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ARTICLE INFO ABSTRACT

Keywords: Crack detection in masonry fagades is a crucial task for ensuring the safety and longevity
Crack detection of buildings. However, traditional methods are often time-consuming, expensive, and labour-
Brickwork masonry intensive. In recent years, deep learning techniques have been applied to detect cracks in
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Convolutional neural networks
Transfer learning

Brickwork dataset

masonry images, but these models often require large amounts of annotated data to achieve high
accuracy, which can be difficult to obtain. In this article, we propose a deep learning approach
for crack detection on brickwork masonry facades using transfer learning with limited annotated
data. Our approach uses a pre-trained deep convolutional neural network model as a feature
extractor, which is then optimised specifically for crack detection. To evaluate the effectiveness
of our proposed method, we created and curated a dataset of 700 brickwork masonry facade
images, and used 500 images for training, 100 for validation, and the remaining 100 images
for testing. Results showed that our approach is very effective in detecting cracks, achieving
an accuracy and Fl-score of up to 100% when following end-to-end training of the neural
network, thus being a promising solution for building inspection and maintenance, particularly
in situations where annotated data is limited. Moreover, the transfer learning approach can be
easily adapted to different types of masonry facades, making it a versatile tool for building
inspection and maintenance.

1. Introduction

A large number of historical and other existing buildings include brickwork masonry in facades, or in the internal walls in
buildings with concrete structure. Cracks in brick masonry are a common problem that can have significant structural and aesthetic
implications, being the main issue with the walls that makes structures prone to water damage and mould [1,2]. Non-destructive
techniques (NDT), including acoustic emission [3], thermographic inspection [4] and visual inspection by trained personnel [5]
have been commonly used for inspection of brick masonry buildings. Manual inspection is typically carried out from the ground,
which hinders accruing consistent inspection reports from different personnel [6]. Photogrammetry has also been a solution to help
inspectors in making better decisions, as photogrammetry algorithms can be used to transform ground or aerial images to digital

* Corresponding author.
E-mail address: stamos.katsigiannis@durham.ac.uk (S. Katsigiannis).

https://doi.org/10.1016/j.jobe.2023.107105
Received 24 March 2023; Received in revised form 8 June 2023; Accepted 13 June 2023

Available online 23 June 2023
2352-7102/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://www.elsevier.com/locate/jobe
http://www.elsevier.com/locate/jobe
mailto:stamos.katsigiannis@durham.ac.uk
https://doi.org/10.1016/j.jobe.2023.107105
https://doi.org/10.1016/j.jobe.2023.107105
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Katsigiannis et al. Journal of Building Engineering 76 (2023) 107105

maps and 3D models [7]. However, capturing photos from the ground can result in issues such as lower quality of images for higher
building levels and difficulties in the localisation of the captured images.

The emergence of commercially available “low-cost” unmanned aerial vehicles (UAVs) offered a solution to these issues by
allowing the acquisition of high-quality images and structured point cloud data. Nevertheless, despite having easier access to higher
quality images for inspecting brickwork masonry, manual inspection of massive image collections is labour intensive and prone to
human errors. Hence, machine vision, specifically machine learning-based image processing, has been deployed for the identification
of damages in structures [8]. The majority of the recent works on crack detection has been focused on concrete surfaces and
pavements [8,9]. However, due to the lack of an appropriate image dataset, machine learning techniques have not been deployed
to identify cracks in brickwork facades.

In this work, we address this research gap and data unavailability by creating and curating a new image dataset for brickwork
crack detection and by training and validating various deep learning models for the task of classifying brickwork images as cracked
or normal. To this end, images from external brickwork masonry were acquired from a historical building and were combined
with images acquired from various online sources. Then, transfer learning was used in order to fine tune widely used pre-trained
convolutional neural network (CNN) models for the task at hand, thus further addressing the issue of limited data availability.
Experimental results demonstrated the suitability of the proposed approach, achieving a maximum classification accuracy of 100%
depending on the base CNN model used and the training strategy.

