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Abstract. We study the impact of the dark matter velocity distribution modelling on signals
from velocity-dependent dark matter annihilation in Milky Way dwarf spheroidal galaxies.
Using the high resolution APOSTLE simulations, we identify analogues corresponding to
Milky Way dwarf spheroidal galaxies, and from these directly determine the dark matter
pair-wise relative velocity distribution, and compare to best-fitting Maxwell-Boltzmann dis-
tribution models. For three velocity-dependent annihilation models, p-wave, d-wave, and the
Sommerfeld model, we quantify the errors introduced when using the Maxwell-Boltzmann
parameterization. We extract a simple power-law relation between the maximum circular
velocity of the dwarf spheroidal analogue and the peak speed of the Maxwell-Boltzmann
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distribution. We show that this relation can be used to accurately calculate the dark matter
relative velocity distribution, and find that it allows us to estimate the dark matter anni-
hilation signal without the need to directly calculate the relative velocity distribution for
each galaxy. The scatter in the J-factors calculated from the analogues dominates the uncer-
tainty obtained when compared to the J-factor as determined from the observational data
for each dwarf spheroidal, with the largest scatter from d-wave models and the smallest from
Sommerfeld models.

Keywords: dark energy theory, dark matter simulations, dwarfs galaxies, hydrodynamical
simulations
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1 Introduction

Indirect dark matter (DM) searches strive to identify Standard Model particles produced
through the annihilation or decay of DM particles in astrophysical environments [1, 2]. These
searches require identifying environments of high DM density, and understanding how DM
is distributed in these environments. Because of their high DM-to-luminous mass ratios as
obtained from their stellar kinematics, and their relative proximity, dwarf spheroidal galaxies
(dSphs) of the Milky Way (MW) are ideal candidates for indirect DM searches [3], in par-
ticular for searches using high energy gamma rays. Fermi-LAT observations of gamma rays
from dSphs provide the most stringent exclusion limits on the DM annihilation cross section
for DM masses up to ∼ TeV [4], while H.E.S.S. [5] and HAWC [6] set the strongest bounds
for DM masses greater than 1TeV.

The aforementioned bounds on the annihilation cross section obtained from dSphs typ-
ically assume the s-wave DM annihilation model in which the annihilation cross section is
velocity-independent. However, most generally, the DM annihilation cross section may de-
pend on the relative DM velocity, in which case the phenomenology differs from that of pure
s-wave models. For example, in Sommerfeld enhanced models, the annihilation is typically
enhanced in dSphs relative to the s-wave models, because the cross section is inversely pro-
portional to the velocity [7]. On the other hand, in the case of p and d-wave models, the cross
section is proportional to the second and fourth powers of the velocity, respectively [8, 9]. In
these latter two cases, the emission from dSphs is expected to be suppressed due to their low
velocity dispersions.

The astrophysical dependence of the DM annihilation signal is parametrized by a quan-
tity denoted as the J -factor, which is an integral over the DM phase-space distribution. For
annihilation cross sections that are independent of relative DM velocity, or s-wave models,
the J -factor is simply reduced to an integral over the square of the DM density profile. To
account for the p-wave, d-wave, or Sommerfeld models, the J -factor must also incorporate
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the DM pair-wise relative velocity distribution [8–17]. Such J -factors have been estimated
for dSphs in previous work for different annihilation channels [7–9, 18].

The previous determinations of the velocity-dependent J -factors from dSphs rely on
assumptions for the form of the DM relative velocity distribution. Two common assump-
tions are 1) a Maxwell-Boltzmann (MB) distribution, and 2) an isotropic model in which the
relative velocity distribution is derived from the density profile under an equilibrium assump-
tion using an Eddington inversion. While both of these models may be well-motivated from
theoretical considerations, they have yet to be rigorously tested against the distributions in
dSph-like subhalos in cosmological simulations.

In this paper, we extract the DM density and relative velocity distributions of the MW’s
dSphs from the APOSTLE hydrodynamical simulations [19, 20], and compute the J -factors
for the simulated dSphs for the s-wave, p-wave, d-wave, and Sommerfeld models. To extract
the relative velocity distributions, we first identify analogues of MW satellite galaxies in the
APOSTLE simulations by matching observed properties such as the circular velocity at the
half-light radius and stellar mass to the corresponding subhalos in the simulation. From these
best analogue candidates, we extract the DM relative velocity distribution, and thereby the
J -factors for the MW analogue subhalos. As a result, we are able to take a step towards
estimating a quantity akin to a cosmic halo-to-halo scatter in the J -factors, both for the
case of velocity independent and velocity-dependent models.

