tλ ν

Lq(Ω) ≤ 1

}
,

where 1
p + 1

q = 1.

The proof is similar as in [3, Theorem 2.5.1], we sketch it for convenience.

Proof. Let Y be the set of all f ∈ Lp+(B) with f = 0 µ-a.e. on B \ Ω with ∥f∥Lp(Ω) ≤ 1 and let P(K)
e the set of all Borel probability measures on K. We have supf∈Y

∫
B
GB,Tλ νf dµ =

GB,Tλ ν

Lq(Ω) and

consequently

min sup
∫

GB,Tλ νf dµ = min

GB,Tλ ν

Lq(Ω)

.

ν∈P(K) f∈Y B ν∈M+(K) ν(K)

27
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On the other hand, minν∈P(K)
∫
B
GB,Tλ νfdµ = minx∈K G

B,T
λ f(x). The set P(K) is convex, and it is compact

ith respect to weak convergence. Also Y is convex. For any fixed f ∈ Y the map ν ↦→
∫
M
GB,Tλ νf dµ is

ower semicontinuous on P(K). Therefore the minimax theorem, [3, Theorem 2.4.1], allows to conclude that

min
ν∈M+(K)

GB,Tλ ν

Lq(Ω)

ν(K) = sup
{minx∈K G

B,T
λ f(x)

∥f∥Lp(Ω)
: f ∈ Lp(B), f = 0 µ-a.e. on B \ Ω

}
= sup

{
∥f∥−1

Lp(Ω) : f ∈ Lp(B), f = 0 µ-a.e. on B \ Ω and GB,Tλ f ≥ 1 on K
}

= CapB,T2,p (K,Ω)−1/p. □

We write CapB2,2(·,Ω) := CapB,∞2,2 (·,Ω).

emma 10.11. Let M be a complete Riemannian manifold of dimension d and B ⊂ M a smooth
ounded domain such that ∂B is infinitesimally convex. Let Ω be open and such that Ω ⊂ B and write

:= dist(Ω , ∂B)2. There is some λB,T > 0 such that for all λ > λB,T and any closed set Σ ⊂ Ω we have
he following: If d > 4, CapB2,2(Σ ,Ω) = 0 and ε > 0, then Hd−4+ε(Σ ) = 0. If d = 4, CapB2,2(Σ ,Ω) = 0 and

is a Hausdorff function satisfying (47), then Hh(Σ ) = 0.

roof. We first claim that the density gBλ := gB,∞λ of GBλ satisfies

gBλ (x, y) ≤ c ϱ(x, y)2−d x ∈ B, y ∈ Ω (66)

ith a universal constant c > 0. By [65, Theorem 3.2] we have

pBt (x, y) ≤ c8 e
c10t

µ(B(y,
√
t))

exp
(
−ϱ(x, y)2

c9 t

)
for all x, y ∈ B and t > 0 with universal positive constants c8, c9 and c10. Using (61) and choosing
λ > λB,T := 1

T ∨ c10, we obtain

gBλ (x, y) ≤ c

∫ T

0
e−(λ−c10)tt−d/2e−ϱ(x,y)2/c9tdt+ c8

µ(B)

∫ ∞

T

e−(λ−c10)te−ϱ(x,y)2/c9tdt

≤ c ϱ(x, y)2−d + c′

or all x ∈ B and y ∈ Ω , where c and c′ are positive constants not depending on x or y. Since B is bounded,
66) follows by readjusting constants.

Now we can proceed as in Lemma 9.1: If d > 4 and we had Hd−4+ε(Σ ) > 0, then Frostman’s lemma
ould produce nonzero finite ν ∈ M+(M) with support inside Σ such that ν(B(x, r)) ≤ c rd−4+ε, x ∈ Σ ,
> 0. Similarly as before we could use (61) to see thatGBλ ν2

L2(Ω) ≤ c

∫
Ω

∫
Ω

ϱ(x, z)4−dν(dx)ν(dz) < +∞,

ontradicting CapB2,2(Σ ,Ω) = 0. The argument for the limit case d = 4 is analogous. □

0.4. Essential self-adjointness and Hausdorff measures

For the case p = 2 we provide a characterization for essential self-adjointness in terms of the Hausdorff
easure and dimension of Σ .

heorem 10.12. Let M be a complete Riemannian manifold of dimension d ≥ 4 and Σ ⊂ M a closed

ubset.

28
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(i) If d > 4, µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is essentially self-adjoint, then Hd−4+ε(Σ ) = 0 for all ε > 0. If

d = 4, µ(Σ ) = 0 and ∆µ|C∞
c (M̊) is essentially self-adjoint, then Hh(Σ ) = 0 for any Hausdorff function

h satisfying (47).
(ii) If d > 4 and Hd−4(Σ ) < +∞ or d = 4 and Hh2(Σ ) < +∞, then ∆µ|C∞

c (M̊) is essentially self-adjoint.

roof. If Σ is as in (i), then capC
∞
c (M)

2,2 (Σ ) = 0 by Theorem 4.3, hence capC
∞
c (M)

2,2 (Σ0) = 0 for any compact
ubset Σ0 ⊂ Σ . If we could prove that Hd−4+ε(Σ0) = 0 for any such Σ0, the inner regularity of Hd−4+ε

n Σ would imply the result of (i). Similarly, if Σ is as in (ii), then by (10) we can find an increasing
equence (Σi)i≥1 of compact sets Σi ⊂ Σ with capC

∞
c (M)

2,2 (Σ ) = limi capC
∞
c (M)

2,2 (Σi). By hypothesis we have
d−4(Σi) < +∞ for any i, and if we could conclude that capC

∞
c (M)

2,2 (Σi) = 0, this would give the result of
ii). We may therefore assume that Σ is compact.