The main contributions of this work can be summarised as follows: (i) the curation and public release' of an image dataset
for crack detection on brickwork masonry facades, (ii) a comparative study of various widely used pre-trained CNN models that
were fine-tuned for detecting cracks in masonry facades using transfer learning, (iii) an evaluation of various training strategies,
including end-to-end training vs. fine tuning only the final classification layers, and using data augmentation techniques to increase
the number of training samples vs. using only the original images for training, and (iv) a detailed experimental evaluation and
ablation study of the examined CNN-based crack detection models.

2. Background

Crack detection in construction is a critical issue that has received significant attention from researchers in recent years [10,11].
The objective of crack detection is to identify and locate cracks in structures and infrastructure, which can lead to the failure of the
structure if not addressed. The research in this field has focused on developing new and innovative methods for detecting cracks in
a fast, accurate, and non-destructive manner.

Early research on utilising computer vision for monitoring purposes focused on crack detection and was based on heuristic
algorithms. Abdel-Qader et al. [12] proposed an edge-detection method for crack identification in bridges comparing different
algorithms, including fast Haar transform, fast Fourier transform, Sobel, and Canny edge detectors. This technique applies different
filters to extract the edge figure from the facade images. Yu et al. [13] proposed a semi-automatic method based on graph-based
search and utilised Sobel edge detection to extract crack properties. Li et al. [14] utilised a wavelet-based algorithm to remove
images’ noise and a Chan-Vese model for crack segmentation. Nishikawa et al. [15] improved crack segmentation using a genetic
algorithm to filter out the images’ noise and unwanted subjects, whereas a morphology-based image detector for crack detection
was proposed to inspect buried sewers [16]. Later, Sinha et al. [17] used a two-step method using statistical filters to extract
crack features locally and identify crack segments using cleaning and linking. Several heuristic methods were also proposed for
the identification of other damages. These works include detecting spalling using segmentation [18], steel cracks with region
localisation [19], and steel corrosion using the wavelet-based algorithm [20].

The majority of recent automated damage detection techniques involve a machine learning method, particularly an artificial
neural network (ANN) [21], to train a model using historical data. Deep learning algorithms such as convolutional neural networks
(CNN) for classification, object detection, and segmentation have noticeably enhanced image-based damage identification accuracy.
Although these techniques require a sufficiently large dataset to create a reliable prediction model, they provide a much better
automation level. Few studies focusing on building inspection utilised techniques other than CNN. Chang et al. [22] applied feed-
forward NN to find damage on high rise buildings, localise it, and estimate the intensity for further analysis. Jahanshahi and
Masri [23] used a support vector machine for concrete crack detection with measurements based on morphological features.

Kim et al. [24] presented a framework for cracks and other patterns classification using CNN architectures, namely AlexNet for
cracks and GoogleNet for spalling. Atha and Jahanshahi [25] also compared different deep architectures for corrosion detection. Cha
et al. [26] used CNN object detection to locate the concrete cracks using bounding boxes. The model was trained on low-resolution
images and tested over high-resolution images captured by a handheld camera. Yeum et al. [27] proposed a region-based CNN
(R-CNN) for post-event building assessment and used a huge structural image dataset to train classification and object detection
models. Cha et al. [28] investigated the use of a faster R-CNN to recognise multiple damages (i.e. cracks and different levels of
corrosion and delamination) and proposed a technique to localise damages. Zhang et al. [29] introduced CrackNet, a deep CNN
architecture for the semantic segmentation of cracks. In crack semantic segmentation, each pixel of the acquired image is classified
into the crack or non-crack classes resulting in the identification of the damage’s shape. Dung and Anh [30] further explored crack

1 Dataset download link: https://doi.org/10.5281/zenodo.8014150.
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semantic segmentation to determine path and density, whereas Mei and Gul [31] proposed a generative adversarial network and
connectivity map to extract pavement cracks at the pixel level of images acquired using a GoPro camera.