As an additional key component of our analysis, we compare the DM relative velocity
distributions from the subhalos to MB distributions, from which we ascertain how well the
MB distribution works over the entire range of resolved subhalo mass scale in APOSTLE.
Our comparison to the MB distribution, as well as the calculation of the J -factors from
cosmological simulations, is similar in spirit to recent analyses [15] of the J -factor and the
expected signal from the MW’s smooth halo in velocity-dependent DM annihilation cross
section model using the Auriga [21] and APOSTLE [19, 20] hydrodynamical simulations.
These results find that the DM relative velocity distribution is well-described by the MB
distribution, in particular in simulations with the full effects of baryonic physics included.

This paper is organized as follows. In section 2 we discuss the details of the simulations
that we use. In section 3, we discuss the properties of the dSph analogues. We discuss our
criteria for selecting them in section 3.1, and compute their density profiles and relative veloc-
ity distributions in sections 3.2 and 3.3, respectively. In section 4 we outline the calculation
of the J -factors for the different DM annihilation models we consider for a variety of dSphs.
In section 5 we present the results and compare to those previously found in the literature.
Finally, in section 6 we discuss our results and summarize our conclusions.

2 Simulations

In this work we use a set of hydrodynamical simulations of MW-mass halos from the APOS-
TLE project [19, 20]. APOSTLE simulations use the same code as the EAGLE project [22, 23]
with the EAGLE reference model Ref-L100N1504 calibration, applied to zoom simulations
of the Local Group analogue systems containing two MW-mass halos. The EAGLE simula-
tions use a modified version of the Gadget-3 Tree SPH code [24], the anarchy version of
SPH [22, 25], and a galaxy formation subgrid model that includes photoionization, metal-line
cooling, star formation, and feedback from active galactic nuclei and star formation. The
cosmological parameters are from WMAP-7: Ωm = 0.272, Ωb = 0.0455, h = 0.704. We use
five APOSTLE volumes, each containing a MW-like and a M31-like halo, simulated at the
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highest resolution available, which we refer to AP-L1 (i.e. Level 1 or high resolution). The
DM particle mass at this resolution is mDM ' 5 × 104 M�, the initial gas particle mass is
mg ' 1.0× 104 M�, and the maximum physical softening length is ε = 134pc.

For the analysis in this work, the stars and DM particles are identified as belonging
to a subhalo using the subfind algorithm [26]. Here a subhalo is specified with a subset
of particles within the main halo which are self-bound. We restrict our selection to include
only those subhalos within 300 kpc of either the MW-like halo or the M31-like halo identified
in each of the five APOSTLE volumes. We further restrict our selection to include only
subhalos with nonzero stellar mass and having a total mass of ≈ [107–1010] M�, which is
representative of the mass range of our dSph candidates. In total this leaves us with 2074
subhalos across the ten main halos.

3 Dwarf spheroidal galaxy analogues

In this section, we discuss the properties of the dSph analogues that we identify in our
simulations. We begin by defining a broad matching criteria to map dSphs onto subhalos in
the APOSTLE simulations, and then move onto characterizing the density profiles of these
systems, and finally determine the DM velocity distributions in the analogues.

3.1 Selection of dSph analogues

The selection of specific dSph analogues was performed using two matching criteria. The
first criterion involves matching the observed circular velocity at the half-light radius of the
dSphs [27]. For each subhalo, we first calculate the circular velocity, Vc(r) =

√
GM(< r)/r,

where M(< r) is the total mass enclosed within a sphere of radius r centered on the subhalo.
We then compute Vc(r1/2), or V1/2, where r1/2 is the 3D half-light radius for each of our
dSph counterparts [28]. Most generally, we require that our dSph analogues have a circular
velocity at the half-light radius within 2σ of the observed value, where σ is the uncertainty
from observations, which is typically a few km/s for the dSphs that we consider. The only
exception is for the Draco analogues, which, as described below, we require it to be within
3σ of the observed value, due to the difficulty in identifying a matching analogue.

As our second criterion, we require that the subhalos have a stellar mass that is con-
sistent with the measured stellar mass of its observed counterpart [27]. Further, considering
that typical stellar mass-to-light ratios for dSph stellar populations are in the range ∼ 1–3,
and extending this range by 50% to increase the number of matching analogues, we take the
range of dSph stellar masses that we consider to be within the range 0.5–4.5 of the measured
stellar mass of the dSph.

Given the relatively small sample of satellites in our simulations, and the precise mea-
surements of the stellar mass and circular velocity, it is expected that our matching criteria
will not produce exact dSph analogues. This is particularly true when considering the dis-
tance to the dSph. In the cases in which we find a matching circular velocity and stellar
mass, but there is a significant difference between the distance to the observed satellite and
the distance to the simulated satellite, we simply shift the simulated satellite to a distance
corresponding to that of the observed satellite [29]. We choose this approach because we are
most interested in the J -factors below, which are a sensitive function of the dSph distance.