By compactness we can find finitely many (geodesically) convex balls Bj := B(xj , 2rj), j = 1, . . . , k, with
j ∈ Σ and rj > 0 such that Σ ⊂

⋃k
j=1 B(xj , rj). For each j set Σj := Σ ∩B(xj , rj), Ωj := B(xj , 3

2rj) and
j := r2

j/4. Choose λ > maxj λBj ,Tj
with notation as in Lemma 10.11. Clearly convex balls are infinitesimally

convex.
To see (i) note that capC

∞
c (M)

2,2 (Σj) = 0 for all j by the stated hypothesis, Theorem 10.1 and monotonicity.
onsequently for any fixed j and any δ > 0 we can find v ∈ C∞

c (M) with v = 1 on an open
eighborhood of Σj and ∥(λ− ∆µ)v∥2

L2(M) < δ. Now let φ ∈ ω
C∞

c (Ωj)
Σj

. Proceeding as in (57) we find that
(λ− ∆µ)(φv)∥2

L2(M) < c δ with a constant c independent of δ and v. On the other hand φv ∈ D(LBj ), so
that φv = G

Bj

λ f with f ∈ L2(Bj), and by locality f vanishes outside Ωj . Consequently CapBj
2,2(Σj ,Ωj) <f2

L2(Ωj) = ∥(λ− ∆µ)(φv)∥2
L2(M). Since δ was arbitrary, this gives CapBj

2,2(Σj ,Ωj) = 0, and by Lemma 10.11
also Hd−4+ε(Σj) = 0. Since this works for all j, we have Hd−4+ε(Σ ) = 0 by subadditivity, and this proves
(i) for the case d > 4. The case d = 4 is similar.

To see (ii) for d > 4, note that since Hd−4(Σj) ≤ Hd−4(Σ ) < +∞ for all j, Lemma 10.9 implies that
CapBj ,Tj

2,2 (Σj ,Ωj) = 0 for all j. Corollary 10.8 yields capC
∞
c (M)

2,2 (Σj) = 0, and given δ > 0 we can find
vj ∈ C∞

c (M) with vj = 1 on an open neighborhood Uj ⊂ Bj of Σj and ∥(λ− ∆µ)vj∥2
L2(M) < δ. Let

{φj}kj=1 ⊂ C∞
c (M) be a partition of unity subordinate to the finite open cover {B(xj , rj)}kj=1 of Σ . We may

assume that
∑
j φj = 1 on U :=

⋃
j Uj , otherwise shrink the Uj . Similarly as in (57) we see that

∥(λ− ∆µ)(φjvj)∥2
L2(M) < c δ

with a constant c > 0 independent of vj , j and δ. Clearly φjvj = φj on Uj , respectively, and consequently
v :=

∑
j φjvj equals one on the neighborhood U of Σ . Since

capC
∞
c (M)

2,2 (Σ )1/2 ≤
vD(L) =

(λ− ∆µ)v

L2(M) ≤

∑
j

∥(λ− ∆µ)(φjvj)∥L2(M) ≤ k
√
c
√
δ

ith a constant c independent of δ, it follows that capC
∞
c (M)

2,2 (Σ ) = 0, by Theorem 10.1 this entails the claim
n (ii). The arguments for d = 4 are similar. □

emark 10.13.

(i) For more specific Σ there are established results for general complete Riemannian manifolds M : For
d ≥ 4 and one-point sets Σ = {x} the essential self-adjointness of ∆µ|C∞

c (M̊) had been shown in [29],
along with counterexamples for d = 2, 3; see [81, p. 161] for the Euclidean case. For d ≥ 4 any countable
subset of M has Hd−4- resp. Hh2-measure zero, so Theorem 10.12(ii) recovers and extends the positive
result for one-point sets.
29
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(ii) For the case that Σ is a closed submanifold it had been shown in [67, Theorem 3] that ∆µ|C∞
c (M̊) is

essentially self-adjoint if any only if dimH Σ < d − 3. Theorem 10.12 requires d ≥ 4 but makes no
further assumptions on the closed set Σ .

