IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 June 2023, accepted 26 June 2023, date of publication 28 June 2023, date of current version 7 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3290478

== RESEARCH ARTICLE

Toward Automatic Tutoring of Math Word
Problems in Intelligent Tutoring Systems

PABLO ARNAU-GONZALEZ"”1, ANA SERRANO-MAMOLAR"“2,
STAMOS KATSIGIANNIS“3, (Member, IEEE), TURKE ALTHOBAITI“4,
AND MIGUEL AREVALILLO-HERRAEZ“1

]Depanament d’Informatica, Universitat de Valéncia, Burjassot, 46100 Valencia, Spain
2Departamento de Lenguajes y Sistemas Informéticos, Universidad de Burgos, 09006 Burgos, Spain
3Department of Computer Science, Durham University, DH1 3LE Durham, U.K.

4Facully of Science, Northern Border University, Arar 91431, Saudi Arabia

Corresponding author: Pablo Arnau-Gonzdlez (pablo.arnau@uv.es)

This work was supported in part by the Ministry of Science and Innovation (Strategic Projects Focused on the Green and Digital
Transition) under Project TED2021-129485BC42 and Project TED-2021-129485B-C43; in part by the Ministerio de Cultura e Innovacion
(MCIN)/Agencia Estatal de Investigacién (AEI)/10.13039/50 1100011033 and “European Regional Development Fund (ERDF)-A way of
making Europe” under Project PGC2018-096463-B-100; in part by the Valencian Regional Government, Spain, under Project
AICO/2021/019, and grant CIAPOS/2022/163; in part by the Margarita Salas 2022-2024 Grant awarded by Universitat de Valencia and
Universidad de Burgos, funded by the Spanish Ministry of Science, Innovation and Universities through NextGenerationEU funds, under
Grant MS21-29; and in part by the Project “AGENCY,” funded by the Engineering and Physical Sciences Research Council, U.K, under
Grant EP/W032481/1. The authors extend their appreciation to the deanship of Scientific research at Northern Border University, Arar,
KSA for funding this research work through the project number “NBU-FFR-2023-0101".

ABSTRACT Math Word Problem (MWP) solving, which involves solving math problems in natural
language, is a prevalent approach employed by Intelligent Tutoring Systems (ITS) for teaching mathematics.
However, one major drawback of ITS is the complexity of encoding all potential solutions for each problem
supported, which is both time-consuming and labour-intensive. In this study, we propose a novel method
for automatically converting the statement of a previously unseen MWP into the internal representation
of an ITS, thereby simplifying the task of adding new MWPs by only requiring the problem statement.
To accomplish this, we propose the use of large pre-trained language models to translate the problem into
Python code, which can then be easily imported into an ITS. Experimental results indicate that this approach
is effective and suitable for the task, and as language models continue to improve, the accuracy rates are
expected to increase further.

INDEX TERMS Math word problems, algebra tutoring, intelligent tutoring systems, automatic code
generation.

I. INTRODUCTION

A Math Word Problem (MWP) is a mathematical problem
that is expressed in natural language. Solving a MWP is
the task of providing a numerical solution to it [3]. For
example, “A has five apples. B has two times the apples of
A. How many apples does B have? — Answer: 10 apples”.
To obtain the numerical solution for the MWPs, it is essential
to accurately identify the quantities mentioned in the problem
statement and their interrelationships [13]. MWPs have been
extensively used in Intelligent Tutoring Systems (ITS) to

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague

facilitate the teaching of mathematics and arithmetic skills by
emulating human tutor tasks such as, among others, the pro-
vision of conceptual schemes needed for problem statement
interpretation, the assessment of the validity of the process
used to solve the problem, and the adaptation of the problem
sequence according to the individual characteristics of the
learner [1].

The principal objective of an ITS is to provide support
throughout the learning process of a specific subject. How-
ever, ITS have always suffered from one major limitation,
which is that they are only capable of supervising the res-
olution process through problems or exercises that have
been previously registered in the system’s own knowledge

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

67030

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-9048-4659
https://orcid.org/0000-0002-0027-7128
https://orcid.org/0000-0001-9190-0941
https://orcid.org/0000-0002-6674-7890
https://orcid.org/0000-0002-0350-2079
https://orcid.org/0000-0001-5773-9517

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

IEEE Access

representation schema. Therefore, creating more extensive
sets of problems demands a considerable amount of time
from experts, not only to generate fresh problems but also
to analyse all potentially valid solution paths and encoding
them into the ITS’s internal representation. In the case of
ITS designed to supervise the solution of arithmetical MWPs,
this task can be partly automated by automatically generating
the ITS’s internal representation from the problem statement.
As aresult, the human expert is left with the creative task of
developing new problem statements.

