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Abstract
Multislice simulations of 4D scanning transmission electron microscopy (4D STEM) data are computationally demanding due to the large number 
of STEM probe positions that must be calculated. For accurate analysis, inelastic scattering from phonons and plasmons must also be included. 
However, current frozen phonon and Monte Carlo plasmon techniques require a separate calculation for each different phonon/plasmon 
configuration, and are therefore not suitable for scaling up to 4D STEM. Here a phase scrambling algorithm (PSA) is proposed, which treats all 
phonon/plasmon configurations simultaneously. A random phase is introduced to maintain incoherence between the different inelastic 
scattering events; this is the phase scrambling part of the algorithm. While for most applications, a few tens of frozen phonon iterations are 
sufficient for convergence, in the case of plasmon scattering as many as tens of thousands of iterations may be required. A PSA is 
statistically more representative of inelastic scattering, and achieves significant savings in computation time for plasmons. The increase in 
speed is a pre-requisite for 4D STEM inelastic scattering simulations.
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Introduction
The convergent beam electron diffraction (CBED) pattern in a 
scanning transmission electron microscope (STEM) contains 
much useful information about the sample. Early applications 
of CBED include analyzing the space group of crystals (Buxton 
et al., 1976) and high-angle annular dark-field (HAADF) im-
ages with atomic number contrast (Pennycook & Jesson, 
1991). In HAADF, the STEM probe is rastered over a speci-
men area of interest and, for a given probe position, the elec-
tron intensity scattered out to high angles is measured by an 
annular detector. The recent introduction of direct electron 
detectors has enabled recording the entire CBED pattern at 
each scan position, a technique known as 4D STEM, due to 
the fact that two spatial and two reciprocal space coordinates, 
i.e. (x, y, kx, ky), are required to index the data. With 4D 
STEM, several new analyses are possible, such as orientation 
and strain mapping, differential phase contrast, ptychogra-
phy, and virtual aperture imaging using electrons scattered 
to arbitrary angles (for a review see Ophus, 2019). The multi-
slice technique (Cowley & Moodie, 1957, Kirkland, 2010) is 
the method of choice for simulating most 4D STEM data, al-
though it can be time consuming for large datasets acquired 
from thick specimens, since a separate multislice simulation 
must be performed at each scan position. Ophus (2017) has 
nevertheless introduced a method, called “PRISM”, which 
uses Fourier interpolation to reduce the number of partial 
plane waves sampled within the STEM probe. PRISM simula-
tions trade some accuracy for an increase in speed, although 
the loss in accuracy does not significantly affect most routine 
4D STEM measurements.

For accurate multislice simulations, however, it is also ne-
cessary to include inelastic scattering, especially phonons 
and plasmons. For example, the role of phonons and thermal 
diffuse scattering (TDS) has long been recognized in Kikuchi 
band formation (Kirkland, 2010), as well as HAADF 
(Pennycook & Jesson, 1991) and annular bright-field images 
(Findlay et al., 2010). Phonons can be included in multislice 
simulations using the frozen phonon method of Loane et al. 
(1991), which assumes that the high energy incident electron 
passes through the thin specimen so swiftly that the vibrating 
atoms are effectively “frozen” in their instantaneous posi-
tions. By performing multislice simulations on supercells 
with different frozen phonon configurations and incoherently 
summing the results, a statistically accurate CBED pattern can 
be calculated. Although more rigorous quantum mechanical 
models of phonon excitation have been proposed (e.g., 
Martin et al., 2009, Forbes et al., 2010), the frozen phonon 
method can nevertheless be shown to be valid under specific 
conditions, such as high energy electron beams and thin speci-
mens (Wang, 1998, Van Dyck, 2009). There is a significant 
computational cost for frozen phonon simulations, since the 
projected potential for a given slice within the specimen 
must be re-calculated for every phonon configuration, and 
typically ten or more configurations are required for reason-
able convergence. Peters (2021) introduced a “mixed static 
potential” (MSP) approach to increase the speed of frozen 
phonon calculations, which is similar to a concept first pro-
posed by Loane et al. (1991; see equation (8) of their paper). 
Here the projected potential for only a few frozen phonon con-
figurations are calculated. Assuming uncorrelated atomic 
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motion, the projected potential for a given slice can be chosen 
at random from the pre-calculated structures to generate new 
phonon configurations. Since there are fewer projected poten-
tials to calculate, a significant saving in simulation time is pos-
sible, especially for thicker specimens.

Monte Carlo techniques have also been developed to model 
plasmon scattering within a multislice framework (Mendis, 
2019). Here the electron is treated as a point particle, and 
the plasmon scattering length and scattering angle estimated 
using computer-generated random numbers, such that the the-
oretical scattering distributions are statistically reproduced. 
The use of particle-based Monte Carlo methods in a wave op-
tical, multislice simulation can be theoretically justified for de-
localized excitations, such as plasmons (Mendis, 2020). In 
fact, Monte Carlo plasmon multislice has had success repro-
ducing the angular scattering distribution of high energy elec-
trons (Barthel et al., 2020), as well as identifying the contrast 
mechanism in electron backscattered diffraction patterns 
(Mendis et al., 2020). The computational cost is however con-
siderable, with tens of thousands of iterations required for 
convergence (Barthel et al., 2020, Mendis, 2022a). Beyer 
et al. (2020) have proposed a transition potential for plasmon 
excitation, which is a somewhat similar concept to the optical 
potential method for phonon scattering (Hirsch et al., 1965). 
The transition potential is computationally efficient, and can 
reproduce the salient features observed in experiment (Beyer 
et al., 2020).

