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Abstract

L–systems have been used to describe non-uniform, univariate, subdivision
schemes, which offer more flexible refinement processes than the uniform
schemes, while at the same time are easier to analyse than the geometry
driven non-uniform schemes. In this paper, we extend L–system based non-
uniform subdivision to the bivariate setting. We study the properties that
an L–system should have to be the suitable descriptor of a subdivision refine-
ment process. We derive subdivision masks to construct the regular parts
of the subdivision surface as cubic B-spline patches. Finally we describe
stencils for the extraordinary vertices, which after a few steps become sta-
tionary, so that the scheme can be studied through simple eigenanalysis.
The proposed method is illustrated through two new subdivision schemes, a
Binary-Ternary, and a Fibonacci scheme with average refinement rate below
two.

Keywords: bivariate non-uniform subdivision, L–systems, non-uniform
B-spline refinement, eigenanalysis around EVs

1. Introduction

In this paper, we generalise the univariate L–system based non-uniform
subdivision schemes introduced in [1] to the bivariate setting. While the
generalisation of a univariate scheme to a regular quadrilateral mesh by tak-
ing tensor product is usually straightforward, its adaptation to extraordinary5
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vertices (EV), that is, vertices with n ̸= 4 incident edges, is more challenging.
Specifically, the L–system based subdivision system should be able to handle
connectivities without a natural tensor product structure, and still provide
a consistent labelling and processing of the mesh edges, while it should also
compute and update the positions of the regular vertices and the EVs with10

masks and stencils that will ensure nice convergence properties.
A Lindenmayer system, or L–system, is a collection of symbols and a

set of rewriting rules, which are applied iteratively on an initial sequence
of symbols, a word, thus generating a sequence of words. Context-sensitive
L–systems have been used to specify uniform subdivision for curves [2] or15

surfaces [3]. There, the symbols label mesh primitives, vertices, edges, or
faces, and each rule describes a substitution through a simple topological
or geometric operation, such as face split, edge flip, vertex position update.
Their aim was to develop a unified system of subdivision implementation.
In contrast, here, in the context of extending [1], L–systems are not used to20

implement a known scheme, but to describe new hierarchies of parametric
spaces for meshes. Each word in the sequence corresponds to a subdivision
step, its symbols identifying the ratios in which the edges of the mesh split in
the parametric space. Then, outside the EV neighbourhoods, the scheme is
defined as the usual non–uniform B–spline subdivision with knots positioned25

on this grid hierarchy, while for the EV neighbourhoods special rules are
derived.

With the use of context–free L–systems to describe non-uniform subdi-
vision, one is able to study in a unified and systematic way a large family
of bivariate non-uniform subdivision schemes. Compared to standard uni-30

form stationary schemes, such as the Catmull-Clark [4], or the Doo-Sabin [5]
schemes, the non-uniformity of the L–system based subdivision offers more
control over the subdivision of the parametric space, which does not have to
be uniform and can vary between subdivision steps. Moreover, when they
are used as a prediction operator in a multiresolution analysis framework,35

or directly as a process to create various levels of detail of an object, usual
subdivision schemes define a set of scales with an integer ratio between them,
usually equal to 2 in each dimension. The design of subdivision schemes based
on L–systems widens the set of possible transition speeds between scales to
non integer ratios, allowing, in particular, more progressive transitions when40

the ratio is lower than 2. Furthermore, this control is offered within a rigid
framework, which guarantees a small number of different ratios of interval
lengths in all subdivision steps, meaning that the implementation requires a
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finite, and usually small, number of different masks.
Previous works have generalised non-uniform B-splines subdivision to45

meshes with EVs [6, 7, 8], but they are based on binary subdivision which
splits each parameter interval into two sub-intervals of equal length. Cash-
man et al. [8] introduce some exceptions serving two aims. First, to reduce
high disparities in interval lengths, which may yield undesirable shapes. To
do so, only the longest knot intervals are split in the first steps, until no inter-50

val has more than double the length of any other. Second, to get a uniform
vicinity around any EV, allowing to spectral analysis tools on constant sub-
division matrices. To do so, intervals incident to the EV may be split into
two sub-intervals of unequal lengths. In both cases, the non-uniformity is
not introduced in order to widen the set of possible average refinement rates55

(arities), as we do, but to deal with different knot interval lengths at the ini-
tial stage: their aim was to generalise NURBS to meshes with EV. We note
that, in their work, a new computation of subdivision coefficients is required
at each step, whereas in our case, masks and stencils are pre-computed once
and for all. However, we also note that, for simplicity, here we start with the60

same parametric interval length for all edges of the initial mesh, leaving the
generalisation to non-uniform initialisation for future work.

In contrast to other non-uniform or non-stationary schemes, our approach
eases the proof of convergence and smoothness properties. In the univariate
case, our work shares the same analysis arguments as other schemes based65

on controlled B–spline knot insertion [9, 10, 11], and the only remaining
complication towards the generalisation to meshes is the analysis at the EVs.
As in [8], we create a locally stationary subdivision around the EV, adding if
necessary some extra requirements on the L–systems to achieve that, and we
use known techniques of subdivision matrix eigenanalysis. In contrast, the70

analysis of univariate geometry-driven, or interpolatory subdivision schemes
is challenging, even in the binary case [12, 13, 14, 15, 16, 17, 18]. Moreover,
while the complicated analysis of such schemes can be extended to the regular
bivariate case [19, 20], the generalisation to meshes with EVs is even more
involved [21], and the same holds for non-stationary subdivision [22, 23].75

The main contributions of the paper are:

1. We generalise the work in [1] on L–system based univariate non-uniform
subdivision to the bivariate setting.

2. We study the relationship between the properties of the L–systems and
the properties of the corresponding subdivision schemes.80
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3. We introduce two new L–system based subdivision schemes, a Fi-
bonacci scheme with sub-binary average refinement rate, and a Binary-
Ternary scheme which requires only a small number of masks.

The rest of the paper is organised as follows. In Section 2 we show how
we can describe a subdivision scheme corresponding to an L–system. In85

Section 3 we introduce the Fibonacci and the Binary-Ternary schemes and
in Section 4 we prove some of their properties. In Section 5 we briefly discuss
some other potentially interesting subdivision schemes, and we then briefly
conclude in Section 6.

2. L–systems and subdivision schemes90

In Section 2.1, we recall some necessary machinery that has been devel-
oped in [1] for the study of univariate L–system based subdivision. Next, in
Section 2.2 we extent their notions to the bivariate case.

2.1. L–systems and univariate subdivision

A Lindenmayer system, or L–system, is defined by a collection of symbols,
or the alphabet, Σ = {Ai, i ∈ I} where I = {1, . . . , |Σ|}, a set of rewriting
rules, one for each symbol

Ai → Ai1 . . . Air , i ∈ I (1)

where (i1, . . . , ir) ∈ Ir, and an axiom defined as an initial word of symbols.95

Starting from the axiom, the L-system produces a sequence of words by
rewriting at each step every symbol according to (1), defining this way an
interval subdivision descriptor. In particular, at subdivision step j ∈ N, the
label Ai corresponds to intervals of length ℓ

(j)
Ai

= ℓAi
/ρj for some ρ > 0, and

according to (1), at step j + 1, an interval labelled Ai splits into intervals

labelled Ai1 , . . . , Air of length ℓ
(j+1)
Ai1

, . . . , ℓ
(j+1)
Air

. The ρ is a constant associated

to the subdivision scheme, corresponding to its average refinement rate. For
example, the L–system with a single symbol alphabet {A1}, ρ = 2, and rule

A1 → A1A1

describes uniform binary subdivision, as the interval lengths in the paramet-
ric space at step j will be ℓ

(j)
A1

= ℓA1/2
j.

5



2.1.1. From interval subdivision to subdivision masks

Since the L–system describes subdivision in the parametric space, we
next need to define explicit masks for the actual subdivision scheme. In100

the univariate case, a convenient approach is to see the interval ends in the
parametric space as the knots of a B–spline of degree d.

Each sequence of d + 1 consecutive knot intervals is the domain of a B–
spline basis function, corresponding to one vertex of the control polygon. The
subdivided control polygon corresponds to the same B–spline curve, but with105

refined knots corresponding to the intervals subdivided according to the L–
system rules. When d is odd, each control point is associated with the middle
knot of its basis function domain, and each interval label is also an edge label
which can be used to lead the topological subdivision of the polygonal line:
an edge is split in as many sub-edges as the number of symbols of the word110

at the right side of the rewriting rule of its label. The case of even d yields
dual subdivisions, which are not addressed in this paper.