With our criteria we identify 126 unique subhalos in AP-L1 as dSph analogues. We
further refine our selection of dSph analogues based on the modeling of their DM density
profiles, as discussed in section 3.2. This reduces our number of unique subhalos in AP-L1
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dSph Analogue N Mobs
? [M�] M? [M�] V obs

1/2 V1/2 Vmax log10(J̃s)

[km/s] [km/s] [km/s] [GeV2 cm−5]

Canes Venatici I (1) 21 2.3× 105 5.66× 105
13.2 14.56 15.39 17.42

Canes Venatici I (2) 2.50× 105 14.79 16.05 17.44

Carina (1) 17 4.3× 105 2.38× 105
11.1 11.30 13.14 18.52

Carina (2) 9.30× 105 11.37 22.89 18.15

Draco (1) 4 2.2× 105 8.91× 105
17.5 14.92 24.32 18.81

Draco (2) 8.89× 105 15.28 29.01 18.82

Fornax (1) 4 1.7× 107 1.36× 107
18.5 18.79 20.38 18.01

Fornax (2) 1.20× 107 18.36 21.96 17.87

Leo I (1) 19 5.0× 106 3.27× 106
15.6 15.24 20.37 17.63

Leo I (2) 3.52× 106 15.15 24.81 17.64

Leo II (1) 47 7.8× 105 1.45× 106
11.4 12.15 20.13 17.66

Leo II (2) 6.86× 105 10.58 21.90 17.66

Sculptor (1) 9 2.5× 106 1.40× 106
15.6 14.97 26.11 18.58

Sculptor (2) 5.52× 106 15.81 27.73 18.61

Sextans (1) 3 5.9× 105 3.89× 105
12.3 12.77 12.79 17.88

Sextans (2) 3.88× 106 11.61 11.70 17.91

Ursa Minor (1) 23 3.9× 105 4.61× 105
19.9 19.13 25.52 18.76

Ursa Minor (2) 8.91× 105 19.28 24.32 18.74

Table 1. The number of subhalos identified as dSph analogues, N , stellar mass, M?, the circular
velocity at the half-light radius, V1/2, the maximum circular velocity, Vmax, and the s-wave J -factors
of our selected dSph analogues in AP-L1. The observed stellar mass, Mobs

? , and the observed circular
velocity at the half-light radius, V obs

1/2 of the dSphs are also given in the table. Note that a given
subhalo may be identified as being more than one dSph analogue.

to 100 subhalos. The results of our search for analogues are shown in table 1. For each
dSph, the number of subhalos identified as analogues, N , is given in the second column of
this table. Note that N may contain subhalos that are analogues of multiple dSphs. For
each dSph, we also show the top two best matching analogues based on their s-wave J -factor
being closest to those of ref. [18] (also shown in figure 7 in section 5), as well as several
properties for each analogue. In several instances, for example with Sculptor, Carina, and
Sextans, we find good matches between a simulated satellite and the observed system. On
the other hand, as alluded to above, for Draco we are unable to locate reasonable analogues
using the matching criterion of 2σ uncertainty for V1/2. This is similar to what has been
found in previous similar studies [30], as Draco is less dense than is predicted given its best
matching analogues in simulations. Allowing up to 3σ uncertainty for V1/2, we do obtain
four Draco analogues across the ten simulated halos.
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Figure 1. Spherically-averaged DM density profiles for a subset of five subhalos in the AP-L1
simulations, with masses in the range of 7× [107–109] M�. The black portion of each curve represents
the density at radii smaller than 268 pc, i.e. twice the gravitational softening length. The lighter
shaded region represents the 1σ error, found using Poisson statistics. The dashed green line shows
the best fit Einasto profile for the 6.0× 108 M� subhalo. The black cross on each curve specifies the
radius containing half the stellar mass of each subhalo.

3.2 Dark matter density profiles

We now move on to characterizing the DM density profiles of the subhalos. Characterizing
the density profiles are important since they enter into the calculation of the DM annihilation
rate through the J -factor. We follow the typical assumption that the particle distributions
in the subhalos are spherically symmetric, which has been shown to be a good assumption
for simulated dwarf galaxies in APOSTLE [31].

In figure 1 we show the spherically-averaged DM density profiles of five example subhalos
of different masses. For each simulated subhalo, the DM density is obtained from the DM
mass in spherical shells of width ranging from [0.1–1.0] kpc, and plotted as a function of
r/Rmax, where r is the distance from the subhalo center, which is identified as the center of
potential of that subhalo, and Rmax is the radius at which the rotation curve of the subhalo
reaches its maximum value. The bin width of the spherical shells was chosen such that there
is a minimum of 10 particles per shell.