Inelastic scattering is non-negligible even for specimens as 
thin as several tens of nanometers. It is therefore desirable to 
include phonon and plasmon scattering in multislice calcula-
tions, although to be useful for 4D STEM, the simulation 
time must be significantly reduced. A shortcoming of the fro-
zen phonon and Monte Carlo plasmon method is that the dif-
ferent configurations are sampled serially, i.e. a separate 
calculation must be performed for each phonon or plasmon 
configuration. In the case of plasmons, this can be extremely 
wasteful, since many plasmon excitations are low-angle scat-
tering events, and therefore, a large number of iterations are 
required before the less probable “high”-angle plasmon scat-
tering events are accurately simulated. In this paper, a “phase 
scrambling” algorithm that models all configurations simul-
taneously is proposed, thereby improving the speed and, in 
principle, accuracy of the multislice simulations. The phase 
scrambling randomizes the phase of the electron wavefunction 
for the different inelastic scattering paths, thereby preserving 
incoherence in inelastic scattering. In the following sections, 
the rationale behind the phase scrambling algorithm (PSA) is 
presented, along with example simulations from phonon and 
plasmon scattering.

Materials and Methods
Phase Scrambling Algorithm
The principle of the PSA will first be described pedagogically 
using a highly simplified system, before moving onto the 
more general case. In the multislice simulation method, the 
specimen is divided into a series of thin slices along the thick-
ness direction, and the electron wavefunction within each slice 
is solved sequentially, i.e.

Ψn(R) = [Ψn−1(R)Qn(R)] ⊗ Pn(R) (1) 

where Ψn(R), Qn(R) and Pn(R) are the electron wavefunction, 
phase grating function, and propagation function for a given 

slice, respectively. The subscript n represents the slice index 
and R is the two-dimensional position vector in the plane of 
the slice. Expressions for Qn(R) and Pn(R) can be found in 
Kirkland (2010). Since the incident electron wavefunction 
Ψ0(R) is easily calculated from the illumination conditions of 
the microscope, equation (1) can be solved for successive slices 
until the specimen exit surface is reached. In practice, Fourier 
transforms are used to simplify the convolution operation ⊗ in 
equation (1) to a more straightforward multiplication, but this 
detail is not important for the present discussion.

We shall now describe how PSA can be applied to phonons. 
Consider a hypothetical system consisting of only two slices 
“A” and “B”, which are crystallographically distinct. 
Furthermore, assume that each slice has only two phonon con-
figurations. Therefore, slice “A” can have only two unique 
phase grating functions, which are denoted QA1(R) and 
QA2(R), respectively, and similarly for slice “B”. The follow-
ing expression for the electron wavefunction Ψ1(R) within 
slice “A” can be constructed:

Ψ1(R) = [Ψ0(R)QA1(R) + Ψ0(R)QA2(R)] ⊗ P1(R) (2) 

Equation (2) is a coherent superposition of the two possible 
phonon scattering pathways for slice “A”. It should be em-
phasized that equation (2) is a purely mathematical con-
struct and does not have any physical significance. A 
similar electron wavefunction Ψ2(R) can be constructed for 
slice “B’:

Ψ2(R) = [Ψ1(R)QB1(R) + Ψ1(R)QB2(R)] ⊗ P2(R)

=
􏽘2

i=1

􏽘2

j=1

[Ψ0(R)QAi(R) ⊗ P1(R)]QBj(R) ⊗ P2(R)

=
􏽘2

i=1

􏽘2

j=1

ϕij(R)

(3) 

The exit wavefunction Ψ2(R) consists of all the four unique 
phonon scattering pathways for the system. Note that equa-
tion (3) is not normalized, an important observation that 
will be discussed in more detail later. The CBED intensity 
I(k) is the square modulus of the Fourier transform for 
Ψ2(R):

I(k) =
􏽘2

i=1

􏽘2

j=1

|ϕ̃ij(k)|2 + cross − terms (4) 

where ϕ̃ij(k) is the Fourier transform of ϕij(R) and k is a two- 
dimensional reciprocal space vector. The double summation 
is the incoherent contribution from the different scattering 
pathways, and is the term measured experimentally. The 
I(k) in equation (4) is inaccurate due to the cross-terms re-
sulting from interference between different ϕ̃ij(k). This error 
is because the individual scattering pathways were treated 
coherently in equations (2) and (3). To break this coherence, 
we introduce a random phase shift for each of the scattering 
events. This is the principle behind “phase scrambling” and 
PSA. For example, equation (2) is modified to:

Ψ1(R) = [eiθ1 Ψ0(R)QA1(R) + eiθ2 Ψ0(R)QA2(R)] ⊗ P1(R) (5) 

where the phase angles θ1 and θ2 are chosen at random using 
a random number generator in the computer (strictly speak-
ing, since the phase is arbitrarily defined, we can set θ1 to 
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zero and chose a random non-zero phase for only θ2). Since 
θ1 and θ2 are selected at random, there is no well-defined 
phase relationship between two phonon scattering events 
in equation (5). A similar modification is made to Ψ2(R) in 
equation (3), i.e.

Ψ2(R) = [eiθ3 Ψ1(R)QB1(R) + eiθ4 Ψ1(R)QB2(R)] ⊗ P2(R) (6) 

where Ψ1(R) is the wavefunction in equation (5), and θ3, θ4 are 
two new random phase angles. Multiple electron wavefunctions 
can be generated by simply changing the phase angles at random 
in a given PSA iteration. The phase angles are retained in the 
cross-terms of equation (4), but not in the double summation. 
Therefore, by summing I(k) for several PSA iterations, the cross- 
terms should eventually become negligible due to the phase an-
gles being random, leaving behind only the incoherent scattering 
contribution. So long as the number of PSA iterations is less than 
the number of scattering pathways, there will be a saving in the 
computational cost. This condition is easily satisfied (see Results 
section), making PSA an extremely efficient simulation method.