Regarding actual position of new vertices, it can be defined efficiently by
mask diffusion with pre–recorded weights. Indeed, each new vertex can be
written as a convex combination of vertices of the previous control polygonal115

line and the set of weights giving the contribution of the position of an old
vertex to the new ones is called a mask. An old vertex is involved in the
definition of a new one if their B–spline basis domains are nested. Let w be
the (d+1)–word of the labels of the intervals that make up the domain asso-
ciated with an old vertex. From knot-insertion and the blossom formulation,120

each weight is defined as a sum of products of fractions f = ℓ(j)/ℓ(j−1) where
ℓ(j) is the distance between two particular knots at the j-th subdivision step
[24]. Each distance ℓ(j) writes as a sum of interval lengths ℓ

(j)
Ai

= ℓAi
/ρj

with ℓAi
deduced from w only. As a consequence, each fraction f does not

depend on the subdivision step j since it can be written as ρ multiplied by125

the ratio between two sums of ℓAi
. Thus, in contrast to general non–uniform

B–spline based subdivision, it is sufficient to define a finite number of masks
whatever the number of subdivision steps applied: one mask for each word
w of d + 1 consecutive symbols that can be produced by the rules of the
L-system from the axiom. In our implementation of subdivision by mask130

diffusion, these words w are used as vertex labels, indicating which mask to
apply. In contrast, the label w of a given new vertex does not encode enough
information to know which stencil to use. Recall here that a stencil collects
the contributions from all old vertices to compute the position of a new one.
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As a consequence, here, implementation by mask diffusion is preferred to135

implementation by stencils.

2.1.2. Valid L-systems

Not every combination of L–system, ρ, and length ratios ℓAi
, allow such a

subdivision scheme construction. From (1), ℓAi
should be non-negative real

numbers such that

ℓAi
=

r∑
l=1

(ℓAil
/ρ)

and ρ > 1, in order to get a dense set of knots when the subdivision is applied
repeatedly.

In order to know if such interval lengths and ratio compatible with the140

rules (1) exist, and to compute them, [1] defines the square matrix M = [mij]
where mij is the number of Aj on the right side of the rewriting rule of Ai.
It follows that any possible ρ and interval length ratios are eigenvalues and
entries of the associated eigenvectors of M, respectively. In particular, if M
has a real eigenvalue ρ > 1 and an associated real and positive eigenvector,145

then the L-system can define an interval subdivision descriptor, whatever the
axiom, and is called valid [1]. In the same paper, they also prove that the
sequence of control polygons of a subdivision scheme constructed as above
by a valid L-system, converges uniformly to the B–spline curve.

2.2. From univariate to bivariate subdivision150

2.2.1. Topological subdivision

We choose the natural generalisation of the univariate subdivision to the
bivariate setting by tensor–product. The bivariate scheme is applied on quad
meshes with all their faces having their opposite edges labelled with the same
symbol. As both pairs of opposite edges in a quad face split identically, the155

face can be partitioned into quadrilateral faces. While, other hierarchies of
lattices are possible, like the hierarchy of Penrose lattices used in [25], they
do not allow us to define B–spline based subdivision schemes. The construc-
tion of other known types of subdivision schemes, for example the ones based
on polynomial interpolation are outside the scope of this paper.160

This topological subdivision adapts directly to meshes with extraordinary
vertices (EVs), that is, vertices with a number of incident edges different
from four. EVs appear on any closed quad mesh of genus other than one.
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On the downside, it may make the labelling of the input mesh a difficult165

task if the axiom is made up of several symbols. Indeed, as the labels of
the edges are symbols of words derived from the axiom ω, the initial mesh
should be a union of sub-meshes with tensor-product connectivity, whose
topologically parallel edges are labelled with the symbols of the axiom in a
globally consistent way. We bypass the issue of a consistent initial labelling170

by choosing the axiom to be a single symbol assigned to all the edges of
the initial mesh. In subsequent subdivision steps, since all new vertices are
ordinary, the subdivided faces are sub-meshes with a regular tensor-product
connectivity with ordinary vertices, except perhaps their corners which can
be extraordinary. That is, in this paper, the non-uniformity of the subdivision175

concerns paths of ordinary vertices, apart perhaps from their ends.
Alternatively, one could allow the assignment of different labels to the

edges of the initial mesh, either manually, as a designer choice, or computed
from the geometry or topology of the initial mesh, depending, for example
on some measures of mesh curvature. However this freedom would still be180

restrained by the fact that in each face, opposite edges must have the same
label. Thus, a label given to an edge would also automatically be given to a
complete strip of topologically parallel edges, as in [7, 8].

The use of L–systems to define the subdivision rules yields a particular
constraint. The produced word at the right side of each rewriting rule is185

read from the left to the right and, in general, it is not palindromic, and as a
consequence, each symbol actually corresponds to a directed edge. However,
assigning a direction to each edge of the input mesh may be impractical, or
even impossible if it is non-orientable.

Dealing with this constraint, in Section 4.1 we introduce the notion of190

symmetric L-systems. In particular, we define for each symbol Ai, the symbol
σ(Ai) which labels the head-to-tail edge such that their rewriting rules define
a consistent topological subdivision. Besides, the single letter axiom ω = Ai

chosen to label all initial edges satisfies σ(Ai) = Ai, i.e., input edges can be
considered as non-directed.195

Figure 1 illustrates these labellings in the first three steps of the Fibonacci
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Figure 1: Edge labelling for the first three steps of the Fibonacci scheme. For readability,
in the last step, edge directions and labels of are shown for the last line and the first
column only. The vertices v and u are labelled (e, CRLD,CRLD) and (f, LCRL,RLDR),
respectively. If x is an EV of valency n, it would be labelled (LC)n and y would be labelled
(h,RLCR,DRLC).

scheme of Section 3.2. The L–system is
S → LR
L → LC
C → R
D → L
R → DR

(2)

with ω = S = σ(S), σ(L) = R, σ(R) = L, σ(C) = D and σ(D) = C.

2.2.2. Computing vertex positions by mask diffusion

After splitting the edges and faces according to the L–system rules, the
positions of the new vertices are computed from the old vertices by mask
diffusion as follows:200

1. Store two meshes: the coarse old one, and the fine new one with the
vertex positions initialised to zero. A link is stored from each old vertex
to its new version (its child) in the fine mesh. The coarse mesh is read,
whereas the new one is written.

2. Loop over the old ordinary vertices, applying on the new mesh a tensor–
product regular mask associated with the labels of the edges in its old
neighbourhood: each new vertex u in the neighbourhood of the child
of an old vertex v is updated by

u← u+ βv, (3)

where the scalar weight β is the mask entry which corresponds to the205

topological position of u relative to the child of v.
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3. Loop over the old extraordinary vertices and apply the single extraor-
dinary mask, with weights depending on the valency of the EV. Then,
divide each new vertex in the neighbourhood of the EV by the sum of
the contribution weights it has received from old vertices, making the210

linear combinations convex, and maintaining affine invariance.

Step 2 deserves two remarks. In order to know what tensor–product
mask to apply from a given old vertex to its new neighbourhood, we label
each vertex v with a triple (e, w, s), where e is an outgoing edge defining a
local orientation, and w and s are two (d+1)-words made up of the symbols215

of the edges around v, see as Figure 1 for d = 3. The outgoing edge from
the child of v which comes from the splitting of e, sets the orientation of the
mask applied to the new mesh. Several labels are possible for a given vertex,
depending on the choice of e: w and s adapt according to the symmetry of
the L–system, as already mentioned and further elaborated in Section 4.1.220

For example, (−e, σ̄(w), σ̄(s)) is another possible label for v, where σ̄(w) is
obtained by reading the word w from the right to the left, while changing
each symbol Ai by its symmetric symbol σ(Ai). In particular, it will be
shown that the different possible tensor–product masks for a given vertex
are consistent.225

Furthermore, in order to update the new neighbourhood its topology must
be regular: if any EV is involved, then it should belong to the boundary of
the neighbourhood. If this condition is satisfied, the ordinary mask is said to
be contained within the ordinary part of the new mesh. In Section 4.2.2 we
propose sufficient conditions on the L–system to get such contained ordinary230

masks.
Step 3 also deserves some extra remarks. In order to use convergence

arguments at an EV based on the eigenanalysis of a constant subdivision
matrix [26], we ask the scheme to be stationary around an EV: the same
subdivision rules apply whatever the step. In Section 4.2.1, we discuss prop-235

erties of the L-system that make the subdivision scheme stationary around
the EV, possibly after a few initial steps. In particular, between subdivision
steps edge labels remain the same within a given neighbourhood, and an EV
of valence n is labeled (ξ)n, where ξ is the (d + 1)/2-word made up of the
edge symbols along any direction radiating from the EV. Since all the edges240

of the initial mesh are labelled with the same symbol, the ξ is always the
same, whatever the EV, while (ξ)n, which encodes the configuration around
an EV, only depends on n. This stationary configuration also allows us to
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define the label (e, w, s) of a vertex v when the EV is inside the edge paths
w or s (which is possible in the old mesh, even if the mask remains contained245

within the ordinary part of the new mesh): the labels of edges beyond the
EV are chosen to be the symmetric symbols of the edges radiating from the
EV, as described in Figure 1 (caption) for vertex y.

