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Abstract

The Fourier domain acceleration search (FDAS) is an effective technique for detecting faint binary pulsars in large
radio astronomy data sets. This paper quantifies the sensitivity impact of reducing numerical precision in the
graphics processing unit (GPU)-accelerated FDAS pipeline of the AstroAccelerate (AA) software package. The
prior implementation used IEEE-754 single-precision in the entire binary pulsar detection pipeline, spending a
large fraction of the runtime computing GPU-accelerated fast Fourier transforms. AA has been modified to use
bfloat16 (and IEEE-754 double-precision to provide a “gold standard” comparison) within the Fourier domain
convolution section of the FDAS routine. Approximately 20,000 synthetic pulsar filterbank files representing
binary pulsars were generated using SIGPROC with a range of physical parameters. They have been processed
using bfloat16, single-precision, and double-precision convolutions. All bfloat16 peaks are within 3% of the
predicted signal-to-noise ratio of their corresponding single-precision peaks. Of 14,971 “bright” single-precision
fundamental peaks above a power of 44.982 (our experimentally measured highest noise value), 14,602 (97.53%)
have a peak in the same acceleration and frequency bin in the bfloat16 output plane, while in the remaining 369 the
nearest peak is located in the adjacent acceleration bin. There is no bin drift measured between the single- and
double-precision results. The bfloat16 version of FDAS achieves a speedup of approximately 1.6× compared to
single-precision. A comparison between AA and the PRESTO software package is presented using observations
collected with the GMRT of PSR J1544+4937, a 2.16 ms black widow pulsar in a 2.8 hr compact orbit.

Unified Astronomy Thesaurus concepts: Computational astronomy (293); Astronomical methods (1043);
Astronomy data analysis (1858); Astronomy software (1855); Computational methods (1965); GPU computing
(1969); Binary pulsars (153)

1. Introduction

Binary pulsar systems provide the means to test general
relativity via observations of their emissions in the radio
spectrum. Described by Taylor & Weisberg (1982), these
systems include at least one pulsar in orbit with another
compact object. As the pulsar accelerates toward and away
from the observer, the Doppler shift modulates the otherwise
periodic pulsar signal (in its own reference frame) into a pulse
train with varying period in the frame of the observer, the
nature of which depends on the shape of the orbit. In the case of
a simple circular orbit, this acceleration would be sinusoidal. In
practice, the eccentricity and orientation of the orbital plane
will cause the acceleration to take on more complicated
functional forms. In Section 2, we will explore the implications
of this phenomenon in more detail.

This effect reduces the sensitivity of the Fourier transform to
the pulse trains emitted by these objects, as it spreads the power
of the signal across many frequencies, rendering the signals
indistinguishable from the background noise.

Due to the accurate clocklike property of the pulsar
embedded in the binary system, binary pulsars (particularly
millisecond pulsars) are of interest to astronomers globally.
They are good references to trace the evolution of the binary

system (Bhattacharya & van den Heuvel 1991) and they are
useful for testing the theory of gravity (Kramer et al. 2021).
Thus, significant efforts are being made in searching for such
accelerated binary systems using time-domain radio surveys.
Some recent examples of relevant research include Ridolfi et al.
(2021), Swihart et al. (2021), Kansabanik et al. (2021), Morello
et al. (2022), and Rajwade et al. (2020).
When looking to next-generation radio telescopes, time-

domain data rates will be of the order of terabytes per second.
For example, SKA is expected to produce 800 GB s−1 (Levin
et al. 2017). Due to the volume of data, it is not feasible to
store, and so analysis must be performed in real time as data are
captured. This motivates the investigation of using reduced-
precision computations in computationally demanding parts of
the pulsar detection pipeline.
Within such detection pipelines, search techniques for binary

pulsar systems that aim to capture all of the power emitted by
the pulsar and collect it into a single detection are typically the
most computationally demanding.
The search techniques of interest in this paper operate on

time-series data sets. To generate this one-dimensional signal
from a filterbank, the effects of dispersion must be removed
(dedispersion) at a range of trial dispersion measures (DMs).
This has the impact of increasing the number of time series that
each search technique must operate on by many orders of
magnitude. For the forthcoming SKA radio telescope, this can
be a factor as high as 6000 times (Levin et al. 2017). The
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details of the dedispersion algorithm are described in Armour
et al. (2012).