Hypergraph-Based Intelligent Tutoring System (HINTS)
was developed during the past decade [2], and was a mile-
stone in the advancement of ITS for algebraic and arithmetic
word problem-solving. The system adopted a non-guided
approach and gave the learner greater autonomy by letting
them define new quantities as required, without imposing any
restriction on the solution path. To enable supervision, the
expert had to encode the problem solution in the form of a
bipartite graph with operands on one partition and quanti-
ties on the other partition. This encoding was arduous and
time-consuming and had to be completed for each individual
exercise. The automation of this task was not feasible with
the available resources at the time, but advances in Natural
Language Processing (NLP) and machine learning have pro-
vided with some promising potential solutions for addressing
this issue.

In recent years, the field of NLP and, specifically, text
generation, has seen significant advances due to the emer-
gence of Large Language Models (LLMs). These tools
and algorithms have achieved results that are close to
human-like in many tasks. Large models of code, i.e. large
language models trained on source code from a programming
language, have recently shown great potential in code com-
pletion and code synthesis tasks based on natural language
input [32].

Various large code models, such as Salesforce’s Code-
Gen [21] and Facebook’s InCoder [9], have recently been
released. These models are trained on a variety of Python
code repositories, mainly for the task of code synthesis,
although they are also trained for other code-related tasks,
such as docstring generation, infilling, or return type infer-
ence. Such models are now widely used in commercial
applications, with the most notable being GitHub’s CoPilot,!
a code development assistant integrated into the development
environment that is trained on billions of lines of code and can
turn natural language prompts into coding suggestions across
dozens of languages.

In this work, we aim to make progress towards the automa-
tion of the process of encoding the problem solution from a
problem statement written in natural language. To achieve
this goal, we present a two-stage process. As a first step,
we use a large code model to generate an intermediate repre-
sentation of the problem solution in the form of Python source
code.

1 https://copilot.github.com/

VOLUME 11, 2023

This intermediate representation serves as a bridge
between the natural language problem statement and the
solution specification as a bipartite graph, which is done in
a second stage, by using compiler technology. This automa-
tion has multiple relevant benefits and learning implications.
For example, it would allow learners to specify the problem
statement they want to be supervised on; and experts to easily
add new exercises to the ITS by simply providing the problem
statement, which saves the effort of formulating the problem
solution in the required specification format.

Our experimental evaluation on a publicly available dataset
of 1,000 MWPs showed that the proposed method is able to
correctly encode up to 39% of the provided problems. These
findings align with other results presented in the state-of-the-
art literature on similar MWP solving approaches, while the
proposed method can also facilitate the automation of MWP
encoding for ITS.

Il. RELATED WORK
The resolution process of MWP constitutes a field that
has been extensively researched in the literature [34]. In
a first stage of the evolution of MWP solving methods,
early works employed handcrafted features and probabilistic
approaches [3], [14], [20], [26], heavily relying on human
interventions and therefore being able to resolve a limited
number of pre-defined scenarios. This was followed by a
second stage that focused on using templates for matching
problems into semantic expressions [11], [24] to enable easier
quantitative reasoning. More recent works moved towards
generating a tree that could solve the problem [30], [36]
by transforming the derivation of the arithmetic expression
into an equivalent tree structure step-by-step in a bottom-
up manner. Another recent approach consists of using a
sequence-to-sequence (Seq2Seq) methodology for the gen-
eration of the mathematical formula needed for solving the
problem [6], [27]. Various works improved upon the Seq2Seq
approach using template-based approaches [29], reinforce-
ment learning [12], [28], or group attention [16]. To this end,
the solving of MWPs was formulated as a reasoning pipeline
that transforms natural language descriptions of MWPs into
mathematical formulas that can be used to solve the prob-
lem following an encoder/decoder approach [30], [33], [36],
achieving further improvement in MWP solving performance
by incorporating hard constraints into the decoder [25], [35].
With the emergence of Deep Learning, researchers have
exploited the generalisation capabilities of deep models for
providing different solutions. Graph convolutional networks
(GCNs) were used by Li et al. [17] and Zhang et al. [36] in
order to model the relations between different quantities in
the problem, following a graph-to-tree approach, whereas
Jie et al. [13] proposed a deductive reasoner on top of a
BERT-like [8] transformer, which showed impressive results,
as it is capable of accurately identifying quantities and the
operation relations between them while improving the current
state of the art on the SVAMP [23] MWP dataset. The use of

67031

IEEE Access

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

MWP solution example:
(problem statement +

source code solution)

Language

model

Problem solution
in the internal
representation
used by the ITS

Source code
solution

Compiler P

v

MWP to be solved
(only problem statement)

FIGURE 1. Overview of the proposed end-to-end method for solving MWPs and integrating them in a given ITS.

pre-trained language models such as BERT led to significant
improvement in the quality of tree expressions for MWP
solving [15], [19].

The current trend in the field of NLP is to con-
stantly increase the number of parameters of Language
Models [4], [7], which has led to the emergence of ‘““‘Large
Language Models” (LLM). These models have been trained
in vast amounts of text from the internet, and excel at
human-like production of text in a wide variety of tasks with
only minimal examples [4]. Among these tasks, LLM trained
or fine-tuned on source code have demonstrated impres-
sive capabilities in code generation, leading researchers
into exploring LLM for code, or simply Large Code Mod-
els [9], [21]. LLM are trained specifically on enormous
collections of source code and can generate programs from
both natural language descriptions and other pieces of code.
These models can be of great help to professional coders, such
as by auto-completing code segments, creating docstrings for
a given function body and signature, or recommending unit
tests for a codebase.