Finally, since for a given valence n, the configuration around an EV is the
same, whatever the EV and whatever the step, the sum of the normalising250

weights for the new vertices around an EV can be pre-computed together
with the extraordinary mask entries.

3. Two new subdivision schemes

Before studying which properties of L-systems are required for getting
bivariate subdivision schemes that can be applied to any 2-manifold quad255

mesh, we first present two examples of particular interest: a Binary-Ternary
scheme which needs only a small number of different masks, and a Fibonacci
scheme which, with an average refinement ratio lower than 2, produces a more
progressive multiresolution mesh refinement than the usual binary schemes.

3.1. A Binary-Ternary subdivision scheme260

This first proposed scheme corresponds to the L-system on the three
symbol alphabet {L,C,R} with the axiom ω = C used as label of all initial
edges, and the rules 

L → LC
C → LCR
R → CR

(4)

It defines a ratio ρ = 1 +
√
2 ≈ 2.414 and interval lengths ℓL = ℓR = 1 and

ℓC = ρ − 1 ≈ 1.414. It is a mix between a binary and a ternary scheme: it
splits the intervals into either two or three sub-intervals.

3.1.1. Masks for the ordinary rules

In the second step of the algorithm presented in Section 2.2.2, each old265

ordinary vertex v updates the neighbourhood of its child u as in Eq.(3). If
the old vertex is labelled (e, w, s), then the 2D mask is computed as the
tensor product of the 1D masks w and s. For example, if v is labelled
(e, LCRL,CRLC) and e, labelled R, splits into e′ labelled C and e′′ labelled
R, then the child u is labelled (e′, CRCR,CRLC) and is updated according270

to the 1D-masks given in Table A.5, with β = (12−8
√
2)× (5−3

√
2), where
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RCLRCL

v

Figure 2: The 1D-mask associated with CCCC applies from v to new vertices (red squares)
beyond updated old neighbours (grey disks). Labels of new edges are given from C →
LCR.

the weight which applies to the child vertex is shown in bold. Similarly, the
first neighbour of u in the direction of e′ is labelled (e′′, RCRL,CRLC) and
it is similarly updated with β = (

√
2− 1)× (5− 3

√
2).

As a consequence, it is sufficient to store the entries of the 1D-masks275

as shown in Table A.5 which records all the ten 1D-masks that could be
used. Figure A.8 shows the all the transitions between 1D-labels that can be
reached from the CCCC of the input mesh.

We further remark that, through symmetry, there are only five essentially
different 1D-masks after the first step, following the association:

CLCR = σ̄(LCRC) CRCR = σ̄(LCLC) CRLC = σ̄(CRLC)
LCRL = σ̄(RLCR) RCRL = σ̄(RLCL)

3.1.2. Stencil implementation of the first subdivision step

We notice that the 9×9 ordinary mask associated with (e, CCCC,CCCC)
cannot be applied if a neighbouring vertex of an old vertex v is EV, as shown
in Figure 2 along a 1D path of edges. To address this complication, for the
first subdivision step only, we switch from an mask implementation to an im-
plementation with the stencils illustrated in Figure 3 and the weights given
below, coming from the 9 × 9 ordinary mask for valence n = 4. We have
chosen an ad hoc generalisation to extraordinary valences.
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Figure 3: Stencils for the first step of the Binary-Ternary scheme. The red circles locate
the new vertices. The weights γi apply on old vertices of valence n.

280

3.1.3. The extraordinary mask

From the second subdivision step on, each EV of valence n is labelled
(LC)n. The extraordinary mask used in the third step of the algorithm in
Section 2.2.2, is built sector by sector from tensor products of the second
half of the 1D ordinary mask associated with CRLC with itself, except for285

the central entry α corresponding to the update of the child of the EV by
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the EV itself. A proposed set of α values for various valences n are shown in
Table 1. They were computed through eigenanalysis, see Section 4.2.3.

n 3 4 5 6 7 8 9
α 0.2801 0.5735 0.8964 1.2427 1.5996 1.9598 2.3193

n 10 11 12 13 14 20 25
α 2.6766 3.0309 3.3822 3.7305 4.0762 6.1082 7.7668

Table 1: The values of the central entry α of the extraordinary masks of the Binary-Ternary
scheme for various EV valences.

Since the other mask entries have ordinary values, no normalisation is
required for the ordinary new vertices around the child of the EV. However,
the child of the EV must be normalised by division with the sum of the
received contributions, which is equal to

α +
15
√
2− 21

2
n. (8)

3.2. A Fibonacci subdivision scheme

The second scheme is built on an L-system with the five-symbol alphabet
{S, L, C,D,R}, the axiom ω = S used to label all initial edges, and the rules

S → LR
L → LC
C → R
D → L
R → DR

(9)

It defines a ratio equal to the golden ratio ρ = 1+
√
5

2
≈ 1.618, and interval290

lengths ℓL = ℓR = 1, ℓC = ℓD = ρ − 1 ≈ 0.618, and ℓS = 2
ρ
≈ 0.828. The

scheme can be viewed as a generalisation to the bivariate setting of the uni-
variate Fibonacci L-system in [1], defined with the rules {L→ CL; C → L},
with the two letters of the word produced from L swapped into LC in order
get a stationary scheme near the EV. Ratio and interval lengths are the same.295

Remark 3.1. A perhaps more straightforward generalisation of the univari-
ate Fibonacci scheme corresponds to a scheme that splits the initial interval
into two sub-intervals, which are then subdivided independently following the
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rules of two independent univariate Fibonacci L-systems, but starting from
each end of the initial interval, in a mirror way. The rewriting rules of this
other L-system are 

S → LR
L → LC
C → L
D → R
R → DR

(10)

and its implementation requires 17 ordinary 1D-masks, that is 2 more than
the chosen scheme with the rewriting rules of (9).

3.2.1. Masks for the ordinary rules

As per the Binary-Ternary scheme, since the scheme is based on degree 3
B-splines, we use one ordinary 1D mask for each 4-word that can be produced300

from SSSS. Figure A.9 shows these possible words, some of them being only
transitional:

SSSS appears at the initial step only;

RLRL and LRLR appear at the 2nd step only;

CDRL = σ̄(RLCD) and LCDR appear at the 3rd step only;305

CRLD appears at the 4th step only.

Table A.6 gives the entries of these masks.
Similarly to the Binary-Ternary scheme, some masks are the same up to

a symmetry:

CDRL = σ̄(RLCD) CLDR = σ̄(LCRD) CRDR = σ̄(LCLD)
CRLC = σ̄(DRLD) CRLD = σ̄(CRLD) DRLC = σ̄(DRLC)
LCDR = σ̄(LCDR) LCRL = σ̄(RLDR) LDRL = σ̄(RLCR)
LRLR = σ̄(LRLR) RDRL = σ̄(RLCL) RLRL = σ̄(RLRL)

and thus, only 13 different 1D-masks have to be stored.

3.2.2. The extraordinary mask

In contrast to the Binary-Ternary scheme, ordinary masks can be applied310

on all regular vertices from the very first step. However, an extraordinary
mask still has to be defined, again as one tensor-product of half ordinary
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1D-masks for each sector. Besides, the label of the EV could change after
the first step, but not for many subsequent subdivision steps. Specifically,
the labels (ξ)n of the EV and (e, w, s) of any of its first neighbours satisfy315

at the first step, ξ = SS and w = SSSS;

at the second step, ξ = LR and w = RLRL;

at the third step, ξ = LC and w = RLCD;

at the fourth step and beyond, ξ = LC and w = RLCR.

As a consequence, each sector-mask is defined by the tensor product of
the second half of the SSSS mask with itself for the first step; the LRLR
mask for the second step; and theDRLC mask for the third step and beyond.
As with the Binary-Ternary scheme, no normalisation is needed for any new
vertex in the neighbourhood of the child of the EV, except for the child of
the EV itself. Regarding the central entry of the mask to be applied to
the child of the EV, we chose to keep the same value α for every step (see
Table 2), even if it is computed from the eigenanalysis of the local subdivision
matrix corresponding to the rules from the fourth step and beyond only. As a
consequence, the child of the EV should be divided by different normalisation
values, depending on the subdivision step:

α + 7
64

n at the first step,

α + 7
√
5−9
72

n at the second step,

α + 6
√
5−13
4

n at the third step and beyond.