Two different methods are favored for searching for binary
systems. The first is via time-domain methods (Middleditch &
Kristian 1984), where the observed time series from a radio
telescope is repeatedly Doppler shifted and Fourier transformed
in an attempt to move the observed data into a frame whereby
the emitter appears to the observer to be stationary.

The second method relies on convolving the frequency
spectrum of the observed time series with templates that
represent the frequency domain signatures of pulsars with
given accelerations. The computation of this approach can be
accelerated via the convolution theorem and GPU-accelerated
fast Fourier transforms (FFTs).

Fourier domain acceleration search (FDAS) is an imple-
mentation of the latter approach, a search technique for
detecting accelerated binary pulsar signals in time-series data
sets, generated by radio telescopes. It was proposed in Ransom
et al. (2002) and then extended by Andersen & Ransom (2018)
to account for nonlinear acceleration, known as jerk searching.
AstroAccelerate (AA) implements GPU-accelerated FDAS and
jerk searching (Dimoudi & Armour 2017; Dimoudi et al. 2018;
Adámek & Armour 2019; Adámek et al. 2020a, 2020b). In AA,
the majority of the numerical computation in the binary pulsar
detection pipeline is performed during FDAS.

The goal of this work is to establish whether switching the
bulk of the numerical processing in the binary pulsar detection
pipeline of AA to reduced (bfloat16) precision leads to
acceptable sensitivity in the output, compared to the existing
single-precision version. The motivation for this is to speed up
the pipeline to allow the widest possible parameter search space
in real time on next-generation radio telescopes, or to reduce
the hardware requirements needed to perform such searches.

When performing FDAS, AA spends a significant fraction of
the runtime performing GPU-accelerated FFTs. The perfor-
mance of a GPU-accelerated FFT is limited by memory
bandwidth on current-generation hardware (Adámek 2021),
and so by reducing the numerical precision of the calculations
from 32 to 16 bits, this bottleneck can be alleviated simply by
halving the amount of data that need to be transported to and
from the GPU processing cores.

In this paper, we present the results of testing a bfloat16
implementation of FDAS in AA with synthetic pulsar files
using SIGPROC’s (Lorimer 2011) fake filterbank generator,
spanning a wide range of parameters, and finally a confirmation
of our findings using observations from the GMRT.

2. Searching for Binary Pulsars

2.1. Detailed Explanation

FDAS uses convolution to compare the Fourier transformed
time-domain signal with templates representing a range of
acceleration values. A peak in the response will be seen when
the signal and template overlap, indicating the presence of a
pulsar with similar parameters to the template. The number of
templates used depends on the search parameters desired by the
radio astronomer. During pulsar searches, the radio astronomer
is primarily interested in pulsars that have not already been
discovered. Therefore, the range of search parameters must be
wide enough to also include “exotic” pulsars. This might mean,
for example, pulsars with an extremely fast pulse period,
combined with extreme acceleration—the latter suggesting a

very tight orbit around a compact object. In such cases, more
pulsar templates are required to span the extreme values of
acceleration. The computing and memory requirements of
FDAS increase linearly with the number of templates.
These templates will represent varying values of Doppler

shift (which is a function of the particular orbital dynamics of
the system). The span of the Doppler shift values defines the
breadth of a binary pulsar search, along the axis known as
frequency derivative, or f, which is related to the acceleration
of the pulsar and the Fourier bin drift, z, as

 
( )= =

f c

f

zc

f T
Acceleration . 1

2



Where f is the frequency of the pulsar and T is the observation
time. Equation (4) in Freire et al. (2001) demonstrates how to
predict the acceleration of a pulsar given a set of orbital
parameters.
The signal is convolved with all templates resulting in the

–f f plane. Frequency f and frequency derivative f therefore
make up the primary axes of the pulsar search; a pulsar with a
given pulse frequency and acceleration value will appear as a
peak on this plane, with diminishing harmonics at integer
multiples of both f and f. The summed height (power) of the
peak and harmonics can be used to calculate the signal-to-noise
ratio (S/N) value of the detected pulsar against the statistics of
the background noise.
The convolution of a signal and a set of templates could

be completed entirely in the time domain, but a time-
domain convolution involves O(N2) multiplications and
O(N2) additions, leading to overall O(N2) complexity.
Using the FFT and convolution theorem, this can be
reduced to an overall complexity ( )O N Nlog in the Fourier
domain. The overlap–save method is used to perform the
convolutions on the GPU, as described in Dimoudi et al.
(2018), Adámek et al. (2020c) and Figure 1. Briefly, this
involves splitting the long input signal into windows that
are separately convolved with the templates, and then the
central region of each windowed convolution is saved,
discarding the contaminated regions at the edge of the
windows.

