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Abstract—The adoption of large-scale antenna arrays at high-
frequency bands is widely envisioned in the beyond 5G wireless
networks. This leads to the near-field regime where the wavefront
is no longer planar but spherical, bringing new opportunities and
challenges for communications and positioning. In this paper, we
improve the near-field positioning technology from the classical
spherical wavefront model (SWM) to the more accurate and true
electromagnetic propagation model (EPM). A generic near-field
positioning model with different observation capabilities for three
electric field types (vector, scalar, and overall scalar electric field) is
developed based on the complete EPM. For these three observed
electric field types, the Cramér-Rao bound (CRB) is adopted to
evaluate the achievable estimation accuracy. The expressions of
the CRBs for different electric field observations are derived by
combining electromagnetic propagation concepts with estimation
theory. Closed-form expressions can be further obtained as the
terminal is assumed to be on the central perpendicular line (CPL)
of the receiving antenna surface. Moreover, the above discussions
are extended to the system with multiple receiving antennas. In
this case, the CRBs using various electric field types are derived
and the effect of different numbers of receiving antennas is deeply
investigated. Numerical results are provided to quantify the CRBs
and validate the analytical results. Also, the impact of different
system parameters, including electric field type, wavelength, size
of the receiving antenna, and number of antennas, is evaluated.

Index Terms—Cramér-Rao bound, electromagnetic propaga-
tion model, electric fields, multiple antennas, generic near-field
positioning, observation capability, performance evaluation.

I. INTRODUCTION

The 5th generation (5G) and beyond networks require real-
time and high-accuracy positioning, since ubiquitous position
information can be extracted from node-to-node communica-
tions in the networks [1]. Traditional positioning technologies
in the wireless networks typically consider the terminal located
in the Fraunhofer (far-field) region, where the wavefront of an
electromagnetic wave can be approximated as planar.

Envisioned as the key features of the beyond 5G networks
(B5G), the adoption of large-scale antenna arrays/surfaces [2],
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[3], and exploitation of high frequency bands [4], [5] will push
the electromagnetic diffraction field from the far-field region
towards the near-field region, where the propagated wavefront
tends to be spherical and the uniform plane wave assumption
will no longer hold [6]. The near-field channel’s array manifold
vectors contain more information on the terminal position, as
both distance information and direction of arrival (DoA) infor-
mation can be inferred from the receiving array. Thus, wireless
communication taking place in the near-field region provides
both new opportunities and challenges for positioning.

Since traditional positioning technologies are developed for
far-field region, it is essential to develop new architectures and
approaches to achieve high accuracy and resolution for near-
field region. Most works on near-field positioning have focused
on three aspects: positioning model design, signal processing
algorithm, and performance evaluation. For the model design,
[7] proposed a model with an imperfectly calibrated array for
near-field positioning and investigated a calibration method. To
simplify the near-field model, many works applied the Fresnel
approximation to the antenna arrays with special geometries,
e.g., uniform linear arrays (ULAs) [8]–[10], and considered
the model mismatch that was shown to reduce the estimation
accuracy [11] while analyzing the achievable precision.

To improve the model accuracy further, the spherical wave-
front model (SWM) was developed. An array was utilized to
extract the distance and DoA information based on the SWM.
It was revealed that the spherical wavefront provided an under-
lying generic parametric model for near-field positioning [12].
In [13], the SWM was extended to a practical scenario with
large-scale antenna arrays. The result indicated that terminals
in the near-field region could be identified by employing large-
scale antenna arrays to estimate the wavefront curvature, i.e.,
curvature arrival (CoA). In order to reduce the complexity and
implementation cost of large-scale antenna arrays, the authors
in [14] introduced the electromagnetic (EM) lens to the SWM.

Other works have studied signal processing algorithms for
near-field positioning based on the SWM. For example, [15]–
[17] developed a modified two-dimensional MUSIC algorithm,
high-order ESPRIT-like algorithm, and overlapping sub-arrays
algorithm, respectively. In [18], a two-stage MUSIC algorithm
was proposed to estimate the position of a mixed near-field and
far-field terminal. The results demonstrated that the curvature
information should be exploited when the terminal approaches
the receiver. A subspace-based algorithm without eigendecom-
position was proposed in [19], which could provide remarkable
and satisfactory estimation performance compared with some
existing near-field positioning algorithms. For the model using
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large-scale antenna arrays equipped with EM-lens, a param-
eterized estimation algorithm was investigated in [20], which
directly reused receiving signals to extract position parameters.

Based on the SWM, the performance (i.e., estimation accu-
racy) of near-field positioning could be evaluated. In practical
scenarios, as electromagnetic waves encounter non-ideal phe-
nomena such as noise, fading, and shadowing, the positioning
performance is subject to uncertainty. In the interest of system
design and operation, it is crucial to obtain achievable accuracy
in positioning operations to provide benchmarks for evaluating
the performance of the actual systems. To this end, the Cramér-
Rao bound (CRB) is the most commonly adopted tool, which
describes the fundamental lower limits for estimation accuracy.
In [20]–[25], the SWM was used to derive the CRBs for the
near-field estimator with ULA, uniform circular arrays, planar
arrays, large-scale arrays, and large intelligent surfaces (LIS).

Most of the above mentioned works are based on the SWM.
Although the SWM is widely utilized and relatively simple, it
has been proven inaccurate in [26]. Specifically, the SWM does
not correspond to the equations governing the electromagnetic
fields around an antenna or array while typically disregards
the physical characteristics of the near-field source. This could
profoundly impact the generated electromagnetic fields and the
observations collected by the receiver. On the other hand, the
electromagnetic propagation model (EPM) is by far the most
accurate electromagnetic theory-based model for investigating
signals in the near-field region. Compared with SWM, it has
the following three advantages: (i) EPM is a true and complete
model on the basis of Maxwell’s equations. It can intrinsically
describe the dependence of the observed signal and physical
characteristics (e.g., current distribution, type, and size) of the
source. (ii) EPM contains more position, structure, and attitude
information propagated outwards by electromagnetic radiation.
(iii) Using EPM to model channels and signals is closer to the
actual communication scenario and can explicitly consider the
antenna’s element design and radiation pattern. Thus, this work
will develop a true EPM and use it for near-field positioning.

Utilizing EPM for near-field positioning may lead to higher
estimation accuracy, but the EPM-based analysis is more chal-
lenging and complex. The authors in [27], [28] investigated the
EPM based on the radiation vector [29, Ch. 15] and evaluated
the near-field positioning performance by utilizing the EPM.
In [27], they computed the CRBs for the source dipole that is
assumed to be located on the central perpendicular line (CPL)
of the receiving antenna surface by measuring the vector elec-
tric field (VEF). In [28], they further provided the expressions
of the CRBs in two scenarios, in which the priori knowledge
of the dipole orientation can be assumed known or unknown to
the receiver. However, it is more general for the terminal not to
be located on the CPL since the CPL condition is not always
satisfied in practical application. Although in [28], the authors
mentioned the case that the terminal is not on the CPL, they
did not derive detailed expressions of the CRBs in this general
case. Furthermore, in addition to vector electric field, scalar
electric field and overall scalar electric field observations are
also possible due to the different observation capabilities of
various receiving antenna paradigms. Thus, compared to [27],
[28], a more comprehensive study of positioning the terminal

at an arbitrary position by measuring different electric fields
is necessary. Consequently, it remains unclear how to evaluate
the performance of near-field positioning in such a study using
the electromagnetic propagation model and estimation theory.

In this paper, we will extend the work in [27] by developing
a generic near-field positioning system based on the electro-
magnetic propagation model for arbitrary terminal positions
and three different electric field types. Unlike [27], the position
of the terminal in front of the receiving antenna1 is unrestricted
such that it can be placed anywhere. Unlike [28], the detailed
CRB expressions for arbitrary terminal positions are explicitly
derived and the unknown effect of different observed electric
field types on the positioning performance is investigated for
the first time. Furthermore, the impact of multiple distributed
receiving antennas is extensively examined and this is a new
analysis that cannot be found in prior near-field works. The
main contributions of this paper are summarized as follows.

• Accurate near-field modeling based on EPM. Unlike
traditional near-field positioning technologies following
the classical SWM, a complete EPM without any approx-
imation is developed based on the electromagnetic theory.
This EPM can accurately model near-field channels and
explicitly describe the functional dependence of the near-
field signals on the physical characteristics of the source.
In addition to the EPM in the near-field form, its Fresnel
and plane wave approximation forms are also discussed.
Moreover, the CRBs for estimating the terminal position
are computed by combining the EPM with the estimation
theory to provide fundamental limits for the performance
of the actual near-field positioning system.

• Generic CRB analysis and performance comparison.
A generic near-field positioning model is developed con-
sidering the variety of observed electric fields and the
universality of the terminal position. In particular, three
electric field observation types (vector, scalar, and overall
scalar electric field) are measured by receiving antennas
with different observation capabilities to derive the CRBs
for a terminal located at an arbitrary position. To the best
of the authors’ knowledge, such generic CRBs have never
been studied, and they can generalize the existing results
in [27]. Also, we first compare positioning performances
using different observed electric fields through both theo-
retical analysis and simulation, which cannot be found in
prior works, such as [28]. We show that performance will
decrease with the degradation of the receiving antenna’s
observation capability. Moreover, the precise closed-form
expressions or upper/lower bounds of the CRBs are given
in the CPL case to obtain insights about the impact on the
positioning performance for different system parameters.
We show that the CRBs are proportional to the square of
the wavelength. Also, we reveal that the estimation accu-
racy of some position coordinate components approaches
a fixed limit or improves infinitely when the ratio between

1The receiving antenna is a broad concept referring to antenna paradigms
with different observation capabilities, such as a conventional surface antenna
and intelligent surfaces with a large number of finely customizable antennas.
Different observation capabilities refer to obtaining different electric fields.
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the surface diagonal length (size) of the receiving antenna
and its distance from the terminal increases.

• Extended discussion of SIMO system. We have already
discussed the case of centralized deployment of receiving
antenna, in which the receiving antenna can be regarded
as the single antenna. To investigate the impact of mul-
tiple receiving antennas on the performance, the generic
positioning model is also extended to a system with mul-
tiple receiving antennas, i.e., the single-input multiple-
output (SIMO) system. The expressions of CRBs are
derived and the results reveal that multiple receiving an-
tennas can significantly improve the estimation accuracy
of dimensions parallel to the receiving surface. This is a
new result that cannot be found in prior works, e.g., [28].

The remainder of this paper is organized as follows. Section
II describes the generic system model, introduces three electric
field observations and their physical implications, develops a
complete EPM, and derives the specific CRB expressions. In
Section III, the CPL case and two further simplified scenarios
are studied. In Section IV, the generic model is extended to the
SIMO system. Numerical results and discussion are presented
in Section V, and the conclusions are provided in Section VI.

Notation: Vectors and matrices are denoted in bold lower-
case and uppercase, respectively, e.g., a and A. We use [A]ij
to denote the (i, j)th entry of A and ai to denote the ith entry
of a. The superscripts (·)†, (·)−1, and (·)T represent the matrix
hermitian-transpose, inverse, and transpose, respectively. (·)∗
and Re{·} designate the complex conjugate and the real part
of the input operations. The operator ∥ · ∥ means to compute
L2-norm of the input and | · | stands for the modulo operator.
The notations C and R represent the sets of complex numbers
and of real numbers, respectively. The notation j denotes the
imaginary unit, and IN indicates the N ×N identity matrix.
The suffix κ = x, y, z represents the X-, Y - and Z-dimension
in the cartesian coordinate system, respectively.