(11)

n 3 4 5 6 7 8 9
α 0.2084 0.5835 0.9959 1.4440 1.9105 2.3843 2.8589

n 10 11 12 13 14 20 25
α 3.3314 3.8003 4.2651 4.7258 5.1826 7.8604 10.0380

Table 2: The values of the central entry α of the extraordinary masks of the Fibonacci
scheme.
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3.3. Examples320

In this section, we show visualisations from the two proposed schemes,
and the Catmull-Clark scheme [4] for comparison. Our aim is not the demon-
stration of any superior behaviour of the proposed schemes over the original
Catmull-Clark, bur rather to highlight their similarities. Indeed, they can be
seen as belonging to the same family of schemes, differing in their refinement325

ratios: ∼ 1.618, 2, and ∼ 2.414.
We also note that the proposed schemes have been implemented in order

to illustrate what is possible within L–system based subdivision. They have
not been optimised, regarding the transitional first steps, which could have
a significant “low frequency” effect on the final surface [27], or the tuning330

of the extraordinary mask, which would require to consider more degrees of
freedom than just the central entry α in order to get bounded curvature [28].
Such a study, including a formal proof of C1-continuity of the limit surface
at an EV [26, 29], is outside the scope of this paper.

Figure 4 shows control polygons of characteristic maps [30], corresponding335

to the eigenvector of the local subdivision matrix associated with its sub-
dominant eigenvalue [26]. We notice that while they are not identical, they
are very similar, indicating (but not proving) that at the limit surface the two
proposed schemes share with Catmull-Clark the property of C1-continuity
around an EV.340

Fibonacci Catmull-Clark Binary-Ternary

Figure 4: Characteristic map approximations.

Figures 5 and 6 show an initial quad mesh subdivided with: 3 steps of Binary-
Ternary scheme; 4 steps of Catmull-Clark scheme; 5 steps of the Fibonacci.
The number of steps was chosen in order to create meshes of similar size.
Indeed, one initial edge is subdivided into:
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initial mesh
5 steps of
Fibonacci

4 steps of
Catmull-Clark

3 steps of
Binary-Ternary

Figure 5: Top row: A mesh with only ordinary vertices shows that L–system based subdi-
vision achieves non-rational refinement rates without deviating too much from uniformity.
Bottom row: The initial mesh is a cube with only 3-valent extraordinary vertices.

17 sub-intervals after 3 steps of Binary-Ternary;345

16 sub-intervals after 4 steps of original Catmull-Clark scheme;

16 sub-intervals after 5 steps of bivariate Fibonacci scheme.

In addition, the two bottom rows in Figure 6 show meshes after more sub-
division steps, consisting of between two and three millions vertices. Their
behaviour is illustrated with reflection lines renderings, and mean curvature350

colourmaps. All meshes were rendered with Geomview except these two
renderings which were produced with Meshlab [31]. The mean curvature
was computed with Algebraic Point Set Surfaces [32], with the colours going
from blue for negative curvature, to red for positive, and the green corre-
sponding to zero curvature. We notice that as with similar tunings of the355

Catmull-Clark scheme based on the eigenanalysis of its subdivision matrix,
the reflection lines show an improvement of the surface near the EV while
the curvature indicates that is has been flattened [28].
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initial mesh
5 steps of
Fibonacci

4 steps of
Catmull-Clark

3 steps of
Binary-Ternary

11 steps of
Fibonacci

8 steps of
Catmull-Clark

6 steps of
Binary-Ternary

Figure 6: A mesh with 9-valent and 3-valent extraordinary vertices surrounded by ordinary
ones. The top two rows show different views of the same meshes. The meshes in the two
bottom rows have been further subdivided. The third row shows reflection lines from a
top view. The fourth row shows mean curvature colourmaps: blue negative, red positive,
and green zero.

19



4. Theoretical analysis of the proposed schemes

In this section we derive the properties an L-system should satisfy to give360

subdivision schemes that are suitable for general 2-manifold meshes, and
verify that both proposed schemes are defined from such L-systems.

4.1. Symmetric L-systems

Since we aim at constructing a subdivision scheme which applies uni-
formly on any 2-manifold mesh, a consistent subdivision should be applied365

whatever the direction of reading of consecutive edge labels. To do so, we
introduce the notion of symmetric L-system.

4.1.1. Definitions

To motivate our definitions, assume that the symbols of the L-system
are labels of either directed or non–directed edges. A directed edge can be
either onward or counter to the direction of reading the word, however, the
initial edge and its subdivided sequences may be read in any direction. As an
example, consider the following sequence of directed and non–directed edges:

→→ −←

labelled with the symbols of the Binary-Ternary scheme: C for a non–directed
edge, L if it is directed onward with the direction of reading, R otherwise.370

Reading from left to right, the word of labels is w = LLCR; reading from
right to left, it is σ̄(w) := LCRR.

An involution (a bijection that is its own inverse) σ() over the alphabet
of the L-system partitions it into two subsets:

• S, on which σ() is the identity, is the set of symmetric symbols labelling375

non–directed edges: {C} in the above example;

• U , on which σ() is of order 2, is the set of unsymmetric symbols labelling
directed edges: the two unsymmetric symbols of a 2–cycle are called
twins: {L,R} in the above example.

An involution σ over the alphabet Σ is recursively extended into a mirror
function σ̄ defined over the set W of all words, by{

σ̄(A) = σ(A) for any letter A ∈ Σ,
σ̄(ww′) = σ̄(w′)σ̄(w) for any words w,w′ ∈ W.

(12)

20



The mirror function σ̄ is an involution over W , transforming each word380

w into σ̄(w) by rewriting it from right to the left, and changing each unsym-
metric symbol by its twin. A word w is said to be symmetric if w = σ̄(w).

Definition 4.1. Let π(w) denote the word w rewritten with the rules of the
L–system. An L-system is symmetric if its axiom ω is symmetric, and if
there is an involution σ over its alphabet which, extended to σ̄, satisfies:

π(σ̄(w)) = σ̄(π(w)), ∀w ∈ W. (13)

4.1.2. Properties

The following proposition states that it suffices establishing symmetry on
the axiom and the rewriting rules over the alphabet.385

Proposition 4.2. A necessary and sufficient condition for an L-system to
be symmetric is that its axiom ω is symmetric and there is an involution σ
over its alphabet Σ such that,

π(σ(A)) = σ̄(π(A)), ∀A ∈ Σ. (14)

Proof. (⇒) Let us consider a symmetric L-system with an involution σ which,
extended to σ̄, satisfies (13). In particular, if w is any single letter of the
alphabet Σ, then we get Eq (14).
(⇐) Let us consider an L-system with an involution σ over its alphabet which390

satisfies (13). For any word w = A1A2 . . . An ∈ W ,

σ̄(w) = σ(An) . . . σ(A2) σ(A1) (15)

π(σ̄(w)) = π(σ(An)) . . . π(σ(A2)) π(σ(A1)) (16)

= σ̄(π(An)) . . . σ̄(π(A2)) σ̄(π(A1)) (17)

= σ̄(π(A1) π(A2) . . . π(An)) (18)

= σ̄(π(w)). (19)

The Binary-Ternary and the Fibonacci L-systems are symmetric. For
example, for the Binary-Ternary scheme the axiom C is symmetric, and

π(σ(L)) = π(R) = CR = σ̄(LC) = σ̄(π(L))
π(σ(C)) = π(C) = LCR = σ̄(LCR) = σ̄(π(C))
π(σ(R)) = π(L) = LC = σ̄(CR) = σ̄(π(R))

(20)
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Corollary 4.3. The rewriting rules of a symmetric L-system can be split395

into two subsets:

• rewriting rules of symmetric symbols C, which have the form

C → w (21)

with σ̄(w) = w;

• rewriting rules of pairs of twin symbols (L,R), which have the form{
L → w
R → σ̄(w)

(22)

Corollary 4.4. If the L–system is symmetric, then the axiom and any sub-
sequent word produced by the rewriting rules are symmetric.

Proof. By definition the axiom ω = π0(ω) is symmetric. To complete the400

inductive proof, let us assume that πn(ω) = A1A2 . . . Ap is symmetric:

πn(ω) = σ̄(πn(ω)) (23)

πn(ω) = σ(Ap) . . . σ(A2) σ(A1) (24)

πn+1(ω) = π(σ(Ap)) . . . π(σ(A2)) π(σ(A1)). (25)

Since the L-system is symmetric,

πn+1(ω) = σ̄(π(Ap)) . . . σ̄(π(A2)) σ̄(π(A1)) (26)

σ̄(πn+1(ω)) = σ̄(σ̄(π(A1))) σ̄(σ̄(π(A2))) . . . σ̄(σ̄(π(Ap))) (27)

σ̄(πn+1(ω)) = π(A1) π(A2) . . . π(An) = πn+1(ω). (28)

Remark 4.5. The involution σ associated with a symmetric L-system is not
necessarily unique.405

For example, the L-system 
L → ACB
R → BCA
A → LR
B → RL
C → C

(29)
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is symmetric either with S = {A,B,C} and U = {L,R} (with R = σ(L)),
or with S = {L,R,C} and U = {A,B} (with B = σ(A)). However, the
L-system 

C → C
L → LR
R → LR

(30)

is symmetric if and only if S = {C} and U = {L,R}.