Several works developed open datasets for the application of damage detection using machine learning techniques regarding
building inspection. Maguire et al. [32] created a concrete crack image dataset that included 56,000 images classified as crack or
non-crack, whereas Xu et al. [33] developed a dataset of 6069 bridge crack images. Although there has been much research work on
using ML-based damage detection, most works have used limited data for training the models and have not provided public access
to the generated datasets.

The literature suggests that deep learning-based methods have demonstrated good results in crack detection on masonry facades.
However, the performance of these models largely depends on the availability of training data. Limited availability of annotated
data is a common problem in many real-world applications, including crack detection on masonry facades. When a reasonably
large dataset is not available, it is possible to fine-tune a pre-trained network with a smaller image dataset to train an accurate
model [34], an approach called “transfer learning”. Transfer learning allows the use of pre-trained models on related tasks to
improve the performance of the task at hand, e.g. fine-tuning a model pre-trained for classifying natural images for detecting cracks
in masonry. This approach has been applied to several tasks in computer vision, including image classification, object detection,
and semantic segmentation [35].

In recent years, transfer learning has been used for the inspection of building facades, with the goal of detecting anomalies in
the brickwork [36]. In addition, Gopalakrishan et al. [37] deployed a pre-trained network to develop a classifier for identifying
cracks in asphalt and concrete surfaces, whereas Zhang et al. [38] developed a framework for adopting transfer learning and CNN
for classifying pavement images into the “crack”, “repaired crack”, and “background” classes. Dais et al. [39] used deep learning
to train a model for crack detection on images from masonry walls, achieving a 95.3% accuracy and on pixel level with 79.6%
F1-score.

3. Material and methods

To address the problem of automated detection of cracks in brickwork masonry, we first created and curated a dataset containing
images of brickwork with and without cracks. Then, we examined the use of deep learning approaches for identifying “crack” and
“no-crack” brickwork images by employing pre-trained convolutional neural networks that were fine-tuned on our brickwork dataset.

3.1. The Brickwork Cracks Dataset

The proposed Brickwork Cracks Dataset was created in order to facilitate the use of transfer learning for the creation and training
of machine learning models for the task of classifying brickwork images as belonging to one of the “crack” or “non-crack” classes.
One of the key challenges in using transfer learning for brickwork crack detection is the creation of a suitable dataset. A large and
diverse dataset is essential to train deep learning models effectively, and this is particularly important in transfer learning, where
the pre-trained model must be adapted to the task at hand. To this end, two sources were used to create the proposed dataset:

(a) A database of images taken from the external facade of the Architecture School of the University of Strathclyde, Glasgow, that
includes various images of the brick masonry walls of regular pattern (ignoring rubble masonry). The images were acquired during
the development of a smart mobile application for “Building Facade Defect Inspection” based on the integration of methodologies
and tools, including virtual reality, digital photogrammetry and mobile app technologies to collect real-time data that support
automated decision making [40]. The database included masonry walls with cracks, with windows and doors, with varied in colour
masonry units, as well as with varied illumination and capture-angle.

(b) Various online sources, including online image databases, brick manufacturer websites, and academic publications. The
images were screened for quality, and those that were deemed suitable for the task were included in the proposed dataset.

The images were then annotated to indicate the presence of cracks in the brickwork. This was achieved using a custom-built
annotation tool, which allowed the annotators to draw bounding boxes around the cracks and label them as either horizontal,
vertical, or diagonal. The manual labelling process was time-consuming and required a high level of expertise, making it a challenge
to scale the process to larger datasets. Labelling is a critical step in the process because it helps the machine learning algorithm learn
what to look for and what to ignore. In addition to the bounding boxes referring to cracks in the brickwork, bounding boxes for
brickwork without damage were also annotated by the experts. The image regions denoted by the annotated bounding boxes were
stored as separate images and rescaled to 227 x 227 pixels for consistency. This process led to 350 images for the “crack” class and
350 images for the “non-crack” class, for a total of 700 images for the proposed dataset. The dataset is perfectly balanced across
the two classes (50% “crack” - 50% ‘“non-crack”), making it ideal for the training of machine learning models. Some examples of
images from the proposed dataset are shown in Fig. 1.