II. SYSTEM MODEL AND PERFORMANCE METRIC

This section will first introduce a generic near-field position-
ing system aiming to estimate the terminal position based on
the electric fields observed over the receiving antenna surface
area. Since different paradigm selections and hardware settings
of the receiving antenna have disparate observation capabili-
ties, embodied in extracting various observations, i.e., vector,
scalar, and overall scalar electric field, we will consider all
these electric fields for the near-field positioning system. Then,
a complete EPM without any approximation will be developed
to accurately describe near-field signals. Finally, the CRB for
the terminal position will be used as the performance metric
and derived by combining the EPM with estimation theory.

A. Generic System Model of Near-Field Positioning

Consider the near-field positioning system depicted in Fig.
1. The terminal is an electrically small source equipped with
a monochromatic single-antenna located at an arbitrary point
pt

2 inside a three-dimensional source region Rt. The electric

2An arbitrary point P in R3 Euclidean space can be represented by a spatial
vector p. Specifically, P is the endpoint of p, whose starting point is fixed.

Fig. 1. Illustration of the generic near-field positioning system. The CPL case
where the terminal is located in the central perpendicular line (CPL) of the
receiving antenna surface, i.e., φ = 0, xt = yt = 0, is also illustrated. Note
that an electrically small source can be approximated as a single sizeless point
source, i.e., we are not concerned with the geometric dimension and physical
shape of the source. As will be seen later, we consider the terminal to be an
elementary (i.e., Hertzian electric, ideal or short) dipole.

current density jd(pt, t) at the terminal generates an electric
field ef(pr, t) ∈ C3 at an arbitrary point pr on the surface Rr

of the receiving antenna through a homogeneous and isotropic
medium with neither scatterers nor reflectors, and we consider
time-harmonic fields and introduce phasor fields3: jd(pt, t) =
Re

{
jd (pt) e

−jωt
}

and ef(pr, t) = Re
{
ef (pr) e

−jωt
}

, where
ω is the angular frequency in radians/second.

We establish two cartesian coordinate systems, OXY Z and
PX ′Y ′Z ′, with a pure translational relationship. The center of
Rr (O) and pt are their origins, respectively. In the OXY Z
system, pt = (xt, yt, zt)

T, pr = (xr, yr, 0)
T, and observa-

tion region Rr =
{
(xr, yr, 0) : |xr| ≤ Dr/

√
8, |yr| ≤ Dr/

√
8
}

,
where Dr is the maximum geometric dimension of the receiv-
ing antenna, namely, the diagonal length of the square surface.
Establish a spherical coordinate system (rrt, θ, ϕ) (with respect
to PX ′Y ′Z ′) of point pt to facilitate the description of the
radiation pattern. x̂, ŷ, and ẑ are unit vectors along the X-,
Y -, and Z-dimension in the OXY Z system while θ̂ and ϕ̂ are
unit vectors along the θ and ϕ coordinate curves. r̂rt is a unit
vector denoting the direction of rrt = pr−pt, i.e., r̂rt = rrt

∥rrt∥ .
For the terminal, let rto denote its distance to the center of the
receiving antenna, and φ ∈

[
0, π2

]
and ψ ∈ [0, 2π) denote the

zenith and azimuth angles, respectively.
The near-field positioning system can estimate the terminal

position by using the electric field observations obtained over
the receiving antenna surface area (observation region Rr). It
is worth remarking that, depending on actual communication
requirements, cost constraints or device technology limitations,
the types and settings of receiving antennas may be different,
leading to extraction of various types of observed electric fields
and thus affecting the positioning performance. Next, we will
discuss three different cases of the electric field observations.

3In this case, Maxwell’s equations are considerably simplified and can be
written only in terms of the current and field phasors, jd (pt) and ef (pr).
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1) Vector Electric Field (VEF): The electric field generated
by the source current distribution jd (pt) at the point pt is a
three-dimensional vector, which has three components along
the directions of given orthonormal vectors in the reference
system (cartesian or spherical). The most ideal case is that the
vector electric field at each point on the whole contiguous sur-
face of the receiving antenna can be observed. In such a case,
the receiving antenna should be modeled as a two-dimensional
metasurface, also known as the emerging spatially-continuous
electromagnetic (EM) surface, large intelligent surface (LIS)
[30], and holographic MIMO surface [31], which is an elec-
tronically active surface consisting of arrays of reconfigurable
elements of metamaterial. In fact, the metasurface concept can
be seen as an extreme extension of earlier research in massive-
MIMO or extremely large-scale MIMO concept [32]. From the
technological point of view, metamaterials represent appealing
candidates for the creation of software-controlled metasurfaces
since metasurfaces can be built from ultrathin two-dimensional
metamaterials and [33] surveyed implementation and practical
application aspects of metasurfaces. In the cartesian OXY Z
system, the vector electric field ev (pr) can be written as

ev (pr) = evx (pr) x̂+ evy (pr) ŷ + evz (pr) ẑ. (1)

The observation equation is ẽv (pr) = ev (pr)+nv (pr), where
ẽv (pr) is the noisy VEF and nv (pr) ∈ C3 is the random noise
generated by electromagnetic sources outside Rt.

2) Scalar Electric Field (SEF): If a metasurface is selected
as the receiving antenna, the electric field at each point in the
observation region Rr can be extracted spatially continuously.
Sometimes all the three cartesian components of the measured
electric field cannot be obtained accurately, but only one scalar
electric field can be acquired at each point. We refer to this
phenomenon as the observation capability degradation4 of the
receiving antenna. The simplest scalar electric field can be
defined as one of the three components of the vector electric
field ev (pr), i.e., evx (pr), evy (pr), or evz (pr). In this paper, we
consider the scalar electric field defined from the power point
of view. Specifically, we exploit the scalar electric field that
is a component of the Poynting vector perpendicular to each
point of the whole contiguous observation region Rr. This SEF
can be regarded as a scalar approximation to the VEF in (1)
and give an intermediate step to understand the electric field
model. In the OXY Z system, the SEF es (pr) is written as

es (pr) =
√

∥ev (pr) ∥2 (−r̂rt · ẑ)e−jk0rrt , (2)

where k0 = 2π/λ is the wave number, λ is the wavelength,
· indicates inner product of vectors, and rrt = ∥rrt∥. Then,
the observation equation utilizing SEF is ẽs (pr) = es (pr) +
ns (pr), where ẽs (pr) is the observation of the SEF with noise.

3) Overall Scalar Electric Field (OSEF): With a further
decline in the observation capability of the receiving antenna,
we consider that only one overall scalar electric field can be
obtained through observation, which is defined as the double
integral of the SEF over the receiving antenna surface. In such
a case, the receiving antenna degenerates from a metasurface

4The reasons for the observation capability degradation include: different
selections or settings of the metamaterial elements, device hardware limita-
tions, different requirements for communication and sensing, and so on.

to a conventional surface antenna [34]. From (2), the OSEF
eo can be written as

eo =

√
2

D2
r

∫∫
Rr

es (pr) dpr, (3)

where D2
r /2 is the area of the receiving surface antenna. Then,

the observation equation using the OSEF is ẽo = eo + no.
We aim to derive the CRBs for estimating the position of pt

using the above three observation equations with noisy electric
fields (ẽv (pr), ẽs (pr), and ẽo) over the observation region
Rr. For this purpose, we provide the statistical model for the
random noise fields nv (pr), ns (pr), and no as follows.

Random noise fields modeling: Following [35] and [36], we
model random noise fields as spatially uncorrelated circularly-
symmetric zero-mean complex-Gaussian processes with cor-
relation functions: E

{
nv (pr)n

v† (p′
r)
}

= σ2I3δ (pr − p′
r),

E {ns (pr)n
s∗ (p′

r)} = σ2δ (pr − p′
r), E {nono∗} = σ2, where

E {·} denotes the expectation operator, δ(·) is the Dirac’s delta
function, p′

r is an arbitrary point different from pr, and σ2 is
the variance measured in V2

olt (Volt indicates volts).
Based on the estimation theory of statistical signal process-

ing, the computation of the CRBs is provided as follows.
Proposition 1 (CRB using VEF). Denote the real vector to be
estimated as ξ ∈ R3 = (xt, yt, zt), which collects the unknown
cartesian coordinates of pt. The Fisher’s Information Matrix
(FIM), denoted as I (ξ), is a 3 × 3 Hermitian matrix, whose
element on the m-th row and n-th column is given by:

[I (ξ)]mn =
2

σ2

∫∫
Rr

Re

{
∂evx (pr)

∂ξn

∂evx
∗ (pr)

∂ξm
+

∂evy (pr)

∂ξn

∂evy
∗ (pr)

∂ξm
+

∂evz (pr)

∂ξn

∂evz
∗ (pr)

∂ξm

}
dxrdyr,

(4)

where m,n = 1, 2, 3. The CRB for estimating the ith entry of
ξ is

CRB (ξi) =
[
I (ξ)−1]

ii
. (5)

Proof: The result can be derived from [37, Appendix 15C]
by replacing the noisy observation and the estimated parameter
with complex vector ẽv (pr) and real vector ξ, respectively.

From Proposition 1, the CRBs utilizing SEF and OSEF can
be computed by Corollary 1 and Corollary 2.
Corollary 1 (CRB using SEF). Using the scalar electric field,
the elements of FIM can be computed as:

[I (ξ)]mn =
2

σ2

∫∫
Rr

Re

{
∂es (pr)

∂ξn

∂es∗ (pr)

∂ξm

}
dxrdyr. (6)

By substituting (6) into (5), CRBs in this case can be derived.
Proof: According to Proposition 1, FIM is additive since

evx (pr), evy (pr), and evz (pr) are independent. Accordingly, if
we only have one noisy observation ẽs (pr), (6) is derived.
Corollary 2 (CRB using OSEF). Similar to Corollary 1, the
elements of FIM can be derived as:

[I (ξ)]mn =
2

σ2
Re

{
∂eo

∂ξn

∂eo∗

∂ξm

}
. (7)

By substituting (7) into (5), CRBs in this case are computed.
Proof: The only difference between (6) and (7) is that

es (pr) has already been integrated in (3).
Discussion 1 (Performance metrics). In this paper, we derive
the CRBs for lower bounding the mean square error (MSE) to
evaluate the performance of near-field positioning estimators.
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Unfortunately, the CRB is a local bound and only asymptoti-
cally tight in small error estimation scenario (say, high signal-
to-noise ratio (SNR)). To provide a global tight bound on the
MSE and show a threshold effect, the Ziv-Zakai bound (ZZB)
is proposed, which relates the MSE to the probability of error
in a binary hypothesis testing problem. Some excellent works
[38], [39] provide a comprehensive survey of ZZB for far-field
compression time delay and DoA estimation. It is without any
doubt an interesting extension of our analysis to consider the
ZZB in the near-field positioning, which is left for future work.