4.2. L-system adapted to extraordinary vertices

When a mesh contains extraordinary vertices, one would wish to handle
them with as few extraordinary subdivision rules as possible, which translates410

into two properties that are studied here:

• a constant local subdivision matrix at the EV, Section 4.2.1;

• ordinary masks that are contained within the ordinary part of the new
mesh, such that if we consider the set of new vertices updated by an
old ordinary vertex, they are all ordinary except possibly for the mask’s415

boundary which could contain some EVs, Section 4.2.2.

4.2.1. A stationary scheme around any EV

As already mentioned in Section 2, the set of old control points involved
in the definition of a new one corresponds to the set of (d+1) consecutive old
intervals that include the (d+ 1) intervals of the B-spline domain associated420

with the given new control point.
We have already introduced the mask, as the collection of all the non-

zero contributions of one old vertex to the positions of the new vertices,
and the stencil which collects the contributions from all old vertices to the
computation of the position of a new one. The subdivision matrix encodes425

the convex combinations defining the new vertices around an EV from the
old ones: each column contains the entries of the mask associated with an
old vertex, and each row contains the entries of one stencil.

Let us organise the vertices into topological rings. The 0-ring contains the
EV only, and the r-ring r > 0 is the set of vertices that are neighbours of430

a vertex of the (r − 1)-ring without belonging to any s-ring, s < r. In the
univariate case, each r-ring, r > 0 is a pair of vertices, one on each side of
the EV.
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If we sort vertices by topological rings, then, because the combinations
are local and at least one interval splits, there is a minimal column index N435

such that all columns which contains at least one non-zero entry on or up
the diagonal entry have an index less or equal to N . The upper-left N ×N
block is the local subdivision matrix and shares the non-zero eigenvalues with
the infinite subdivision matrix. For simplicity, this upper-left block will be
called subdivision matrix from now on. If this matrix remains unchanged440

through subdivisions, then the scheme is stationary. We are looking for that
property, at least after a few steps.

Lemma 4.6. If L→ Lw, with (L,w) ∈ Σ×W , is one of the rewriting rules
of the L-system then, for all n > 0, πn(L) = Lπ0(w)π(w) . . . πn−1(w), where
π0(w) := w,∀w ∈ W .445

Proposition 4.7. If the label L of the edges incident to the EV has rewriting
rule L → Lw, with w an m-word, m ≥ 1, then, after a few steps, the local
subdivision matrix remains unchanged through subdivision steps.

Proof. The local subdivision matrix entries depend on the relative location
of old and new knots around the central knot associated with the EV, which450

are defined, on each side, by the P first symbols of πn(L) where P is a
finite number independent from n. The result is then a direct consequence
of Lemma 4.6.

As a consequence, a sufficient condition to get a stationary subdivision
scheme near the EV is that, possibly after a few steps, the word produced455

by the rewriting rules of the L-system from the axiom starts with a symbol
L satisfying Lemma 4.6. For both Binary-Ternary and Fibonacci schemes,
this is true after one step since, in the first case, π(C) = LCR and L→ LC
while in the second case, π(S) = LR and L→ LC.

4.2.2. Contained ordinary masks460

In implementation in Section 2, each ordinary mask should not contain
EVs, apart perhaps from its boundary: it should remain contained within
the ordinary part of the mesh. From a stencil perspective, that property
translates into the similar requirement that each EV stays on the border of
any stencil which might include it, except of course of its own stencil.465

We study containment in the 1D setting, obtaining a necessary and suffi-
cient condition in the form of Proposition 4.8, which translates to a sufficient
conditions in the 2D setting.
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r

VG B

Figure 7: Vicinity of the central vertex V after one subdivision step, in the 1D setting.
The domains of the degree 3 B-spline basis functions associated with the new vertex r
(red) and the old vertices G (green) and B (blue), show that r is defined as a combination
of three old vertices, of which, G and B which are in different sides of V . This happens
because the intervals [V B] split into 3 rather than at most 2 sub-intervals.

Thus, we consider a 1D bi-infinite sequence of intervals, starting from a
vertex and spreading on both sides, all labelled with the 1-word symmetric470

axiom of the L-system. Each d + 1 consecutive intervals are the domain of
a degree d B–spline basis function associated with one control vertex of the
polygonal line. The control vertex associated with the domain centred on the
central knot of this 1D bi-infinite sequence corresponds to the EV of interest
in the 2D setting. Figure 7 shows an 1D example where the containment475

property does not hold.

Proposition 4.8. If the L-system is valid, then the stencil for the central
vertex is the only one that involves old vertices from both sides of the central
vertex if and only if among the d+1

2
− 1 first intervals (at each side of the

central vertex), none splits except one which splits into at most two sub-480

intervals.
In particular, if d = 3, then the label L of the edges incident to the central

vertex should follow the rewriting rule L→ X or L→ Y Z with X, Y and Z
being symbols, but only Y and Z can possibly be equal to L.

Proof. If the system is valid, no entry of the valid eigenvector a which defines485

the lengths of knot interval (up to a multiplication by 1/ρ(M)n) is equal to
zero, and thus there is no multiple knots. Then, since an old vertex is involved
in the stencil of a new one if the domain of the degree d basis function which
is associated with it, contains the domain associated with the new vertex,
d+1
2
− 1 first old intervals at each side of the central vertex must not contain490

d+1
2

+ 1 new intervals, as illustrated in Figure 7 for d = 3.
Finally, if L → L then the interval never splits, which is not compatible

with a valid L-system since then either 1 would be an eigenvalue of M or the
entry of the valid eigenvector associated with L would be zero.
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By having the rule L → LC in both schemes, we satisfy both Proposi-495

tion 4.7 and 4.8, getting a constant local subdivision matrix at the EV, and
contained ordinary masks, but only after one subdivision step as L is not the
axiom, but the first symbol of the word produced from it. More precisely,
since the axiom of the Binary-Ternary L–system rewrites as C → LCR, the
ordinary masks are not contained at the first step and special stencils have500

to be defined. From the second step and onward however, the chosen rules
result to a constant subdivision matrix. In contrast, the axiom of the Fi-
bonacci L-system rewrites as S → LR, yielding contained ordinary masks
from the very first step. But, on the downside, we have to wait for the fourth
subdivision step to get a constant subdivision matrix.505

These extraordinary first steps would deserve a proper study as they could
have a significant “low frequency” effect on the final surface [27], but such
as study is outside the scope of this paper.

4.2.3. Eigenanalysis of the Binary-Ternary and the Fibonacci scheme

In both schemes, after perhaps a small number of steps, ordinary masks510

can be applied from every old ordinary vertex, while the extraordinary mask
is built sector by sector from tensor-products of half 1D ordinary masks,
leaving just the central entry α to be computed. Note that the new EV is
then divided by a normalising value to become a convex combination of old
vertices.515

As a consequence, after perhaps a few steps the local subdivision matrix
becomes stationary, with all lines corresponding to ordinary stencils, except
the first one whose entries depend on α. The value of this parameter can
be optimised by analysing the main eigenvalues and eigenvectors of the local
subdivision matrix [26], aiming at achieving the best possible convergence520

behaviour, ideally towards a C2-surface. However with a single free variable,
this might not be possible.

Let λi and µi be the main and the second main eigenvalues from Fourier
index i, respectively. As all stencils represent convex combinations, we have
that always λ0 = 1. As α can only affect eigenvalues related to Fourier index525

0, thus, it can be chosen to satisfy µ0 < λ1, or other relations involving µ0.
In order to get a convergent subdivision scheme at the EV, λ1 should

be the global subdominant eigenvalue of the local subdivision matrix, and
as a consequence, α must be chosen such that µ0 < λ1. Then, two further
properties could be targeted:530

• µ0 = λ2
1, and then, if λ2 ≤ λ2

1 we get bounded curvature at the EV;
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• µ0 = λ2, and then we get the so-called flexibility property [33].

Ideally, bounded curvature and flexibility could be satisfied simultaneously,
but not with the proposed schemes since λ2 > λ2

1 (except for n = 4) and thus,
even bounded curvature alone is not possible. Of course, more variables could535

be added to the EV-mask to try and get that property, but this is outside
the scope of this paper.