As is shown in figure 1, the density profiles start to flatten towards the inner regions
of the subhalos. This is due to the resolution limit of the simulations, which is determined
by the gravitational softening length, ε = 134pc. In figure 1, the black portion of the curves
represent the density profiles at radii less than twice the softening length. The black cross
on each curve specifies the radius containing half of the stellar mass of each subhalo. An
important question regarding the flattening of the density profiles is whether it can be a
result of the baryonic feedback prescription used in the simulations. However, we note that
this is not the case in our simulations. In particular, refs. [32] and [33] showed that the
EAGLE baryonic feedback model, which is also used by APOSTLE, does not create cores in
dwarf galaxies.

– 5 –
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We model the DM density profile of the simulated subhalos by the Einasto profile,

ρ = ρ−2 exp
(
− 2
α

[(
r

r−2

)α
− 1

])
, (3.1)

where ρ−2 and r−2 are the density and radius at which ρ(r) ∝ r−2, and α is a parameter
which specifies the curvature of the density profile. We set this parameter to α = 0.16 [34],
so only the two parameters ρ−2 and r−2 are varied. For each subhalo, we find the best fit
Einasto profile in the range of 2ε < r < 2Rmax, using 2ε rather than ε to be conservative
and avoid resolution issues. As an example, in figure 1 the dashed green line shows the
best fit Einasto profile for the 6.0 × 108 M� subhalo. It is clear that the central region of
the simulated subhalos are under-dense compared to what is expected from the Einasto fit,
which is typically true throughout all the simulated subhalos examined.

We note that for some of the more massive subhalos, the density profiles show a flatten-
ing even for radii larger than 2ε. To take this into account, we also find the best fit Einasto
profiles in the range of 3ε < r < 2Rmax. To ensure that our results are robust with respect
to the specific range used for fitting the density profiles, we proceed as follows. We calcu-
late the J -factors of our dSph analogues using the best fit Einasto profile in the range of
2ε < r < 2Rmax and compare the results to the J -factors calculated using a best fit Einasto
profile in the range of 3ε < r < 2Rmax. We then compute the ratio of these two J -factors
and remove any dSph candidate that has a J -factor ratio which exceeds by more than 1σ
from the mean J -factor ratio. This cut reduces our number of analogues from 126 to 100,
as mentioned previously.

3.3 Relative velocity distributions

For velocity-dependent annihilation models, the J -factors depend not only on the DM density
profile, but also on the DM pair-wise, or relative velocity distribution in the subhalo. We
now describe how we extract the DM relative velocity distributions in radial shells in each
subhalo.

We first extract the position vector, x, and the velocity vector, v, of the simulation
particles belonging to each subhalo, with respect to the center of that subhalo. Following the
notation used in ref. [15], we define f(x,v) such that f(x,v) d3x d3v is the number of DM
particles within a phase space volume x + d3x and v + d3v. The probability distribution of
DM velocities at a position x can be written as

Px(v) = f(x,v)
ρ(x) , (3.2)

where the DM density at x is given by

ρ(x) =
∫
f(x,v)d3v. (3.3)

For a given pair of DM particles with velocities v1 and v2, we can write the individual
velocities in terms of the center-of-mass velocity, vcm, and the relative velocity, vrel ≡ v2−v1,
as v1 = vcm + vrel/2 and v2 = vcm − vrel/2. We can then write a general expression for the
distribution of relative velocities at a position x,

Px(vrel) =
∫
Px(v1 = vcm + vrel/2)Px(v2 = vcm − vrel/2) d3vcm. (3.4)
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Figure 2. The DM relative velocity modulus distribution in 1 kpc shells for a typical subhalo of mass
7.0 × 109 M�. The different panels show five different 1 kpc shells, starting from the shell closest
to the subhalo center in the upper left, and continuing to the shell furthest from the center in the
bottom center panel. The bottom right panel shows the DM relative velocity modulus distribution
of all particles in the subhalo. The purple shaded bands specify the 1σ Poisson error in the speed
distributions, while the black solid lines show the best fit MB distribution in each case.

The DM relative velocity modulus distribution, Px(|vrel|), is related to the relative
velocity distribution, Px(vrel) by

Px(|vrel|) = v2
rel

∫
Px(vrel) dΩvrel , (3.5)

where dΩvrel is an infinitesimal solid angle along the direction vrel. It is normalized to unity,
such that

∫
Px(|vrel|)dvrel = 1.