The generalization to a real system is now straightforward. 
For phonons, the fundamental multislice formula [equation 
(1)] in PSA becomes:

Ψ0(R) = ψinc(R) (7a) 

Ψn(R) =
􏽘

j

P(j)[eiθj Ψn−1(R)Qn,j(R)] ⊗ Pn(R)

= [Ψn−1(R)Qn
′(R)] ⊗ Pn(R)

(7b) 

Q′n(R) =
􏽘

j

P(j)eiθj Qn,j(R) (7c) 

where ψinc(R) is the incident electron wavefunction deter-
mined by the microscope illumination conditions. The sum-
mation in equations (7b) and (7c) is over all phonon 
configurations j, which have probability P(j) and phase grating 
function Qn,j(R) for the nth slice. Qn

′(R) is an effective phase 
grating function for the slice. It contains all possible phonon 
configurations, suitably weighted according to their probabil-
ity, as well as the random phase angle θj required for 
incoherence. For correlated atomic motion, P(j) is given by 
the Bose–Einstein occupation factor (Kittel, 2005). Most fro-
zen phonon calculations however assume uncorrelated atomic 
motion, for which P(j) is a constant and independent of j. 
Implementation of equations (7b) and (7c) would then require 
calculating all phase grating functions, Qn,j(R), which does not 
result in any computational cost saving compared with a 
standard frozen phonon (SFP) simulation. However, in the 
MSP method (Peters, 2021), only a small number of frozen 
phonon configurations are calculated, and the phase grating 
function for a given slice selected at random from the initial 
configurations. In this way, many more frozen phonon config-
urations can be generated without further calculation, the 
number of possible configurations increasing rapidly with spe-
cimen thickness. A multislice simulation must still nevertheless 
be performed for each new phonon configuration. Therefore, 
for this part of the simulation, the computation time scales lin-
early with the number of sampled configurations. With PSA, 
however, all the possible MSP configurations are sampled sim-
ultaneously, with iterations only required to supress the coher-
ent terms in the CBED intensity [equation (4)]. This will be 
explored in more detail in the Results section.

We now discuss how PSA can be applied to plasmons. The 
Monte Carlo plasmon multislice method is illustrated schematic-
ally in Figure 1. The electron travels a path length s before under-
going plasmon scattering along polar angle θ and azimuthal angle 
ϕ. The path length and polar angle follow Poisson (Egerton, 1996) 
and Lorentzian (Ferrell, 1956) distributions, respectively, while 
the azimuthal angle is randomly distributed over 2π radians. 
The scattering parameters s, θ, and ϕ are estimated using 
computer-generated random numbers that satisfy the corre-
sponding statistical distributions (Mendis, 2019). The incident 
electron undergoes a change in transverse wavevector Δk during 
plasmon excitation, which is equivalent to a phase shift exp 
(2πiΔk · R) in the electron wavefunction (Barthel et al., 2020). 
Mendis (2019) also considered the effect of beam tilt on the phase 
grating and propagation functions (Ishizuka, 1982), although for 
most scattering events, this correction is negligible, since the plas-
mon characteristic angle θE is much smaller than the Bragg angle 
(e.g., θE = 0.04 mrad for silicon at 200 kV beam voltage). 
Therefore, in what follows, only the phase shift term in plasmon 
scattering is retained. The corresponding PSA equations are then:

Ψ0(R) = ψinc(R) (8a) 

Ψsource
n (R) = [Ψn−1(R)Qn

′(R)] ⊗ Pn(R) (8b) 

Qn
′(R) =

􏽘

j

P(j)eiθj Qn,j(R) (8c) 

Ψn(R) =
���������
1 − P(s)

􏽰
Ψsource

n (R)

+
􏽘

m∈{s,θ,ϕ}

��������������
P(s)P(θ)P(ϕ)

􏽰
eiθm e2πiΔkm·RΨsource

n (R)
(8d) 

Fig. 1. Schematic illustration of a Monte Carlo plasmon scattering event, 
where s is the path length and θ, ϕ are the polar and azimuthal angles of 
scattering, respectively. s, θ, and ϕ are estimated from their respective 
distributions using computer generated random numbers.
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The physical interpretation of these equations are as fol-
lows. The incident electron wavefunction [equation (8a)] is 
transmitted and propagated through a slice using the PSA 
method for frozen phonons [equations (8b) and (8c)]. The re-
sulting wavefunction Ψsource

n (R) is a source term for plasmon 
scattering within the thin slice, which is given by equation 
(8d). The first term on the right-hand side is the unscattered 
wavefunction, while the summation contains all plasmon scat-
tered wavefunctions. The index m represents the different 
plasmon scattering configurations (i.e., s, θ and ϕ values) 
with transverse wavevector change Δkm. θm is the randomly 
generated phase angle for maintaining incoherence. P(s) is 
the probability for plasmon scattering between path lengths 
s and s + ds, and similarly for P(θ) and P(ϕ). It can be shown 
that (Mendis, 2019):

P(s) = exp −
s
λp

􏼒 􏼓
ds
λp

(9a) 

P(θ) =
2θdθ

(θ2 + θ2
E)ln[1 + (θc/θE)2]

(9b) 

P(ϕ) =
dϕ
2π

(9c) 

where λp is the plasmon mean free path and θc is the critical an-
gle for plasmon damping (Egerton, 1996). The probability 
that the incident electron does not excite a plasmon within a 
given slice is 1 − P(s). The unscattered wavefunction in equa-
tion (8d) however contains a 

���������
1 − P(s)

􏽰
term, since the electron 

density is given by the square modulus of the wavefunction. 
Similar considerations apply to the 

��������������
P(s)P(θ)P(ϕ)

􏽰
factor in 

equation (8d). The total wavefunction Ψn(R) is transmitted 
and propagated through the next slice using equations (8b) 
to (8c), before undergoing further plasmon scattering within 
the new slice [equation (8d)]. This process is repeated until 
the exit surface is reached (the small effect of plasmon energy 
loss on transmission and propagation of the high energy elec-
tron beam is ignored). Note that equation (8d) models only 
single plasmon scattering events within a given slice. This is 
reasonable, since the slice thickness is much smaller than the 
plasmon mean free path (e.g., 105 nm for silicon at 200 kV 
beam voltage).