(iii) A partial generalization of Theorem 10.12(ii) has been provided in Corollary 1.7 (a) of the recent
preprint [80].

emark 10.14. For the limit case d = 4 one can construct uncountable sets of zero Hausdorff dimension
hose removal may or may not destroy essential self-adjointness: Let M = R4 and let µ be the 4-dimensional
ebesgue measure. For any ε ≥ 0 one can construct a finite measure µε ∈ M+(R4) with compact support
ε ⊂ R4 such that

c−1(− log r)−1−ε ≤ µ(B(x, r)) ≤ c (− log r)−1−ε, x ∈ Σε, 0 < r < 1,

ith a constant c > 1 (depending on ε). See [21, Theorem 3.3 and Examples 3.8] and the references cited
here. Let h(ε)(r) := (1 + log+

1
r )−1−ε, note that h(0) = h2 with notation as in (40). Then 0 < Hh(ε)(Σε) <

∞, and all Σε are uncountable sets with dimH Σε = 0, [21, Proposition 3.5]. By Theorem 10.12(ii) the
perator ∆µ|C∞

c (R4\Σ0) is essentially self-adjoint on L2(R4), but by Remark 9.2 and Theorem 10.12(i) none
f the operators ∆µ|C∞

c (R4\Σε), ε > 0, is.

emark 10.15. Lemmas 8.3 and 9.1 together with Theorem 10.5 also permit characterizations of
p-uniqueness using Hausdorff measures. We leave this to the reader.

1. Sub-Riemannian manifolds

We provide similar results for Sub-Riemannian manifolds.

1.1. Essential self-adjointness and capacities

Let M be a smooth (connected) manifold and let V1, . . . , Vm be linearly independent smooth vector fields.
et D1 := span{V1, . . . , Vm} and Dk := Dk−1 + [D1, Dk−1], k ≥ 2. The vector fields V1, . . . , Vm are said to
atisfy the Hörmander condition if for any x ∈ M there is some k such that TxM = {Vx : V ∈ Dk}, and
f so, then (M, {V1, . . . , Vm}) is said to be a sub-Riemannian manifold. We assume this is the case. The
orresponding sub-Riemannian gradient is then defined by

∇f :=
m∑
i=1

Vi(f)Vi, f ∈ C∞
c (M).

et µ be a smooth measure (that is, a Borel measure with a smooth density in every local chart) and let divµ
e the divergence, defined as minus the formal adjoint of ∇ with respect to µ. The sub-Laplacian ∆µ, [44],
efined by

∆µf :=
m∑
i=1

V 2
i f + (divµ Vi)Vif, f ∈ C∞

c (M),

s symmetric in L2(M,µ). Let ϱ be the natural Carnot–Caratheodory metric defined by V1, . . . , Vm, [5,
ection 3.2]. If the metric space (M,ϱ) is complete, then ∆µ|C∞

c (M) is essentially self-adjoint, [91, Section
2]; see also [1, Theorem 1.5]. Given a closed set Σ ⊂ M we write again M̊ for its complement. We have the
ollowing special case of Theorem 4.3.

heorem 11.1. Suppose that (M,ϱ) is complete and Σ ⊂ M is closed. Then capC
∞
c (M)

2,2 (Σ ) = 0 if and only

f µ(Σ ) = 0 and ∆µ|C∞

c (M̊) is essentially self-adjoint.
30
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11.2. Lp-Uniqueness on Carnot groups

Let G be a simply connected Lie group whose Lie algebra is the sum g = V1 ⊕ · · · ⊕ VN of nontrivial
ubspaces Vi such that [V1,Vi] = Vi+1, i = 1, . . . , N − 1, and [V1,VN ] = {0}. Then G is called a Carnot
roup of step N , see [15]. Let V1, . . . , Vm be a basis of V1, we may interpret the Vi as left-invariant vector
elds on G; they satisfy Hörmander’s condition. We endow G with the corresponding Carnot–Caratheodory
etric ϱ, [95, Section III.4], and the Haar measure µ. Then there are positive constants c, c′ such that

c rd ≤ µ(B(x, r)) ≤ c′ rd (67)

or all x ∈ G and r > 0, where d =
∑N
i=1 i dim Vi, [95, IV.5.9 Remark]. The sub-Laplacian defined by

∆µf :=
m∑
i=1

V 2
i f, f ∈ C∞

c (G),

s symmetric with respect to µ and essentially self-adjoint. We consider a closed subset Σ ⊂ G and write
G̊ := G\Σ . Recall that in the symmetric and semibounded case L2-uniqueness is equivalent to being densely

efined and essentially self-adjoint.

heorem 11.2. Let G be a Carnot group, let Σ ⊂ G be a closed set and let 1 < p < +∞.

(i) If µ(Σ ) = 0 and ∆µ|C∞
c (G̊) is Lp-unique, then capC

∞
c (G)

2,p (Σ ) = 0 and Cap2,p(Σ ) = 0. If in addition
d > 2p, then Hd−2p+ε(Σ ) = 0 for any ε > 0.