To extract the relative velocity modulus distributions for each subhalo, we define spher-
ical shells of width ranging from [0.1–1.0] kpc, progressing radially outward from the subhalo
center. In each shell, we extract the three components of the velocity vectors, and find
the modulus of the pairwise relative velocity distributions for all DM particles in the shell.
The bin width of the spherical shells was chosen such that there are at least 10 particles in
each shell.

Figure 2 shows the DM relative velocity modulus distributions for an example subhalo.
The speed distributions are shown in spherical shells of 1 kpc width1 at different radii from
the center of the subhalo, starting from a shell enclosed within 1 < r < 2 kpc from the
subhalo center, and going to a shell with 5 < r < 6 kpc from the center. The bottom right
panel of the figure shows the DM relative speed distribution for all particles in the subhalo.
The purple shaded bands specify the 1σ Poisson error in the speed distributions.

Next, we compare the DM relative speed distributions with a MB distribution. In the
Standard Halo Model [35], the DM velocity distribution is an isotropic MB distribution with

1We use spherical shells of 1 kpc width in figure 2 for clarity of presentation, while in the analysis of the
J-factors we use shells of width ranging from [0.1–1.0] kpc.

– 7 –
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a most probable speed of
√

2σ, where σ is the one dimensional velocity dispersion. In this
model, the relative velocity distribution Px(vrel) is also a MB distribution, but with a one
dimensional relative velocity dispersion of

√
2σ [11]. For each subhalo, we find the best-fit

MB relative speed distribution,

PMB(|vrel|) = 4v2
rel√
πv3

p

exp
(
−v

2
rel
v2
p

)
, (3.6)

where vp is the best fit peak speed, i.e. the most probable speed of the DM particles.
Once we have the empirical Px(|vrel|) for each spherical shell in a subhalo, we can find

the best fit peak speed, vp, in eq. (3.6) for each subhalo, by fitting the DM relative speed
distributions in each shell to the MB distribution. In figure 2 we show the best fit MB speed
distribution for each of the six 1 kpc shells as solid black lines. As it is clear from the figure,
the MB distribution provides a good fit to the DM relative speed distribution of the simulated
subhalo at all radii. Notice that the data shown in figure 2 is for a “typical” subhalo analogue
and is representative of the DM relative speed distributions of the other simulated subhalos
studied in this work.

Another method to determine the best fit peak speed of the MB distribution for each
subhalo is to fit the relative speed distribution of all DM particles in the subhalo, instead of
dividing it by shells. This process is much more computationally intensive, but provides an
excellent check when compared to the mean peak speed found from the results of dividing
the subhalo into different shells. Both of these methods lead to a power law relation between
the best fit peak speed of the MB distribution and the maximum circular velocity, Vmax, of
the subhalo,

vp = (1.057± 0.016) (Vmax)1.052±0.004 , (3.7)

where vp and Vmax are in units of km s−1, and the errors here represent the 1σ error on each
fit parameter returned by the lmfit package for Python.

Figure 3 shows the relation between the best fit peak speed of the MB distribution
and the maximum circular velocity of the subhalos in AP-L1 using the two methods for
determining vp. The blue points are computed using all the DM particles in the subhalos,
and the orange points are computed by first finding the best fit peak speed for different shells,
and then taking the mean of the peak speeds across all shells. Also shown in the plot is the
best fit power law using the mean of the peak speed shown as a solid line, and quantified in
eq. (3.7). The two methods of obtaining the best fit peak speed agree within their 1σ errors.

4 J-factors

With the DM density profiles and relative velocity distributions now determined, we can
move on to calculating the velocity-dependent J -factors. Here we lay out the formalism for
the J -factor calculation for each of the annihilation cross section models that we consider.
The notation closely follows ref. [15].

The DM annihilation cross section, σA, averaged over the relative velocity distribution
at a spatial location, x, is given by

〈σAvrel〉(x) =
∫
d3vrelPx(vrel)(σAvrel). (4.1)

In the usual s-wave annihilation, σAvrel is independent of the relative velocity. However,
for velocity-dependent annihilation models, σAvrel depends on the relative velocity and can
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Figure 3. The best fit peak speed, vp, of the MB distribution as a function of the maximum circular
velocity, Vmax, for all selected subhalos in AP-L1 determined by finding the best fit peak speed in
different radial shells and taking the mean across all shells (orange dots), or by using a single MB fit
across all particles in a subhalo (blue dots). The best fit power law (eq. (3.7)) using the orange points
is shown as a solid black line.

be parametrized as σAvrel = (σAvrel)0(vrel/c)n. Here (σAvrel)0 is the velocity-independent
component of the annihilation cross section, and n depends on the specific DM annihila-
tion model. We consider the following cases: n = 0 (s-wave annihilation), n = 2 (p-wave
annihilation), n = 4 (d-wave annihilation), and n = −1 (Sommerfeld-enhanced annihilation).