The values of α given in Section 3 for the proposed new schemes have
been computed to achieve the first condition µ0 = λ2

1, hoping for good sur-
face behaviour at least when the shape is cup-like. Tables 3 and 4 give the540

computed subdominant eigenvalues for various valences.

n λ1 µ0 = λ2
1 λ2

3 0.3231 0.1043 0.0911
4 0.4142 0.1715 0.1715
5 0.4660 0.2171 0.2547
6 0.4971 0.2471 0.3231
7 0.5169 0.2672 0.3751
8 0.5302 0.2811 0.4142
9 0.5396 0.2911 0.4436

n λ1 µ0 = λ2
1 λ2

10 0.5463 0.2985 0.4660
11 0.5514 0.3041 0.4834
12 0.5553 0.3084 0.4971
13 0.5584 0.3118 0.5080
14 0.5608 0.3145 0.5169
20 0.5686 0.3234 0.5463
25 0.5714 0.3265 0.5569

Table 3: Subdominant eigenvalues of the Binary-Ternary scheme for various valences.

n λ1 µ0 = λ2
1 λ2

3 0.5376 0.2890 0.2713
4 0.6180 0.3819 0.3819
5 0.6613 0.4374 0.4721
6 0.6867 0.4716 0.5376
7 0.7026 0.4937 0.5843
8 0.7133 0.5088 0.6180
9 0.7207 0.5194 0.6427

n λ1 µ0 = λ2
1 λ2

10 0.7261 0.5272 0.6613
11 0.7301 0.5330 0.6756
12 0.7332 0.5375 0.6867
13 0.7332 0.5411 0.6955
14 0.7375 0.5439 0.7026
20 0.7436 0.5530 0.7261
25 0.7458 0.5562 0.7344

Table 4: Subdominant eigenvalues of the Fibonacci scheme for various valences.
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5. Other L–system based schemes

Here we study other L–system based 1D schemes, which may be good can-
didates for extension to quad subdivision on arbitrary meshes. In Section 5.1
we derive properties that a 1D scheme should have, should one wishes to ex-545

tend to a nice bivariate scheme for arbitrary quad meshes with the methods
of the previous sections. Next, having restricted our search space, in Sec-
tion 5.2 we give a list of such 1D subdivision schemes on small alphabets,
aiming at demonstrating the versatility of the method and illustrating some
salient points.550

We note that the implementation of the corresponding bivariate schemes
is out of the scope of the paper. To the best of our knowledge some of these
1D schemes have not been proposed before, and their topological refinement
rules, i.e. the way by which each edge splits in each subdivision step, could
be interesting. However, the focus in this paper, and its main contribution,555

is the extension of 1D L–system subdivision to quad meshes of arbitrary
topology, rather than novel 1D schemes.

5.1. Possible valid L–systems for bivariate subdivision with nice properties

First, we show that some desirable properties for the L–system–based
subdivision scheme require the symbol L assigned to the edges emanating560

from the EVs to be unsymmetric, while the axiom should be symmetric.

5.1.1. Twin unsymmetric symbols

From Proposition 4.7 and 4.8 in Section 4 we know that for a scheme
based on cubic B-splines and a valid L–system, a sufficient condition to get
contained ordinary masks and an eventually stationary local subdivision ma-
trix, is that the label L of the edges incident to the EV has rewriting rule
L→ LC (where possibly C = L). Moreover, if the rewriting rule is L→ LL,
then, up to a permutation of rows and columns, we get

M =

[
2 0
∗ N

]
. (31)

If ρ is an eigenvalue of M and lA the first entry of the associated eigenvector,
then 2lA = ρlA, that is, either ρ = 2 or lA = 0. In the first case we do not
get a non–integer ratio, while in the second case we do not get a positive565

eigenvector.
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Furthermore, if L ∈ S, then

π(L) = σ̄(π(L)) (32)

LC = σ(C)σ(L) (33)

C = σ(L) (34)

C = L (35)

Thus, all L–systems considered here include twin unsymmetric symbols
L and R whose rules are: {

L → LC
R → σ(C)R

(36)

with C ̸= L, L the label of edges going out from any EV, and R the label of
edges with opposite orientation.

Proposition 5.1. If an L-system is symmetric then equal lengths can be570

associated with any pair of twin unsymmetric symbols.

Proof. Let P be the permutation matrix of the involution σ() in Proposi-
tion 4.2, that is, if Σ = {A1, A2, . . . , An} is the alphabet, and ei is the n× 1
vector with 1 in the i-th entry and 0 otherwise, then Pei = ej if σ(Ai) = Aj.

From (14) we get575

M = P⊤MP (37)

PM = MP. (38)

Indeed, multiplying M by P from the right swaps columns of twin unsym-
metric symbols, while multiplying from the left by P⊤ swaps associated rows.

If a is an eigenvector of M associated with the eigenvalue ρ, then

MPa = PMa (39)

MPa = ρPa (40)

M (a+Pa) = ρ (a+Pa) . (41)

Thus, b := a+Pa is an eigenvector ofM associated with ρ and if σ(Ai) = Aj,
then bi = ai + aj = bj.580

29



5.1.2. Symmetric axiom

From Section 4.1, in the rules (36), if we have C = σ(C), and if C,
possibly after a few steps, produces a word beginning with L and ending
with R, then it can be used as the label of the initial edges. Otherwise, C
is an unsymmetric symbol, with let say D being its twin, and a symmetric
symbol has to be introduced for the initialisation. A simple choice reducing
the transitional steps to the minimum, is:

S → LR (42)

Proposition 5.2. If an L-system with ratio ρ includes (42) in its rewriting
rules, and R = σ(L), then the lengths associated with S and L satisfy ℓS =
2
ρ
ℓL.

Proof. Rule (42) yields ℓL + ℓR = ρ ℓS and the result comes from Prop. 5.1.585

Remark 5.3. As an alternative to the starting rule (42), the following L-
system gives a nice example: 

S → CD
L → LS
C → L
D → R
R → SR

(43)

with

• ratio ρ = 1
3

(
1 +

3
√

28 +
√
783 +

3
√

28−
√
783

)
≈ 1.695.

• interval lengths ℓS = ρ2 − ρ, ℓC = ℓD = 1, ℓL = ℓR = ρ.

and 23 masks in total.590

5.2. A list of L–systems with a small number of symbols

In our list of subdivision schemes based on L–systems on small alphabet
we consider the following four cases:
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• three symbols {L,C,R}, C as the axiom, lengths ℓL = ℓR = 1 and
ℓC = ρ− 1, and rules 

L → LC
C → w
R → CR

(44)

where w is a symmetric word which contains at most three letters,
beginning with L and ending with R.595

• four symbols {S, L, C,R}, S as the axiom, lengths ℓL = ℓR = 1, ℓC =
ρ− 1, and ℓS = 2

ρ
, and rules

S → LR
L → LC
C → w
R → CR

(45)

where w is a symmetric word which contains at most three letters.

• four symbols {L,C,D,R}, C as the axiom, lengths ℓL = ℓR = 1 and
ℓC = ℓD = ρ− 1, and rules

L → LC
C → w
D → σ̄(w)
R → DR

(46)

where w is a word which contains at most three letters, beginning with
L and ending with R.

• five symbols {S, L, C,D,R}, S as the axiom, lengths ℓL = ℓR = 1,
ℓC = ℓD = ρ− 1, and ℓS = 2

ρ
, and rules
S → LR
L → LC
C → w
D → σ̄(w)
R → DR

(47)

where w is a word which contains at most three letters.
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For each possible w = π(C) we compute two quantities:600

• the number of 1D masks needed. Each mask corresponds to a word of
d+1 = 4 symbols that can be produced from the initial word made up
of the axiom repeated 4 times. We count as one each pair of symmetric
words, as their weights are the same, in reverse order.

• the ratio ρ.605

The lists are shown in Appendix B.

Remark 5.4. Different π(C) would give rise to the same matrix M, and
so to the same ratio ρ, if they comprise the same symbols in different order.
Moreover, two different matrices may correspond to the same ratio. Here, we
present the results first by increasing ratio, and then by increasing number610

of masks. We note that for nice subdivision schemes, both quantities should
be as small as possible, thus, the nicest schemes are at the top of the tables.
Finally, as an extra information, we also give M[C; Σ], the line of M corre-
sponding to C, where Σ is the alphabet with its symbols written in the same
order as the corresponding columns of M.615

Remark 5.5. Also note that in the lists we do not include the L–systems with
integer ratios, that is, all the L-systems corresponding to a 2-word π(C), and
almost all of those corresponding to a single letter π(C). As a consequence,
apart from the first two L–systems with five symbols, which are related to the
Fibonacci L–system, all the other are associated with a 3-word π(C).620

5.3. Discussion

Here, we collect some final remarks about L–systems based subdivision,
the deduced ratio and the number of masks, some of which could be somewhat
counter-intuitive.