Figure 1. Flowchart depicting the process of Fourier domain matched filtering
using the overlap–save method on a GPU. Courtesy of Dimoudi et al. (2018).
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2.2. FDAS versus Jerk Search

As mentioned in Section 1, two related methods are available
when searching for binary systems in the Fourier domain; these
are the FDAS and jerk search. FDAS makes the assumption
that the acceleration of the emitting object over the observation
time is approximately constant. The observation time should be
no longer than approximately 10% of the orbital period for this
assumption to hold.

Jerk searching takes into account a change in acceleration,
which relaxes the observation time constraint, allowing a wider
range of pulsars to be detected. Therefore, the jerk search
extends the –f f plane into an – – ̈f f f volume. More candidate
templates are required to populate the third dimension, ̈f , for
each f value that is evaluated. Because jerk searching is based
on the same principle of convolving templates, for this paper
we have chosen to focus on the less computationally extensive
FDAS, to allow us to profile the numerical sensitivity of AA
across a wider range of f than we would be able to in a given
time with jerk searching.

3. Updating the Pipeline to bfloat16

The existing version of AA used single precision in all stages
of FDAS (see Figure 1). For this work, we aim to profile the
numerical sensitivity of the output of AA to changing precision
in FDAS, with a focus on reducing precision to bfloat16 and
comparison with IEEE-754 double precision.

Refactoring the code to mixed-precision is a straightforward
process, involving replacement of the existing single-precision
functions with their bfloat16 equivalents.

The “Real FFT” in Figure 1 was intentionally left in single
precision, as it does not significantly affect the overall
execution time (it does not scale with K, the number of filters).
Reducing the precision of this FFT disproportionately affects
the quality of the output for two reasons. First, at this stage of
the pipeline, the data may not span a large dynamic range, and
they may not be centered on zero, which highlights the
weakness of bfloat16. Compared to single precision, at large
scales the spacings between bfloat16 numbers are extremely
coarse, so small perturbations on the input data may not be
representable without the use of single precision. Second, this
FFT (with a length equal to the entire input data) is sufficiently
long for the numerical error, which accumulates with the larger
number of calculations, to negatively impact sensitivity.
Section 4.1 of Murillo et al. (2022) compares the numerical
sensitivity of bfloat16 and single precision in the calculation of
FFT spectra. Mishra et al. (2022) compares the throughput of
bfloat16 logic units with single-precision equivalents.

In standalone testing of cuFFT, we found that bfloat16 FFTs
execute 1.7× faster than the single-precision implementation,
once the data were transferred to the GPU. The data transfer
speeds up by 1.9× when using bfloat16 versus single precision.
As we shall present in Section 5.4, we saw this lead to an
overall speedup of 1.6× in AA. An input length of 1024 was
used because this is the window size employed in the overlap–
save implementation described in Section 2.

3.1. Casting between Single Precision and bfloat16

As can be seen in Figure 2, in binary form a bfloat16 number
can be represented in single precision simply by appending
16× zero bits to the end. Therefore, single precision
and bfloat16 have approximately the same valid range

(≈±3× 1038), but bfloat16 numbers are far coarser within
this range.
To minimize time spent converting data once the output –f f

plane had been produced, in the bfloat16 version of the code
the final cast to single precision (see Figure 1) is completed by
copying the two bytes of data for each bfloat16 number into the
corresponding positions of an all-zero single-precision output
array.
This quick casting is only possible due to the perfect bit

alignment between bfloat16 and single precision, it is not
possible with half precision and single precision. Quick casting
all but eliminates the performance impact of implicitly casting
the data using a standalone GPU kernel.

