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Themeteoric water has obviously changed the physical properties of dolostone

reservoirs in the vertical vadose zone and the horizontal phreatic zone, but its

influence on the dolostone reservoirs in the shallow burial zone beneath the

phreatic surface is still unclear. This study aims to reveal the effect of meteoric

water on the dolostone reservoirs in the shallow burial zone through X-ray

diffraction, cathodoluminescence, C, O, and Sr isotope using the sample from

Majiagou Formation in the Daniudi gas field, Ordos Basin. The diagenesis and

paragenesis of the Ma 55 submember were identified and interpreted through

petrological study, combined with data from electron probe, X-ray diffraction

analysis, and geochemical parameters of diagenetic minerals. The color of the

very fine crystalline dolomite under the cathodeluminescence is dark red and

red. The order degree of dolomite ranges from 0.54 to 0.91, showing the origin

of early seepage-reflux dolomitization. There are a large number of different

calcite cements as fills within the pores and fractures. The color of the calcite

cement under the cathodoluminescence is orange-yellow, with a zonal

structure. Hydrothermal fluid during late diagenesis could be identified by

the authigenic fluorite filling in the fractures. According to the assembly of

diagenetic minerals, the very fine crystalline dolostones have experienced the

seepage-reflux dolomitization, meteoric water dissolution, shallow burial

cementation and late cementation. The void spaces of the very fine

crystalline dolostones are intercrystalline pores and microfractures. Although

a large number of dissolved pores and caves developed in the period of

meteoric water dissolution, these caves and dissolved pores has been

mostly filled by multi-stages of cementation. Therefore, the effect of

meteoric water on dolostone reservoirs in the shallow burial zone beneath

the phreatic surface is not obvious. Themain controlling factor for the quality of

dolostone reservoir was dolomitization. This study provides a new
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understanding of the influence of meteoric water on reservoir quality in the

shallow burial zone during the paleokarst period.
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1 Introduction

The Ordovician Majiagou Formation in Ordos Basin is the

main target of natural gas exploration in northern China (Yang

et al., 2011; Fu et al., 2017; Wei et al., 2017). Due to the influence

of Caledonian and Hercynian tectonic movement, the Majiagou

Formation has suffered a long-term exposure and subaerial

dissolution, and displayed strong karstification (Wang et al.,

2005; Li et al., 2008; Li et al., 2017; Fu et al., 2019; Xie K.

et al., 2020). Karstification refers to the subaerial dissolution of

carbonate by meteoric water during the period of the sediment’s

consolidation or the exposure of buried carbonate rocks. The

contribution of the karstification to the oil and gas reservoir

quality is widely discussed, based on the research of

paleogeomorphologic features, unconformities and fault

development (Wennberg et al., 2016; Zhang et al., 2016; Wei

et al., 2018; Xiao et al., 2019; Ding et al., 2020; Jiu et al., 2021; Liu

et al., 2021; Retana et al., 2021; Yang M. Y. et al., 2021). The

vertical section of karstification can be divided into surface karst

zone, vertical vadose zone and horizontal phreatic zone (Jiang

and Jin, 2009; Qu et al., 2015; Zhu et al., 2018; Zhao et al., 2019).

The vadose and phreatic zones occurred in karstification sections

result from the meteoric water flowed under the influence of

gravity. According to the differences of paleogeomorphology,

karstification can be divided into several types of karst units

(Esteban and Feng, 1991). It is generally believed that the degree

of karstification of karst highlands and karst slopes is stronger

than other karst units and the carbonate rocks in above two units

are prone to form reservoirs with high quality (Chen et al., 2007;

Zhang et al., 2021; Zhu et al., 2021).

At present, the natural gas exploitation of the Ma5 member of

the Majiagou Formation located in the karst highlands and karst

slopes in the Daniudi area of Ordos Basin is significant, with the

average yield of 2.4 × 104 m3/d. The Ma5 member has been divided

into 10 submembers. Among the 10 submembers, theMa51 toMa54
submembers are located in the vadose zone and horizontal phreatic

zone (He et al., 2013; Sun, 2020; Xie R. C. et al., 2020; Yu et al., 2020;

Xu et al., 2021), while the Ma55 submember is distributed in the

shallow burial zone. The Ma55 submember is composed of

dolostone and limestone. The mechanism of microbial

dolomitization in the middle and lower of the Ma5 member is

reported in the central and eastern Ordos Basin (Liu et al., 2017;

YangW. et al., 2021; Luo et al., 2022). The dolostones in the Daniudi

area are distributed in the shallow burial zone beneath the phreatic

surface, where may be influenced by meteoric water. Study on the

genesis of dolostone in the shallow burial zone beneath the phreatic

surface during the paleokarst period will improve to understand the

development of high-quality dolomite reservoir in this area. In this

study, taking dolostones in the Ma55 submember as an example,

based on the lithofacies observation, X-ray diffraction analysis, the

measurement of carbon, oxygen and strontium isotope, the

influence of meteoric water on the dolostone reservoir of the

Ma55 submember in the shallow burial zone beneath the

phreatic surface was discussed.

Study on the genesis of dolostone in the shallow burial zone

beneath the phreatic surface enables us to better understand how

to identify the distribution of high-quality dolostone reservoir in

the deep layers. This study will help to further enhance the

exploration of deep natural gas favorable areas.