Furthermore, in order to provide a fair performance evaluation and avoid over-fitting the machine learning models during
training, stratified sampling was used to randomly divide the dataset into a training, a validation, and a test set, containing 500
(approx. 71.4%), 100 (approx. 14.3%), and 100 (approx. 14.3%) images respectively, with all the sets having a perfect balance
between the “crack” (50%) and “non-crack” (50%) classes. All the examined machine learning models in this work were trained
using images only from the training set, with the validation set used to select the best performing models, and the “unseen” test set
only used to report the final performance of the models.

The proposed dataset will be released publicly [41] in order to guarantee the replicability of our study and to facilitate further
research in the field.
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Non-crack

Fig. 1. Sample images from the proposed dataset for the “non-crack” (left) and the “crack” (right) classes.

3.2. Data augmentation

The lack of sufficiently large datasets has been one of the main obstacles in applying deep learning approaches in various image
classification problems. Depending on the application, the acquisition of additional data can be arduous and expensive, in terms of
time and required resources, or even outright impossible due to the rarity of the conditions needed for acquiring them. To address
the issue of data scarcity in image classification applications where few data samples are available, data augmentation has been
proposed and proven to be very effective [42]. Data augmentation is the process of artificially creating new data out of the existing
ones by applying various operations on them. It has been widely used by researchers in image processing as it can improve the
performance of deep learning models, assist in avoiding over-fitting, and allow the expansion of limited datasets in order to exploit
the capabilities and benefits of “big data” [43].

Given the limited amount of images (700) in our brickwork cracks dataset, we opted to also examine the use of data augmentation
in this work in order to increase the amount of available data, thus allowing the use of more complex deep learning image
classification models, while avoiding over-fitting. To this end, each image in the dataset was used as the source for additional images
created at each iteration of the training procedure, by randomly flipping them horizontally, randomly flipping them vertically,
randomly shifting the brightness between 0.3 and 1.0, and randomly rotating them between 0° and 45°. It must also be noted that
the pixel values of all images were rescaled by a factor of 1/255 before being used with the machine learning models and that all the
experiments in this work were conducted with and without data augmentation in order to compare the respective performance. The
Keras [44] ImageDataGenerator class was used for the creation of the augmented images and all random values for the augmentation
operations were generated using a uniform probability distribution. Furthermore, it must also be highlighted that the creation and
use of additional (augmented) images was performed for training the machine learning models, using only the images in the training
set as the source. Consequently, any reported results on the test data refer to original images only.

3.3. Classification using deep convolutional neural networks

Given the relatively small number of images in the proposed dataset, transfer learning was selected as the optimal strategy for the
training of machine learning models for the task of distinguishing images as belonging to the “crack” or “non-crack” classes. To this
end, our approach is based on well-established deep learning architectures that have been trained using a sufficiently large image
dataset and have been shown to be efficient feature extractors for image classification tasks. We selected six CNN architectures
that have been previously trained on the ImageNet [45] dataset, which contains 1000 image classes, spread across 1.4 million



S. Katsigiannis et al. Journal of Building Engineering 76 (2023) 107105

Table 1

Number of parameters (in millions) of the examined models.
Base model Parameters
VGG16 134.27M
VGG19 139.58M
MobileNetV2 2.26M
InceptionResNetV2 54.34M
InceptionV3 21.81M
Xception 20.87M

Dense
2D Non-crack
Base CNN Global 2 <
Average
i Crack
Pooling Softmax

Fig. 2. Overview of the proposed method. This approach was followed for all the examined CNN models, except for VGG16 and VGG19 that use a flatten layer
and three dense layers after the pre-trained convolutional base, two of size 4096 using a ReLU activation function, followed by one of size 2. The architecture
of the base CNN differs according to the architecture of the selected pre-trained model.