B. Electromagnetic Propagation Model (EPM)

1) EPM for near-field: From the fundamental electromag-
netic (Maxwell’s) equations, the vector electric field ev (pr)
generated at point pr from the electrically small source at point
pt is due to the electric current density J (pt) and satisfies [40]

ev (pr) =

∫∫∫
Rt

Gt (pr − pt)J (pt) dpt, (8)

where J (pt) is Fourier representation J (pt, ω) of the current
jd (pt) at pt. Gt(rrt) ∈ C3×3 is referred to as the tensor Green
function in electromagnetic theory and can be expressed as

Gt(rrt)

Gs(rrt)
=

[(
1 +

j

k0rrt
− 1

k2
0r

2
rt

)
I−

(
1 +

j3

k0rrt
− 3

k2
0r

2
rt

)
Ξ

]
,

(9)
where Gs(rrt) = − jη

2λrrt
e−jk0rrt is the scalar Green function,

η is the intrinsic impedance of the medium, and Ξ ≜ r̂rtr̂
†
rt. It

is evident from (9) that when rrt ≥ λ5, the second and third
terms6 in two parentheses in (9) can be neglected, and hence

Gt(rrt) ≃ − jk0ηe
−jk0rrt

4πrrt

(
I− r̂rtr̂

†
rt

)
. (10)

Since rrt ≥ λ always holds when the terminal is in the near-
field7 (between the reactive near-field and the far-field) of the
receiving antenna, (10) is adopted in subsequent computation.
Substituting (10) into (8) and following the definition of vector
cross product, we give the electromagnetic propagation model:

ev (pr) = − jk0ηe
−jk0rrt

4πrrt

(
r̂rt ×

∫∫∫
Rt

J (pt) dpt

)
× r̂rt. (11)

Write
∫∫∫

Rt
J (pt) dpt as JRt = Jr

Rt
r̂rt+J

θ
Rt
θ̂+Jϕ

Rt
ϕ̂, where

Jr
Rt

, Jθ
Rt

, and Jϕ
Rt

are three components of the source current
integral vector JRt along r̂rt, θ̂, and ϕ̂ directions. Since r̂rt×
r̂rt = 0, (r̂rt× θ̂)× r̂rt = θ̂, and (r̂rt× ϕ̂)× r̂rt = ϕ̂, we have:

ev (pr) = Gs(rrt)
(
Jθ
Rt

θ̂ + Jϕ
Rt

ϕ̂
)
≜ Gs(rrt)J

⊥
Rt

. (12)

ev (pr) in the near-field of the source is the product of Gs(rrt)
and J⊥

Rt
. In particular, Gs(rrt) represents the scalar spherical

wave, which accounts for the distance rrt between the source
and pr. The transverse component J⊥

Rt
intrinsically captures

the physical dependence of ev (pr) on the current inside Rt

while this dependence is typically ignored in the SWM [26].

5If rrt = λ,
∣∣∣1+ j

k0rrt
− 1

k2
0r

2
rt

∣∣∣2 ≈ 0.975,
∣∣∣1+ j3

k0rrt
− 3

k2
0r

2
rt

∣∣∣2 ≈ 1.082.
6They decay rapidly with rrt and thus are only influential in the “reactive

near-field”, which is very close to the source and ends at df = 0.5
√

D3
r /λ.

7In the far-field region, the transceiver distance is larger than the Fraunhofer
distance dF = 2D2

r /λ [41]. In this paper, the term “near-field” refers to the
“radiative near-field”, where the transceiver distance is smaller than dF, but
larger than the Fresnel distance df = 0.5

√
D3

r /λ [42].

Discussion 2 (Typical approximations of Gs(rrt)). There are
two typical approximations of the scalar spherical wave term
Gs(rrt) contained in the near-field EPM, which we will discuss
below. The position can be written as pt = rto (Ψ,Ω,Φ)

T with
Ψ ≜ sinφ cosψ, Ω ≜ sinφ sinψ, and Φ ≜ cosφ. Thus, rrt
can be written as

rrt = ∥pr − pt∥ = rto

√
1− 2 (xrΨ+ yrΩ)

rto
+

x2
r + y2

r

r2to
. (13)

When rto ∼ O(Dr), rrt in the denominator of Gs(rrt) can be
replaced by rto. In the Fresnel region, i.e., rto > 0.5

√
D3

r /λ,
rrt in the exponent e−jk0rrt can be approximated as

rrt ≈ rto − (xrΨ+ yrΩ) +
x2
r + y2

r − (xrΨ+ yrΩ)
2

2rto
, (14)

and Gs(rrt) thus becomes

Gs(rrt) ≈ − jk0η

4πrto
e
−jk0

[
rto−(xrΨ+yrΩ)+

x2
r +y2

r −(xrΨ+yrΩ)2

2rto

]
. (15)

(15) is called the Fresnel approximation [42], which ignores
the amplitude variations over the receiver aperture while the
phase term is series expanded around rto → ∞. In the case
rto > 2D2

r /λ, the second-order term in the exponent of (15) is
negligible and we obtain the well-known uniform plane wave
approximation [43] of the spherical wave Gs(rrt) as follows,

Gs(rrt) ≈ − jk0ηe
−jk0rto

4πrto
ejk0(xrΨ+yrΩ). (16)

It is worth noting that unlike many works [34], [44], [45] using
the Fresnel approximation, this paper considers exact Gs(rrt).
Discussion 3 (Prior adopted signal models). The vast majority
of previously adopted signal models is usually based on simple
SWM and the received scalar field can be written as es (pr) =
εGs(rrt) [14], [24], [46], where ε is a channel power scaling
parameter. A more accurate SWM is adopted in [25], [47] and
the received signal is provided as es (pr) = εGs(rrt)

√
zt/rrt,

where
√
zt/rrt represents the angle-of-arrival of the transmit-

ted signal. Note: Compared with (2), (11), and (12), the above
signal models overlook the functional dependence on physical
properties of the source, although it may significantly affect
the expression of the received electric field, as revealed in [26].

2) Electric field expressions: We consider that the source
is a Hertzian dipole of length lt pointing in the direction of
Y -axis. Hence, the electric current density J (pt) is written as

J (pt) = Iinltδ (pt) ŷ, (17)

where Iin is the uniform current level in the dipole. Thus, we
have JRt = Iinltŷ = Iinlt cos θr̂rt − Iinlt sin θθ̂, which means
that Jr

Rt
= Iinlt cos θ, Jθ

Rt
= −Iinlt sin θ, and Jϕ

Rt
= 0. Based

on (12), the expressions of the three electric fields VEF, SEF,
and OSEF in the near-field can be obtained as follows.
Proposition 2 (Vector electric field). In the coordinate system
OXY Z, the three components of the VEF can be derived as

evx (pr) = jEin
(xr − xt) (yr − yt)

r3rt
e−jk0rrt , (18)

evy (pr) = −jEin

[
1

rrt
− (yr − yt)

2

r3rt

]
e−jk0rrt , (19)

evz (pr) = −jEin
zt (yr − yt)

r3rt
e−jk0rrt , (20)

where Ein =
ηIinlt
2λ is initial electric intensity measured in Volt.

rrt =
√
x2r,t + y2r,t + z2t , xr,t ≜ xr − xt, and yr,t ≜ yr − yt.
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Proof: Please see Appendix A.
Corollary 3 (Scalar electric field). In the coordinate system
OXY Z, the SEF can be derived as

es (pr) = Ein

√
zt (xr − xt)

2 + z3t

r
5/2
rt

e−jk0rrt . (21)

Proof: Since r̂rt = sin θ cosϕx̂ + cos θŷ − sin θ sinϕẑ,
(2) can be rewritten as

es (pr) =
√

∥ev (pr) ∥2 sin θ sinϕe−jk0rrt . (22)

Substituting (68) – (70) in Appendix A into (22), the scalar
electric field with respect to (rrt, θ, ϕ) can be expressed as

es (pr) = |Gs(rrt)| Iinlt
√

sin3 θ sinϕe−jk0rrt . (23)

Substituting sin θ =

√
x2
r,t+z2

t

rrt
and sinϕ = zt√

x2
r,t+z2

t

into (23)

yields (21).
Corollary 4 (Overall scalar electric field). In the coordinate
system OXY Z, the OSEF can be computed as

eo = Ein

√
2

D2
r

∫∫
Rr

√
zt (xr − xt)

2 + z3t

r
5/2
rt

e−jk0rrtdxrdyr. (24)

Proof: Based on (3) and (23), Corollary 4 is proven.

C. Performance Metric Computation and Analysis

Utilizing results in Sec. II-A and II-B, the expressions of the
CRBs for estimating the position of pt in Fig. 1 are provided.
Proposition 3 (CRB expressions, ev (pr)). Using the observed
vector electric field, the CRBs can be computed as

CRB1 (xt) = SNR−1 · −I223 + I22I33

2Isum
, (25)

CRB1 (yt) = SNR−1 · −I213 + I11I33

2Isum
, (26)

CRB1 (zt) = SNR−1 · −I212 + I11I22

2Isum
, (27)

where SNR = |Ein|2
σ2 is the signal-to-noise ratio (SNR), Imn =

ρmn
11 + ρmn

12 , ρmn
11 and ρmn

12 are computed in (75) – (86), and
Isum = 2I12I13I23 + I11I22I33 − I

2
13I22 − I11I

2
23 − I

2
12I33. (28)

Proof: According to Proposition 1 and 2, the first-order
derivatives ∂hvx (pr)/∂xt, · · · , ∂hvz (pr)/∂zt in FIM, where
hvκ (pr) ≜ evκ (pr) /Ein, should be first computed. For their
specific expressions, please see (74a) – (74i) in Appendix B.
Then by substituting these expressions into (4), we can derive
the elements of FIM as [I (ξ)]mn = 2SNR (ρmn

11 + ρmn
12 ), m ≤

n. Since FIM is a symmetric matrix, we have [I (ξ)]mn,m ̸=n =
[I (ξ)]nm,m ̸=n. By applying the matrix inversion lemma, we
obtain the inverse of I (ξ), denoted as I (ξ)−1, whose diagonal
elements are the CRBs for estimating xt, yt, and zt.

From the above expressions of the CRBs for VEF, the CRBs
for SEF and OSEF are provided in the following corollaries.
Corollary 5 (CRB expressions, es (pr)). If utilizing the scalar
electric field observation, the specific expressions of the CRBs
can also be computed by (25) – (27), and we represent them
as CRB2 (κt). The only difference from Proposition 3 is the
computation of Imn, where Imn = ρmn

21 +ρmn
22 . ρmn

21 and ρmn
22

are given in (88) – (99) in Appendix B.
Proof: Based on Corollary 3, the first-order derivatives

∂hs (pt)/∂κt involved in I (ξ), where hs (pt) ≜ es (pt) /Ein,

are computed in (87a) – (87c) in Appendix B. According to
Corollary 1, CRB2 (κt) can be derived.
Corollary 6 (CRB expressions, eo). If we can only capture the
overall scalar electric field observation. The CRBs, denoted
as CRB3 (κt), can also be computed by (25) – (27), but the
expression of Imn is different. Specifically, Imn = ρmn

3 , where

ρmn
3 =

2

D2
r
Re

{
∂ho

∂ξn

∂ho∗

∂ξm

}
, (29)

and ho ≜ Dre
o

√
2Ein

.
Proof: The result is derived from Corollary 2 and 4.

Notice that it is hard to compute the value of ρmn
3 due to the

double integral in the molecule of partial derivative ∂ho/∂κt in
(29). By using the Riemann integral method, we approximate
the integral as a summation, and thus a simpler expression of
ρmn
3 is acquired. Specifically, we divide the receiving surface

Rr into α parts, where
√
α is assumed to be a positive integer

and an odd number for simplicity. We denote the coordinate of
each small part as (xi, yj), in which {x1, x2, . . . , x√α} is the
arithmetic sequence, the common difference is Dr/

√
2α, and

the first item is x1 = Dr

2
√
2α

− Dr

2
√
2

. Similarly, the arithmetic
sequence {y1, y2, . . . , y√α} has the same common difference
and the first item as {xi}. Thus, ho is approximated as hod,

ho
d =

D2
r

2α

√
α∑

i=1

√
α∑

j=1

√
zt (xi − xt)

2 + z3t

r
5/2
rt;i,j

e−jk0rrt;i,j , (30)

in which rrt;i,j ≜
√
(xi − xt)

2
+ (yj − yt)

2
+ z2t . Therefore,

ρmn
3 can be computed by replacing ho in (29) with hod. The

expressions of ρmn
3 are given in (100) – (105) in Appendix B.