For the general velocity-dependent annihilation, the expected gamma-ray flux from DM
annihilation can then be written as

dΦγ

dE
= (σAvrel)0

8πm2
χ

dNγ

dE
Js, (4.2)

where mχ is the DM particle mass, dNγ/dE is the gamma-ray energy spectrum produced
per annihilation, and Js is the effective J -factor defined as [9, 15],

Js(θ) =
∫
d`
〈σAvrel〉
(σAvrel)0

[ρ(r(`, θ))]2

=
∫
d`

∫
d3vrelPx(vrel)

(
vrel
c

)n
[ρ(r(`, θ))]2 . (4.3)

Here ` is the distance from the Sun to a point in the dSph (i.e. line of sight), θ is the opening
angle between the line of sight ` and the distance D from the Sun to the center of the dSph,
and r2(`, θ) = `2 + D2 − 2`D cos θ is the square of the radial distance measured from the
center of the dSph. This is with the assumption that the dSph is spherically symmetric. The
Js-factor integrated over solid angle is then given by

J̃s(θ) = 2π
∫ θ

0
Js(θ′) sin θ′dθ′. (4.4)
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Figure 4. J̃s-factor for one Carina dSph analogue in AP-L1 for the s-wave (top left), p-wave (top
right), d-wave (bottom left), and Sommerfeld (bottom right) annihilation models. In the s-wave panel,
the solid and dashed lines represent using the empirical and an Einasto fit to the DM density profile,
respectively, for the J̃s-factor calculation. In the p-wave, d-wave, and Sommerfeld panels, the solid
and dashed lines represent using the empirical DM relative velocity distribution and a MB distribution
with a peak speed determined from the power law relation in eq. (3.7), respectively.

5 Results

In this section we present the J̃s-factors of the dSph analogues in AP-L1 for the different
velocity-dependent annihilation models. We also quantify the errors introduced in the J̃s-
factors if we model the DM relative velocity distribution of the dSph as a MB distribution.

In figures 4 and 5 we show the J̃s-factors as a function of the opening angle, θ, for a
subset of simulated dSphs selected to be analogues of Carina and Sculptor, based on the
criteria discussed in section 3.1. The four panels of the figures show the J̃s-factors for the
four annihilation models. In the s-wave panel, the results are shown using two methods of
computing the DM density profiles. In one method the density profiles are directly computed
from the simulation data, and in the other method an Einasto fit to the density profiles is
used. In the p-wave, d-wave, and Sommerfeld panels, the best fit Einasto density profiles are
used, while two methods are employed to compute the DM relative velocity distributions. In
one method the velocity distributions are extracted from the simulation data directly, and in
the other method the power law relation in eq. (3.7) is used to find the MB peak speed for
each dSph analogue from its maximum circular velocity.

We can clearly see from the s-wave panel of figures 4 and 5 that the J̃s-factors are
larger when the best fit Einasto density profile is used. This is due to the empirical density
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Figure 5. Same as figure 4 but for one Sculptor dSph analogue in AP-L1.

profiles being under-dense in the inner regions of the dSph analogues, which results in smaller
J̃s-factors obtained from the simulation data compared to those obtained from the Einasto
profile. It is also clear from the other panels of the figures that modelling the DM relative
velocity distribution using a MB distribution introduces a degree of error into the J̃s-factors
in all three velocity-dependent models, which depends on the specific model. Nevertheless,
for all three velocity-dependent models, the errors introduced in the J̃s-factors due to the
MB modelling of the velocity distributions are much smaller than the errors introduced due
to using the under-dense empirical density profiles.

We can quantify more precisely the error introduced in the J̃s-factors if we model
the relative velocity distribution of the dSph as a MB distribution. For this, we compare
the J̃s-factor of all subhalos using the DM relative velocity distributions extracted from
the simulation data with those computed using (a) the best fit MB velocity distribution in
different radial shells, (b) the best fit MB distribution for all particles in the subhalo, (c) a
MB distribution with a peak speed set to the mean of the best fit MB peak speeds across all
radial shells, and (d) a MB distribution with a peak speed found using eq. (3.7). The ratios
of the J̃s-factors obtained directly from the simulation data to those computed from a MB
velocity distribution, J̃MB

s , using each of the above methods are shown in figure 6 for the
p-wave, d-wave, and Sommerfeld models.