2 Geological setting

The main structural units of the Ordos Basin include Yimeng

uplift, Jinxi fold, northern Shaanxi sag, Yishan slope, central

paleo-uplift, Tianhuan sag, western margin thrust belt and

Weibei uplift (Hou et al., 2003; He et al., 2013). The basin

was composed of Caledonian foreland basin and Helan rift at

the same time in early Paleozoic. During the sedimentary period

of the Majiagou Formation, Helan rift warped in the western

margin of the basin, forming a central paleo-uplift, and the

Nothern Shaanxi sag formed in the east of the basin

(Figure 1). These two tectonic units control the Ordovician

palaeogeomorphological configuration (He et al., 2013). Under

the influence of the Caledonian Orogeny, the North China

platform uplifted at the end of the Middle Ordovician,

resulting in a sedimentary interruption of about 130 Ma. In

the late Ordovician-early Carboniferous, the sea level declined,

and the large-scale regression led to the long-term exposure and

denudation of the Ordovician carbonate strata. The sedimentary

strata of the basin were also absence during this period, and the

weathering crust developed widely under the strong

karstification. So far, the weathering crust of Ordovician

carbonate strata has been basically formed, which facilitate the

development of karst reservoirs in the Majiagou Formation.

Daniudi gas field is located in the northeastern Yishan slope

(Figure 1). The Majiagou Formation in the study area can be

divided into five members from bottom to top, namely Ma1-Ma5

members. There was many times of transgressions and

regressions, while retrogression occurred in the depositional

period of Ma1, Ma3 and Ma5 members, and transgression

occurred in the depositional period of Ma2 and
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Ma4 members. The transgression during the depositional period

of Ma4 member reached the maximum (Feng et al., 2004).

Controlled by the change of sea level, the sedimentary facies

of the Majiagou Formation evolved from restricted platform to

evaporative platform, and there were several sets of gypsum rock

and salt rock interbedded with dolostones (Figure 2). The

Ma5 member can be divided into 10 submembers. Ma57-10
submembers deposited on the dolomitic tidal flat, containing

very fine crystalline dolomites. During the depositional period of

the Ma56 submember, the content of terrigenous mud increased

FIGURE 1
Location of the study area (Adopted from Hou, et al., 2003).

FIGURE 2
Stratigraphy and element characteristics of Majiagou Formation in Daniudi gas field, Ordos Basin.
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in the sediments. However, the crystalline dolomites are still the

main minerals in the Ma56 submember. The weathering crust

mainly refers to Ma51-4 submembers in the whole Ordos Basin.

Particularly, the karst breccias could be observed in the Ma51-5
submembers.

3 Sampling and testing methods

Sample source: In this study, the rock samples of the Ma55
submember of the Majiagou Formation in the Daniudi gas field

were collected from 13 wells. The location of the sampling wells is

shown in Figure 1. A total of 104 samples are analyzed, including

24 plunger cores and 80 broken samples. The whole rock X-ray

diffraction detection, major and trace elements measurement, C,

O, Sr isotopes and rare earth elements analysis were performed in

the State Key Laboratory of Oil and Gas Reservoir Geology and

Exploitation in China. 27 thin sections were observed by

cathodoluminescence microscope.

Testing method: XRD analysis was performed according to

the SYT 5163–2010 standard (China): the samples were cleaned

until the fluorescence level is below Grade IV, and dried in a

drying oven at 60°C. After drying, break the samples into 1 mm,

and then grind them to 40 μm. The instrument of XRD analysis is

Rigaku XRD/Rigaku Ultima IV instrument of Japanese physics,

with operating voltage of 30 kV, current of 20 mA and scanning

speed of 2°/min. Major, trace and rare earth elements were

determined by PE 5300 V inductively coupled plasma atomic

emission spectrometer (ICP-OES) and Aglient Technologies

7700 Series ICP-MS. Rare earth elements were standardized

using North American shale (Gromet et al., 1984). Major

elements were determined by GB/T 14506-2010 industry

standard part 28 in China, trace and rare earth elements were

determined by GB/T 14506-2010 industry standard part 29 in

China. The C and O isotopes were determined by the

MAT253 stable isotope ratio mass spectrometer of Thermo

Science, United States. Isotope determination was performed

according to SY/T 5238-2008 industry standard (China). The

measurement accuracy of 13C was 0.0037‰, and that of 18O was

0.013‰. Cathodoluminescence analysis was performed on

British CITL MK2-5, with the polarizing microscope produced

by Germany Leica DM4500, with the voltage of 14 kV, the

current of 380 μA, and exposure time of 12 s.

4 Results

4.1 Lithology

4.1.1 Limestone
The color of the limestone is light gray to gray. Lithologically,

the limestone in the study area is micritic limestone. There are

FIGURE 3
Microscopic and cathodoluminescence characteristics of limestone. (A) Well D1-530, 3105.53 m, tectonic fractures cut the bioclast (yellow
arrow); (B) Cathodoluminescence photos of figure a, the luminescence color of calcite filled in fractures is bright orange; (C)Well D88, 2816.62 m,
the mold pore is filled with tabular gypsum, replaced by calcite; (D) Cathodoluminescence photos of figure c, the luminescence of calcite is bright
orange.
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two types of fractures can be observed on the cores: tectonic

fractures and weathering fractures. The tectonic fractures cut the

fossils as seen under the microscope (Figures 3A, B), and these

fractures are filled with calcite. The crystal shape of gypsum could

be observed in Figure 3C, however, the gypsum was replaced by

calcite according to interference colors under cross-polarized

light and cathodoluminescence (Figures 3C, D).