III. PERFORMANCE FOR A TERMINAL ON THE CPL

To validate the results derived in Sec. II-C and gain further
insights into the performance, a simplified case of the general
system is considered, where the terminal is located on the CPL
of the receiving surface. This is also for comparison with [27].
In particular, the CPL is the boresight line perpendicular to the
receiving surface Rr passing through the center point O while
the three-dimensional source region Rt degenerates into one-
dimensional region, as shown in Fig. 1.

A. Performance Analysis for CPL Case

In CPL case, we have xt = yt = 0 (but they are unknown),
and hence rrt =

√
x2r + y2r + z2t . Since rrt is an even function

with respect to xr and yr, and the integration domain Rr is
symmetric, the cross-terms of different dimensions in the FIM
I (ξ) are zero, meaning that the FIM I (ξ) is a diagonal matrix.
Utilizing the properties of the diagonal matrix inversion, the
process of computing CRBs will be considerably simplified.

We denote a useful parameter τ ≜ Dr/zt, which measures
the maximum geometric dimension Dr of the receiving surface
normalized by the distance from the terminal position to the
receiver. For a terminal in the near-field region, the value of
τ is large, and for a terminal far away from the receiving
antenna, τ becomes small. We define a new integration domain
Rτ =

{
(u, v) : |u| ≤ τ/

√
8, |v| ≤ τ/

√
8
}

. Based on Proposi-
tion 3, Corollary 5, and 6, the following results are obtained.
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Corollary 7 (CRB, VEF, CPL). If the terminal is on the CPL,
the CRBs for the estimation of xt, yt, and zt using the vector
electric field, denoted as CRBC

1 (κt), are computed as

CRBC
1 (κt) =

SNR−1

2
(
k2
0ρ11κ + z−2

t ρ12κ
) , (31)

where

ρ11x ≜
∫∫

Rτ

u2(u2 + 1)

(u2 + v2 + 1)3
dudv, (32)

ρ12x ≜
∫∫

Rτ

u4 + v4 + u2 + v2 − u2v2

(u2 + v2 + 1)4
dudv, (33)

ρ11y ≜
∫∫

Rτ

v2(u2 + 1)

(u2 + v2 + 1)3
dudv, (34)

ρ12y ≜
∫∫

Rτ

(u2 + 1)(u2 + 4v2 + 1)

(u2 + v2 + 1)4
dudv, (35)

ρ11z ≜
∫∫

Rτ

u2 + 1

(u2 + v2 + 1)3
dudv, (36)

ρ12z ≜
∫∫

Rτ

v4 + u2v2 + 1

(u2 + v2 + 1)4
dudv. (37)

Proof: Since I (ξ) is diagonal, (5) can be rewritten as
CRB (ξi) = [I(ξ)]−1

ii = I−1
ii , (38)

where Iii = 2SNR(ρii11 + ρii12), ρ
ii
11 and ρii12 can be computed

by replacing xr,t and yr,t in (75) – (80) with xr and yr.
Remark 1 (The generalizability of proposition 3). Proposition
3 can be simplified to Corollary 7 by utilizing diagonal matrix
inversion and simplification of ρ1111 – ρ3312 when the terminal is
on the CPL. Additionally, the expressions of CRBC

1 (κt) are
consistent with the results in [27, Eqs. (28)–(36)]. The only
difference is that we have replaced the integration variables xt
and yt with u and v for a more intuitive analysis of the effect
of λ and zt on the CRBs. Consequently, the CRBs (using the
vector electric field) derived in proposition 3 are more general
than [27]. In fact, compared with the CPL case [27], [28], Sec.
II-A provides a generic near-field positioning model since the
terminal does not have to be located on the CPL.
Remark 2 (Closed-form expressions of CRBC

1 (κt)). Different
from [27, Eqs. (39)–(46)], the more precise closed-form ex-
pressions for ρ12x, ρ12y , ρ11z , and ρ12z are provided in (106)
– (109) in Appendix C. Since the closed-form expressions of
ρ11x and ρ11y are hard to obtain, their closed-form upper and
lower bounds are provided in (112) – (115) in Appendix C.
Corollary 8 (CRB, SEF, CPL). For the CPL case, the CRBs
for estimating xt, yt, and zt utilizing the scalar electric field,
denoted as CRBC

2 (κt), are given by

CRBC
2 (κt) =

SNR−1

2
(
k2
0ρ21κ + z−2

t ρ22κ
) , (39)

where

ρ21x ≜
∫∫

Rτ

u2(u2 + 1)

(u2 + v2 + 1)7/2
dudv, (40)

ρ22x ≜
∫∫

Rτ

u2(3u2 − 2v2 + 3)2

4(u2 + 1)(u2 + v2 + 1)9/2
dudv, (41)

ρ21y ≜
∫∫

Rτ

v2(u2 + 1)

(u2 + v2 + 1)7/2
dudv, (42)

ρ22y ≜
∫∫

Rτ

25v2(u2 + 1)

4(u2 + v2 + 1)9/2
dudv, (43)

ρ21z ≜
∫∫

Rτ

u2 + 1

(u2 + v2 + 1)7/2
dudv, (44)

ρ22z ≜
∫∫

Rτ

(u4 + u2v2 + 3v2 − u2 − 2)2

4(u2 + 1)(u2 + v2 + 1)9/2
dudv. (45)

Proof: The diagonal elements of I(ξ) in (38) are written
as Iii = 2SNR(ρii21 + ρii22), ρ

ii
21 and ρii22 can be computed by

replacing xr,t and yr,t in (88) – (93) with xr and yr.
The closed-form expressions of ρ21κ and ρ22κ are compli-

cated and lengthy, so we provided their closed-form upper and
lower bounds in (117) – (128) in Appendix C.

Corollary 7 and Corollary 8 clearly demonstrate the effects
of the wavelength λ = 2π/k0 and the propagation distance
rto = zt on the CRB for fixed values of τ and SNR in the near-
field positioning system (using the vector or scalar electric
field). In particular, the CRBs for all dimensions decrease as λ
or zt decreases. In other words, the estimation accuracy of the
positioning system increases as the carrier frequency becomes
higher or as the propagation distance becomes smaller.
Corollary 9 (CRB, OSEF, CPL). When we employ the overall
scalar electric field, the CRBs for the CPL case, denoted as
CRBC

3 (κt), can be computed as follows.

CRBC
3 (κt) =

SNR−1

4
D2

r
|ρ3κ|2

, (46)

where ρ3κ ≜ ∂ho

∂κt
. By utilizing hod to discretize ho, we have

CRBC
3 (κt) ≈

α2

D2
r
SNR−1∣∣∣∑√

α
i=1

∑√
α

j=1

√
zt (x2

i + z2t )ρ
i,j
3κe

−jk0rrt;i,j

∣∣∣2 , (47)

where
ρi,j3x ≜ jk0xir

− 7
2

rt;i,j +
5

2
xir

− 9
2

rt;i,j −
xi

z2t + x2
i

r
− 5

2
rt;i,j , (48)

ρi,j3y ≜ jk0yjr
− 7

2
rt;i,j +

5

2
yjr

− 9
2

rt;i,j , (49)

ρi,j3z ≜ −jk0ztr
− 7

2
rt;i,j −

5

2
ztr

− 9
2

rt;i,j +
3z2t + x2

i

2zt (x2
i + z2t )

r
− 5

2
rt;i,j . (50)

Proof: It follows from Corollary 6 and (30) by using the
property of the inverse of a diagonal matrix I(ξ).
Remark 3 (CRBC

2 (κt) < CRBC
3 (κt)). We can either compute

(47) numerically or apply the Cauchy-Schwarz inequality:

CRBC
3 (κt) >

α2

D2
r
SNR−1∑√

α
i=1

∑√
α

j=1 α
∣∣∣√zt (x2

i + z2t )ρ
i,j
3κe

−jk0rrt;i,j

∣∣∣2
=

SNR−1

D2
r

α

∑√
α

i=1

∑√
α

j=1

(
k2
0ρ

i,j
21κ + z−2

t ρi,j22κ

) = CRBC
2 (κt) ,

where ρi,j21κ and ρi,j22κ are defined as the discretized sampling of
the integrand functions in (40) – (45). It shows that, under the
same condition, the CRBs using SEF are the lower bounds of
the CRBs using OSEF. We get a conclusion that is in line with
intuition: using OSEF can significantly reduce the complexity
of the system, but at the cost of reducing estimation accuracy.

B. Two Further Simplified Scenarios

1) Performance analysis for zt ≫ λ: Consider the scenario
in which the distance from the terminal located on the CPL to
the receiver is much larger than the wavelength, i.e., zt ≫ λ8.
It generally holds in the wireless communication systems with

8Since zt ≪ 2D2
r /λ is always satisfied when zt ≫ λ and Dr is not very

small, we know that zt ≫ λ corresponds to the near-field region when the
size of the receiving antenna is on the order of meters.
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carrier frequencies in the range of GHz or above. Expressions
of the CRBs in Corollary 7 and 8 can be simplified as follows.
Corollary 10 (CRB, CPL, zt ≫ λ). If zt ≫ λ, the CRBs for
the CPL case can be further simplified as

a) Using the vector electric field, CRBC
1 (κt) reduces to

CRBC
1 (κt) ≈

SNR−1

2k2
0ρ11κ

. (51)

b) Using the scalar electric field, CRBC
2 (κt) reduces to

CRBC
2 (κt) ≈

SNR−1

2k2
0ρ21κ

. (52)

Proof: Please refer to Appendix D.
Corollary 10 clearly shows that the estimation accuracy for

all dimensions is completely determined by the values of λ
and τ when zt ≫ λ. In particular, when we keep τ and SNR
fixed, CRBC

1 (κt) and CRBC
2 (κt) will be proportional to the

square of λ. Additionally, for a fixed value of τ , if zt increases
by a factor ϵ, the surface diagonal length Dr needs to be scaled
by the same factor ϵ (the surface area of the receiving antenna
increases by the factor ϵ2) to keep the CRBs unchanged.
Remark 4 (Comparison of estimation accuracy). From Corol-
lary 7 and Corollary 8, we find that ρ11κ > ρ12κ. Accordingly,
based on Corollary 10 and Remark 3, we can derive that

CRBC
1 (κt) < CRBC

2 (κt) < CRBC
3 (κt) . (53)

Inequality (53) shows that using the vector electric field at each
point on the contiguous receiving surface renders lower CRBs,
i.e., higher estimation accuracy. Using the scalar electric field
will reduce the complexity of the observed electric fields, but
the CRBs will increase accordingly. If the conventional surface
antenna is employed as the receiver, the system can only obtain
the overall scalar electric field, which will further reduce the
complexity of the system but the accuracy decreases too.