It is easy to see that equations 8a–8d include multiple plas-
mon scattering within the specimen as well. In fact, the result-
ing CBED pattern is similar to the energy unfiltered diffraction 
patterns measured in most experiments. It is possible however 
to also simulate energy filtered CBED patterns. For example, 
consider the single plasmon energy CBED pattern. Equation 
(8d) must be replaced with two separate wavefunctions:

Ψp
n(R) =

􏽘

m∈{s,θ,ϕ}

��������������
P(s)P(θ)P(ϕ)

􏽰
eiθm e2πiΔkm·RΨsource

n (R) (10a) 

Ψn(R) =
���������
1 − P(s)

􏽰
Ψsource

n (R) (10b) 

Ψp
n(R) consists of the single scatter plasmon wavefunctions 

generated within slice n. It is transmitted and propagated 
through the rest of the crystal without any further plasmon 
scattering. The phonon PSA equations (7b) and (7c) are used 
for this purpose. This gives the contribution of slice n to the 
single plasmon energy CBED pattern. To determine the contri-
bution from other slices, we only retain the wavefunction that 
has not undergone plasmon scattering [equation (10b)] and 

repeat the process of transmission, propagation [equations 
(8b) and (8c)], and plasmon scattering [equation (10a)] until 
the specimen exit surface is reached. The final CBED pattern 
is obtained by incoherently summing single plasmon scatter-
ing contributions from all the slices. It is also possible to calcu-
late double and higher-order plasmon energy CBED patterns 
along similar lines, although at an increasing computational 
cost and complexity. In fact, an energy unfiltered CBED calcu-
lation [equations (8a)–(8d)] is by far the most efficient plas-
mon scattering simulation to perform.

Simulation Method
Silicon is used as a test specimen for PSA since it has distinct 
plasmon peaks with no interband transitions in the low elec-
tron energy loss region, and because experimental data is 
available in the literature (Mendis, 2019, Barthel et al., 
2020). Phonon PSA was performed on 50 nm thick [100]-Si, 
with the simulation cell having lateral dimensions of 10ao ×  
10ao (i.e., 54.3 Å × 54.3 Å), where ao is the unit cell lattice par-
ameter. The slice thickness was (ao/4) or 1.4 Å. The projected 
potential for a given slice was calculated using Kirkland’s 
(2010) atom scattering factors, at 1024 × 1024 pixel sam-
pling. Frozen phonons were generated assuming uncorrelated 
atom motion, and a root mean square atomic displacement of 
0.078 Å (Kirkland, 2010). The MSP method (Peters, 2021) is 
used for calculating frozen phonons. There are four crystallo-
graphically distinct slices in [100]-Si. For each of these crystal-
lographic slices, five or ten frozen phonon configurations were 
generated and stored in computer memory. These are later 
used for calculating the effective phase grating function [equa-
tions (7c) and (8c)]. Since the phonon probability P(j) is a con-
stant for uncorrelated atom motion, it can effectively be 
ignored (see also the comments on wavefunction normaliza-
tion at the end of this section). The STEM probe parameters 
were 200 kV accelerating voltage, 4 mrad semi-convergence 
angle and no electron optic aberrations. The STEM probe 
was positioned at the center of the (projected) supercell; see 
Supplementary Material.

Plasmon PSA was performed on a 50 nm thick, [110]-Si 
simulation cell with lateral dimensions of 7√2ao × 10ao 

(53.8 Å × 54.3 Å). The [110] orientation was chosen because 
experimental plasmon data is available for this zone-axis 
(Mendis, 2019). There are two crystallographically distinct 
slices for [110]-Si, each with slice thickness √2ao/4 or 1.9 Å. 
Five frozen phonon configurations were constructed for these 
distinct slices using the same MSP procedure as [100]-Si. The 
plasmon scattering parameters are 1050 Å mean free path (λp), 
0.04 mrad characteristic angle (θE) and 19.1 mrad critical an-
gle (θc). λp was measured directly (Mendis, 2019) and θc was 
obtained by fitting simulation to experiment (Barthel et al., 
2020; the θc value used here is adjusted for the difference in ac-
celerating voltage between the two investigations, i.e., 200 
versus 300 kV). θE was calculated from ΔE/2Eo, where ΔE 
is the plasmon energy loss and Eo the primary beam energy 
(Egerton, 1996).

The plasmon phase shift, exp(2πiΔkm · R), can be conveni-
ently applied in reciprocal space, using the Fourier shift the-
orem. The shifting does however introduce artifacts when 
inverse Fourier transforming back to real space. This can be 
minimized by applying a Hanning window, as well as round-
ing Δkm to integer multiples of the pixel size (kpixel) in recipro-
cal space (Barthel et al., 2020). The latter also determines the 
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discrete sampling for the plasmon scattering angles θ and ϕ. 
First consider the polar angle θ. The smallest polar scattering 
angle θmin is given by kθmin ∼ kpixel, where k is the wavenumber 
of the incident electrons. In principle, the polar scattering angle 
should be sampled in step sizes of θmin up to the critical angle θc. 
However, since θc ≫ θE, the plasmon scattering probability at 
these very high angles is negligible. Furthermore, large scatter-
ing angles are also more susceptible to the inverse Fourier trans-
form artifacts discussed earlier. Therefore, the maximum polar 
scattering angle θmax is limited to 5θmin, i.e. 2.3 mrad, which is 
still nevertheless significantly larger than θE (0.04 mrad). Note 
that θmin is much coarser than θE, but still only a fraction of the 
Bragg angle. The sampling of θ is therefore appropriate, in the 
sense that scattering angles of the order of θE do not significant-
ly affect channeling of the incident electron beam, although the 
probability of scatter P(θ) will be inaccurate [equation (9b)]. 
Using the formula for an arc length in a circle, the minimum azi-
muthal scattering angle ϕmin is given by (kθmax)ϕmin ∼ kpixel. 
The azimuthal angle is sampled over 2π radians in step sizes 
of ϕmin (i.e., 0.2 rad).