(ii) If Cap2,p(Σ ) = 0, then capC
∞
c (G)

2,p (Σ ) = 0 and ∆µ|C∞
c (G̊) is Lp-unique. This happens in particular if

d > 2p and Hd−2p(Σ ) < +∞ or d = 2p and Hhp(Σ ) < +∞.

roof. We have Γ (f) =
∑m
i=1(Vif)2, f ∈ C∞

c (G), and [95, VIII.2.7 Theorem] the gradient estimate
Γ (pt(e, ·))(x) ≤ ct−(d+1)/2 exp

(
−ϱ(e, x)2/c′t

)
holds for all x ∈ G and t > 0 with universal positive constants

c and c′; here e denotes the group identity. This implies condition (Γp). By [95, VIII.2.9 Theorem] two-sided
eat kernel estimates of form (LY) hold, and together with (67) they give (42) and (45). Theorem 4.3,
orollaries 5.3 and 6.3 and Lemmas 8.3 and 9.1 now give the result. □

emark 11.3. For any n ≥ 1 the Heisenberg group Hn is a Carnot group of step 2, its homogeneous
imension is d = 2n+2, and this is also its Hausdorff dimension. The essential self-adjointness of the natural

sub-Laplacian on C∞
c (H1 \ {0}) had been shown in [1, Theorem 1.7]. The above Theorem 11.2 complements

this result, it applies for any n ≥ 1 and any closed set Σ ⊂ Hn.

12. RCD*(K,N) spaces

This section contains uniqueness results for Laplacians on RCD∗(K,N) spaces after the removal of a set
Σ .

Let (M,ϱ, µ) be a complete separable geodesic metric space with a locally finite Borel regular measure
µ having full support and satisfying µ(B(x0, r)) ≤ c ec

′r2 , r > 0, for some point x0 ∈ M and with positive
constants c, c′ independent of r.

Let Lip(M) denote the space of Lipschitz functions on M , and given f ∈ Lip(M) and x ∈ M , consider
its local Lipschitz constant, defined by

|Df |(x) := lim sup |f(y) − f(x)|

y→x ϱ(y, x)
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if x is not an isolated point and by |Df |(x) := 0 if x is an isolated point. Given f ∈ L2(M), its Cheeger
nergy [7,26], is defined as

Ch(f) = 1
2 inf

{
lim inf
n→∞

∫
M

|Dfn|2dµ : fn ∈ Lip(M) ∩ L2(M), lim
n

∫
M

|fn − f |2dµ = 0
}
.

We write W 1(M) := {f ∈ L2(M) : Ch(f) < ∞}. One can show that

Ch(f) = 1
2

∫
M

|∇f |2wdµ, f ∈ W 1(M),

here |∇f |w is the (unique) minimal weak upper gradient of f , see [7,86]. If M is a Riemannian manifold,
hen

|∇u|w = |∇u| µ-a.e. (68)
and the space W 1(M) has the same meaning as in Section 10.1.

The space (M,ϱ, µ) is said to be infinitesimally Hilbertian if Ch is a quadratic form. In this case
(Ch,W 1(M)) is a local Dirichlet form, [19]; we write (L,D(L)) for its generator, (Pt)t>0 for the associated
symmetric Markov semigroup and Γ (f) := |∇f |2w, f ∈ W 1(M), for the carré du champ.

Let K ∈ R and 1 ≤ N < +∞. Following [37, Theorem 7], the triple (M,ϱ, µ) may be called an
CD∗(K,N) space if

(i) each f ∈ W 1(M) with Γ (f) ≤ 1 has a continuous version, and
(ii) for each f ∈ W 1(M) and t > 0 we have the Bakry–Ledoux gradient estimate

Γ (Ptf) + 4Kt2

N(e2Kt − 1) |LPtf |2 ≤ e−2KtPt(Γ (f)) µ-a.e.

with the convention that for K = 0 the fraction K/(e2Kt − 1) is replaced by its limit 1/(2t) for K → 0.
Let (M,ϱ, µ) be an RCD∗(K,N)-space. Then it is locally compact, and the Dirichlet form (Ch,W 1(M))

is regular and strongly local in the sense of [40]. The semigroup (Pt)t>0 is strongly Feller, [6, Theorem 7.1],
and moreover, for any f ∈ L∞(M) and any t > 0 the function Ptf is Lipschitz, see [6, Theorem 7.3]. See
also [8, Theorems 6.1 and 6.8]. We write pt(x, y) to denote the heat kernel of (Pt)t>0. For any ε > 0 there
are positive constants c8 and c10 such that

1
c8µ(B(y,

√
t))

exp
(

−ϱ(x, y)2

(4 − ε)t − c10t
)

≤ pt(x, y) ≤ c8

µ(B(y,
√
t))

exp
(

−ϱ(x, y)2

(4 + ε)t + c10t
)

(69)

or all t > 0 and x, y ∈ M ; in the case K ≥ 0 the bounds remain true with 0 in place of c10. See [59,
heorems 1.1 and 1.2]. Moreover, for any ε > 0 there are positive constants c11 and c12 such that√

Γ (pt(x, ·))(y) ≤ c11√
tµ(B(y,

√
t))

exp
(

−ϱ(x, y)2

(4 + ε)t + c12t
)

(70)

or all t > 0 and µ-a.a. x, y ∈ M ; again we may replace c12 by 0 if K ≥ 0. See [59, Corollaries 1.1 and 1.2].
oreover, µ satisfies the local doubling condition: For any R > 0 there is a constant cD,R > 0 such that