images. The selected architectures were VGG16 [46], VGG19 [46], MobileNetV2 [47], InceptionResNetV2 [48], InceptionV3 [49],
and Xception [50]. To fine-tune the pre-trained models for classifying between brickwork images with cracks and without cracks,
the output of the pre-trained convolutional base of the models was first passed to a 2D global average pooling layer, followed
by a fully-connected (dense) output layer with 2 neurons, as many as the number of classes in our task. Furthermore, a softmax
activation function was used in the output layer. It must be noted that the VGG16 and VGG19 models use a flatten layer and three
fully-connected layers in their output [46], two of size 4096 using a ReLU activation function, followed by one of size 2 that uses
a softmax activation function. Despite the other architectures using a single fully-connected layer after the convolutional base, we
opted to follow the original design for VGG16 and VGG19 to ensure a fair experimental comparison. An overview of the described
neural network architecture is provided in Fig. 2, whereas an overview of the total number of parameters for each model is provided
in Table 1.
To train the models, we used Cross-Entropy as the loss function, defined as:

M
Leg == Y voe log(p,,) e
c=1
where c is the class, M is the number of classes (2 in this work), y,’s value is 1 if observation o belongs to class ¢, otherwise it
is 0, and p, . is the predicted probability that o belongs to class c. Furthermore, a batch size of 32 was selected for the training
and the Adam optimiser was used with a learning rate of 10~>, whereas training for each model stopped after 20 epochs with no
improvement in validation accuracy. All experiments were implemented using the Python programming language and the Keras and
Tensorflow frameworks [51]. Four different strategies were examined and evaluated for the training of the proposed models:

1. Models were trained end-to-end and data augmentation was used to increase the number of training images.

2. Models were trained end-to-end without any data augmentation.

3. The weights of the convolutional base of the models were frozen and only the additional fully-connected layers were trained.
Data augmentation was used to increase the number of training images.

4. The weights of the convolutional base of the models were frozen and only the additional fully-connected layers were trained.
No data augmentation used.

It must be noted that to freeze the weights of the convolutional base of the models in the respective strategies, the “trainable”
parameter of the Keras implementation of the models was set to “false” for all the layers included in the convolutional base. This
led to the weights of the respective layers not being updated during back-propagation.

During end-to-end training, the pre-trained convolutional base of the network is fine-tuned to the downstream task, in addition
to training the final classification layer(s). As a result, the fine-tuned convolutional base becomes an image feature extractor that
is optimised for distinguishing between brickwork images with and without cracks. Contrary to end-to-end training, when the
convolutional base’s weights are frozen, then the convolutional base acts as a generic image feature extractor, having the benefit of
not requiring any additional training, thus leading to lower training time as only the final classification layer(s) needs to be trained.

4. Results

The performance of the six deep convolutional neural network architectures for the four examined training strategies was
evaluated by performing supervised classification experiments on the proposed dataset. All models were trained on the training



S. Katsigiannis et al. Journal of Building Engineering 76 (2023) 107105

Table 2

Classification results for end-to-end training using data augmentation.
Base model Accuracy F1-score Precision Recall Jaccard
VGG16 0.9700 0.9700 0.9702 0.9700 0.9417
VGG19 0.9900 0.9900 0.9902 0.9900 0.9802
MobileNetV2 1 1 1 1 1
InceptionResNetV2 1 1 1 1 1
InceptionV3 0.9900 0.9900 0.9902 0.9900 0.9802
Xception 0.9700 0.9700 0.9717 0.9700 0.9417

Table 3

Classification results for end-to-end training without using data augmentation.
Base model Accuracy F1-score Precision Recall Jaccard
VGG16 0.9900 0.9900 0.9902 0.9900 0.9802
VGG19 0.9900 0.9900 0.9902 0.9900 0.9802
MobileNetV2 0.9600 0.9600 0.9607 0.9600 0.923
InceptionResNetV2 0.9800 0.9800 0.9808 0.9800 0.9608
InceptionV3 0.9900 0.9900 0.9902 0.9900 0.9802
Xception 1 1 1 1 1