The ratio of an L–system with π(C) comprising more than three symbols
may be smaller than that of an L–system with 3-letter π(C). The two L–
systems below, on five symbol alphabets, are such an example.

ρ # masks π(C) M[C; (S, L, C,D,R)]

3+
√
5

2
≈ 2.618 20 CLD 0 1 1 1 0

1+
√
17

2
≈ 2.561 17 LLLL 0 4 0 0 0
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Having π(C) with more symbols does not necessarily yield more masks,
as not every possible word from a given alphabet is produced by a given set
of rewriting rules, and even more so from a given axiom. The two L–systems
below, on five symbol alphabets, are such an example.

ρ # masks π(C) M[C; (S, L, C,D,R)]

1 +
√
2 ≈ 2.414 7 DRL 0 1 0 1 1

1+
√
5

2
≈ 1.618 15 L 0 1 0 0 0

Choosing D = σ(C) rather than C = σ(C) does not necessarily yield
more masks. The two L–systems below, with S as axiom and five and four
symbols, respectively, is such an example.

ρ # masks π(C) M[C; (S, L, C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

M[C; (S, L,C,R)]

17 RCL 0 1 1 1

A larger number of distinct symbols in π(C) does not necessarily yield
more masks. The two L–systems below, on five symbol alphabets, give an
example.

ρ # masks π(C) M[C; (S, L, C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

30 RRD 0 0 0 1 2

By just permuting the symbols in π(C), we do not necessarily get the
same number of masks. Below is such an example with two such L–systems
on five symbol alphabets.

ρ # masks π(C) M[C; (S, L, C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

21 RDL 0 1 0 1 1
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Different L–systems, yielding different numbers of masks, may still have
identical interval subdivision patterns. Below is an example of three such
L–systems, with axiom S, and four, five and five symbols, respectively.

ρ # masks π(C) M[C; (S, L, C,R)]

1 +
√
2 ≈ 2.414

10 LCR 0 1 1 1

M[C; (S, L, C,D,R)]

12 LDR 0 1 0 1 1

14 LCR 0 1 1 0 1

The two L–systems below with axiom C and alphabets of three and four
symbols, respectively, is another example.

ρ # masks π(C) M[C; (L,C,R)]

1 +
√
2 ≈ 2.414

6 LCR 1 1 1

M[C; (L,C,D,R)]

9 LCR 1 1 0 1

In these cases, it is most likely that C and D are equivalent and can be625

switched at anytime. As we have counted one mask per each pair of twin
unsymmetric words, we could also count one only mask for each set of words
that become identical if we do not differentiate between C and D, and then
find the minimum number of masks, which would correspond to C = σ(C).

Finally, we note that there are L–systems with ratio lower than the golden
ratio. For example, we could combine the bivariate Fibonacci L–system and
the delay queue example introduced in [1], to get the L–system :

S → LR

L → LC

C → A

A → R


D → B

B → L

R → DR

(48)

with630
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• ratio ρ = 1
3

(
1 + 3

√
29+

√
837

2
+ 3

√
29−

√
837

2

)
≈ 1.465 < 1.618

• interval lengths ℓS = 2ρ, ℓC = ℓD = 1, ℓA = ℓB = ρ, ℓL = ℓR = ρ2

which, however, has a large number of masks, namely 31.

6. Conclusions

We extended the L–system based, non-uniform, univariate subdivision635

proposed in [1], to the bivariate setting. The focus was on subdivision
schemes that generalise the cubic B-spline to arbitrary meshes, meaning that
the masks and stencils we dealt with had manageable size. We studied how
properties of an L–system relate to the properties of the subdivision scheme,
and we proposed a method for computing eventually stationary EV stencils640

for subdivision schemes corresponding to L–systems with nice properties.
We illustrated the proposed method by implementing and studying two new
subdivision schemes with interesting properties, the Binary-Ternary and the
Fibonacci.

We believe that L–system based subdivision is an interesting compromise645

between the classic uniform subdivision, with its very basic and inflexible
control mesh refinement processes, and geometry driven non-uniform subdi-
vision, where the convergence results are very difficult to obtain. As a future
research direction, we propose to formulate the computation of EV stencils
as a multi-variable optimisation problem, instead of the single free variable650

we currently use, and devise non-uniform subdivision schemes with better
smoothness properties. The study of dual subdivision schemes, correspond-
ing to B-splines of even degree, is another promising research direction.
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Appendix A. Transition between labels and associated masks

CCCC

CLCR

CRCR

CRLC

LCLC

LCRC

LCRL

RCRL

RLCL

RLCR

Figure A.8: Transition graph between the vertex 1D-labels of the binary-ternary scheme.
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CLCR LCRC

LCRL 0.04481 = (8
√
2− 11)/7 LCLC 0.07106 = 5

√
2− 7

CRLC 0.19782 = (13
√
2− 17)/7 CLCR 0.34314 = 6− 4

√
2

RLCL 0.47759 = (9− 4
√
2)/7 LCRC 0.61203 = (20

√
2− 24)/7

LCLC 0.71254 = (46− 29
√
2)/7 CRCR 0.71254 = (46− 29

√
2)/7

CLCR 0.61203 = (20
√
2− 24)/7 RCRL 0.47759 = (9− 4

√
2)/7

LCRC 0.34314 = 6− 4
√
2 CRLC 0.19782 = (13

√
2− 17)/7

CRCR 0.07106 = 5
√
2− 7 RLCR 0.04481 = (8

√
2− 11)/7

CRCR LCLC

LCRC 0.04481 = (8
√
2− 11)/7 LCLC 0.07106 = 5

√
2− 7

CRCR 0.21638 = (10− 6
√
2)/7 CLCR 0.34314 = 6− 4

√
2

RCRL 0.52240 = (4
√
2− 2)/7 LCRL 0.61203 = (20

√
2− 24)/7

CRLC 0.70166 = (36
√
2− 46)/7 CRLC 0.70166 = (36

√
2− 46)/7

RLCR 0.61203 = (20
√
2− 24)/7 RLCL 0.52240 = (4

√
2− 2)/7

LCRC 0.34314 = 6− 4
√
2 LCLC 0.21638 = (10− 6

√
2)/7

CRCR 0.07106 = 5
√
2− 7 CLCR 0.04481 = (8

√
2− 11)/7

CRLC (CCCC)

LCRL 0.03451 = (
√
2− 1)/12

LCRC 0.05025 = (10− 7
√
2)/2 CRLC 0.15236 = (2

√
2− 1)/12

CRCR 0.24264 = 3
√
2− 4 RLCR 0.36785 = (3 +

√
2)/12

RCRL 0.58578 = 2−
√
2 LCRL 0.59763 = (5−

√
2)/6

CRLC 0.75735 = 5− 3
√
2 CRLC 0.69526 = (7− 2

√
2)/6

RLCL 0.58578 = 2−
√
2 RLCR 0.59763 = (5−

√
2)/6

LCLC 0.24264 = 3
√
2− 4 LCRL 0.36785 = (3 +

√
2)/12

CLCR 0.05025 = (10− 7
√
2)/2 CRLC 0.15236 = (2

√
2− 1)/12

RLCR 0.03451 = (
√
2− 1)/12

LCRL RLCR

LCLC 0.07106 = 5
√
2− 7 CRLC 0.12132 = (3

√
2− 4)/2

CLCR 0.34314 = 6− 4
√
2 RLCL 0.41421 =

√
2− 1

LCRC 0.60660 = (15
√
2− 20)/2 LCLC 0.68629 = 12− 8

√
2

CRCR 0.68629 = 12− 8
√
2 CLCR 0.60660 = (15

√
2− 20)/2

RCRL 0.41421 =
√
2− 1 LCRC 0.34314 = 6− 4

√
2

CRLC 0.12132 = (3
√
2− 4)/2 CRCR 0.07106 = 5

√
2− 7

RCRL RLCL

CRLC 0.10050 = 10− 7
√
2 CRLC 0.12132 = (3

√
2− 4)/2

RLCR 0.34314 = 6− 4
√
2 RLCL 0.41421 =

√
2− 1

LCRC 0.60660 = (15
√
2− 20)/2 LCLC 0.68629 = 12− 8

√
2

CRCR 0.68629 = 12− 8
√
2 CLCR 0.60660 = (15

√
2− 20)/2

RCRL 0.41421 =
√
2− 1 LCRL 0.34314 = 6− 4

√
2

CRLC 0.12132 = (3
√
2− 4)/2 CRLC 0.10050 = 10− 7

√
2

Table A.5: 1D-masks for the Binary-Ternary scheme. An old vertex contributes, with
different weights, to a sequence of new vertices. For each 1D-label of an old vertex, the
list of weights is given from top to bottom alongside the 1D-label on the new vertex. The
label of the child of the old vertex is written in bold.
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CDRL