µ(B(x, 2r)) ≤ cD,R µ(B(x, r)), x ∈ M, 0 < r ≤ R, (LD)

ee [93, Theorem 2.3]. In the case that K ≥ 0 the global doubling condition (D) is known to hold. The
receding gives the following variant of (LG′).

orollary 12.1. Let (M,ϱ, µ) be an RCD∗(K,N)-space with K ∈ R and 1 ≤ N < +∞. For any sufficiently
mall ε > 0 and any 0 < T < +∞ we can find 1 < α < 2 and positive constants c1 and c2 such that√

Γ (pt(x, ·))(y)
pαt(x, y) ≤ c1 e

c2t
√
t

(LG′
T)

or all 0 < t ≤ T and µ-a.a. x, y ∈ M . If (D) holds, then this remains true for T = +∞, i.e. (LG′) holds.
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Proof. The right-hand side in (70) rewrites

c11√
tµ(B(y,

√
t))

exp
(

− ϱ(x, y)2

(4 − ε)αt − c10αt
)

exp
(

(c10α+ c12)t
)

with α := 4+ε
4−ε , and the claim follows using (LD) and the left-hand side in (69). □

emark 12.2. Proceeding as in Proposition 6.4 we see that (LG′
T) implies a ‘local’ variant of (LG), valid

or all 0 < t < T .

Suppose that 1 < α < 2 and T > 0 as in (LG′
T) are fixed and choose

λ > λ0 := 2
2 − α

c2 ∨ 1
T

∨ c12.

e consider the truncated kernels

gTλ (x, y) :=
∫ T

0
e−λtpt(x, y) dt, x, y ∈ M,

nd write GTλ for the corresponding truncated resolvent operators. Using Remark 12.2 and following the
roof of Theorem 6.1 but with integration restricted to (0, T ) (cf. Theorem 10.6), we obtain the following.

heorem 12.3. Let (M,ϱ, µ) be an RCD∗(K,N)-space with K ∈ R and 1 ≤ N < +∞. Let F ∈ C2(R+)
be a function satisfying (22). Then for 1 < p < +∞, T and λ as above and any nonnegative f ∈ Lp(M) we
have F ◦ GTλ f ∈ D(L(p)) and

F ◦ GTλ f


D(L(p)) ≤ c3 ∥f∥Lp(M) with c3 > 0 independent of f . If (D) holds,
then the statements remain valid with Gλ in place of GTλ .

In the case of metric measure spaces the choice of a suitable operator core is less obvious than in the
manifold case. We consider the space

A :=
{
f ∈ Cb(M) ∩ D(L) ∩ D(L(1)) : Γ (f) ∈ L∞(M) and Lf ∈ L∞(M)

}
. (71)

It is a generator core, it satisfies the other abstract conditions, and it contains all Gλf , f ∈ Cc(M). Related
spaces had been used in [84].

Proposition 12.4. Let (M,ϱ, µ) be an RCD∗(K,N) space with K ∈ R and 1 ≤ N < +∞. Then A satisfies
conditions (L∞) and (B) and for any 1 < p < +∞ also (Cp). It satisfies condition (F) with GTλ in place of
Gλ. If (D) holds, then also (Γp) is satisfied and (F) holds in its original form.

Proof. Given f, g ∈ A, we have fg ∈ A: Clearly fg ∈ Cb(M), and by the discussion in Section 2 also
in D(L(1)) ∩ L∞(M). Since both L(1)f and L(1)g are members of L∞(X,µ) and by the Cauchy–Schwarz
inequality also Γ (f, g) ∈ L∞(M), we have L(1)(fg) ∈ L1(M) ∩ L∞(M) ⊂ L2(M) by (8) and consequently
fg ∈ D(L) by (4). Clearly also Γ (fg) ∈ L∞(M) by the product rule. This shows the initial claim and (L∞).

Given K ⊂ M compact, let f ∈ Cc(M) be nonnegative and positive at some point. Integrating the lower
bound in (69) we see that gTλ (x, y) > 0 for all x, y ∈ M , and consequently GTλ f(x) > 0 for all x ∈ M . By
continuity GTλ f then must be bounded away from zero on K, and we may assume that GTλ f > 1 on K.
Let F be a C2-truncation and set v := F ◦GTλ f ; then v = 1 on K. The chain rules (5) and (35) show that
Γ (v) ∈ L∞(M), v ∈ D(L(1)), and together with (70) and the estimates in the proof of Proposition 6.4 also

∞
Lv ∈ L (M). Theorem 12.3 gives v ∈ D(L), so that v is seen to be in A. This proves (B) and (F).
33
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We claim that A is dense in any Lp(M). By resolvent approximation the set

A0 := {Gλf : f ∈ Cc(M), λ > λ0}

s dense in Lp(M), so it suffices to show that A0 ⊂ A. Let f ∈ Cc(M) and λ > λ0, we may assume that f
s nonzero. Clearly Gλf ∈ Cb(M) ∩ D(L) ∩ D(L(1)) and LGλf = λGλf − f ∈ L∞(M). Similarly as in the
roof of Proposition 7.1 we obtain√