4.1.2 Dolomite
The mineral composition detected by XRD shows that the

main mineral of the dolomite samples from Ma55 submember is

dolomite, followed by calcite, with an average content of 94.4%

and 3.7%, respectively. According to the crystal size of dolomites,

the dolostones can be divided into micritic dolostone and very

fine crystalline dolostone. The calcareous dolostone is a

transitional lithology, and its cathodoluminescence color is

non-luminescent or dark red light. The color of micritic

dolostone on the hand specimen is dark gray or gray black.

Weathering fractures and gypsum are visible under the

microscope. The calcites filled within the pores and fractures

have multiphase crystallization, identified by

cathodoluminescence. The early phase was the fine crystalline

calcite with zonal luminescence characteristics (Figures 4A, B) in

the vugs. The late phase was calcite without zonal luminescence

characteristics (Figures 4C, D). There are almost no visible pores

in the micritic dolostone. The color of very fine crystalline

dolostone on the hand specimen is gray, with fewer fractures

compared with above two lithologies. The dolomite crystal size of

the dolostone under microscope is between 50 and 100 μm. The

crystal morphology of this dolostone is more regular than

micritic dolostone, which is euhedral to subhedral. The

cathodoluminescence color of very fine crystalline dolostone is

FIGURE 4
Microscopic and cathodoluminescence characteristics of dolomite. (A) Well PG27, 2979.52m, calcite cementation in the vugs; (B)
Cathodoluminescence photos of figure a, calcite with zonal luminescence characteristic; (C)Well D48, 3022.17 m, coarse crytalline calcite filling the
fracture; (D) Cathodoluminescence photos of figure c, the calcite without zonal luminescence characteristics; (E) Well D48, 3014.88 m, very fine
crystalline dolomite; (F) Cathodoluminescence photos of figure e, the luminescence of dolomite is not obvious.

Frontiers in Energy Research frontiersin.org05

Lan et al. 10.3389/fenrg.2022.1089171

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1089171


TABLE 1 C and O isotope of carbonate rocks from the Ma55 submember.

Well Sample no. Depth(m) Lithology δ13CV-PDB‰ δ18OV-PDB‰

D1-530 9/52 3097.42 very fine crystalline dolomite −0.13 −6.75

D1-530 36/52 3101.42 very fine crystalline dolomite −0.16 −8.09

D1-530 41/67 3108.28 very fine crystalline dolomite −0.28 −7.47

D1-530 5/36 3112.78 very fine crystalline dolomite −0.30 −7.40

D1-530 25/36 3115.62 very fine crystalline dolomite −0.11 −7.52

PG27 31/47 2987.35 very fine crystalline dolomite −0.06 −7.27

D1-530 31/67 3106.75 Micrite dolomite −1.48 −7.10

PG27 27/49 2978.11 Micrite dolomite −0.46 −6.34

PG27 36/49 2979.52 Micrite dolomite −0.53 −7.01

PG27 11/47 2983.72 Micrite dolomite −0.76 −7.22

D48 5/99 3009.32 Calcareous dolomite −0.38 −8.18

D48 26/99 3013 Calcareous dolomite −1.77 −8.43

D81 30/71 2846.68 Calcareous dolomite −0.65 −7.53

D48 5/99 3009.32 Calcite vein −2.17 −14.01

D48 26/99 3013 Calcite vein −3.76 −13.59

D48 56/99 3018.46 Calcite vein −2.78 −16.01

D48 75/99 3022.05 Calcite vein −2.54 −14.18

D88 9/83 2815.73 Calcite vein −3.72 −14.47

D88 21/83 2817.02 Calcite vein −4.27 −14.34

TABLE 2 Sr isotope of carbonate rocks from the Ma55 submember.

Well Sample no. Depth(m) Lithology 87Sr/86Sr

D1-530 9/52 3097.42 very fine crystalline dolomite 0.709711

D1-530 36/52 3101.42 very fine crystalline dolomite 0.709783

D1-530 41/67 3108.28 very fine crystalline dolomite 0.709579

D1-530 5/36 3112.78 very fine crystalline dolomite 0.709766

D1-530 25/36 3115.62 very fine crystalline dolomite 0.710010

PG27 31/47 2987.35 very fine crystalline dolomite 0.709358

D1-530 31/67 3106.75 Micrite dolomite 0.710430

PG27 36/49 2979.52 Micrite dolomite 0.709561

D48 5/99 3009.32 Calcareous dolomite 0.709228

D48 26/99 3013 Calcareous dolomite 0.709118

D48 99/99 3026.35 Limestone 0.709504

D67 21/48 2892.28 Limestone 0.709082

Frontiers in Energy Research frontiersin.org06

Lan et al. 10.3389/fenrg.2022.1089171

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1089171


non-luminescent to dark red light (Figures 4E, F). There are a

small number of intercrystalline pores and intercrystalline

dissolved pores developed in the very fine crystalline dolostone.

4.2 Carbon and oxygen isotope

The compositions of C and O isotopes are shown in Table 1.