The Fourier shift method resulted in a large increase in the 
simulation time. A more efficient procedure for calculating 
the plasmon phase shifts was therefore required. Consider 
all plasmon scattering events within a given slice at fixed polar 
angle, i.e. constant s and θ. The summation term in equation 
(8d) for these plasmon events is:

����������
P(s)P(θ)

􏽰 􏽘

ϕ

�����
P(ϕ)

􏽰
eiθm e2πiΔkm·R

􏼢 􏼣

Ψsource
n (R) (11) 

Instead of random values for the phase scrambling angle θm, 
let us assume that:

eiθm =
einϕ

in
(12) 

where n is any positive real number. The phase scrambling an-
gle is a function of ϕ, and therefore varies somewhat with the 
plasmon configuration m, the exception being configurations 
with the same ϕ value. However, the phase angle is not truly 
random, since it must also satisfy equation 12. Therefore, θm 

is best described as being pseudo-random. Substituting equa-
tions 9c and 12 in equation 11 gives:

􏽘

ϕ

�����
P(ϕ)

􏽰
eiθm e2πiΔkm·R =

����
2π
Δϕ

􏽳
􏽘

ϕ

ei(nϕ+2πkθRcosϕ)

2πin
Δϕ (13) 

where kθ is the magnitude of the transverse wavevector Δkm. 
Δϕ is equal to the azimuthal angle step size ϕmin. Assuming 
ϕmin is infinitesimally small, the summation on the right-hand 
side of equation 13 can be replaced with an integral, i.e.

􏽘

ϕ

�����
P(ϕ)

􏽰
eiθm e2πiΔkm·R →

�����
2π

ϕmin

􏽳

∫
2π

0

ei(nϕ+2πkθRcosϕ)

2πin
dϕ

=

�����
2π

ϕmin

􏽳

Jn(2πkθR)

(14) 

where Jn is a Bessel function of the first kind. With the aid of 
equation 14, the summation in equation (8d) must now only 
be carried out over θ for any given slice. Unfortunately, there 
does not appear to be a simple analytical solution for this part 
of the calculation, which was therefore done numerically. 

Nevertheless, there is still a significant saving in computa-
tional cost, since for our simulations the number of sam-
pling points for ϕ is larger than θ by a factor of 28. For a 
given slice and polar angle θ, the order n of the Bessel func-
tion was randomly chosen. In principle, n can be any num-
ber between zero and infinity. However, as a general trend, 
Jn(2πkθR) decreases to zero with increasing n. For our sim-
ulations, Jn(2πkθR) was zero for the full range of 2πkθR val-
ues provided that n  > 30. Therefore, n was randomly varied 
between 0 and 30. A further reduction in computing time is 
achieved by pre-calculating a few Bessel functions for each 
value of θ at the start of a PSA iteration, and then substitut-
ing these at random for any given slice. This is similar to the 
MSP method, except here it is the Bessel functions that are 
being calculated, rather than phase grating functions. Five 
Bessel functions were calculated for each of the five different 
θ values between zero and θmax at the start of each PSA 
iteration.

It was previously mentioned that the wavefunction in equa-
tion (3) is not normalized. This is also the case for the PSA 
wavefunctions for phonons [equation (7b)] and plasmons 
[equation (8d)]. Mathematically, this is a trivial issue, since 
we are interested in only the incoherent part of the CBED in-
tensity I(k), e.g. equation (4). The sum 

􏽐
I(k) from a suffi-

ciently large number of PSA iterations will be free of 
cross-terms, and therefore strictly proportional to the incoher-
ent intensity. However, it was found that 

􏽐
I(k) rapidly in-

creased to values that were too large to store in computer 
memory, especially for reasonably thick specimens (e.g., 
50 nm) where there are a large number of scattering pathways. 
To avoid this, the exit wavefunction after each PSA iteration 
was normalized, so that 

􏽐
I(k) remained bounded. Strictly 

speaking, in order for the cross-terms to exactly cancel, the 
wavefunction should not be normalized. The resulting error 
causes some quantitative disagreement between PSA and con-
ventional multislice simulations (see Fig. 4b). It should never-
theless be emphasized that normalization is not an intrinsic 
requirement of PSA, but rather is imposed by limitations in 
computer hardware. The PSA was coded in MATLB and the 
simulations run on a standard desktop PC with 8 GB RAM. 
The simulation run time was determined using the MATLAB 
“tic toc” command.

Results and Discussion
Phonon Phase Scrambling
In order to test the accuracy of phonon PSA, reference data 
from the more established simulation methods are first re-
quired. Figure 2a shows the CBED pattern for a 50 nm thick, 
[100]-Si specimen after 100 SFP iterations. For visual clarity, 
all CBED patterns are displayed using a logarithmic intensity 
scale, and only the central half of the diffraction pattern, 
where scattering is strongest, is shown. The SFP is the most ac-
curate phonon simulation method considered here, although it 
is also by far the most computationally demanding (the simu-
lation time for Fig. 2a was several days). Figures 2b and 2c
show the same CBED pattern calculated using the MSP meth-
od (100 iterations), with five and ten pre-calculated frozen 
phonon configurations for each of the four crystallographical-
ly distinct slices, respectively. The MSP can be inaccurate if 
there are too few starting phonon configurations (Peters, 
2021). Convergence between Figures 2b and 2c was quantified 
by plotting the average radial intensity profiles as a function of 
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scattering angle (Fig. 2d). The abrupt drop in intensity at 
around 150 mrad is caused by the multislice bandwidth limit 
(157 mrad; Kirkland, 2010). The strong overlap of the two in-
tensity profiles indicates that five starting phonon configura-
tions are sufficient for this particular example. The MSP 
reproduces the gross features (Kikuchi bands, higher-order 
Laue zone (HOLZ) rings etc.) observed in the SFP result, al-
though there are also subtle differences. For example, MSP 
has a more textured background, which is likely due to the 
limited number of starting phonon configurations, since it ap-
pears more strongly in Figure 2b compared with Figure 2c. It 
should be emphasized that these differences are only apparent 
when the intensity is plotted on a logarithmic scale. The slight 
inaccuracy of MSP is offset by a massive reduction in simula-
tion time from days to minutes.