Γ (Gλf)(x) ≤
∫ ∞

0
e−λt

√
Γ (Ptf)(x)dt ≤

∫ ∞

0
e−λt

∫
M

√
Γ (pt(x, ·))(y)|f(y)|µ(dy)dt, (72)

nd if supp f has diameter less than
√
T , we can use (70) and (LG′

T) to bound the preceding uniformly in
by

c1 ∥f∥L∞(M)

∫ T

0
t−1/2e−(λ−c2)tdt+ c11

µ(supp f) ∥f∥L1(M)

∫ ∞

T

t−1/2e−(λ−c12)tdt < +∞.

uniform bound for
√
Γ (Gλf) with general f ∈ Cc(M) follows using a finite cover of supp f by open balls

1, . . . , Bk and applying the preceding to f1Bj
, j = 1, . . . , k in place of f . This shows that Γ (Gλf) ∈ L∞(M)

and consequently Gλf ∈ A.
Now observe that for any t > 0 we have Pt(A) ⊂ A: Given f ∈ A it is clear that Ptf ∈ Cb(M) ∩

D(L) ∩ D(L(1)). We have LPtf = PtLf ∈ L∞(M) by L∞-contractivity and Γ (Ptf) ≤ Lip(Ptf)2 < +∞
y Lipschitz regularization; here Lip(·) denotes the global Lipschitz constant. Now condition (Cp) follows
rom [38, Chapter 1, Proposition 3.3].

Under (D) we have (LG′) by Corollary 12.1, and combining with (72) we obtain√Γ (Gλf)

Lp(M) ≤

∫ ∞

0
e−λt√Γ (Ptf)


Lp(M)dt ≤ c1

∫ ∞

0
e−(λ−c2)tt−1/2dt ∥f∥Lp(M) ,

nd this implies (Γp) by density. □

2.1. Lp-Uniqueness and capacities

Using Theorem 4.3, Corollary 5.3 and Theorem 12.3 plus a slight variation of Corollary 6.3 we obtain a
haracterization of uniqueness in terms of capacities. It uses the fact that by [43, Lemma A.2] condition (A)
s satisfied for A as defined in (71). We write CapT2,2 for the capacity defined as in (19) with GTλ in place of
λ and as before, given a closed subset Σ , M̊ := M \ Σ .

heorem 12.5. Let (M,ϱ, µ) be an RCD∗(K,N) space with K ∈ R and 1 ≤ N < +∞.

(i) If Σ ⊂ M is a closed set, µ(Σ ) = 0 and ∆µ|A(M̊) is essentially self-adjoint, then capA
2,2(Σ ) = 0 and

Cap2,2(Σ ) = 0.
(ii) If Σ ⊂ M is a closed set and capA

2,2(Σ ) = 0, then µ(Σ ) = 0 and ∆µ|Ac(M̊) is essentially self-adjoint.
This happens in particular if CapT2,2(Σ ) = 0 for some T > 0.

f (D) holds, then CapT2,2 in (ii) may be replaced by Cap2,2 and analogous statements hold for Lp-uniqueness,
< p < +∞.

2.2. Essential self-adjointness and Hausdorff measures

In the special case that the volume µ equals the N -dimensional Hausdorff measure HN , one has the

following metric characterization.
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Theorem 12.6. Let (M,ϱ, µ) be an RCD∗(K,N) space with K ∈ R and 4 ≤ N < +∞ and suppose that
µ = HN . Let Σ ⊂ M be a closed set.

(i) If N > 4, µ(Σ ) = 0 and ∆µ|A(M̊) is essentially self-adjoint, then HN−4+ε(Σ ) = 0 for all ε > 0.
If N = 4, M is bounded, µ(Σ ) = 0 and ∆µ|A(M̊) is essentially self-adjoint, then Hh(Σ ) = 0 for all
Hausdorff functions h satisfying (47).

(ii) If N > 4 and HN−4(Σ ) < +∞ or N = 4 and Hh2(Σ ) < +∞, then ∆µ|A(M̊) is essentially self-adjoint.

The statements remain valid with Ac(M̊) in place of A(M̊).

Proof. By Lemma 4.4 and [43, Lemma A.2] we can make full use of Theorem 12.5. By the arguments used
in the proof of Theorem 10.12 we may assume that Σ is compact. Writing T := diam(Σ )2 + 1, integrating
the upper bound in (69) and using (73), we see that

gλ(x, y) ≤ c

∫ T

0
e−λtt−N/2 exp

(
−ϱ(x, y)2

c t

)
dt+ c T−N/2

∫ ∞

T

e−(λ−c10)tdt ≤ c ϱ(x, y)2−N

for all x and y from a neighborhood of Σ , note that for such x and y we have ϱ(x, y) ≤
√
T and therefore

can adjust the constants. Since Cap2,2(Σ ) = 0 by Theorem 12.5(i) we can now follow the arguments in the
proof of Lemma 9.1 to conclude (i). To see (ii) note that integrating the lower bound in (69) from 0 to T , we
btain gTλ (x, y) ≥ c ϱ(x, y)2−N for all x, y ∈ M . A slight variation of Lemma 8.3 shows that CapT2,2(Σ ) = 0,
nd this implies (ii) by Theorem 12.5(ii). □

emark 12.7. The assumption that µ = HN is less restrictive than it appears. In the context of
CD∗(K,N) spaces the (Ahlfors) N -regularity condition