2) Asymptotic performance analysis for τ → ∞: Based on
the above analysis, it is interesting to analyze the behavior of
the asymptotic CRBs if the surface diagonal length Dr is much
larger than the distance zt from the terminal to the receiver.
Corollary 11 gives the CRBs in the asymptotic regime τ → ∞.
Corollary 11 (CRB, CPL, τ → ∞). For the CPL case and
zt ≫ λ, in the asymptotic regime τ → ∞, the CRBs for the
estimation of xt, yt, and zt are given by

a) Using the vector electric field, we have

lim
τ→∞

CRBC
1 (xt) =

SNR−1

6π3

λ2

ln τ
, (54)

lim
τ→∞

CRBC
1 (yt) =

SNR−1

2π3

λ2

ln τ
, (55)

lim
τ→∞

CRBC
1 (zt) =

SNR−1

6π3
λ2. (56)

b) Using the scalar electric field, we have

lim
τ→∞

CRBC
2 (xt) =

15

64

SNR−1

π3
λ2, (57)

lim
τ→∞

CRBC
2 (yt) =

15

32

SNR−1

π3
λ2, (58)

lim
τ→∞

CRBC
2 (zt) = lim

τ→∞
CRBC

2 (xt) . (59)

Proof: We have provided the closed-form expressions or
upper and lower bounds in Appendix C, making it possible to
compute and analyze the asymptotic CRBs. By computing the
limit values of (112) and (113), we derive that ρ11x ∼ 3π

4 ln τ
for τ → ∞. Then, according to (114) and (115), we derive that

…

…

Fig. 2. Illustration of the SIMO near-field positioning system.

ρ11y ∼ π
4 ln τ for τ → ∞. Similarly, based on (108) and (117)

– (126), we have lim ρ11z = 3π
4 , lim ρ21x = 8π

15 , lim ρ21y =
4π
15 and lim ρ21z = 8π

15 , where we use lim to represent limτ→∞.
Thus, Corollary 11 holds.

From Corollary 11, the following observations can be made.
Firstly, if we use the observed vector electric field, the CRBs
for estimating xt and yt will decrease in the form of ln−1 τ
and go to zero as τ increases infinitely. But CRBC

1 (zt) tends
to a fixed value which depends uniquely on the λ and SNR,
and does not change with τ . In the CPL case, zt represents the
propagation distance, so equation (56) provides a fundamental
lower limit to the near-field ranging precision. Secondly, when
we utilize the scalar electric field, the CRBs for the estimation
of xt and zt are identical and these three CRBs are completely
determined by λ and SNR as τ increases. Finally, in order to
get more insights on the difference of fundamental limit of the
estimation accuracy between VEF and SEF as τ increases, we
represent their difference as ∆Cκ = pκSNR−1λ2 with px =
15/(64π3) ≈ 7.56× 10−3, py = 15/(32π3) ≈ 1.512× 10−2,
and pz = 13/(192π3) ≈ 6.77×10−5. This indicates that using
SEF has a smaller performance penalty for the estimation of
zt than xt and yt compared to utilizing VEF.

IV. PERFORMANCE OF THE SIMO POSITIONING SYSTEM

The receiving antenna adopted in the previous sections is a
single antenna or intelligent surface9, in which the positioning
system can be defined as the single-input single-output (SISO)
system. In this section, a new system with multiple distributed
receiving antennas will be investigated extensively, referred to
as the single-input multiple-output (SIMO) system depicted in
Fig. 2. This SIMO system is specifically interpreted as follows.

• Space constraints: Each of the small receiving antenna
is an intelligent surface or a conventional surface antenna
as previously described and they are distributed on a large
rectangular surface Rs with size Rr√

2
× Rr√

2
, in which Rr is

9The single intelligent surface denotes a centralized-deployment LIS [25] or
holographic MIMO surface [31], which can observe VEF and SEF. Besides,
the single antenna represents a conventional surface antenna [34] and it can
only obtain OSEF. For simplicity, we define both of them as “single-output”.
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usually a fixed value (a few meters to tens of meters) due
to space constraints10 of the actual positioning system.

• Total surface area: The total surface area is assumed to
be the same for different numbers of the small receiving
antennas and each of them has the same surface area and
property. In particular, we consider that the total surface
area is D2

r

2 and the number of the antennas is N2
s . Thus,

the size of each receiving antenna is Dr

Ns

√
2
× Dr

Ns

√
2

.
• Terminal position: For simplicity, the terminal is located

on the CPL with coordinates (0, 0, zt), which makes the
FIM matrix diagonalize as will be shown in Lemma 1.

Note that if Ns = 1, the SIMO system degenerates into the
SISO system, where the CRBs for all three dimensions using
the three electric fields have been computed and analyzed in
Sec. II-B and Sec. III. In this section, we assume Ns ≥ 2. To
derive the CRBs of the SIMO system, Lemma 1 is given.
Lemma 1 (Properties of the Fisher’s information). The FIM of
the SIMO system becomes a diagonal matrix, and the Fisher’s
information is identical for every four small receiving antennas
rotationally symmetric about the origin (rotation angle is 90◦).

Proof: Since ρ1211 – ρ2312 in (81) – (86) and ρ1221 – ρ2322 in
(94) – (99) (items in FIM off-diagonal elements) contain at
least an odd power term of either xr or yr, and rrt is an even
function with respect to xr and yr, we can demonstrate that
even though the integral domains of ρ1211 – ρ2312 and ρ1221 – ρ2322
are no longer symmetric about the origin, due to the additivity
of the Fisher’s information, there can be a symmetric integral
of each integral whose sum equals zero. Consequently, the off-
diagonal elements of the FIM matrix are canceled. Similarly,
ρ1111 – ρ3312 in (75) – (80) and ρ1121 – ρ3322 in (88) – (93) (items in
FIM diagonal elements) contain even power terms of xr and/or
yr, so the diagonal elements are non-zero, and the values of
ρ1111 – ρ3312 and ρ1121 – ρ3322 remain unchanged if xr becomes −xr
and/or yr becomes −yr. Therefore, Lemma 1 holds.

Based on Lemma 1, we divide the large rectangular surface
into four equal parts using the X- and Y - axes as their bound-
aries. Then, we only need to study one of the four parts, which
contains N2

s

4 small receiving antennas with index (i, j), i, j =
1, · · · , Ns

2 . The integral domain of the small receiving antenna
with index (i, j) is denoted as Rs;i,j = (xr, yr, 0), where xr ∈[ (2i−1)Rr−Dr

2
√
2Ns

, (2i−1)Rr+Dr

2
√
2Ns

]
, yr ∈

[ (2j−1)Rr−Dr

2
√
2Ns

, (2j−1)Rr+Dr

2
√
2Ns

]
.

Additionally, Rs;i,j can be written as Rτ
s;i,j = (u, v, 0), where

u ∈ 1
2
√
2Ns

[ (2i−1)Rr

zt
−τ, (2i−1)Rr

zt
+τ

]
, v ∈ 1

2
√
2Ns

[ (2j−1)Rr

zt
−

τ, (2j−1)Rr

zt
+τ

]
. As will be seen later, unlike the SISO system,

the integral operation of the Fisher’s information is carried out
in each small integral domain Rτ

s;i,j and accumulated at the
end. The CRBs of the SIMO positioning system utilizing VEF,
SEF, and OSEF are computed in the following proposition.
Proposition 4 (CRB, SIMO). For the defined SIMO position-
ing system depicted in Fig. 2, we have that:

a) Using the vector electric field, the CRBs can be given by

CRBM
1 (κt) =

SNR−1

8
∑Ns

2
j=1

∑Ns
2

i=1

(
k2
0ρ

s;i,j
11κ + z−2

t ρs;i,j12κ

) , (60)

10The receiving antenna, such as LIS, can be easily embedded in daily life
objects with limited size such as buildings, walls, cars, etc.

where ρs;i,j11κ , ρs;i,j12κ have the same integrands as ρ11κ, ρ12κ in
(32) – (37), but their integral domain is Rτ

s;i,j .
b) Using the scalar electric field, the CRBs are derived by

CRBM
2 (κt) =

SNR−1

8
∑Ns

2
j=1

∑Ns
2

i=1

(
k2
0ρ

s;i,j
21κ + z−2

t ρs;i,j22κ

) , (61)

where ρs;i,j21κ , ρs;i,j22κ have the same integrands as ρ21κ, ρ22κ in
(40) – (45), but their integral domain is Rτ

s;i,j .
c) Using the overall scalar electric field, the CRBs are

CRBM
3 (κt) =

SNR−1

16
D2

r

∑Ns
2

j=1

∑Ns
2

i=1

∣∣ρs;i,j3κ

∣∣2 , (62)

where ρs;i,j3κ =
∂ho

s;i,j

∂κt
, and hos;i,j contains the same integrand

as ho in Corollary 6 while its integral domain is Rs;i,j . On the
basis of (47), we provide the more feasible discretized form of
(62). Similarly, we divide each small receiving surface region
Rs;i,j into α parts, then denote that xs;m;i =

(2i−1)Rr−Dr

2
√
2Ns

+
(2m−1)Dr

2
√
2αNs

, ys;n;j = (2j−1)Rr−Dr

2
√
2Ns

+ (2n−1)Dr

2
√
2αNs

, and rrt;mn;ij =√
x2s;m;i + y2s;n;j + z2t , thus CRBM

3 (κt) is further written as

CRBM
3 (κt) ≈

α2

4D2
r
SNR−1

∑Ns
2

j=1

∑Ns
2

i=1

∣∣∣∑√
α

m=1

∑√
α

n=1 ϱ
s;mn;ij
3κ

∣∣∣2 , (63)

in which ϱs;mn;ij
3κ =

√
zt(x2s;m;i + z2t )ρ

s;mn;ij
3κ e−jk0rrt;mn;ij and

ρs;mn;ij
3κ is given in (48) – (50), but xi, yj , and rrt;i,j need to

be modified to xs;m;i, ys;n;j , and rrt;mn;ij , respectively.
Proof: Corollary 7, 8, and 9 have computed the CRBs for

all three dimensions utilizing the three observed electric field
types in the SISO system and the crux of the computation is
to derive the values of double integrals ρ11κ, ρ12κ, ρ21κ, ρ22κ,
and ρ3κ, whose integral domains are Rτ or Rr. In the SIMO
system, the domain of each small receiving antenna is distinct
and spatially discontinuous, thus we modify the domains from
Rτ /Rr to Rτ

s;i,j /Rs;i,j . Besides, the electric fields observed in
each small receiving antenna are independent, so the Fisher’s
information is additive. Hence, Proposition 4 holds.

From (60) and (61), we see that CRBM
1 (κt) and CRBM

2 (κt)
decrease as λ or zt decreases for fixed values of Ns and τ or,
equivalently, of the functions ρs;i,jabκ , a, b = 1, 2. The impact of
the number N2

s of small receiving antennas on the CRBs will
be investigated in Sec. V-C. Similar to Remark 3, CRBM

2 (κt)
can be verified as the lower bounds of the CRBM

3 (κt) by using
the Cauchy-Schwarz inequality.