The δ13CV-PDB values of the very fine crystalline dolomite ranged

from −0.30 to −0.06‰, with an average of −0.17‰, and the

δ18OV-PDB values ranged from −8.09 to −6.75‰, with an average

of −7.42‰. The δ13CV-PDB values of micritic dolomites range

from −1.48 to −0.46‰, with an average of −0.81‰; the

δ18OV-PDB values range from −7.22 to −6.34‰, with an

average of −6.91‰. The δ13CV-PDB values of the calcareous

dolomite range from −1.77 to −0.38‰, with an average

of −0.93‰, and the δ18OV-PDB range from −8.43 to −7.53‰,

with an average of −8.05‰. The δ13CV-PDB values of limestone

ranged from −0.88 to −0.46‰ with an average of −0.67‰, and

the δ18OV-PDB values ranged from −9.68 to −9.57‰ with an

average of −9.63‰. The δ13CV-PDB value of weathering fracture

filling calcite ranges from −4.27 to −2.17‰, with an average

of −3.21‰, and the δ18OV-PDB value ranges

from −16.01 to −13.59‰, with an average of −14.43‰. The C

and O isotopic values of limestone are similar with those of the

Early-Middle Ordovician marine limestone (Veizer et al., 1999),

and the C and O isotopic values of micritic dolomite are similar

with those of the early Ordovician seawater cements (δ13CV-PDB-

1.5 ~−0.5‰, δ18OV-PDB-6.5 ~−5.5‰ (Popp et al., 1986)), and the

δ13C value of very fine crystalline dolomite is not very negative.

With the increase of the calcite percentage in whole rock, the

δ18O value decreases, and the calcite vein has the lightest C and O

isotope value.

4.3 Sr isotope

The Sr isotope of 12 samples from 4 wells are shown in

Table 2. The 87Sr/86Sr ratio of limestone ranges from 0.7091 to

0.7095, with an average of 0.7093. The distribution range of

calcareous dolomite is 0.7091–0.7092, with an average of 0.7092.

Micritic dolomite ranges from 0.7096–0.7104, with an average of

0.7100; Very fine crystalline dolomite ranges from

0.7094–0.7100 with an average of 0.7097. The range of

0.7086–0.7096 is taken as the standard reference range for the
87Sr/86Sr ratio of the Middle and Lower Ordovician (Veizer et al.,

TABLE 3 The composition of elements in carbonate rocks from the Ma55 submember.

Well Sample
no.

Depth(m) Lithology CaO % MgO% K2O % Na2O % Al2O3% TFe2O3% Mn ×
10−3

D1-530 9/52 3097.42 very fine crystalline
dolomite

31.721 22.120 0.051 0.062 0.186 0.213 0.070

D1-530 36/52 3101.42 very fine crystalline
dolomite

34.362 19.180 0.080 0.060 0.264 0.266 0.080

D1-530 41/67 3108.28 very fine crystalline
dolomite

32.538 21.020 0.101 0.063 0.332 0.298 0.070

D1-530 5/36 3112.78 very fine crystalline
dolomite

31.863 19.760 0.079 0.060 0.286 0.337 0.080

D1-530 25/36 3115.62 very fine crystalline
dolomite

30.239 19.370 0.287 0.064 1.051 0.390 0.080

PG27 31/47 2987.35 very fine crystalline
dolomite

29.726 20.330 0.056 0.054 0.221 0.260 0.080

D1-530 31/67 3106.75 Micrite dolomite 26.277 19.220 1.023 0.079 3.351 0.991 0.190

PG27 27/49 2978.11 Micrite dolomite 28.710 20.350 0.074 0.050 0.308 0.373 0.261

PG27 36/49 2979.52 Micrite dolomite 29.811 20.730 0.080 0.054 0.302 0.199 0.060

PG27 11/47 2983.72 Micrite dolomite 28.580 19.960 0.213 0.052 0.763 0.501 0.251

D48 5/99 3009.32 Calcareous dolomite 37.744 13.060 0.082 0.053 0.293 0.234 0.080

D48 26/99 3013 Calcareous dolomite 38.352 10.530 0.061 0.053 0.211 0.224 0.080

D81 30/71 2846.68 Calcareous dolomite 43.750 9.048 0.056 0.038 0.143 0.111 0.078

D48 99/99 3026.35 Limestone 49.362 1.606 0.075 0.048 0.288 0.110 0.040

D67 21/48 2892.28 Limestone 52.953 0.250 0.057 0.056 0.247 0.103 0.060
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TABLE 4 Rare earth element in carbonate rocks from the Ma55 submember.

Well Depth (m) Lithology La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

(×10−6)

D1-530 30970.42 very fine crystalline dolomite 1.007 1.904 0.237 0.831 0.177 0.027 0.141 0.021 0.140 0.021 0.068 0.009 0.069 0.007

D1-530 31010.42 very fine crystalline dolomite 1.889 3.864 0.471 1.734 0.284 0.059 0.257 0.038 0.196 0.035 0.104 0.010 0.100 0.011

D1-530 31080.28 very fine crystalline dolomite 0.870 1.626 0.201 0.800 0.156 0.031 0.132 0.024 0.115 0.026 0.063 0.009 0.081 0.014

D1-530 31120.78 very fine crystalline dolomite 1.398 2.638 0.319 1.187 0.214 0.05 0.175 0.030 0.175 0.031 0.081 0.013 0.097 0.014

D1-530 31150.62 very fine crystalline dolomite 1.347 2.306 0.297 1.141 0.206 0.046 0.221 0.034 0.190 0.038 0.105 0.015 0.117 0.016