3.2. IEEE-754 Half versus bfloat16 Precision

The valid range of any data format type is a consideration
when comparing floating point formats. Half precision (IEEE-
754) has a valid range of±65504. This introduces some
considerations for hypothetically using half precision in this
application.
When calculating the Fourier spectrum of a time series, the

zeroth bin is the sum of all elements of the time series, often
referred to as the “DC component” of the signal. Unless the
signal is perfectly centered on zero, this may mean that, in long
FFT calculations, the zeroth bin accumulates power that takes
its value outside of the±65,504 bounds imposed by IEEE-754
half-precision. Depending on how the hardware handles
numerical overflows, in the worst case this could introduce
an Inf or NaN, while in the best case, any information outside
this range would be lost. If an Inf or NaN is present in a
spectrum that is subsequently inverse Fourier transformed, all
values of the output will be polluted and subsequently
unusable.
Given the risk of introducing overflow errors to the pipeline,

we selected bfloat16 as our candidate data format for reducing
the precision, which also included the benefit of quick casting.

Figure 2. Comparison of bit layouts of IEEE-754 single- and half precision
with bfloat16.
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3.3. Template Conversion

To convert the convolution step of FDAS to a lower
precision, it is first necessary to convert the convolution
templates to lower precision. These can be thought of as the
candidate pulsar signatures that the code will look for in the
data sets. Each template is a 1D array of complex numbers, and
the single-precision complex magnitudes are plotted in
Figure 3. In all experiments, the convolution templates are
first generated in single precision and then explicitly/implicitly
converted to bfloat16/double precision by a tuned GPU kernel
before being transformed into the frequency domain.

For the real component and the imaginary component, we
calculate the relative difference between the single-precision
and bfloat16-precision value of the template as

( ) ( )=
´ -

+
´

b s

b s
%

2
100, 2

where b is the bfloat16 value and s is the single-precision value.
The result of applying this equation to the real and imaginary
part of all templates is plotted in Figures 4 and 5.

This metric will be reused in multiple experiments, as it is
important to have a comparison of bfloat16ʼs ability to recreate
higher-precision results that is invariant to the size of the
numbers being dealt with.

The aggregated statistics of the relative differences are
shown in Table 1, it is clear that at this early stage in the
pipeline, only a very small amount of numerical error has been
introduced by reducing the precision of the generation of the
acceleration templates from single precision to bfloat16.

4. Methodology

4.1. Generating Synthetic Data

SIGPROC (Lorimer 2011) was used to generate synthetic
pulsar data of binary pulsars in circular orbits. The input
parameters to SIGPROC’s fake determine the physical
properties of the binary system being simulated.

To test and compare the varying precisions of AA across a
representative range of potential pulsars, the fake input
parameters are sampled from a log-uniform distribution with
upper and lower bounds (Table 2), so as to get an even
representation of potential numerical scales, without introdu-
cing bias toward any particular range. The bounds are picked to

represent a wide range of potentially physically viable pulsars,
although some combinations of parameters are at the extrema
of our ranges and are included to investigate the limits of the
numerical processing.
Sampling a single point in this space is computationally

costly; synthetic fake file generation followed by running the
generated data through AA takes roughly 2 minutes. Therefore,
it is desirable to reduce the dimensionality of the input
parameter space wherever it is physically justifiable, to reduce
the “curse of dimensionality.”

Figure 3. Single-precision acceleration templates—complex magnitude
plotted.

Figure 4. Relative difference between real components of acceleration
templates; color scale represents relative difference as in Equation (2).

Figure 5. Relative difference between imaginary components of acceleration
templates; color scale represents relative difference as in Equation (2).

Table 1
Statistics of the Difference between Single Precision and bfloat16 after

Template Conversion

Component Mean St. Dev Max Min

Imaginary −0.001569% 0.1537% 0.3883% −0.3894%
Real −0.001093% 0.1532% 0.3878% −0.3898%

Note. Aggregated from data used to generate Figures 4 and 5.
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4.2. Selecting an Optimal Bphase Value

The bphase parameter to fake represents the starting
orbital phase of the binary system, and it can take values
between 0 and 1. To reduce the dimensionality of the parameter
space, it is necessary to determine roughly which value of
bphase leads to the largest acceleration value of the detected
peaks in the output space, to ensure each test is of a pulsar
signature with at least some acceleration. Conceptually, the
largest observed acceleration is when the emitter is traveling
directly toward or directly away from the observer.