Next, we analyze the behavior of the CRBs in the SIMO
system if zt ≫ λ and τ → ∞. The main results are as follows.
Corollary 12 (SIMO, zt ≫ λ). If zt ≫ λ, the CRBs of the
SIMO positioning system can be simplified as

CRBM
1 (κt) ≈

SNR−1

8
∑Ns

2
j=1

∑Ns
2

i=1 k
2
0ρ

s;i,j
11κ

, (64)

CRBM
2 (κt) ≈

SNR−1

8
∑Ns

2
j=1

∑Ns
2

i=1 k
2
0ρ

s;i,j
21κ

. (65)

Proof: We observe that: 1) ρs;i,j11κ > ρs;i,j12κ or ρs;i,j11κ has the
same order of magnitude as ρs;i,j12κ ; 2) both of them are positive.
Then, k20ρ

s;i,j
11κ ≫ z−2

t ρs;i,j12κ for zt ≫ λ. Similarly, we can prove
that k20ρ

s;i,j
21κ ≫ z−2

t ρs;i,j22κ for zt ≫ λ. Hence, expression (60)
and (61) can be simplified to (64) and (65).
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Notice that CRBM
1 (κt) < CRBM

2 (κt) < CRBM
3 (κt) can be

derived based on Corollary 12, which is similar to inequality
(53). It clearly indicates that using multiple distributed receiv-
ing antennas does not affect the order of estimation accuracy
of exploiting different electric field observations.
Corollary 13 (SIMO, τ → ∞). If zt ≫ λ and τ → ∞, the
CRBs of the SIMO positioning system can be given by

lim
τ→∞

CRBM
1 (κt) = lim

τ→∞
CRBC

1 (κt)/N
2
s , (66)

lim
τ→∞

CRBM
2 (κt) = lim

τ→∞
CRBC

2 (κt)/N
2
s . (67)

Proof: It follows from Corollary 11 and 12. Particularly,
we have lim ρs;i,j11κ = lim ρ11κ and lim ρs;i,j21κ = lim ρ21κ, where
lim stands for limτ→∞. Thus, Corollary 13 holds.

It can be seen from Corollary 13 that the CRBs of the SIMO
positioning system will be one-N2

s th of the SISO system as τ
increases unboundedly. Configured on the surface of fixed size,
adjacent small receiving antennas will be stacked on top of
each other with τ increasing, resulting in multiplexing benefits
and lower CRBs. Besides, the total area of the small receiving
antennas will be larger than Rs as τ → ∞, which ignores the
space constraints. In fact, the more practical and meaningful
case is τ ≤ Rr/zt, which will be analyzed in Sec. V-C.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we will provide numerical results to illustrate
the propositions and corollaries derived in previous sections.
We set the signal-to-noise ratio as SNR = |Ein|2

σ2 = −10dB and
the wavelength as λ = 0.01m (corresponding to fc = 30GHz),
unless otherwise specified. Other values can also be examined,
as the results are very general.

A. CRB for CPL Case

We first show the CRBs for a terminal on the CPL computed
in Sec. III. To illustrate the impact of the wavelength on the
CRBs, we consider two different values, i.e., λ = 0.01m and
λ = 0.001m (corresponding to fc = 300GHz). Fig. 3 and
Fig. 4 demonstrate the CRBs, measured in square meters [m2],
versus the surface diagonal length Dr or the distance from the
terminal to the receiving antenna (terminal-surface distance)
rto = zt when zt = 6m or Dr = 9m, respectively.

Fig. 3 shows that all the CRBs decrease dramatically with
the surface diagonal length Dr in the range 1m ∼ 10m, which
contains the values of Dr commonly used in the actual system.
In addition, the CRBs for zt are much lower than those for
xt and yt in the above range. More interestingly, the CRBs
utilizing SEF are greater than CRBs using VEF for all values
of Dr, which agrees with Remark 4. The difference between
CRBC

1 (κt) and CRBC
2 (κt) is negligible if Dr is smaller than

10m, but it increases progressively with the increase of Dr. As
for the CRBs in the asymptotic regime, we observe that: (i)
CRBC

1 (xt) and CRBC
1 (yt) decrease infinitely with the trend

of the ln−1 function provided in (54) and (55); (ii) CRBC
1 (zt)

and CRBC
2 (zt) approach the asymptotic limit in (56) and (59)

from Dr ≈ 20m; (iii) CRBC
2 (xt) and CRBC

2 (yt) converge to
the asymptotic limit in (57) and (58) when Dr > 103m. These
phenomena are consistent with Corollary 11. Fig. 4 shows that
the CRBs for all three dimensions increase very slowly with

C
t

C
t

C
t

C
t

C
t

C
t

Fig. 3. CRBs versus surface diagonal length Dr, with λ = 0.01m or 0.001m,
zt = 6m, when pt is on the CPL and using VEF or SEF.

C
t

C
t

C
t

C
t

C
t

C
t

Fig. 4. CRBs versus terminal-surface distance zt, with Dr = 9m, λ = 0.01m
or 0.001m, when pt is on the CPL and using VEF or SEF.

the terminal-surface distance rto in the range 0.1m ≤ zt ≤ 1m,
but they increase considerably (CRBC

1 (zt) and CRBC
2 (zt) are

much lower than the CRBs for xt and yt) when zt > 1m.
In Fig. 5, we perform a simulation to show the CRBs with

respect to the SNR when zt = 3m and Dr = 10m. It can be
observed that all the CRBs are inversely proportional to the
SNR. In particular, the CRBs will decrease by a factor of 10 if
the SNR increases by 10dB, which can be derived analytically
by considering the results in Corollary 7 and Corollary 8. This
holds true also for the general scenario and the SIMO system
(simulations are no longer shown due to space limitations), as
revealed by (25) – (27) and (60) – (62). It is worth mentioning
that the CRB is an asymptotically tight lower bound for MSE
only in high SNR regions. Considering the global tight lower
bound, e.g., Ziv-Zakai bound (ZZB) [38], [39], in low SNR
regions, will be an attractive extension of our work. In Fig. 3,
Fig. 4, and Fig. 5, it is also observed that all the CRBs depend
linearly on the square of wavelength regardless of using VEF
or SEF, as in Corollary 10. Indeed, reducing the wavelength
by a factor of ϵ reduces the CRBs of the factor of ϵ2.

Table. I gives the square root of the CRBs (RCRB, denoted
as Rcrb (κt)), measured in centimeters (i.e., [cm]), for the three
components xt, yt, and zt, for terminals located on the CPL.
Dcase

1 , Dcase
2 , Dcase

3 , and Dcase
4 represent that the surface
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Fig. 5. CRBs versus SNR, with Dr = 10m, λ = 0.01m or 0.001m, and
zt = 3m, when pt is on the CPL and using VEF or SEF.

TABLE I
COMPARISON OF ESTIMATION ACCURACY BETWEEN USING VEF, SEF,

AND OSEF, λ = 0.01M (- MEANS THAT THE VALUE IS TOO LARGE).

RCRB [cm]
Dcase

1 Dcase
2 Dcase

3 Dcase
4 Acase

ver

VEF
Rcrb (xt) 35.5 8.91 2.25 1.02 3.88
Rcrb (yt) 35.5 8.91 2.26 1.02 3.88
Rcrb (zt) 0.604 0.303 0.153 0.103 0.179

SEF
Rcrb (xt) 35.5 8.92 2.26 1.03 3.89
Rcrb (yt) 35.6 8.92 2.26 1.03 3.89
Rcrb (zt) 0.605 0.303 0.153 0.104 0.179

OSEF
Rcrb (xt) - - - - -
Rcrb (yt) - - - - -
Rcrb (zt) 11.8 21.1 20.4 23.7 18.0

diagonal length Dr is 0.5m, 1m, 2m, and 3m when zt = 6m,
respectively. To evaluate the average positioning performance,
we adopt the receiving antenna with Dr = 3m to compute the
average RCRB of 1000 terminals with coordinates of zt di-
mension uniformly distributed in [1m, 20m], which is denoted
as Acase

ver . It can be seen that using VEF or SEF can guarantee
a centimeter/cm-level accuracy (within a few centimeters) for
estimating all three dimensions in the mmWave and sub-THz
band. Unfortunately, although accuracy on the order of tens of
centimeters for zt can be achieved by utilizing OSEF, we are
unable to estimate xt and yt with acceptable accuracy. This
reveals that the single conventional surface antenna possesses
the near-field ranging function, which can be considered a
one-dimensional special case of near-field positioning.

B. CRB for the General Scenario

We will evaluate the positioning performance for a terminal
not restricted to the CPL as discussed in Proposition 3, Corol-
lary 5 and 6. Fig. 6 illustrates the CRBs as a function of the
distance rto =

√
x2t + y2t + z2t for a terminal at (2, 3, zt) when

Dr = 9m. It can be found that the estimation accuracy reduces
as the terminal-surface distance increases, which is consistent
with our intuition. Particularly, the CRBs for estimating xt and
yt increase faster than those for zt regardless of VEF or SEF.
Furthermore, all the CRBs increase rapidly when the terminal
is close to the receiving antenna (0 < zt ≤

√
3m). This occurs

t

t

t

t

t

t

Fig. 6. CRBs as a function of the terminal-surface distance for a terminal at
(2, 3, zt) when using VEF or SEF, Dr = 9m, and λ = 0.01m.

t t

t t

t t

t t

t t

t t

t t

t t

t t

t t
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t t

Fig. 7. CRBs as a function of the terminal-surface distance for terminals with
different xt and yt when using SEF, Dr = 9m and λ = 0.001m. Since using
VEF or SEF has the same rules, we take the use of SEF as an example.

since the estimation for all three dimensions is nearly perfect
(CRBs are approaching 0) when the terminal approaches the
receiving antenna (zt → 0, |xt| and |yt| are less than Dr

2
√
2

), and
as zt increases from zero, CRBs will rapidly increase to greater
orders of magnitude. In addition, it can be seen that CRB2 (κt)
is greater than CRB1 (κt) when the terminal-surface distance
is less than 10m, otherwise they are equal. This indicates that
for a receiving antenna with fixed size, there is a considerable
performance gap between utilizing VEF and SEF, only when
the terminal is close to the receiving antenna.

Fig. 7 illustrates the CRBs for terminals with different xt
and yt versus the terminal-surface distance rto when utilizing
SEF, Dr = 9m and λ = 0.001m. It indicates that the CRBs
possess different trends and the curve shapes vary from each
other for different xt and yt when the terminal is close to the
receiving antenna. For instance, if the terminal is on the CPL
(xt = yt = 0, rto = zt), the CRBs for all three dimensions are
almost unchanged in the range 0.1m < rto < 1m. However,
if xt or yt are greater than Dr

2
√
2

and zt is small, which means
the vertical projection of the terminal along the Z-dimension is
not on the receiving antenna surface, and the distance from the
terminal to the CPL is much larger than zt, the CRBs sharply
decrease from infinity. We refer to this interesting phenomenon
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(a) CRBN
1 (xt) in dB. (b) CRBN

2 (xt) in dB. (c) CRBN
1 (yt) in dB.

(d) CRBN
2 (yt) in dB. (e) CRBN

1 (zt) in dB. (f) CRBN
2 (zt) in dB.

(g) Normalized CRBs in 3D view.

Fig. 8. Normalized CRBs, measured in [dB], as a function of xt and yt for the
terminal not on the CPL when using VEF/SEF, zt = 6m, Dr = 3m, and λ =
0.01m. We define that CRBN

1 (κt) ≜ 10 log10[CRB1 (κt) /CRBC
1 (κt)]

and CRBN
2 (κt) ≜ 10 log10[CRB2 (κt) /CRBC

2 (κt)].

as the near-field positioning blocking zone effect, which always
exists for a fixed-size receiving antenna. Moreover, extensive
numerical simulation as Fig. 3 for terminals not on the CPL
demonstrate that the result obtained in the analysis of the CPL
case in Sec. III is also applicable to the sophisticated generic
near-field system proposed in Sec. II, which provides support
for the generality of our insights and results.