PG27 29870.35 very fine crystalline dolomite 0.555 1.197 0.173 0.663 0.141 0.025 0.129 0.020 0.129 0.025 0.074 0.008 0.083 0.012

D1-530 31060.75 Micrite dolomite 13.115 29.416 3.174 12.194 2.363 0.475 2.177 0.339 1.879 0.414 1.097 0.181 1.061 0.164

PG27 29780.11 Micrite dolomite 1.001 1.771 0.209 0.905 0.233 0.035 0.196 0.031 0.202 0.040 0.12 0.02 0.305 0.022

PG27 29790.52 Micrite dolomite 0.761 1.505 0.196 0.794 0.189 0.037 0.146 0.027 0.137 0.029 0.097 0.01 0.101 0.014

PG27 29830.72 Micrite dolomite 1.729 2.352 0.256 1.018 0.201 0.039 0.194 0.030 0.196 0.040 0.127 0.021 0.300 0.029

D48 30090.32 Calcareous dolomite 1.865 4.231 0.530 2.036 0.362 0.059 0.309 0.050 0.252 0.052 0.153 0.023 0.167 0.018

D48 3013 Calcareous dolomite 1.905 3.852 0.474 1.696 0.285 0.063 0.261 0.046 0.228 0.049 0.135 0.022 0.144 0.019

D81 28460.68 Calcareous dolomite 6.340 8.152 0.793 2.722 0.364 0.056 0.048 0.309 0.213 0.039 0.091 0.015 0.254 0.012

D48 30260.35 Limestone 3.878 6.799 0.820 2.944 0.475 0.098 0.450 0.068 0.335 0.063 0.146 0.021 0.153 0.019

D67 28920.28 Limestone 1.699 3.208 0.374 1.275 0.227 0.048 0.188 0.029 0.173 0.038 0.097 0.014 0.120 0.016
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TABLE 5 Mineral composition and order degree of dolomite data of carbonate rocks from the Ma55 submember.

Well Depth (m) Lithology Quartz % Plagioclase RockSalt % Anhydrite % Dolostone % Calcite % Pyrite % Clay % Order degree of
dolomite

D1-530 3097.42 very fine crystalline
dolomite

1.2 0 0 0 96.6 2.2 0 0 0.91

D1-530 3101.42 very fine crystalline
dolomite

0.8 0 0 0 89.3 9.9 0 0 0.88

D1-530 3106.75 Micrite dolomite 4.7 0 0 0 89.2 0.3 0.6 5.2 0.63

D1-530 3108.28 very fine crystalline
dolomite

0.3 0 0 0 96.1 3.5 0.1 0 0.83

D1-530 3112.78 very fine crystalline
dolomite

0.6 0.4 0 0 93.9 5.2 0 0 0.74

D1-530 3115.62 very fine crystalline
dolomite

0.5 0.3 0 0 94.3 4.6 0.2 0 0.79

D48 3016.05 very fine crystalline
dolomite

0.9 0 — 0 92.6 6.5 0 0 0.62

PG27 2987.35 very fine crystalline
dolomite

0.2 0.4 0 0 97.4 2.0 0 0 0.83

PG27 2979.52 Micrite dolomite 0.8 0.4 0 0 96.3 2.4 0 0 0.83

PG27 2983.96 Micrite dolomite 0.6 0.3 — 0 98.2 0.8 0.1 0 0.82

D48 3009.32 Calcareous dolomite 0.3 0 0 0 66.2 33.5 0 0 0.79

D48 3013 Calcareous dolomite 0.4 0 0 0 59.0 40.6 0 0 0.80

D48 3020.38 Calcareous dolomite 0.3 0 — 0 54.5 45.2 0 0 0.68

D81 2846.68 Calcareous dolomite 0.3 0.2 — 0 50.1 49.4 0 0 0.74
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1999), and the 87Sr/86Sr ratio of the limestone in the study area is

similar to the 87Sr/86Sr ratio of contemporary seawater. The 87Sr/
86Sr ratio of most micritic dolomites and some very fine

crystalline dolomites are beyond the above reference range,

and the 87Sr/86Sr of micritic dolomite is the highest, followed

by very fine crystalline dolomite.

4.4 Major element

The composition of major and trace elements of carbonate

rocks from the Ma55 submember are shown in Table 3. The

average CaO content of very fine crystalline dolomite is

31.74%, the average MgO content is 20.30%, and that of

micritic dolomite are 28.34% and 20.07%, respectively. The

Ca content of very fine crystalline dolomite is higher than that

of micritic dolomite, and the Mg content is slightly higher

than that of micritic dolomite. The average Ca and Mg content

of the calcareous dolomite were 39.95% and 10.88%, that of

limestone was 51.16% and 0.93%, respectively. The Mg/Ca

value of the micritic dolomite was 0.71, and that of the very

fine crystalline dolomite was 0.64. The contents of Fe and Mn

in the samples varied greatly. There are highest Fe and Mn

contents in the micritic dolomite, with an average value of

0.52% and 125 ppm. The Fe and Mn content in the very fine

crystalline dolomite is 0.29% and 77 ppm, respectively. The

average values of limestone are 0.11% and 50 ppm. The Fe and

Mn contents decreased with the increase of calcite percentage

in whole rock. Mn/Ca values of all samples in the Ma55
submember are closer to that of meteoric water value with

1.33 (Huang, 1990). The content of Sr in the micritic dolomite

is 59.49 ppm, and that in very fine crystalline dolomite is

57.35 ppm, that in limestone is 86.20–105.91 ppm.