We can see from figure 6 that fitting a MB distribution in each radial shell minimizes
the error for all annihilation models. The errors introduced by the other three methods
are similar to each other, especially for the p-wave and Sommerfeld models. In table 2,
we quantify the errors introduced in the J̃s-factors using all four methods for computing the
velocity distribution. At high Vmax, we find that fitting a MB distribution in each radial shell

– 11 –



J
C
A
P
0
3
(
2
0
2
3
)
0
2
1

Figure 6. The ratio of the J̃s-factors obtained from the empirical DM relative velocity distributions
and those found from fitting a MB distribution: in different radial shells (black), to all particles in
the dSph (blue), using the mean peak speed found from the best fit MB peak speeds across all shells
(green), and using the peak speed found from eq. (3.7) (orange). The solid lines show the mean ratios
as a function of the dSph’s maximum circular velocity, while the dashed lines show the upper and
lower 1σ uncertainties. The left, middle, and right panels show the results for the p-wave, d-wave,
and Sommerfeld models, respectively.

MB Shells All particles Mean across shells Power law
p-wave [4.14, 1.25] [11.24, 6.50] [12.16, 4.54] [13.25, 8.82]

d-wave [5.99, 1.70] [24.04, 9.92] [25.30, 5.91] [26.38, 14.86]

Sommerfeld [2.00, 1.06] [12.90, 2.17] [13.90, 2.45] [14.43, 2.93]

Table 2. The average percent error of the J̃ -factors of each method of calculation for the velocity-
dependent annihilation models. Shown are the average percent errors for subhalos with 3.09 ≤ Vmax ≤
4.30 km/s (left numbers in the intervals) and subhalos with 43.16 ≤ Vmax ≤ 60.0 km/s (right numbers
in the intervals).

introduces an average error of 1.06–1.70%, using the best fit MB distribution for all particles
in a subhalo introduces an average error of 2.17–6.50%, using the mean of MB fits across all
radial shells introduces an average error of 2.45–5.91%, and using a MB distribution from
eq. (3.7) introduces an average error of 2.93–14.86% for the velocity-dependent annihilation
models. We find that the average percent error increases at lower Vmax for all annihilation
models. We also find that the average percent errors are generally smaller for the Sommerfeld
model in each method of calculation.

We note that the computational time saved using a MB distribution with a peak speed
found from the power law fit (eq. (3.7)) to model the relative velocity distribution rather
than extracting it from the simulation data directly is substantial. In particular, we found
that for our subset of subhalos selected from the AP-L1 simulations, the time it takes to
compute the J̃s-factors using the empirical data is ∼ 20, 000 times longer than the time it
takes to compute them using the MB distribution.
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Figure 7. Integrated J̃s-factors over cones with opening half-angles of 0.5◦ for nine dSph analogues
for the s-wave (blue), p-wave (red), d-wave (orange), and Sommerfeld (green) models. The J -factors
are calculated using the DM relative velocity distributions found empirically (circle), using a MB
distribution with a peak speed from the power law in eq. (3.7) (triangle), and comparing to the data
in ref. [18] (square).

Next, we compare our J̃s-factor results to those recently found in the literature for
specific dSphs [18]. In figure 7, we show the comparison of our J̃s-factors for nine dSph
analogues obtained using the simulation data directly and using a MB velocity distribution
with a peak speed obtained from the power law fit, with those presented in figure 1 of
ref. [18]. The J̃s-factors in ref. [18] are calculated using eq. (4.3), integrated over cones with
various opening half-angles. We choose to compare to the J̃s-factors integrated over a cone
with an opening half-angle of 0.5◦, simply because all the dSph analogues are extended out
at minimum to 0.5◦, but not to the next data point of 10◦. Furthermore, to compare our
results to those of ref. [18], we compute our J̃s-factors by positioning the simulated dSph
analogues at the same galactocentric distance as their observed dSph counterparts, obtained
from ref. [29].

In ref. [18] a Navarro-Frenk-White (NFW) profile was used to model the density profiles
of the dSphs, and the DM velocity distributions were assumed to be related to the density
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profiles by the Eddington inversion formula [36]. This approach assumes that the DM halo is
in equilibrium with a spherically symmetric potential, and that the DM has isotropic orbits.
For comparison, in this work, we use the best fit Einasto density profiles for the simulated
dSphs. The DM relative velocity distributions are obtained directly from the cosmological
simulations, and we also compare the results to those obtained from modeling the velocity
distributions as a MB distribution. These represent the primary differences in our approach
and the approach used in ref. [18]. In appendix A, we also present the J̃s-factors for the nine
dSph analogues using their best fit NFW density profiles, and compare them to the results
of ref. [18].