Phonon PSA simulations for the same specimen were carried 
out using five phonon starting configurations, and the results 
after 1, 10, 50, and 100 PSA iterations are shown in Figures 
3a to 3d, respectively. Recall that PSA simulates all scattering 
pathways simultaneously. For a 50 nm thick specimen (368 
slices) and five starting phonon configurations, there are a to-
tal of 5368 possible scattering pathways, an astronomically 
large number. Despite this, the PSA result after one iteration 
is extremely noisy, and although Bragg discs and HOLZ rings 
are present, Kikuchi bands from thermal diffuse scattering are 
less well defined (Fig. 3a). This is nevertheless consistent with 
the results of Forbes et al. (2010; see Figs. 2, 3 of their paper), 
where it was shown that only coherent Bragg scattering re-
mains after coherent superposition of the exit wavefunctions 
for different frozen phonon configurations. In Figure 3a, 

Fig. 2. 50 nm specimen thickness, [100]-Si convergent beam electron diffraction (CBED) patterns for (a) standard frozen phonon, and mixed static 
potential simulations with (b) five and (c) ten starting phonon configurations per crystallographic slice. Each diffraction pattern is the incoherent sum of 100 
iterations. Plasmons were not included in the simulations. The CBED patterns are displayed on a logarithmic intensity scale. (d) plots the average radial 
intensity profiles for the CBED patterns in (b) and (c).
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only one iteration of phase scrambling has been applied, and 
there is still a high degree of coherence between the different 
phonon scattered wavefunctions. Therefore, Kikuchi bands, 
which rely on incoherent scattering, are only weakly present. 
The residual coherence becomes progressively suppressed 
with increasing number of PSA iterations (Figs. 3b–3d), 
and consequently there is more contrast in the Kikuchi 
bands. After 50 iterations, subtle features, such as higher- 
order intersecting Kikuchi lines (see arrows in Fig. 3c), are re-
produced, consistent with the SFP result (Fig. 2a). By 100 
iterations, however, the textured background, which was 
previously observed with MSP, is apparent in PSA as well 
(Fig. 3d). Since PSA samples all possible scattering pathways, 
the appearance of texture is likely an artifact of the limited 
number of starting phonon configurations, and thus high-
lights an intrinsic limitation of the MSP method for 

generating new frozen phonon configurations that are suffi-
ciently distinct from one another.

Figure 4a plots the average CBED radial intensity profiles 
for different number of PSA iterations. The profile converges 
after ∼50 iterations. In Figure 4b, the average radial intensity 
profile after 100 PSA iterations is compared with the SFP and 
MSP results for the same number of iterations (Figs. 2a, 2b, re-
spectively). There is good agreement between SFP and MSP, 
but the PSA intensity is higher for scattering angles larger 
than ∼5 mrad. This implies that the electron flux is not con-
served. In all simulations, the integrated intensity in the real 
space exit wavefunction was normalized before multiplying 
by a Hanning window (to reduce aliasing artifacts) and 
Fourier transforming to obtain the CBED pattern. The 
Hanning window may have affected the integrated intensity 
in the diffraction pattern, giving rise to the anomaly in 

Fig. 3. Phonon phase scrambling algorithm (PSA) simulation results for the convergent beam electron diffraction pattern (logarithmic intensity scale) in a 
50 nm thick, [100]-Si specimen after (a) 1, (b) 10, (c) 50, and (d) 100 PSA iterations. Five starting phonon configurations were used per crystallographic 
slice. Plasmon scattering is not included. The arrows in (c) mark the location of intersecting higher order Kikuchi lines.
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Figure 4b. This would especially be true for thicker specimens, 
such as the 50 nm thick silicon sample used here, where scat-
tering of the electron probe is more severe. The HOLZ rings at 
95 and 135 mrad scattering angle are also sharper in SFP and 
MSP compared with PSA (Fig. 4b). Furthermore, higher-order 
Bragg reflections are weaker in PSA (Fig. 3d) compared with 
SFP (Fig. 2a) and MSP (Fig. 2b). These trends are consistent 
with a larger Debye–Waller factor for PSA. Therefore, while 
PSA does give satisfactory results, subtle differences still re-
main compared with conventional simulation routines, such 
as SFP. It is difficult to identify the exact cause(s) of the dis-
crepancy, especially since the differences are at the lower end 
of the CBED pattern intensity, which has a large dynamic 
range.

Finally, consider the time required for PSA simulation. 
Figure 4c plots the simulation time for MSP and PSA as a func-
tion of number of iterations. Both simulation methods have an 
initial computational cost for calculating the starting phonon 
configurations (five configurations per crystallographic slice). 
Once this is completed, the simulation time increases linearly 
with the number of iterations. The simulation time for PSA 
is higher because a more complex phase grating function 

[equation (7c)] must be calculated. Nevertheless, the gradient 
of the trend line for PSA is steeper by only a factor of ∼1.4 
compared with MSP (Fig. 4c). The moderate increase in simu-
lation time could be justified by the large increase in scattering 
pathways that are modeled, i.e. 5368 for PSA versus 100 (max-
imum) for MSP. However, for most applications, a few tens of 
phonon configurations are sufficient to give accurate results, 
and therefore, such a large number of phonons may not be re-
quired. Furthermore, from Figure 4b, phonon PSA results are 
not as accurate as other multislice methods, such as MSP and 
SFP.