The simple experiment chosen is to hold all parameters fixed
at typical values, and allow bphase to sweep over its entire
range. Then, by plotting the output frequency–acceleration
plane, the acceleration value of the highest peak can be
captured and plotted (Figure 6).

Through the results of this sweep, the static value selected
for bphase is 0.2, this approximately centers the observation
window over the period of orbit with maximum linear
acceleration toward the observer, as shown in Figure 6,
although it is worth noting that, at this value, simulations will
be affected by significant levels of jerk. This is an approx-
imation, as the bper value (which sets the orbital period in
hours) is a variable input parameter to fake, and it is the
combination of bphase and bper that sets the midpoint of
the observation window.

4.3. Peakfinding Methodology

An accelerated pulsar signal can be observed in the –f f
plane as a series of peaks at integer multiples of f and f.
Quantization error in both the frequency and acceleration axes
of the search lead to the observed peaks drifting into adjacent
bins. To account for this, a harmonic sum algorithm is used to
gather the power from all harmonics into a single detection.
However, in this work we are interested in the location of each
harmonic peak individually, so a harmonic sum is not used.

A more general and naive peakfinding and harmonic
separation approach is taken to enable us to look at each
harmonic separately. Given that the pulse period of the
synthetic pulsar is known a priori, being an input parameter

to fake, it is possible to pre-emptively split the –f f output
plane with boundaries (Table 3) derived from the fundamental
frequency f, which is calculated as =f 1

spin period
Hz.

Once the –f f plane has been split into bands based on the
calculated fundamental frequency, the nth harmonic is taken to
be the highest point in the nth band. In the case of low-S/N
pulsar signals, peaks and their harmonics are likely to be at
similar powers to the background noise. This leads to a failure
mode where the peak selection method picks a random point of
noise as the harmonic in that band. As the noise is randomly
distributed, the highest point in the bfloat16 plane and the
single-precision plane are not guaranteed to be in the same
position, leading to some extreme observed values of bin drift.
This failure mode is discussed and quantified in Section 5.3.
In the majority of cases where the peak height is not at the

noise floor, measuring the “bin drift” of a peak in a given band
between precisions allows us to quantify the combined extent
of the spectral leakage, accumulated numerical error, and
scalloping loss, and its effect on our ability to resolve a given
pulsar from a certain noisy background. Chapter 2 of Ransom
et al. (2002) contains an in-depth discussion of sources of
signal loss in FDAS, such as scalloping loss, which can cause a
loss of up to 60% in amplitude.
The following section compares the ability of our FDAS

implementation (in various precisions) to detect the presence of
accelerated pulsars in synthetic data sets.

5. Results

In this section, we present the results from analyzing output
–f f planes with randomly generated inputs, to understand the

Table 2
Configuration Arguments for SIGPROC fake Command to Generate a Binary

Pulsar Signal

Parameter Range Units

Spin period [1.25, 1000] ms
Pulse width [4, 50] %
Input signal S/N (snrpeak) [0.0125, 0.125]
Dispersion measure [5.. 500] cm−3 pc
Bits per sample 8
Number of channels 1024
Sampling time 128 μs
Observation time 600 s
First channel frequency 1550 MHz
Channel offset 0.292968752 MHz
Additional flags -binary
Orbital period [1.5, 336] hr
Starting orbital phase 0.2
Pulsar mass [1.0, 1.5] Me

Companion mass [0.1, 5.0] Me

Note. [a, b] represents the closed interval inclusive of the bounds, while [a.. b]
represents the integer interval inclusive of the bounds.

Figure 6. Fundamental peak acceleration (“z” bin) against bphase.

Table 3
Harmonic Band Search Bounds

Band Range (Hz)

Fundamental [0, 1.5 × f]
First harmonic [1.5 × f, 2.5 × f]
Second harmonic [2.5 × f, 3.5 × f]
Nth harmonic [(N + 0.5) × f, (N + 1.5) × f]

Note. [a, b] represents the closed interval inclusive of the upper bound, and
lower in the case of the fundamental.
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conditions under which bfloat16 is a good (or bad) approx-
imation to the higher-precision implementations.

5.1. Noise Properties in Varying Precisions

To understand if a reduction in precision has any statistically
significant effect on the background noise distribution,
synthetic data without a pulsar signal are analyzed in this
section.