1
c
rN ≤ µ(B(x, r)) ≤ c rN , x ∈ M, 0 < r < diam(M), (73)

here c > 1 is a fixed constant, already implies that

µ = aHN (74)

ith a multiplicative constant a > 0. A combination of results from [23,42,63,76] shows that an RCD∗(K,N)
pace (M,ϱ, µ) is rectifiable as a metric measure space with a unique dimension. More precisely, there is an
nteger number 0 ≤ k ≤ N such that one can cover M , up to a set of measure zero, with Borel sets Ui,
ach one being bi-Lipschitz equivalent to a Borel subset of Rk, and the restriction of µ to Ui is absolutely
ontinuous with respect to the k-dimensional Hausdorff measure Hk. See for instance [56, Theorem 2.4] and
he comments following it. Therefore µ itself is absolutely continuous with respect to Hk. Condition (73)
mplies that k = N , so that µ is seen to be absolutely continuous with respect to HN . Now [56, Corollary
.3] (compact case) and [20, Theorem 1.3] (general case) give (74). This remark was kindly pointed out to
s by one of the anonymous referees.

2.3. Essential self-adjointness on CAT spaces

For CAT(0) spaces the explicit assumption (73) of N -regularity can be omitted. Given a geodesic
triangle τ = τ(x0, x1, x2) in M , its comparison triangle is the unique (up to isometry) geodesic triangle
τ̄ = τ(x̄0, x̄1, x̄2) in R2 such that ∥x̄i − x̄j∥R2 = ϱ(xi, xj) for all i, j. Let [xi, xj ] denote the geodesic (’side of
τ ’) in M connecting xi and xj , and let [x̄i, x̄j ] denote the line segment in R2 connecting x̄i and x̄j . Given
a point p ∈ [xi, xj ], a point p̄ ∈ [x̄i, x̄j ] is called a comparison point for p if ϱ(xi, p) = ∥x̄i − p̄∥R2 . The
geodesic triangle τ ⊂ M is said to have the CAT(0) property if for any two points p, q on different sides of
35
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τ and corresponding comparison points p̄, q̄ ∈ τ̄ we have ϱ(p, q) ≤ ∥p̄ − q̄∥R2 . The space M is said to be a
AT(0) space (or Hadamard space) if all its geodesic triangles have the CAT(0) property. We say that M is
n RCD∗(K,N) ∩ CAT(0) space if it is both an RCD∗(K,N) and a CAT(0) space.

heorem 12.8. Let (M,ϱ, µ) be an RCD∗(K,N) ∩ CAT(0) space with K ∈ R and 4 ≤ N < +∞.

(i) If N > 4, µ(Σ ) = 0 and ∆µ|A(M̊) is essentially self-adjoint, then HN−4+ε(Σ ) = 0 for all ε > 0.
If N = 4, M is bounded, µ(Σ ) = 0 and ∆µ|A(M̊) is essentially self-adjoint, then Hh(Σ ) = 0 for all
Hausdorff functions h satisfying (47).

(ii) If N > 4 and HN−4(Σ ) < +∞ or N = 4 and Hh2(Σ ) < +∞, then ∆µ|A(M̊) is essentially self-adjoint.

he statements remain valid with Ac(M̊) in place of A(M̊).

roof. One can follow the proof of Theorem 10.12: Every metric ball in CAT(0) is geodesically convex,
ee [22, Prop. 2.2]. It follows that every closed ball B ⊂ M , equipped with the restrictions to B of the metric
nd the measure, is a compact RCD∗(K,N) space, see for instance [92, Prop. 1.4] and [8, Thm. 4.19]. By
olume comparison the measure on B is N -regular. Now Corollary 12.1 and the arguments preceding it give
stimates (61)–(63) on B. One can then pass from closed balls B to all of M by a variant of the localization
rgument in Theorem 10.12, under the present assumptions the existence of suitable cut-off functions is
nsured by [10, Prop. 6.9]: For any closed ball B and any compact subset K of its interior B, we can find a

cutoff function φ ∈ D(L) with 0 ≤ φ ≤ 1, suppφ ⊂ B, φ = 1 on K and such that both Lφ and Γ (φ) are in
L∞(M). This also allows the construction of suitable partitions of unity by the usual procedure. □

12.4. Limit spaces of non-collapsed manifolds

We observe consequences of Theorem 12.6(ii) for limits of non-collapsed manifolds. Suppose that 1 ≤ d <