Plasmon Phase Scrambling
Plasmon PSA was tested on a 50 nm thick, [110]-Si specimen. 
Equations (8a) to (8d) were used to simulate energy unfiltered 
CBED patterns, which contained both phonon and multiple 
plasmon scattering. Five phonon configurations for each of 
the two crystallographically distinct slices were pre-calculated 
at the start of the multislice simulation. The Bessel pseudo- 
random method was used for plasmon calculations, with five 
Bessel functions (0 ≤ n ≤ 30) for each plasmon polar scattering 

Fig. 4. (a) Average radial intensity profiles for the convergent beam electron diffraction (CBED) patterns in Figure 3. (b) is a comparison of the average 
radial intensity profiles for the standard frozen phonon (SFP) and mixed static potential (MSP) results in Figures 2a and 2b, and the phase scrambling 
algorithm (PSA) result in Figure 3d. These are converged CBED patterns, each with 100 iterations. (c) is a plot of the simulation times for phonon PSA and 
MSP calculations in a 50 nm thick, [100]-Si specimen as a function of number of iterations. For each data point, there were five starting phonon 
configurations per crystallographic slice.
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angle θ calculated at the start of every PSA iteration. Figures 5a
to 5c show the results for 1, 20, and 50 PSA iterations, respect-
ively. The Kikuchi bands after one PSA iteration show very lit-
tle contrast due to residual coherence, similar to the phonon 
only calculation in Figure 3a. However, the introduction of 
plasmons has also suppressed the intensity in the transmitted 
and Bragg diffracted discs. This is likely caused by the phase 
shift term exp(2πiΔkm · R) in equation (8d), and because there 
is a high degree of coherence between elastic and plasmon scat-
tered wavefunctions. Multiple PSA iterations progressively 
suppresses the coherence, resulting in higher contrast 
Kikuchi bands and Bragg discs. The average radial intensity 
profiles in Figure 6a converge rapidly with number of PSA iter-
ations. There was very little change to the profile between 50 

and 100 iterations. Therefore, 50 iterations were used for all 
future simulations, and the results assumed to have been con-
verged. Note that some texturing in the background intensity 
is visible in Figure 5c, which is also seen in the phonon only 
simulation (Fig. 7a), and therefore attributed to the limited 
number of starting phonon configurations.

Figure 5d shows the energy unfiltered CBED pattern (50 
iterations) calculated using the Fourier shift method. This is 
computationally slower, but in principle more accurate than 
the Bessel pseudo-random method, since truly random num-
bers are used for the phase scrambling. The CBED patterns 
calculated with the two methods show subtle differences in 
the fine structure. For example, the higher-order Bragg reflec-
tions have lower intensity in the Bessel pseudo-random result. 

Fig. 5. Plasmon phase scrambling algorithm (PSA) simulation results for the energy unfiltered convergent beam electron diffraction (CBED) pattern in a 50 
nm thick, [110]-Si specimen after (a) 1, (b) 20, and (c) 50 iterations of the Bessel pseudo-random method. Five phonon configurations were used for each 
crystallographic slice, and five Bessel functions for each plasmon polar scattering angle were calculated at the start of every PSA iteration. (d) shows the 
energy unfiltered CBED pattern for the same sample calculated using the Fourier shift method (50 iterations and 5 starting phonon configurations). The 
CBED patterns are displayed on a logarithmic intensity scale.
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The average radial intensity profiles for the two methods 
(Fig. 6b) are different at scattering angles smaller than ∼160  
mrad, although the relative difference is no more than 8.3%. 
The inaccuracy is larger for thicker specimens, where plasmon 
excitation is more likely (see Supplementary Material). 
Furthermore, increasing the number of pre-calculated Bessel 
functions from five to ten did not lead to an improvement in 
accuracy (see Supplementary Material).

The main advantage of the Bessel method, however, is its 
computational efficiency. As an example, the Fourier shift re-
sult in Figure 5d required a simulation time of 6 h, compared 
with only 30 min for Bessel pseudo-random (Fig. 5c), an order 
of magnitude increase in speed. In Figure 6c, the simulation 
time for Bessel pseudo-random plasmon PSA is compared 
with phonon PSA. The gradient of the trend line for plasmons 
is steeper by a factor of 1.9, a near doubling of the computa-
tional cost compared with phonons for large number of itera-
tions. Nevertheless, this still represents a significant time 
saving compared with the traditional Monte Carlo method 
for plasmons, where tens of thousands of multislice simula-
tions must be performed for convergence (Barthel et al., 
2020, Mendis, 2022a).

Finally, consider the energy dependence of the CBED pat-
terns. Figure 7a is the phonon PSA result for a 50 nm thick spe-
cimen of [110]-Si. Equations (7a) to (7c) were used for the 
calculation, which consisted of 50 PSA iterations and five 
starting phonon configurations for each of the two crystallo-
graphically distinct slices. Since only phonons are included, 
the result is equivalent to a zero-loss peak (ZLP) filtered 
CBED pattern measured in most microscopes with limited en-
ergy resolution. Figure 7a is similar to the energy unfiltered 
CBED pattern (Fig. 5d), which is to be expected, since from 
Poisson statistics, 62% of the incident electrons have not 
undergone any plasmon scattering. Figures 7b and 7c are the 
single plasmon energy CBED patterns, calculated by applying 
Bessel pseudo-random and Fourier shift methods in equations 
10a to 10b, respectively. In addition to the pre-calculated pho-
non configurations, the former method also used five Bessel 
functions for each θ angle, which were calculated at the start 
of every PSA iteration.