The histograms in Figure 7 (top) and (middle) represent the
distribution of output power across an entire –f f plane for a
filterbank file generated using a SIGPROC snrpeak (Table 2)
parameter of 0. These can be thought of as comparisons that
plot the probability density functions (PDFs) that the noise
distribution has been drawn from. The snrpeak parameter
can be thought of as proportional to the brightness of the signal.
When snrpeak is 0, there is no signal in the file being
generated. Between precisions, there is no significant skewing,
and there are only very slight perturbations on the count in each
bin (compared to the value in single precision), which can be
observed upon careful examination of Figure 7 (bottom).

It is interesting to note that, however slight the perturbations
are on the count in each bin, the overall trend is that there are
marginally fewer large values in the bfloat16 noise than the
single-precision noise.

We conclude that reducing or increasing precision has no
significant effect on the PDF of the noise.
Figure 7 shows that the noise distribution follows a c2

2

distribution; this is expected, as the input data without signal
are well-approximated by white noise. We expect the output to
follow a c2

2 distribution because, in this case, without any
signal present, the input is complex Gaussian noise, and the
resulting distribution of power is the sum of the squares of each
component.

5.2. Synthetic Data Set Results—Power

In this section, we discuss the effect of changing precision on
the ability of AA’s implementation of FDAS to resolve the
power of a particular peak, where a pulsar signal is known to be
present in the data set.
Figure 8 shows the relative difference in detection power

between candidate peaks in bfloat16 and single precision. To
calculate this, we have taken the power of the highest peak in a
given harmonic band in bfloat16, as well as the highest peak in
the same harmonic band in the single-precision output plane,
and compared their power via Equation (2). This process is
repeated across many samples spanning the input parameter
space (Table 2), to quantify the limitations of the reduced-
precision mode.

Figure 7. Raw noise power histogram with c2
2 (=χ2 with 2 d.o.f) comparison, linear scale (top). Raw noise power histogram with c2

2 comparison, log scale (middle).
Percent difference between bfloat16 vs. single-precision bin count and double-precision vs. single-precision bin count (bottom). In all data series, N = 404,750,143
samples. Raw power (complex magnitude squared) is the internal measure of detection strength in AA (or PRESTO) before being converted to a significance level.
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The first three harmonics are analyzed separately in each row
of Figure 8. There are three different precisions under
investigation (bfloat16, single precision, and double precision).
The comparison in Figure 8 is made between bfloat16 and
single precision. The analysis of the equivalent single-precision
versus double-precision data showed that, for 98.8% of the
peaks, there was no difference in height, and the maximum

observed difference was 0.0098%. This is as we would expect,
because rounding a result to single precision eliminates the
majority of the benefit of a preceding double-precision
calculation, unless extreme amounts of error were accumulat-
ing in single precision—for example, if the algorithm were
numerically unstable. For comparison, all the bfloat16
peaks were of different heights than their single-precision

Figure 8. Graphs depicting the spread in peak power recreation between bfloat16 vs. single precision.
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counterparts, and the maximum difference observed between
any corresponding pair of bfloat16 and single-precision peaks
was 2.7173%.

With a sufficiently large data set, the distribution of peak
power differences when comparing bfloat16 and single-
precision output follows a normal distribution, centered on
zero. In the first three harmonics, it is seen that the standard
deviation is consistently ≈0.6%.

5.3. Synthetic Data Set Results—Bin Drift

A reduced-precision detection pipeline must not only be able
to reproduce the detection power to within an acceptable error
but also localize the detection in the –f f plane correctly.

As such, it is important to understand whether reducing
precision to bfloat16 also affects the location of a pulsar
signature peak and its harmonics on the acceleration ( f) or
frequency axis.

The results of this section aim to quantify the impact of
reducing precision in FDAS from single precision to bfloat16
when measuring the frequency and acceleration ( f) properties
of binary pulsar signatures.

The bin drifts on the frequency and acceleration axes
between bfloat16 and single precision are shown in Figure 9.
Across all tests performed, there is no measurable bin drift
between the single- and double-precision versions of FDAS.

When comparing single precision and bfloat16, the majority
(>94%) of peaks do not exhibit any bin drift; this is shown by
the large fraction of peaks that are ignored in Figure 9.
Although in cases where there is bin drift, it is usually limited
to adjacent bins, i.e., the peak in the bfloat16 band is ±1 bins
from the peak in single precision. This is shown by the tall peak
at the center of the histograms.