Meanwhile, the content of Sr increases with the increase of

calcite percentage in whole rock. The overall content of Na

element in the sample is low. The content of K element

decreases in sequence from micritic dolomite, very fine

crystalline dolomite, calcite dolomite and limestone, which

is consistent with the distribution characteristics of Al

content. Therefore, it is inferred that the distribution of K

and Al are related to the content of clay minerals.

4.5 Rare earth element

As shown in Table 4, it can be seen that the dolostone is

enriched in light rare earth elements but poor in heavy rare earth

elements. The composition of rare earth element fluctuates

slightly. The distribution pattern of rare earth elements of

dolostone is similar to micritic limestone, but the total rare

earth element contents are lower than micritic limestone. The

FIGURE 5
Characteristics of different karst zone on cores, the arrow indicates the vertical direction. (A) Well D87, Ma52, calcite filled near vertical karst
fractures, showing the characteristics of vertical vadose zone; (B) DP93H well, Ma53-4, horizontal muddy strips containing fine breccias, indicating
horizontal movement of karst water.

FIGURE 6
Crossplot of geochemical characteristics of each sample.
The crossplot of Mn/Ca-Fe/Ca ratio, the sample of upper
submember was obviously modified by meteoric water.
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average δEu value of very fine crystalline dolomite is 0.21, and the

average δCe value is 3.09. The average δEu value of micritic

dolomite is 0.20, and the average δCe value is 3.01.

4.6 Mineral composition and order degree
of dolomite

The X-ray diffraction data of the whole rock show that the

content of clay minerals in the dolostone and calcareous

FIGURE 7
The distribution of REEs pattern of the carbonate rocks of the Ma55 member.

FIGURE 8
The crossplot of C and O isotope.

FIGURE 9
Sr isotopes of samples and the Ordovician seawater.
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dolostone in the Ma55 submember is relatively small (Table 5).

There is a small amount of clay minerals in the micritic dolomite,

with the content of 1.73%, which is consistent with the changes in

the content of K and Al mentioned above. There are most

abundant terrigenous materials in the micritic dolostones. The

contents of quartz and plagioclase are 2.03% and 0.23% in the

micritic dolostones, and that in the very fine crystalline dolomite

is 0.64% and 0.16%, respectively. Pyrite only occurred in the

micritic dolostones and very fine crystalline dolostones. The

order degree of dolomite in the micritic dolostones ranges

from 0.63 to 0.83, with an average of 0.76. The order degree

of dolomite in the very fine crystalline dolomite ranges from

0.62 to 0.91, with an average of 0.80. The order degree of

dolomite in the calcareous dolostone is similar to that of

micritic dolomite with an average of 0.75.

5 Discussion

5.1 The characteristic of dolostones of the
Ma55 submember in the shallow burial
zone and dolomitization

Due to different depth of stratum penetrated by meteoric

water and diagenetic fluids, the intensity of karstification is

different. According to the infiltration depth of meteoric

water, the karstification zones are vertically divided into

vadose zone and phreatic zone. Previous authors classified the

Ma51-2 submember as a vertical vadose zone and the Ma53-4
submember as a horizontal phreatic zone (Lei et al., 2010; He

et al., 2013). Ma51-2 submember in this study area mainly develop

weathering fractures with high angles (Figure 5A), and nearly

horizontal muddy strips containing fine breccias could be

observed in the Ma53 submember (Figure 5B).

In the shallow burial zone beneath the phreatic surface,

meteoric water was not easy to penetrate. Therefore, the

movement of meteoric water in the shallow burial zone is

very slow. In the study area, Ma55 submember is beneath the

ancient phreatic surface. Comparison with the elemental

composition of dolostones from the Ma52-3 submembers

(Figure 6), it is considered that the dolostones of the Ma55
submember were generally consistent with the characteristics

of shallow burial zone. The contents of Mg, Ca, Fe, Mn and rare

earth elements in the rock are commonly used for the analysis of

the intensity of karstification. Because meteoric water is rich in Fe

and Mn elements (Muchez and Sintubin, 1998; Henry et al.,

1999), the contents of Fe and Mn elements can reflect the

modification degree of meteoric water. The carbonate rocks

deposited in the Ma52-3 submembers are significantly more

enriched in these two elements than the dolostones in the

Ma55 submember. As shown in Figure 6, the Mn/Ca and Fe/

Ca ratios of the Ma55 submember are smaller than that of the

Ma52-3 submember, indicating that the Ma55 submember in the

shallow burial zone beneath the phreatic surface was slightly

modified by Fe-rich meteoric water. This result is consistent with

the fracture phenomenon observed in the core, indicating that

Ma51-2 submember and Ma53-4 submember are in the vertical

vadose zone and horizontal phreatic zone.