Table 4

Classification results when the weights of the convolutional base are kept frozen and data augmentation is used.
Base model Accuracy F1-score Precision Recall Jaccard
VGG16 0.9200 0.9199 0.9227 0.9200 0.8516
VGG19 0.8500 0.8493 0.857 0.8500 0.7382
MobileNetV2 0.6800 0.6716 0.7005 0.6800 0.5079
InceptionResNetV2 0.8300 0.8298 0.8312 0.8300 0.7092
InceptionV3 0.7600 0.7478 0.8224 0.7600 0.6003
Xception 0.7400 0.7292 0.7857 0.7400 0.5766

Table 5

Classification results when the weights of the convolutional base are kept frozen and data augmentation is not

used.
Base model Accuracy Fl-score Precision Recall Jaccard
VGG16 0.9200 0.9200 0.9200 0.9200 0.8519
VGG19 0.9300 0.9299 0.9316 0.9300 0.8691
MobileNetV2 0.8100 0.8098 0.8111 0.8100 0.6805
InceptionResNetV2 0.8100 0.8095 0.8131 0.8100 0.6801
InceptionV3 0.8400 0.8394 0.8450 0.8400 0.7234
Xception 0.7900 0.7852 0.8187 0.7900 0.6475

dataset, and at each epoch, performance was measured for the validation set. The model from the epoch that provided the best
performance on the validation set was then selected as the best model for each experiment and its performance was then evaluated
on the unseen test set. Consequently, all the performance metrics reported in this section refer to the performance on the unseen
test set, in order to provide a fair experimental comparison. The computed performance metrics were the classification accuracy,
Fl-score, precision, recall, and Jaccard index [52]. Furthermore, since the Fl-score, precision, and recall depend on which class is
considered as positive, their reported scores in this work are the average scores between the two examined classes (“crack” and
“non-crack”).

Results for the four training strategies using all the examined models are reported in Tables 2 to 5 in terms of the accuracy,
Fl-score, precision, recall, and Jaccard index metrics, while confusion matrices for the test set are provided in Figs. 3 to 6. The
maximum classification performance reached 100% in terms of all the examined metrics for the end-to-end training strategy using
the MobileNetV2 [47] and InceptionResNetV2 [48] models with data augmentation, and the Xception [50] model without data
augmentation. The strategy of freezing the weights of the convolutional base of the models underperformed significantly, achieving
a maximum F1-score of 91.99% using the VGG16 model with data augmentation, and a maximum F1-score of 92.99% with the
VGG19 model without data augmentation. Based on these results, it is evident that the end-to-end training strategy provides superior
performance for the task of detecting cracks in brickwork images using the examined CNN-based models.

Table 2 reports results for end-to-end training using data augmentation. Both MobileNetV2 [47] and InceptionResNetV2 [48]
achieved perfect classification results, having an accuracy and F1-score of 100%, while the F1-scores for the other compared models
ranged between 97%-99%. Results for the end-to-end strategy without using data augmentation are reported in Table 3. In this
case, the Xception [50] model achieved perfect classification performance, having an accuracy and F1l-score of 100%, while the
Fl-scores for the other compared models ranged between 96%-99%. Performance was significantly worse when the weights of
the convolutional base were frozen (not fine-tuned) and only the additional fully-connected layers were trained. In the case of the
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Fig. 3. Confusion matrices for end-to-end training using data augmentation.
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Fig. 4. Confusion matrices for end-to-end training without using data augmentation.
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Fig. 5. Confusion matrices for when the weights of the convolutional base are kept frozen and data augmentation is used.
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Fig. 6. Confusion matrices for when the weights of the convolutional base are kept frozen and data augmentation is not used.
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Fig. 7. Fl-score achieved by each model versus its number of parameters. MobileNetV2 using end-to-end training and data augmentation (shown in red) achieved
the best performance (F1-score = 100%) for the lowest number of parameters.

frozen convolutional base with data augmentation, VGG16 [46] achieved the best performance, reaching an accuracy of 92% and an
F1-score of 91.99%, whereas the other models performed considerably worse, achieving F1-scores ranging between 67.16%-84.93%,
as shown in Table 4. Performance was marginally better in the case of frozen convolutional base without data augmentation, with
VGG19 [46] and VGG16 [46] achieving accuracies of 93% and 92%, and F1-scores of 92.99% and 92%, respectively, whereas the
F1-scores for the other models ranged between 78.52%-83.94%, as shown in Table 5.