+∞, v > 0 and that ((Mi, gi, pi))i is a sequence of pointed d-dimensional Riemannian manifolds (Mi, gi, pi)
having bounded Ricci curvature

|RicMi
| ≤ d− 1, (75)

and satisfying the non-collapsing condition

µMi
(B(pi, 1)) > v > 0, (76)

here µMi
denotes the Riemannian volume on Mi. Suppose that (M,ϱ, µ, p) is the limit of this sequence with

espect to pointed measured Gromov–Hausdorff convergence. The RCD∗ conditions are stable under pointed
easured Gromov–Hausdorff convergence, see [41,66,92] and [9, Remark 10.7]. Therefore also (M,ϱ, µ, p) is

n RCD∗(d− 1, d)-space, and by the Cheeger–Colding volume convergence theorem, [27, Theorem 5.9], the
easure µ is the d-dimensional Hausdorff measure on M , µ = Hd. By [28, p.11 and Corollary 5.8] there

s a closed set S ⊂ M , called the singular set, such that R := M \ S is a smooth manifold with a C1,α

Riemannian metric and dimH(S) ≤ d− 4. By [60, Theorem 7.1] we have Hd−4(S) < +∞.
On R we can consider the classical Laplacian ∆µ|C∞

c (M) with respect to µ|R, note that the C1-regularity
of the Riemannian metric is sufficient to introduce it, cf. [47, Section 3.6]. The following observation tells
that from the point of view of self-adjoint extensions the singular set S ’can be neglected’.

Theorem 12.9. Let d ≥ 4 and let (M,ϱ, µ, p) be the pointed measured Gromov–Hausdorff limit of a sequence
((Mi, gi, pi))i of pointed d-dimensional Riemannian manifolds satisfying (75) and (76) and let S ⊂ M denote

the singular set.
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(i) We have C∞
c (R) ⊂ Ac(R), and the operator L|Ac(R) is an extension of the classical Laplace operator

∆µ|C∞
c (R) on the Riemannian manifold R.

(ii) The operator L|Ac(R) is essentially self-adjoint on L2(M), and its unique self-adjoint extension is
(L,D(L)).

(iii) The space C∞
c (R) is dense in Ac(R) with respect to ∥ · ∥D(L). The operator ∆µ|C∞

c (R) is essentially
self-adjoint on L2(M), and its unique self-adjoint extension is (L,D(L)).

Given λ > 0 we write

Chλ(u, v) := Ch(u, v) + λ ⟨u, v⟩L2(M) , u, v ∈ W 1(M), (77)

s usual. By
D(u, v) :=

∫
R

⟨∇f,∇g⟩TR dµ, u, v ∈ W 1(R),

e denote the classical Dirichlet integral on the Riemannian manifold R, and we use the notation Dλ with
nalogous meaning as in (77).

roof. Any u ∈ C∞
c (R) is also in Cc(M) ∩ Lip(M) and therefore in W 1(M). By (68) we have

Ch(u, v) = D(u, v), u ∈ C∞
c (R), v ∈ Cc(M) ∩W 1(M). (78)

iven u ∈ C∞
c (R) we write f := (λ− ∆µ)u. Since f ∈ Cc(M) by locality, we have Gλf ∈ A by the proof of

roposition 12.4. Using (78) it follows that

Chλ(u, v) = Dλ(u, v) = ⟨f, v⟩L2(R) = ⟨f, v⟩L2(M) = Chλ(Gλf, v)

or any v ∈ Cc(M) ∩ W 1(M), and the density of such functions in W 1(M) implies that u = Gλf .
onsequently C∞

c (R) ⊂ Ac(R). If u ∈ C∞
c (R), then∫

M

(Lu)v dµ = −Ch(u, v) = −D(u, v) =
∫

R
(∆µu)v dµ

or all v ∈ Cc(M) ∩ W 1(M) and therefore Lu = ∆µu. This shows (i). Statement (ii) is immediate from
heorem 12.6(ii). To see (iii) let W 1(R), W 1

0 (R) and W 2
0 (R) be as in Section 10.1 and let (LR,W 2

0 (R))
e the Dirichlet Laplacian on R. By (68) we have Ac(R) ⊂ W 1(R) ∩ Cc(R). On the other hand

1(R) ∩ Cc(R) ⊂ W 1
0 (R): If u ∈ W 1(R) ∩ Cc(R), φ ∈ C∞

c (R) is a bump function equal to one on suppu
nd (PR

t )t>0 is the Dirichlet heat semigroup on L2(R) generated by (LR,W 2
0 (R)), then φPR

t u ∈ C∞
c (R)

or each t > 0 and
lim
t→0

φPR
t u = u (79)

n W 1(R). Given u ∈ Ac(R) ⊂ W 1
0 (R), we have D(u, v) = Ch(u, v) for all v ∈ W 1

0 (R) and as a consequence,
D(u, v)| ≤ ∥Lu∥L2(M) ∥v∥L2(R). This implies that u ∈ W 2

0 (R) and LRu = Lu. Proceeding similarly as in
57), we obtain (79) in W 2

0 (R), endowed with the graph norm for LR, and therefore in D(L). This shows
he claimed density, which implies that also the closure of ∆µ|C∞

c (R) on L2(M) equals (L,D(L)). □
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