5.3.1. Extreme Bin Drifts

As previously stated, there are some cases where the bin drift
is extreme and looks to be far more than could be attributed to
just accumulated numerical error. This is due to the limitations
of the chosen peakfinding method misclassifying noise as a
peak in the response in files where the signal of the pulsar is
extremely weak, below the noise floor.
Figure 10 is important in understanding this particular

limitation of our chosen analysis technique. Ignoring the red
lines, this is a 2D histogram plot of the same data as in
Figure 9. The y-axis represents the peak powers, so larger peaks
are at the top of the histogram, and now the color intensity
represents the number of occurrences in a given bin drift/peak
power bin. Again, points with zero bin drift are ignored,
leaving a vertical strip of data at a bin drift of ±1, which is
more noticeable in the acceleration plots. However in both the
acceleration and frequency plots, there is a band of very large
bin drifts at lower values of peak power, around the noise floor.
The explanation of this effect follows, assisted by the red lines.
In cases where a peak lies in or below the canopy of the

noise, the large shifts occur under the following conditions:

1. In each harmonic band under investigation, the two tallest
peaks have very similar heights (in both bfloat16 and
single precision), within the range shown in Figure 8.

2. AND, when changing between precisions, the peak that
was the higher of the two in bfloat16 becomes the lower
of the two peaks in single precision, i.e., they “flip.”

This is why it is only a small subset of many cases within the
“noise canopy” where the effect is seen.
If both of the two highest peaks are due to noise, they could

be located anywhere randomly in the harmonic band. This
means that when the peakfinding methodology selects the
“harmonic” from the harmonic band, it is effectively just

Figure 9. Graphs depicting acceleration (left) and frequency (right) bin drift between bfloat16 and single-precision results.
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picking two random locations, which can lead to a very large
measured bin drift.

The proportion of cases that we attribute to this explanation
account for much less than 1% of the data set, and are
extremely low-power peaks.

We have designed and carried out an experiment to measure
the location of the relevant noise canopy. The experimental
method is as follows:

1. Generate a selection of noise-only output –f f planes
(without any pulsar signature present) by setting
SIGPROC’s snrpeak (Table 2) to 0, and process each
one through the AA FDAS pipeline in single-preci-
sion mode.

2. For each extreme bin drift event (magnitude > 1) seen
in Figure 10, note the frequency (calculated as
=f 1

spin period
Hz) of the pulsar that was in the synthetic

data file that led to the extreme bin drift event. This
frequency will have determined the width of the noise
band the peak selection algorithm was picking from, as in
Table 3.

3. For each extreme bin drift event, take an unused band of
noise from the noise-only –f f planes with a frequency
width of 1.5× f, and record the highest point.

4. Record the maximum and minimum of all of the “highest
points.” These are the y-coordinates of the bounds
(horizontal red lines) in Figure 10.

The bounds on Figure 10 demonstrate that all the observed
extreme bin drift events occur in the region (the “noise
canopy”) where we would expect to see the randomly located
noise peaks. In this region, a pulsar detection is already

ambiguous, so we do not consider the performance of FDAS to
be degraded by these edge cases.

5.3.2. Acceleration Skewing

A subtle skewing within the wide horizontal band in
Figure 10 can also be observed, with values on the right-hand
side of the x-axis occurring more frequently. The opposite trend
is visible in Figure 11, where we have reversed the
phenomenon that leads to the skewing.
The effect arises as an artifact of how the peak in each band

is selected. In the bfloat16 arrays, multiple peaks are rounded to
the same value (due to the coarse spacing of bfloat16 numbers),
and therefore the direction in which the array is searched (for
the max value) affects on which side the clashing value is first
found. We have confirmed this by reversing the direction of the
search and observing that the skew shows up on the opposite
side, which can be seen in Figure 11.