When using elemental geochemistry for this discussion, it is

necessary to first verify whether the sample has been modified by

diagenesis, and (Kaufman et al., 1992; Kaufman et al., 1993) gave

an upper limit of 2–3 for Mn/Sr ratios for well research samples,

and theMn/Sr ratios for the Daniudi samples are generally in this

range (0.34–2.37), except for a few samples from one well

(PG27). The diagenetic paleoenvironment of dolomite can be

analyzed according to rare earth elements. Dolomite with

seawater origin is rich in light rare earth elements and poor

in heavy rare earth elements (Banner et al., 1988; Kamber and

FIGURE 10
Reservoir properties of Ma55 submember. (A) The distribution of porosity of carbonate rocks from the Ma55 submember; (B) The distribution of
permeability of carbonate rocks from the Ma55 submember.
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Webb, 2001; Nothdurft et al., 2004; Yang et al., 2018). Previous

studies believe that the negative Eu anomaly can indicate the low

temperature alkaline diagenetic environment (Frimmel, 2008; He

et al., 2014), while the negative Ce anomaly can reflect the

oxidation degree of the diagenetic environment. According to

the REEs pattern of the sample after standardization of North

American shale (Figure 7), the diagenetic environment of

micritic dolomite and very fine crystalline dolomite was under

the low temperature and alkaline fluid. The diagenetic

environment of very fine crystalline dolomite was under weak

oxidation. The redox condition can reflect the degree of opening

of the diagenetic environment. The REEs patterns of these

samples indicate that the dolomitized fluid is closely related to

seawater. The micritic dolomite was formed in the restricted

FIGURE 11
Microscopic photos of pores and fractures. (A) Well D30, 3022.42 m, intercrystalline pore in very fine crystalline dolomite; (B) Well D1-530,
3113.46 m, microfracture; (C)Well PG27, 2977.71 m, calcite cement of fracture; (D)Well D48, 3013.0 m, gypsum-shaped pores filled with calcite; (E)
Well D48, 3009.32 m, fractures filled with calcite; (F) Well D48, 3018.10 m, cathodoluminescence photo, the minerals with blue color are fluorites
filling in the karstfracture; (G) Well D30, 3021.57 m, intercrystalline pore in very fine crystalline dolomite; (H) Well PG27, 2995.6 m, micrite
dolomite without any pore space.
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environment with high salinity, while the very fine crystalline

dolostone was dolomitized in the shallow burial environment.

Sr isotope, C and O isotope can reflect the salinity of

dolomitized fluid (Swart et al., 1987; Compton et al., 2001;

Yuan et al., 2015; Bi et al., 2018; Jiang et al., 2019; Bai et al.,

2022), but these isotopes could be modified during the burial

diagenesis or exposure erosion. The calcite precipitated during

subaerial exposure with the zonal cathodoluminescence has the

lightest C and O isotope values. The δ18OV-PDB values of very fine

crystalline dolomite and micritic dolomite are similar

(−8.43–−6.34‰) (Figure 8), partly less than −8‰. The C and

O isotopes show that the diagenetic environment of micritic

dolomite and very fine crystalline dolomite was weakly

influenced by meteoric water. On the other hand, the ratio of
87Sr/86Sr of all samples is slightly higher than that of

contemporary seawater (Figure 9). Although the average 87Sr/
86Sr value of very fine crystalline dolomite is slightly lower than

that of micritic dolomite and similar to limestone, the Sr isotopes

FIGURE 12
The paragenesis of carbonate rocks in the Ma55 submember.

FIGURE 13
Porosity distribution of dolomite with different crystal size. FIGURE 14

Crossplot of order degree of dolomite and the porosity.

Frontiers in Energy Research frontiersin.org14

Lan et al. 10.3389/fenrg.2022.1089171

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1089171


of the two types of dolomite show that they were weakly

influenced by meteoric water during the subaerial exposure.

Based on the analysis of strontium isotope, C and O isotope

data and major elements, it is considered that the dolostones in

the Ma55 submember in the shallow burial zone beneath the

phreatic surface were slightly modified by meteoric water.

5.2 Reservoir quality of dolostones in the
shallow burial zone beneath the phreatic
surface

Through thin section identification, the very fine crystalline

dolostones in the Ma55 submember have a small number of

pores: with the average area percentage of pore under microscope

of 1.5%. However, the micritic dolostones almost have no visible

pores. As shown in Figure 10, the porosity of carbonate rocks in

the Ma55 submember mainly ranges from 1% to 3%, and the

permeability mainly ranges from 0.01 to 0.05 × 10−3μm2. The

void spaces of the carbonate reservoirs are dominated by

intercrystalline pores (Figure 11A), with minor microfractures

(Figure 11B). In addition, two types of invalid void spaces have

been observed, e.g., gypsum mold holes completely filled with

calcite, and weathering fractures filled with calcite. These void

spaces formed in the earlymeteoric water dissolution, and

destroyed by late cementation.

With the proceeding of dolomitization under shallow burial

environment, the new void spaces will be created by replacement

in very fine crystalline dolomites. Meanwhile, because the very

fine crystalline dolomites are located in shallow burial zone

beneath the phreatic surface, calcium-rich fluids from the

upper phreatic zone may penetrate into the reservoir after

subaerial dissolution along weathering fractures and then

result in strengthened cementation, which 100% filled the

dissolution fractures in early diagenesis and destroyed the

reservoir space (Figure 11C). The effective fractures observed

under the microscope are regular fractures, with the average

percentage of area of 0.4%. According to the petrography

characteristic, fractures without fillings formed in the late

diagenesis.