5. Discussion

As shown in Section 4, our experimental results were inconclusive regarding to which model is the most suitable for the task
of cracks detection in brickwork images, as all of the MobileNetV2 [47] (with data augmentation), InceptionResNetV2 [48] (with
data augmentation), and Xception [50] (without data augmentation) models achieved a perfect classification performance when
using end-to-end training. Nevertheless, as can be seen in Table 1, these three models differ significantly in terms of their size,
with the MobileNetV2-based model having 2.26 million parameters, the Xception-based model 20.87 million parameters, and the
InceptionResNetV2-based model 54.34 million parameters. In addition, many of the examined models across the different training
strategies achieved similar performance among each other. However it is evident from Fig. 7 that equally good classification
performance can be achieved using models with less parameters. Training plots for the best performing models are provided in
Fig. 8 for the end-to-end training strategy, and in Fig. 9 for the strategy of freezing the weights of the convolutional base. It must
be noted that the number of training epochs varies across the models, as training was stopped after 20 consecutive epochs without
any improvement in the validation accuracy.

Considering the computational cost for performing the inference using these models and the desired ability to deploy the
developed model on handheld devices (e.g. mobile phones, tablets) for conducting inspections on brickwork, it is evident that the
MobileNetV2-based model, created using end-to-end training with data augmentation, can be considered as the most appropriate
model for the task at hand, as it can achieve the best performance, and its size makes it suitable for devices with low computational
capabilities. It can be argued however that the smaller size of the model may affect negatively its ability to generalise to new
brickwork images. For our experimental evaluation, all results were reported for a completely “unseen” subset of the proposed
dataset, in order to ensure a fair performance comparison that would provide a good estimate of the ability of each model to
generalise to new input images.

Despite their popularity, deep learning-based image classification models have long been considered as “black-box” models due
to their lack of interpretability or explainability, i.e. the ability to explain the reasons that led a trained machine learning model
to a specific prediction [53]. This lack of explainability has been shown to be a significant obstacle to the real-world adoption of
deep learning models for image classification within various fields. The inability to explain or justify a trained model’s predictions
constitutes a serious obstacle to establishing trust to the model, especially in applications and professions were a chain of liability
must be established. To this end, we evaluated the interpretability of the MobileNetV2-based model by using the Gradient-weighted
Class Activation Mapping (Grad-CAM) [54] method, which is a localisation technique that is used to generate class-related visual
explanations from a trained CNN-based network. Grad-CAM was used in order to examine the regions of the brickwork images
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MobileNetV2 (End-to-end training with data augmentation)

Loss / Accuracy
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Fig. 8. Training plots for the best performing models using the end-to-end training strategy, with data augmentation (MobileNetV2) and without data
augmentation (Xception).

that are taken into consideration by the MobileNetV2-based model in order to assign an image to the “crack” class. To this end,
Grad-CAM heat maps depicting the class activation for the “crack” class using the last convolutional layer of the network were
created for the images in the examined dataset. Fig. 10 depicts the Grad-CAM heat maps for 12 images of the “crack” class, overlaid
on the original images. From these images, it is evident that the MobileNetV2-based model indeed relies on the regions of the images
that contain cracks in the brickwork in order to make its prediction, indicating that it can be reliably used for the task at hand.
The real-world deployment of the proposed methodology for crack detection in brickwork masonry could benefit significantly by
the inclusion of such heat maps in the output of the used models. Building professionals would be able to visually verify the used
model’s predictions by inspecting the produced heat maps and cross-referencing them to the model’s predictions, thus enabling them
to build trust towards the system.