The Bessel pseudo-random and Fourier shift methods pro-
duce very different single plasmon CBED patterns. For ex-
ample, compared with the ZLP filtered CBED pattern, the 
contrast of Kikuchi bands, intersecting Kikuchi lines and 

Fig. 6. (a) Average radial intensity profiles for the plasmon phase scrambling algorithm (PSA) convergent beam electron diffraction (CBED) patterns in 
Figure 5. (b) is a comparison of the average radial intensity profiles for the Bessel pseudo-random and Fourier shift results in Figures 5c and 5d. (c) is a plot 
of the simulation times for plasmon and phonon PSA calculations in a 50 nm, [110]-Si specimen as a function of number of PSA iterations. The Bessel 
pseudo-random method was used for the plasmon PSA simulations, with five Bessel functions calculated at the start of each PSA iteration for every 
plasmon polar scattering angle. For each data point, there were five starting phonon configurations per crystallographic slice.
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HOLZ rings, is higher for the Bessel pseudo-random method 
(Fig. 7b). However, for the Fourier shift result (Fig. 7c), the 
diffracted discs, Kikuchi bands and lines are blurred, while 
the HOLZ ring has completely disappeared. The average ra-
dial intensity profiles (Fig. 7d) also highlight significant quan-
titative differences between the two simulation methods. 
Experimental results for [110]-Si indicate that diffracted discs 
and Kikuchi bands become blurred with plasmon scattering 
(Mendis, 2019); unfortunately, the camera length in that study 
was too large to capture the HOLZ rings, and therefore no 
comment can be made about their contrast. This blurring is 
caused by a plasmon de-channeling effect (Mendis, 2019), 
and has been reported for other materials besides silicon, 
such as platinum (Beyer et al., 2020) and aluminum (Robert 

et al., 2022). The experimental observations are consistent 
with the Fourier shift result, although the degree of blurring 
is stronger in simulation. For example, experiment indicates 
that multiple plasmon excitations are required to noticeably 
reduce the contrast in an energy filtered CBED pattern (see 
Figs. 3, 4 in Mendis, 2019), while for simulation, a single plas-
mon scattering event is sufficient. This may be due to an under-
estimation of the critical angle θc in the simulations, so that the 
plasmon scattering probability at a given polar angle [equa-
tion (9b)] is higher than what it should be. Plasmon dispersion 
(Egerton, 1996) could also result in deviations from the simple 
Lorentzian scattering model considered here. Whatever the 
reason, it is clear that the Fourier shift result is consistent 
with physical reality, while the Bessel pseudo-random method 

Fig. 7. (a) Zero loss peak filtered convergent beam electron diffraction (CBED) pattern for a 50-nm thick, [110]-Si specimen calculated using phonon PSA. 
(b) and (c) are the CBED patterns for the same specimen at single plasmon energy loss, calculated using Bessel pseudo-random and Fourier shift plasmon 
PSA methods, respectively. The CBED patterns are displayed on a logarithmic intensity scale. Five phonon configurations were used for each 
crystallographic slice, and for the Bessel pseudo-random method five Bessel functions for each plasmon polar scattering angle were calculated at the start 
of every PSA iteration. (d) plots the average radial intensity profiles for the CBED patterns in (b) and (c).
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for calculating single plasmon CBED, patterns must be treated 
with caution.

Summary and Conclusions
In this work, a multislice PSA that models all inelastic scatter-
ing paths simultaneously is proposed, with phase scrambling 
used to maintain incoherence between the inelastic scattering 
events. This approach is different from conventional multislice 
techniques, where individual inelastic scattering paths are si-
mulated one at a time. The PSA thus avoids the need to per-
form an excessively large number of multislice iterations. 
This is especially beneficial for plasmon scattering, where the 
number of iterations is reduced from tens of thousands to 
only a few tens of iterations. Bessel pseudo-random phase 
scrambling can also be used to further speed up plasmon sim-
ulations at the expense of some accuracy, although care must 
be taken when applying to energy-filtered CBED patterns. For 
the simulation parameters considered here, plasmon PSA 
nearly doubled the simulation time compared with a phonon 
only PSA. The extra computational cost for plasmons can be 
made smaller by reducing the number of iterations and/or pre- 
calculated Bessel functions, provided compromises are made 
on the desired level of accuracy. Furthermore, the simulation 
times reported in this work are far from being optimized; fur-
ther improvements in performance are achieved using com-
piled computer codes (MATLAB is an interpreted language) 
and more powerful hardware. Since plasmon PSA includes 
multiple inelastic scattering, the results are similar to energy 
unfiltered data obtained during routine measurements, and 
are therefore more appropriate for a quantitative comparison 
with experiment. Several recent reports (Barthel et al, 2020, 
Beyer et al., 2020, Grieb et al., 2022, Robert et al., 2022) high-
light the importance of inelastic scattering for accurately mod-
eling experimental data.

The computational efficiency of PSA opens up the possibil-
ity of simulating large 4D STEM datasets. PSA is compatible 
with the PRISM simulation method of Ophus (2017), and 
there are major gains to be achieved by combining the two. 
Furthermore, the general PSA approach is applicable to other 
collective excitations, such as magnons (Lyon et al., 2021, 
Mendis, 2022b), as well as core-loss inelastic scattering. For 
example, in energy dispersive X-ray (EDX) mapping, the 
X-ray signal depends on the square modulus of the real space 
electron wavefunction, |Ψ(R)|2, within the specimen. This is a 
similar problem to calculating the CBED intensity in recipro-
cal space, and therefore, a real space version of PSA can easily 
be constructed for STEM EDX. Channeling of an atomic scale 
electron beam in a crystalline specimen has a strong influence 
on the measured EDX concentrations (MacArthur et al., 
2021); fast and accurate simulations are therefore indispens-
able for correct interpretation of experimental data.

Supplementary Material
To view supplementary material for this article, please visit 
https://doi.org/10.1093/micmic/ozad052.
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