In addition to the two types of effective void spaces,

gypsum-shaped holes full filled with calcite (Figure 11D) and

karst-fractures filled with calcite and fluorite (Figures 11C, E, F)

were also observed, but neither of them had reservoir

properties. In the sedimentary period of the Ma55
submember, the gypsum precipitated in the west of the study

area, which was a restricted environment. During the subaerial

exposure, weathering fractures and small branching dissolution

fractures developed with the dissolution of meteoric water. As

the soluble minerals in meteoric water, gypsum dissolved to

form pores and caves. On the other hand, because of Ca-rich

fluid formed in the vadose zone and phreatic zone after

subaerial dissolution, there were a large number of calcites

precipitated in pores and caves in the shallow burial zone

beneath the phreatic surface, leading to the destruction of

gypsum-shaped pores and caves. Large-scale cementation in

the subaerial exposure and burial cementation resulted in the

complete filling in gypsum-shaped dissolved pores and karst-

fractures (Figures 11C–E). Therefore, we suggest that the

meteoric water during the subaerial exposure has little effect

on the quality of carbonate reservoir in the shallow burial zone

beneath the phreatic surface.

5.3 Main controlling factors of reservoirs
quality in the Ma55 submember

Previous studies have divided multiple types of reservoirs in

theMa55 submember based on karstification (Liu et al., 2014;Wu

et al., 2015). As discussed above, the influence of meteoric water

during the subaerial exposure on the carbonate reservoirs in the

Ma55 submember is obviously weaker than that in the upper

stratas in vadose zone and phreatic zone. There is a large scale of

dolostones developed in the Ma55 submember. The main

controlling factors of reservoir quality in the Ma55
submember can be analyzed combined with the influence of

meteoric water on the dolostones in the shallow burial zone

beneath the phreatic surface.

Based on the above discussion, this study established a

paragenesis of carbonate reservoirs in the Ma55 submember

(Figure 12). The diagenetic alterations include

penecontemporaneous/shallow burial

dolomitization—meteoric water dissolution—shallow burial

cementation-middle-deep burial cementation—late tectonic

fracture. The main controlling factor for reservoir

development was dolomitization, resulting in the formation of

high-quality reservoirs. According to the above analysis of

isotope and element, the dolomitization mechanism includes

evaporative pump dolomitization with rapid crystallization and

seepage-reflux dolomitization. During the regressive period of

the Ma55 submember, the deposition environment changed into

a restricted evaporative tidal flat, and the Mg/Ca ratio of the

diagenetic fluid increased rapidly with the precipitation of

gypsum. The abundant Mg2+ rich fluid sources improved the

penecontemporaneous dolomitization of mud lime and then

micritic dolomite formed. In contrast, the dolomitization in

the subtidal zone occurred in the shallow burial stage, with

the reflux of brine from the supratidal zone.

The statistics of porosity in different crystal size dolomite

indicated that the upper porosity of the very fine crystalline

dolomite is the highest (Figure 13). The crystal size of dolomite

is closely related to the degree of order of dolomite, and both of

them are also related to physical properties (Ma et al., 2007; Shen

et al., 2016), as shown in Figure 14, there was a positive

correlation between the order degree of the dolomite and

porosity of the reservoir rocks. Due to the difference of
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crystallization environment and crystallization rate, the crystal

sizes of dolomites can influence the physical properties (Figures

11G, H). As mentioned above, micritic dolostone has few pores,

while very fine crystalline dolomite has well-developed pore

space. After the deposition, the carbonate rocks in Ma51-4
submember in the study area were exposure and

karstification during the Caledonian Orogeny. However, since

the Ma55 submember was distributed in the shallow burial zone

beneath the phreatic surface, the effect of meteoric water on the

reservoir physical property of the Ma55 submember was

relatively weak. Although the meteoric water dissolution

could be identified in the Ma55 submember, a large-scale

cementation occurred in the Ma55 submember. The original

pore—fracture system become the fluid flow channel. Due to the

strong dissolution in the vadose zone and the phreatic zone, the

overlying diagenetic fluid enriched in Ca2+ entered into

dolostones in the Ma55 submember under gravity along early

fractures. The retention of Ca-rich fluid in shallow burial zones

beneath the phreatic surface result in a large number of calcite

precipitation. The few reservoir spaces formed by the meteoric

water dissolution were filled again. Due to the Ca-rich fluid

cannot flow through the intercrystalline pores with small

volume and throat radius, resulting in the weak cementation

occurred in the very fine crystalline dolostones, the tiny fracture

was preserved (Figure 11B). In addition, as the main fluid flow

channel, the weathering fractures were filled by calcite in the

shallow burial cementation, as well as the fluorite in the late

diagenetic cementation (Figures 11C, E, F). Furthermore,

tectonic fracture formed in the late diagenetic period can

improve the permeability of the reservoirs. As a result, the

development of high-quality dolostone reservoirs was mainly

controlled by dolomitization, and the very fine crystalline

dolostones are the high-quality reservoirs in the Ma55
submember in the shallow burial zone beneath the phreatic

surface.

6 Conclusion

(1) There are two types of dolostones in the Ma55 submember of

Daniudi Gas Field, i.e., micrite dolostone and very fine

crystalline dolostone. The very fine crystalline dolostone

are the reservoirs with high-quality developed in the Ma55
submember.

(2) These dolostone reservoirs distributed in the shallow burial

zone beneath the phreatic surface were slightly modified by

meteoric fresh water, with evidences from Mn/Ca, Fe/Ca, Sr

and O isotope.

(3) The main controlling factors of the very fine crystalline

dolostone reservoirs was dolomitization. The dissolved

pores and fractures created by meteoric water dissolution

were filled again in the late cementation in the shallow

burial zone.
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