Regarding the examined training strategies, it is evident from Tables 2, 3, 4, and 5 that the end-to-end training strategy performs
significantly better compared to keeping the weights of the convolutional base frozen and training only the final fully-connected
layers. The brickwork images used in this work exhibit considerable differences in terms of texture, structure, and colour, compared
to the generic images contained in the ImageNet [45,55] dataset that was used to pre-train the examined CNN models. As a result,
despite the convolutional base of the pre-trained models being very efficient feature extractors for generic images, fine-tuning is
required to adapt the computed features to the downstream task, i.e. classifying brickwork images as cracked or not cracked.

The field of image classification using deep neural networks has advanced significantly in recent years. Various methods that
outperform CNNs on standard image classification benchmarks, such as ImageNet [45,55], CIFAR [56], JFT [57], and others,
have been recently proposed and are mainly based on the transformer [58] architecture. Architectures like the Vision Transformer
(ViT) [59], the Image Enhanced Vision Transformer (IEViT) [60], the Swin Transformer [61], and others [62-65] have demonstrated
impressive performance in image classification and object detection tasks, but come at a cost of increased computational complexity
and the requirement for considerably large training datasets in order to train well-performing models. In this work we opted to
not evaluate the performance of transformer-based models given that there was no room for improving the best classification
performance achieved using the examined CNN models (accuracy and F1-score of 100%). Furthermore, the increased computational
complexity of transformer-based models would complicate the deployment of the trained models on handheld devices with low
computational capabilities, while the small size of the available brickwork dataset would potentially hinder our ability to train
them efficiently.

Considering our experimental results, it is evident that the proposed approach achieved impressive performance for the task
of crack detection in brickwork masonry. We hypothesise that the reason for such performance lies in the use of a sufficiently
diverse dataset that included brickwork masonry that varied in colour, illumination, and capture angle; the focus on a very specific
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VGG16 (Frozen conv base with data augmentation)
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Fig. 9. Training plots for the best performing models using the strategy of freezing the weights of the convolutional base, with data augmentation (VGG16) and
without data augmentation (VGG19).

brickwork deformation, i.e. cracks, ignoring other potential deformations, e.g. spalling; and focusing only on detecting cracks without
examining their severity, thus simplifying the problem.

6. Conclusion

The objective of this study was to propose and evaluate a deep learning approach for automating the detection of cracks in
brickwork masonry using imaging techniques. The main challenge was the unavailability of suitable data, which we addressed by
creating and curating a comprehensive dataset consisting of brickwork images with and without cracks. This dataset has been made
publicly available to facilitate further research in this field.

To develop our approach, we used transfer learning to fine-tune popular pre-trained convolutional neural networks. We
trained the models on the curated dataset and performed supervised classification experiments. Results showed that the proposed
approach can efficiently detect cracks in brickwork masonry, achieving a 100% accuracy and Fl-score using the MobileNetV2,
InceptionresNetV2, and Xception-based models. This performance was achieved using an end-to-end training strategy and data
augmentation for the first two models, whereas no data augmentation was used for the latter. However, the MobileNetV2-based
model can be considered as the most suitable for this task due to its small size, making it ideal for use on handheld mobile
devices and UAVs. We also compared the performance of end-to-end training with that of training only the final classification layers
while keeping the weights of the convolutional base frozen. The former approach consistently outperformed the latter, achieving
a maximum F1-score of 100% compared to 92.99%. These findings demonstrate the effectiveness of our proposed approach for
detecting cracks in brickwork masonry using deep learning techniques.

Our future work will focus on integrating the proposed models into real-world systems for detecting cracks in brickwork masonry.
These systems will utilise camera-equipped handheld devices, such as mobile phones and tablets, as well as commercial UAVs.
By deploying these methods in the field, we can evaluate their performance, reliability, and generalisation ability for building

10



S. Katsigiannis et al. Journal of Building Engineering 76 (2023) 107105

Fig. 10. Grad-CAM heat maps, overlaid on the original images for the “crack” class.

inspections. It is important to note that the proposed methods can currently only detect the presence of cracks in brickwork masonry.
Therefore, we plan to expand the dataset and explore deep learning approaches to assess the severity of detected cracks. This will
help us to improve the accuracy and practicality of our models for real-world applications.
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