CLDR

CRDR

CRLC

CRLD

DRLC

DRLD

LCDR

LCLD

LCRD

LCRL

LDRL

LRLR

RDRL

RLCD

RLCL

RLCR

RLDR

RLRL

SSSS

Figure A.9: Transition graph between the vertex 1D-labels of the Fibonacci scheme.
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(CDRL) (RLCD)

RLDR 0.72361 = (
√
5 + 5)/10 DRLC 0.11803 = (

√
5− 2)/2

LDRL 0.61803 = (
√
5− 1)/2 RLCR 0.61803 = (

√
5− 1)/2

DRLC 0.11803 = (
√
5− 2)/2 LCRL 0.72361 = (

√
5 + 5)/10

CLDR LCRD

RLCL 0.55279 = (5−
√
5)/5 LCRD 0.23607 =

√
5− 2

LCLD 0.76393 = 3−
√
5 CRDR 0.76393 = 3−

√
5

CLDR 0.23607 =
√
5− 2 RDRL 0.55279 = (5−

√
5)/5

CRDR LCLD

RDRL 0.44721 =
√
5/5 LCRL 0.23607 =

√
5− 2

DRLD 0.85410 = (3
√
5− 5)/2 CRLC 0.85410 = (3

√
5− 5)/2

RLDR 0.23607 =
√
5− 2 RLCL 0.44721 =

√
5/5

CRLC DRLD

RDRL 0.38197 = (3−
√
5)/2 LDRL 0.38197 = (3−

√
5)/2

DRLC 0.76393 = 3−
√
5 DRLC 0.76393 = 3−

√
5

RLCR 0.38197 = (3−
√
5)/2 RLCL 0.38197 = (3−

√
5)/2

(CRLD) DRLC

RDRL 0.38197 = (3−
√
5)/2 LDRL 0.38197 = (3−

√
5)/2

DRLC 0.76393 = 3−
√
5 DRLC 0.76393 = 3−

√
5

RLCL 0.38197 = (3−
√
5)/2 RLCR 0.38197 = (3−

√
5)/2

(LCDR) (SSSS)

(LRLR) 0.12500 = 1/8

LCRL 0.27639 = (5−
√
5)/10 (RLRL) 0.50000 = 1/2

(CRLD) 1 = 1 (LRLR) 0.75000 = 3/4

RLDR 0.27639 = (5−
√
5)/10 (RLRL) 0.50000 = 1/2

(LRLR) 0.12500 = 1/8

LCRL RLDR

LCRD 0.23607 =
√
5− 2 DRLC 0.11803 = (

√
5− 2)/2

CRDR 0.76393 = 3−
√
5 RLCL 0.61803 = (

√
5− 1)/2

RDRL 0.61803 = (
√
5− 1)/2 LCLD 0.76393 = 3−

√
5

DRLC 0.11803 = (
√
5− 2)/2 CLDR 0.23607 =

√
5− 2

LDRL RLCR

LCLD 0.23607 =
√
5− 2 DRLC 0.11803 = (

√
5− 2)/2

CLDR 0.76393 = 3−
√
5 RLCR 0.61803 = (

√
5− 1)/2

LDRL 0.61803 = (
√
5− 1)/2 LCRD 0.76393 = 3−

√
5

DRLC 0.11803 = (
√
5− 2)/2 CRDR 0.23607 =

√
5− 2

(LRLR) (RLRL)

(LCDR) 0.14235 = (3
√
5− 5)/12 DRLC 0.10301 = (

√
5− 1)/12

(CDRL) 0.46066 = (5−
√
5)/6 (RLCD) 0.53934 = (

√
5 + 1)/6

DRLC 0.79399 = (7−
√
5)/6 (LCDR) 0.71530 = (11− 3

√
5)/6

(RLCD) 0.46066 = (5−
√
5)/6 (CDRL) 0.53934 = (

√
5 + 1)/6

(LCDR) 0.14235 = (3
√
5− 5)/12 DRLC 0.10301 = (

√
5− 1)/12

RDRL RLCL

DRLD 0.14590 = (7− 3
√
5)/2 DRLC 0.11803 = (

√
5− 2)/2

RLDR 0.76393 = 3−
√
5 RLCR 0.61803 = (

√
5− 1)/2

LDRL 0.61803 = (
√
5− 1)/2 LCRL 0.76393 = 3−

√
5

DRLC 0.11803 = (
√
5− 2)/2 CRLC 0.14590 = (7− 3

√
5)/2

Table A.6: 1D-masks for the Fibonacci scheme with the same organisation as in Table A.5.
Transitional 1D-labels for early subdivision steps only, are written between parentheses.
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Appendix B. Features of L–system based subdivision schemes

In this appendix we list the features of all subdivision schemes based on
L–systems on small alphabets, as described in Section 5.2.

Three symbols {L,C,R}765

ρ # masks π(C) M[C; (L,C,R)]

1 +
√
2 ≈ 2.414 6 LCR 1 1 1

This is a minimal number of masks, given all the other constraints. If, for
example, we relax the constraint of at most two sub-intervals for the labels
of the edges incident to the EV, adopted to ease both the implementation
and the eigenanalysis, we could consider the following L-system: L → LCL

C → L
(B.1)

which uses only two symbols {L,C}, both symmetric, with L as the axiom
(we could also use C but that would require to introduce another transitional
mask corresponding to CCCC), ratio ρ = 1+

√
2 ≈ 2.414, and lengths ℓL = 1

and ℓC = ρ− 2, which requires 4 only masks:

LLLL

CLLC = σ̄(CLLC)

CLLL = σ̄(LLLC)

LCLL = σ̄(LLCL)
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Four symbols {S, L, C,R}

ρ # masks π(C) M[C; (S, L, C,R)]

1+
√
13

2
≈ 2.302

13 RLR 0 1 0 2

14 LRR 0 1 0 2

14 LLR 0 2 0 1

15 LRL 0 2 0 1

17 LLL 0 3 0 0

17 RRR 0 0 0 3

18 RRL 0 1 0 2

21 RLL 0 2 0 1

ρ # masks π(C) M[C; (S, L, C,R)]

1 +
√
2 ≈ 2.414

10 LCR 0 1 1 1

17 RCL 0 1 1 1

Four symbols {L,C,D,R}

ρ # masks π(C) M[C; (L,C,D,R)]

1 +
√
2 ≈ 2.414

9 LCR 1 1 0 1

9 LDR 1 0 1 1

Five symbols {S, L, C,D,R}

ρ # masks π(C) M[C; (S, L, C,D,R)]

1+
√
5

2
≈ 1.618

13 R 0 0 0 0 1

15 L 0 1 0 0 0
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ρ # masks π(C) M[C; (S, L, C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

9 RLC 0 1 1 0 1

12 RDR 0 0 0 1 2

12 LDR 0 1 0 1 1

13 LLC 0 2 1 0 0

13 DRR 0 0 0 1 2

13 DLR 0 1 0 1 1

14 LCR 0 1 1 0 1

14 CRL 0 1 1 0 1

15 LCL 0 2 1 0 0

15 RLD 0 1 0 1 1

16 LRD 0 1 0 1 1

17 LRC 0 1 1 0 1

17 CLR 0 1 1 0 1

18 DLL 0 2 0 1 0

20 RCR 0 0 1 0 2

21 CLL 0 2 1 0 0

21 RRC 0 0 1 0 2

21 RDL 0 1 0 1 1

22 LDL 0 2 0 1 0

22 RCL 0 1 1 0 1

23 CRR 0 0 1 0 2

24 LLD 0 2 0 1 0

30 RRD 0 0 0 1 2
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ρ # masks π(C) M[C; (S, L, C,D,R)]

3+
√
5

2
≈ 2.618

12 DDR 0 0 0 2 1

13 CLC 0 1 2 0 0

13 CDR 0 0 1 1 1

14 LCC 0 1 2 0 0

14 DRD 0 0 0 2 1

14 LCD 0 1 1 1 0

14 DLC 0 1 1 1 0

14 DRC 0 0 1 1 1

15 DCR 0 0 1 1 1

16 CDL 0 1 1 1 0

17 DCL 0 1 1 1 0

18 CRC 0 0 2 0 1

18 LDC 0 1 1 1 0

18 RDC 0 0 1 1 1

20 CCL 0 1 2 0 0

20 CLD 0 1 1 1 0

21 CCR 0 0 2 0 1

21 CRD 0 0 1 1 1

22 LDD 0 1 0 2 0

22 DLD 0 1 0 2 0

22 RCC 0 0 2 0 1

23 DDL 0 1 0 2 0

28 RCD 0 0 1 1 1

29 RDD 0 0 0 2 1
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