5.4. Performance

In Figure 12, we present the speedup of the GPU-accelerated
section of AA’s implementation of FDAS with varying
precision; this includes all steps listed within the blue box in
Figure 1. This section represents a variable fraction of the
overall execution time of a binary pulsar search, depending on
the number of templates and number of DMs analyzed.
Measurements were taken with varying input data length

(measured in number of samples). Each data point represents
the average speedup of 256 runs, calculated by comparing the
execution time of the modified precision version with the
average execution time of the corresponding single-precision

Figure 10. Two-dimensional histograms depicting the spread of acceleration (left) and frequency (right) bin drift with peak power; color scale represents absolute
count. Upper and lower red bars represent measured maximum and minimum values of the largest noise value in noise-only data samples.
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version. The error bars are the measured standard deviation of
the speedup.

Despite halving the internal memory traffic of FDAS by
reducing the footprint of each number to 16 bits from 32 bits,
the speedup achieved by bfloat16 is less than double, due to the
overhead costs of implementing a mixed-precision code rather
than a fully end-to-end reduced-precision pipeline.

5.5. Real Data

In Table 4, we present the ability of our bfloat16 version of
AA to detect a pulsar in data from a real telescope, the GMRT.
We used an observation of a 2.16 ms pulsar (J1544+4937) in
a 2.8 hr compact orbit. The 550–750 MHz filterbank data

were dedispersed at the nominal DM of 23.23 pc cm−3

(Bhattacharyya et al. 2013), generating a time series with a
resolution of 81.92 μs. An observation time of 345 s was used
to compare the bloat16 pipeline to the corresponding single-
and double-precision versions; these results are also compared
to those from PRESTO.
Due to slight variations in the exact number of samples

processed by PRESTO and AA (owing to limitations on input
length to the varying FFT implementations used), the
frequency bin centers will be offset between the results from
either software package. This is demonstrated by the fact that
the peaks (fundamental and first harmonic) that have the
greatest differences in detection frequencies also see the
greatest differences in power. The peaks that have the most
similar detection frequency (second and third harmonic) have
extremely close detection powers. Overall, the discrepancy in
the power values between PRESTO and AA (7.6% of summed
power) is expected.
Importantly, the reported acceleration and frequency values

match for all three choices of numerical precision of AA.
Linear regression on the first three peaks from the AA and

PRESTO outputs leads to respective measured accelerations of
the pulsar of 2.839 m s−2 (AA) and 2.931 m s−2 (PRESTO).

6. Conclusions

This work has demonstrated that it is possible to reduce the
precision of the convolution section of the FDAS binary pulsar
detection pipeline.
We have compared three different precisions, bfloat16,

single-precision floating point (IEEE-754), and double-precision

Figure 11. Two-dimensional histograms depicting the spread of acceleration (left) and frequency (right) bin drift with peak power; color scale represents absolute
count. Upper and lower red bars represent measured maximum and minimum values of the largest noise value in noise-only data samples. The arrays were searched
for the peak in the opposite direction to Figure 10, leading to the skewing appearing on the other side of the acceleration axis. The extreme values cause the
automatically generated bin edges to differ slightly to Figure 10.

Figure 12. GPU performance comparison with varying precision and input
length (number of samples) in AstroAccelerate.

10

The Astrophysical Journal Supplement Series, 265:13 (12pp), 2023 March White et al.



floating point (IEEE-754), across a wide range of binary system
parameters, including real data of a millisecond pulsar in a
compact orbit.

Comparing 64-bit double precision with 32-bit single
precision, we have found that the benefit of using double
precision is very limited, and it usually does not result in a
measurable difference when the results are rounded to single
precision (as may be required for later processing). Given the
performance impact of using 64-bit double precision (a five-
fold reduction in throughput), these results do not justify
increasing precision in the FDAS pipeline of AA from 32-bit
single precision to 64-bit double precision.

Comparing 32-bit single precision with the 16-bit bfloat16
implementation, there is a small but measurable difference
between the output of the bfloat16 implementation of FDAS
and the single-precision implementation. However, in all cases
the peak power is within a few percent of the single-precision
result, with no strong bias to be either higher or lower.
Lowering the memory traffic requirement of FDAS has led to
an approximately 1.6× speedup. The improved compute
performance of bfloat16 is not a factor in this case, as the
pipeline is memory bandwidth bound, with a low computa-
tional overhead (Adámek 2021). The speedup enables users of
GPU-accelerated FDAS to increase their pulsar parameter
search space on a given set of hardware when performing a
real-time search, or to reduce their upfront hardware require-
ment for a given search.
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