Fig. 8 demonstrates the normalized CRBs for the terminal
not on the CPL, versus xt and yt when zt = 6m, Dr = 3m,
and using VEF or SEF. These normalized CRBs, measured in
[dB] and denoted as CRBN

1 (κt) and CRBN
2 (κt), are defined as

the values of CRBs normalized by their minimum, which can
be achieved when the terminal is on the CPL (xt = yt = 0).
To clearly illustrate the different behaviors of the CRBs when
the target terminal moves away from the CPL, the color of the
point (xt, yt) is used to measure the normalized CRB values
corresponding to that point. In particular, the normalized CRB
values are mapped to the color gamut, in which warmer colors
represent higher values, and lower values are associated with
cooler colors. It shows that the CRB for estimating zt increases
faster than those for xt and yt regardless of using VEF or SEF.
In addition, the maximum normalized values of CRB1 (κt)

M
t

M
t

M
t

M
t

C
t

r r

(a) CRBM
1 (xt) and CRBC

1 (xt) versus Dr.

M
t

M
t

M
t

M
t

C
t

r r

(b) CRBM
1 (yt) and CRBC

1 (yt) versus Dr.

M
t

M
t

M
t

M
t

C
t

r r

(c) CRBM
1 (zt) and CRBC

1 (zt) versus Dr.

Fig. 9. CRBs with different numbers of small receiving antennas (N2
s =

1, 4, 16, 64, 256, equivalently expressed as CRBM
1 (κt), 1× 4, 1× 16, 1×

64, 1× 256) with Rr = 30m, zt = 6m, and λ = 0.001m when using VEF.

(as shown in Fig. 8a, 8c, and 8e) and CRB2 (κt) (as shown in
Fig. 8b, 8d, and 8f) are 18.40dB, 18.41dB, 45.68dB, 22.41dB,
22.43dB, and 49.69dB, respectively. Further, to distinguish the
difference among Fig. 8a, 8b, 8c, 8d in an obvious manner, Fig.
8g demonstrates the normalized CRBs in three-dimensional
(3D) view. It shows that the CRBs utilizing SEF have a more
significant increase than using VEF, and the difference is about
4dB for all dimensions. Additionally, as for utilizing the same
electric field type, the normalized CRB for yt is slightly larger
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than that for xt. In particular, the difference in the maximum
increase is 0.01dB when using VEF, and 0.02dB if using SEF.

C. CRB for the SIMO Positioning System

Finally, we will evaluate the CRBs for the SIMO positioning
system as discussed in Sec. IV. We set Rr = 30m, zt = 6m,
and λ = 0.001m. According to Proposition 4, we compare the
CRBs for a terminal on the CPL with different numbers of
small receiving antennas, i.e., N2

s = 1, 4, 16, 64, 256.
As shown in Fig. 9, when Dr > Rr, the SIMO positioning

system renders lower CRBs than the SISO positioning system
for all dimensions. More precisely, CRBM

1 (κt) will be one-
N2

s th of CRBC
1 (κt) as Dr increases infinitely, as in Corollary

13. Considering the space constraints, we are more interested
in the range Dr ≤ Rr, in which the total surface area covered
by the small receiving antennas is smaller than Rs (the large
rectangular surface region). It shows that the CRBs for xt and
yt are significantly improved when adopting the SIMO system
in the above range of practical interest, although the estimation
accuracy for zt becomes worse. For instance, the CRBs for xt
and yt with 4 small receiving antennas, each antenna has a
surface diagonal length 0.025m, can achieve the same CRBs
by using a single receiving antenna equipped with Dr ≈ 0.9m.
In other words, the antenna surface area needed for estimating
X- and Y -dimension by the SIMO positioning system is only
1.23% of that by the SISO system when Dr is smaller than 1m.
The CRB for estimating zt with 4 small receiving antennas is
around 10dB greater than CRBC

1 (zt) when Dr is the same and
less than 10m. Moreover, we find that CRBM

1 (xt) remains the
same when the number of small receiving antennas changes,
whereas CRBM

1 (yt) is slightly lower when N2
s = 4 compared

to N2
s = 16, 64, 256, and CRBM

1 (zt) is slightly larger when
N2

s equals 4. In fact, to achieve synchronous cooperation and
coupling calibration among the small receiving antennas, more
stringent hardware equipment is required as the number of the
small antennas rises. Therefore, in light of the performance of
the near-field positioning system and the cost of hardware, the
SIMO positioning system with 4 small receiving antennas is
an excellent option for estimating xt and yt, whereas the SISO
system is a better choice for estimating zt, i.e., ranging. It is
worth noting that using SEF in the SIMO system has the same
rules as using VEF. Using OSEF in the SIMO system with 4
small antennas still fails to estimate the three coordinates of the
terminal, but when the number of small receiving antennas is
large enough, using OSEF can be approximated as using SEF.

VI. CONCLUSIONS

In this paper, we have developed a complete electromagnetic
propagation model (EPM) to characterize near-field signals in-
trinsically. A generic near-field positioning system considering
three different observed electric field types and the universality
of the terminal position has been proposed based on the EPM.
The CRBs for the three-dimensional spatial coordinates of the
terminal have been derived. Three electric field types (vector,
scalar, and overall scalar electric field) have been deeply in-
vestigated for different antenna paradigms with three disparate
observation capabilities. The CRB expressions are generic and

shown to generalize the existing results in [27], in which the
terminal is restricted to be located on the CPL of the receiving
surface while only the vector electric field type is utilized. The
correlation between estimation precision and observed electric
field type has been discovered. Additionally, the generic CPL
model has been expanded to account for systems with multiple
receiving antennas, and their performance has been thoroughly
discussed. Numerical results have indicated that centimeter-
level accuracy can be achieved in the near-field of the receiving
antenna of a practical size in the mmWave or sub-THz bands
by using the vector or scalar electric field. The overall scalar
electric field observed by a conventional surface antenna could
only be utilized for the basic ranging. Moreover, the multiple
receiving antennas could enhance the estimation accuracy of
dimensions parallel to the receiving antenna surface.

APPENDIX A
PROOF OF PROPOSITION 2

From (11), (17), ev (pr) = −Gs(rrt)Iinlt sin θθ̂ is derived.
Since θ̂ = cos θ cosϕx̂− sin θŷ − cos θ sinϕẑ, we have

evx (pr) = Gs(rrt) (− sin θ cos θ cosϕ) Iinlt, (68)

evy (pr) = Gs(rrt)
(
sin2 θ

)
Iinlt, (69)

evz (pr) = Gs(rrt) (sin θ cos θ sinϕ) Iinlt. (70)
The dependence of evx (pr), evy (pr), and evz (pr) on the position
(xt, yt, zt) is hidden in (rrt, θ, ϕ). From cos θ = (yr − yt) /rrt
and tanϕ = zt/ (xr − xt), it follows that

sin θ cos θ cosϕ = (xr − xt) (yr − yt)/r
2
rt, (71)

sin2 θ = 1− (yr − yt)
2/r2rt, (72)

sin θ cos θ sinϕ = zt (yr − yt)/r
2
rt. (73)

Substituting Gs(rrt) = −jηe−jk0rrt/ (2λrrt) and (71) – (73)
into (68) – (70) yields (18) – (20).

APPENDIX B
SOME COMPLEX EXPRESSIONS

In proof of Proposition 3, we should compute the following
first-order derivatives to derive the elements of FIM I (ξ).

∂hv
x (pr)

∂xt
= x2

r,tyr,t

(
3j

r5rt
− j

x2
r,tr

3
rt

− k0
r4rt

)
e−jk0rrt , (74a)

∂hv
x (pr)

∂yt
= xr,ty

2
r,t

(
3j

r5rt
− j

y2
r,tr

3
rt

− k0
r4rt

)
e−jk0rrt , (74b)

∂hv
x (pr)

∂zt
= xr,tyr,tzt

(
− 3j

r5rt
+

k0
r4rt

)
e−jk0rrt , (74c)

∂hv
y (pr)

∂xt
= xr,t

(
j
3y2

r,t − r2rt
r5rt

− k0
y2
r,t − r2rt
r4rt

)
e−jk0rrt , (74d)

∂hv
y (pr)

∂yt
= yr,t

(
j
3y2

r,t − 3r2rt
r5rt

− k0
y2
r,t − r2rt
r4rt

)
e−jk0rrt , (74e)

∂hv
y (pr)

∂zt
= zt

(
j
−3y2

r,t + r2rt
r5rt

+ k0
y2
r,t − r2rt
r4rt

)
e−jk0rrt , (74f)

∂hv
z (pr)

∂xt
= xr,tyr,tzt

(
− 3j

r5rt
+

k0
r4rt

)
e−jk0rrt , (74g)

∂hv
z (pr)

∂yt
= y2

r,tzt

(
− 3j

r5rt
+

j

y2
r,tr

3
rt

+
k0
r4rt

)
e−jk0rrt , (74h)

∂hv
z (pr)

∂zt
= yr,tz

2
t

(
3j

r5rt
− j

z2t r
3
rt

− k0
r4rt

)
e−jk0rrt , (74i)

where we have set xr,t ≜ xr − xt and yr,t ≜ yr − yt.
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The specific expressions of ρmn
11 and ρmn

12 are as follows.

ρ1111 = k2
0

∫∫
Rr

x2
r,t

(
x2
r,t + z2t

)
r6rt

dxrdyr, (75)

ρ1112 =

∫∫
Rr

(
x2
r,t + y2

r,t

)
r2rt − 3x2

r,ty
2
r,t

r8rt
dxrdyr, (76)

ρ2211 = k2
0

∫∫
Rr

y2
r,t

(
x2
r,t + z2t

)
r6rt

dxrdyr, (77)

ρ2212 =

∫∫
Rr

(
x2
r,t + z2t

) (
x2
r,t + z2t + 4y2

r,t

)
r8rt

dxrdyr, (78)

ρ3311 = k2
0z

2
t

∫∫
Rr

x2
r,t + z2t
r6rt

dxrdyr, (79)

ρ3312 =

∫∫
Rr

y2
r,t

(
r2rt − 2z2t

)
+ z2t

(
z2t + x2

r,t

)
r8rt

dxrdyr, (80)

ρ1211 = k2
0

∫∫
Rr

xr,tyr,t
(
x2
r,t + z2t

)
r6rt

dxrdyr, (81)

ρ1212 =

∫∫
Rr

xr,tyr,t
(
x2
r,t − 2y2

r,t + z2t
)

r8rt
dxrdyr, (82)

ρ1311 = k2
0

∫∫
Rr

−xr,tzt
(
x2
r,t + z2t

)
r6rt

dxrdyr, (83)

ρ1312 =

∫∫
Rr

xr,tzt
(
2y2

r,t − x2
r,t − z2t

)
r8rt

dxrdyr, (84)

ρ2311 = k2
0

∫∫
Rr

−yr,tzt
(
x2
r,t + z2t

)
r6rt

dxrdyr, (85)

ρ2312 =

∫∫
Rr

yr,tzt
(
2y2

r,t − x2
r,t − z2t

)
r8rt

dxrdyr. (86)

Some first-order derivatives in proof of Corollary 5 are

∂hs (pr)

∂xt
= xr,t

(
jk0r

− 7
2

rt +
5

2
r
− 9

2
rt − r

− 5
2

rt

fxz

)
fez, (87a)

∂hs (pr)

∂yt
= yr,t

(
5

2
r
− 9

2
rt + jk0r

− 7
2

rt

)
fez, (87b)

∂hs (pr)

∂zt
=

(
3z2t + x2

r,t

2ztfxz
r
− 5

2
rt − jk0ztr

− 7
2

rt − 5

2
ztr

− 9
2

rt

)
fez, (87c)

where fxz ≜ x2r,t + z2t and fez ≜
√
ztfxze

−jk0rrt .
The specific expressions of ρmn

21 and ρmn
22 are as follows.