As we can see in figure 7, our results generally agree with ref. [18]. In particular,
for each of the observed dSphs shown in figure 7, the average J̃s-factor over the different
simulated dSph analogues is roughly on the same order of magnitude as those of ref. [18]
for each annihilation model, and show no systematic trends when compared to ref. [18]. We
also see that in general the subhalo-to-subhalo scatter is largest for d-wave and smallest for
the Sommerfeld model. This trend is similar to the results obtained for the smooth halo
in ref. [15].

6 Discussion and conclusions

In this paper we have presented a systematic study of the velocity-dependent dark matter
annihilation signals from dwarf spheroidal galaxy analogues in the APOSTLE cosmological
simulations. We extract the dark matter density and pair-wise relative velocity distributions
of the simulated dwarf spheroidal analogues to compute the J -factors in the s-wave, p-wave,
d-wave, and Sommerfeld annihilation models. We also quantify the error introduced in the
J -factors if we model the dark matter relative velocity distribution as a Maxwell-Boltzmann
distribution.

We find a good agreement between the dark matter relative velocity distributions of
the dwarf spheroidal analogues extracted from the simulations and their best fit Maxwellian
distribution at all radii. As a result, the error introduced in the J -factors from using the best
fit Maxwellian distributions in different radial shells within a dwarf spheroidal analogue is
on average 2.7% for the three velocity-dependent models. This error increases to 10.7% if we
use a Maxwellian distribution with a peak speed set to the mean of the best fit Maxwellian
peak speeds across all radial shells in a dwarf spheroidal analogue. If instead, we use all
the dark matter particles in a dwarf spheroidal analogue to find the best fit Maxwellian
distribution, the error is slightly increased to 11.1%. We also find that the latter two methods
of determining the best fit peak speed of the Maxwellian distribution by using either all the
dark matter particles in the dwarf spheroidal analogue or by finding the mean of the best fit
peak speeds at different radii, lead to a power law relation between the best fit peak speed
and the maximum circular velocity of the dwarf spheroidal analogue (i.e. eq. (3.7)). Using
this power law to compute the J -factors substantially reduces the computation time, and
introduces on average a 13.4% error.

We have investigated the effects of modelling the dark matter density profile of the
dwarf spheroidal analogues using an Einasto profile. We find that the difference between the
J -factors calculated directly from the simulation data and those calculated from the best fit
Einasto profiles is much larger than the error introduced in the calculations due to modeling
the dark matter relative velocity distributions with a Maxwell-Boltzmann distribution. The
large differences in the two density profiles originate from the resolution of the simulations
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which results in the empirical density profiles being under-dense in the inner regions of the
dwarf spheroidal analogues compared to the Einasto profile.

We also find that the systematic uncertainties introduced in the integrated J -factors
by using different analogues of the same observed dwarf spheroidal in the simulations is
in general larger than the error introduced by modeling the relative dark matter velocity
distributions as a Maxwell-Boltzmann distribution. Additional systematic uncertainties can
also be introduced by using different models for the dark matter density profiles, such as the
NFW profile and its cored versions, or by breaking the assumption of spherically symmetric
profiles. Also, it may be necessary to include substructure within the dSph analogues, and
quantify the difference in their contributions for the different velocity-dependent models.
This mass function for these sub-subhalos has been quantified in the higher resolution dark
matter only Aquarius simulations [24], but not for the simulations considered in this analysis.
At this stage, a detailed analysis of such uncertainties is beyond the scope of this work.

Finally, we compare our results to those found in the literature for specific dwarf
spheroidal galaxies. We find that our integrated J -factors are generally in good agreement
with those presented in previous work, which uses simplified models for the dark matter ve-
locity distributions of the dwarf spheroidals [18]. The simulations we use in this paper do not
force strict model assumptions on the velocity distribution. As a result, we specifically show
that the halo-to-halo scatter in the J -factors dominate the astrophysical uncertainties, with
the largest scatter for the d-wave models and the smallest for the Sommerfeld models. Such
a scatter is likely to have important implications for bounds on the dark matter annihilation
cross section that have been obtained in previous studies [4].
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A J-factors using an NFW profile

In this appendix, we present the J̃s-factors for nine dSph analogues, using their best fit
NFW density profiles. Figure 8 shows a comparison of the results for the cases where the
DM relative velocity distributions are obtained directly from the simulation data, when using
a MB velocity distribution with a peak speed obtained from the power law fit, and the results
presented in figure 1 of ref. [18]. Comparing figures 8 and 7, we can see that the scatter in
the J̃s-factors is slightly larger when the best fit NFW density profiles are used, but there
are no major systematic differences relative to the results using the Einasto model.
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Figure 8. Same as figure 7, but computed using the best fit NFW density profile for each dSph
analogue instead of the Einasto density profile.
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