ρ1121 = k2
0zt

∫∫
Rr

x2
r,t

(
x2
r,t + z2t

)
r7rt

dxrdyr, (88)

ρ1122 = zt

∫∫
Rr

x2
r,t

(
25fxz/4− 5r2rt + f−1

xz r4rt
)

r9rt
dxrdyr, (89)

ρ2221 = k2
0zt

∫∫
Rr

y2
r,t

(
x2
r,t + z2t

)
r7rt

dxrdyr, (90)

ρ2222 = zt

∫∫
Rr

25y2
r,t

(
x2
r,t + z2t

)
4r9rt

dxrdyr, (91)

ρ3321 = k2
0z

3
t

∫∫
Rr

x2
r,t + z2t
r7rt

dxrdyr, (92)

ρ3322 =

∫∫
Rr

[
x2
r,t

(
r2rt − 2z2t

)
+ z2t

(
3y2

r,t − 2z2t
)]2

4zt
(
x2
r,t + z2t

)
r9rt

dxrdyr, (93)

ρ1221 = k2
0zt

∫∫
Rr

xr,tyr,t
(
x2
r,t + z2t

)
r7rt

dxrdyr, (94)

ρ1222 = zt

∫∫
Rr

xr,tyr,t
[
25
(
x2
r,t + z2t

)
/4− 5r2rt/2

]
r9rt

dxrdyr, (95)

ρ1321 = k2
0z

2
t

∫∫
Rr

−xr,t

(
x2
r,t + z2t

)
r7rt

dxrdyr, (96)

ρ1322 =

∫∫
Rr

xr,t

(
f5zfxz − f3z − 25z2t f

2
xz/2

)
2
(
x2
r,t + z2t

)
r9rt

dxrdyr, (97)

ρ2321 = k2
0z

2
t

∫∫
Rr

−yr,t
(
x2
r,t + z2t

)
r7rt

dxrdyr, (98)

ρ2322 =

∫∫
Rr

5yr,t
[
f3z/r

2
rt − 5z2t

(
x2
r,t + z2t

)]
4r9rt

dxrdyr, (99)

where f3z ≜
(
x2r,t + 3z2t

)
r4rt and f5z ≜ 5

(
x2r,t + 5z2t

)
r2rt/2.

In Corollary 6, the expressions of ρmn
3 are as follows.

ρ113 =
D2

r

2α2

∣∣∣∣
√
α∑

i=1

√
α∑

j=1

xi,tgzx
(
gr −

zt
|gzx|2

r
− 5

2
rt;i,j

)∣∣∣∣2, (100)

ρ223 =
D2

r

2α2

∣∣∣∣
√
α∑

i=1

√
α∑

j=1

yj,tgzxgr

∣∣∣∣2, (101)

ρ333 =
D2

r

2α2

∣∣∣∣
√
α∑

i=1

√
α∑

j=1

gzx
(3z2t + x2

i,t

2|gzx|2
r
− 5

2
rt;i,j − ztgr

)∣∣∣∣2, (102)

ρ123 =
D2

r

2α2
Re

{( √
α∑

i=1

√
α∑

j=1

Jyg

)( √
α∑

i=1

√
α∑

j=1

xi,tgzxJgzr
)∗}

, (103)

ρ133 =
D2

r

2α2
Re

{( √
α∑

i=1

√
α∑

j=1

Jzxg

)( √
α∑

i=1

√
α∑

j=1

xi,tgzxJgzr
)∗}

, (104)

ρ233 =
D2

r

2α2
Re

{( √
α∑

i=1

√
α∑

j=1

Jzxg

)( √
α∑

i=1

√
α∑

j=1

yj,tgzxgr
)∗}

, (105)

where xi,t ≜ xi − xt, yj,t ≜ yj − xt, gr ≜ 5
2r

− 9
2

rt;i,j + jk0r
− 7

2
rt;i,j ,

gzx ≜
√
zt
(
z2t + x2i,t

)
e−jk0rrt;i,j , Jyg ≜ yj,tgzxgr, Jgzr ≜

gr − zt
|gzx|2 r

− 5
2

rt;i,j , and Jzxg ≜ gzx

(
3z2

t +x2
i,t

2|gzx|2 r
− 5

2
rt;i,j − ztgr

)
.

APPENDIX C
THE CLOSED-FORM EXPRESSIONS

The double integral formulas (33), (35), (36) and (37) can
be computed in the following closed-form expressions.

ρ12x =
1

τ2 + 8

[
ftan

2
√
τ2 + 8

−
τ2
(
3τ2 + 16

)
(τ2 + 4)2

]
, (106)

ρ12y =

(
9τ4 + 152τ2 + 544

)
2 (τ2 + 8)5/2 τ−1f−1

tan

+
τ2
(
3τ4 + 8τ2 − 32

)
(τ2 + 8)2 (τ2 + 4)2

, (107)

ρ11z =
τ

τ2 + 8

[(
3τ2 + 28

)
√
τ2 + 8

ftan +
2τ

τ2 + 4

]
, (108)

ρ12z =
2τ

(τ2 + 8)2

[
τ4 + 16τ2 + 88√

τ2 + 8f−1
tan

+
16τ

(
τ2 + 5

)
(τ2 + 4)2

]
, (109)

where ftan ≜ arctan τ√
τ2+8

.
To provide the closed-form upper and lower bounds of ρ11x

and ρ11y , we denote two circular domains C− =
{
(u, v) : u2+

v2 ≤ ( τ√
8
)2
}

, C+ =
{
(u, v) : u2 + v2 ≤ ( τ2 )

2
}

and two non-
negative function g11x = u2(u2 + 1)/(u2 + v2 + 1)3, g11y =
v2(u2 + 1)/(u2 + v2 + 1)3, then we have∫∫

C−
g11xdudv < ρ11x <

∫∫
C+

g11xdudv, (110)∫∫
C−

g11ydudv < ρ11y <

∫∫
C+

g11ydudv. (111)

Therefore, the closed-form upper and lower bounds of (32)
and (34) can be derived as follows.∫∫

C+

g11xdudv =
3π

8
ln (1 +

τ2

4
)− πτ2(5τ2 + 24)

16(τ2 + 4)2
, (112)
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∫∫
C−

g11xdudv =
3π

8
ln (1 +

τ2

8
)− πτ2(5τ2 + 48)

16(τ2 + 8)2
, (113)∫∫

C+

g11ydudv =
π

8
ln (1 +

τ2

4
) +

πτ2(τ2 − 8)

16(τ2 + 4)2
, (114)∫∫

C−
g11ydudv =

π

8
ln (1 +

τ2

8
) +

πτ2(τ2 − 16)

16(τ2 + 8)2
. (115)

Similarly, we denote g2iκ, i = 1, 2 as the integrand functions
of (40) – (45), then we have

ρ
(l)
2iκ ≜

∫∫
C−

g2iκdudv < ρ2iκ <

∫∫
C+

g2iκdudv ≜ ρ
(u)
2iκ. (116)

The closed-form upper and lower bounds of ρ21κ and ρ22κ
can be computed as follows.

ρ
(u)
21x =

8π

15
−

π
(
45τ4 + 320τ2 + 512

)
30 (τ2 + 4)5/2

, (117)

ρ
(l)
21x =

8π

15
−

√
2π
(
45τ4 + 640τ2 + 2048

)
30 (τ2 + 8)5/2

, (118)

ρ
(u)
22x =

3π

14
−
[
63τ4 − 112(τ2 + 4)3/2 + 32(21τ2 + 40)

]
14π−1 (τ2 + 4)7/2

, (119)

ρ
(l)
22x =

3π

14
−

π
[
63

√
2τ4 − 224

(
τ2 + 8

)3/2
+ 64

√
2fτ1

]
7 (τ2 + 8)7/2

, (120)

ρ
(u)
21y =

4π

15
−

π
(
15τ4 + 160τ2 + 256

)
30 (τ2 + 4)5/2

, (121)

ρ
(l)
21y =

4π

15
−

√
2π
(
15τ4 + 320τ2 + 1024

)
30 (τ2 + 8)5/2

, (122)

ρ
(u)
22y =

10π

21
−

5π
(
35τ4 + 448τ2 + 512

)
42 (τ2 + 4)7/2

, (123)

ρ
(l)
22y =

10π

21
−

5
√
2π
(
35τ4 + 896τ2 + 2048

)
21 (τ2 + 8)7/2

, (124)

ρ
(u)
21z =

8π

15
−

8π
(
5τ2 + 32

)
15 (τ2 + 4)5/2

, (125)

ρ
(l)
21z =

8π

15
−

16
√
2π
(
5τ2 + 64

)
15 (τ2 + 8)5/2

, (126)

ρ
(u)
22z =

13π

42
−
[
7τ4(3τ2 + 32) + 336(τ2 + 4)3/2 − fτ2

]
42π−1 (τ2 + 4)7/2

, (127)

ρ
(l)
22z =

13π

42
−

π
[
7
√
2τ4fτ3 + 1344

(
τ2 + 8

)3/2 − fτ4
]

42 (τ2 + 8)7/2
, (128)

where fτ1 = 21τ2 + 80, fτ2 = 128
(
7τ2 + 8

)
, fτ3 = 3τ2 + 64,

and fτ4 = 512
√
2
(
7τ2 + 16

)
.

APPENDIX D
PROOF OF COROLLARY 10

We need to prove that k20ρ11κ ≫ z−2
t ρ12κ and k20ρ21κ ≫

z−2
t ρ22κ for zt ≫ λ, then the approximation in Corollary 10

can be proved immediately.
When zt ≫ λ, we have k20 ≫ z−2

t . Observe that

2ρ11x >

∫∫
Rτ

2u2(u2 + 1)

(u2 + v2 + 1)4
dudv > ρ12x > 0, (129)

from which we obtain k20ρ11x ≫ z−2
t ρ12x. Similarly, we have

u2 + 1

(u2 + v2 + 1)3
≥ v4 + u2v2 + 1

(u2 + v2 + 1)4
> 0. (130)

Then, we have that ρ11z > ρ12z . Accordingly, we have that
k20ρ11z ≫ z−2

t ρ12z . Observe that

4π2ρ21y >

∫∫
Rτ

4π2v2(u2 + 1)

(u2 + v2 + 1)9/2
dudv > ρ22y > 0. (131)

Consequently, k20ρ21y ≫ z−2
t ρ22y can be proved.

The remaining inequalities are challenging to demonstrate
analytically, so we provide numerical proofs. If we define the
difference function fdy1(τ) = ρ11y − ρ12y , we can deduce
from (107) and (115) that the minimum value of the function
fdy1(τ) is greater than −2.34, which testifies that k20ρ11y ≫
z−2
t ρ12y . Define the difference function fdx2(τ) = ρ21x−ρ22x,

from (118) and (119), we have that fdx2(τ) > ρ
(l)
21x − ρ

(u)
22x,

and we derive that the minimum value of the function fdx2(τ)
is greater than 67π/210− 1.23 ≈ −0.23, therefore k20ρ21x ≫
z−2
t ρ22x can be proved. Similarly, we define fdz2(τ) = ρ21z−
ρ22z , then we have that fdz2(τ) > ρ

(l)
21z −ρ

(u)
22z based on (126)

and (127). Next, we can deduce that the minimum value of
the function fdz2(τ) is greater than 47π/210−0.80 ≈ −0.10,
which verifies that k20ρ21z ≫ z−2

t ρ22z .
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