By leveraging Large Code Models, this work aims to take a
step further on the state of the art in the field of MWP solving
for integration in ITS.

lll. METHODOLOGY

The HINTS or similar ITS can supervise and support
a student through the resolution process of any alge-
braic/arithmetic MWP, as long as the problem itself is
registered in the system and properly encoded using the ITS’s
own knowledge representation schema. The still remaining
main challenge of this approach is to process the problem
expressed in natural language and represent it using the
internal representation schema, i.e. the hypergraph. To this
end, we propose processing the MWP using a Large Lan-
guage Model that can output a source code solution, and
then compiling the generated source code to the ITS’s inter-
nal knowledge representation schema. An overview of the
proposed methodology is illustrated in FIGURE 1, where
computational processes are shown in grey boxes and the
green colour is used to represent inputs and outputs.

A. INTERMEDIATE SOURCE-CODE REPRESENTATION
Given a natural language problem statement S composed
by n words w;, S = {wp,wi,...,wp_1}, our proposal

67032

is to generate a Python script that first defines a series
Qs of m quantities from the problem S, therefore, Qs =
{q0, g1, - .., gm—1}, and then computes the numerical answer
to the problem ys. By proposing a solution expressed in
source code, we can construct a graph exploiting the mathe-
matical relation between the identified quantities. Moreover,
the source code representation allows the naming of the
identified quantities, so that the generated graph can be used
to semantically match a user input to the correct quantities,
allowing the system to assign quantities to variables with a
simple command, such as “let x be the number of rabbits” .
The generated code, is therefore, an intermediate represen-
tation of the MWP, that is simple to understand and that can
be converted to the internal representation schema of HINTS,
or any other arithmetic ITS for that matter, automatically.

In order to produce the Python source code that can solve
the posed problem, we propose to initialise the language
model’s prompt with one example of how the model is
expected to provide the output code, followed by the posed
unsolved problem, as shown in FIGURE 2a. To this end, the
problem statements are introduced to the model as a code
comment followed by a definition of a function called so1l ()
with no input parameters. The sol () function defines all the
known quantities as entries in a Map-like structure. In this
particular case, we use the dictionary data structure that is
defined as a Python built-in. Furthermore, in the initialised
prompt, we solve the example sol () function so that one
operation is defined per line until the definition of the solution
and the return statement of the said solution. This allows the
compiler to identify the quantities that have to be calculated
(can be one or more, since Python allows to return tuples)
as the ones returned by the sol () function, and also estab-
lishes the relationships between the quantities in the problem.
Then, the output of the model consists of the source code
of the sol () function for the unsolved MWP, as shown
in FIGURE 2b. Finally, the generated sol () function is
compiled into an XML file following the HINTS’s internal
knowledge representation. It must be noted that this last step
can be customised in order to work with internal representa-
tions used by various ITS.

The pre-trained LLMs used in this work are (i) Saleforce’s
CodeGen [21] and (ii) Facebook’s InCoder [9]. For Code-
Gen, the “mono” version was used, which is a transformer
trained on The Pile [10], a general text corpus, fine-tuned on

VOLUME 11, 2023

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

IEEE Access

""" A book has 3 chapters. The first chapter is 91 pages long

1

2 the second chapter is 23 pages long and the third chapter is

3 25 pages long. How many more pages does the first chapter have

4 than the second chapter? """

5 def sol():

6 context = dict ()

7 context ['number of chapters'] = 3

8 context ['number of pages first chapter'] = 91

9 context ['number of pages sencond chapter'] = 23
10 context ['number of pages third chapter'] = 25
11 context ['pages more first chapter'] = (

12 context ['number of pages first chapter']

13 - context ['number of pages second chapter']
14)

15 return context|['pages more first chapter']

18 """ An industrial machine worked for 5 minutes. It can make 4 shirts a minute.
19 How many shirts did the machine make? """
20 def sol():

(a) Prompt example and problem to be solved

context = dict ()
context ['number of minutes'] = 5
context['shirts per minute'] = 4
context ['number of shirts'] = (
context ['number of minutes']
+ context['shirts per minute']
)

return context['number of shirts']

® 9w R W —

(b) Generated code

FIGURE 2. (a) Example of an input, with an initialised prompt containing
an example of a solved problem together with the statement of the
problem to be solved; and (b) output source code generated by the model.

BigQuery? [21], a corpus containing source code in a variety
of popular programming languages, and further fine-tuned
in BigPython [21], a corpus containing source code written
exclusively in Python. The CodeGen model is trained as a
Causal Language model, which means it is trained to predict
the next token based exclusively on the previous tokens.
InCoder is trained on a variety of languages. Although the
training corpus is not fully disclosed, the authors mention
that it is trained on code extracted from GitHub repositories
and StackOverflow answers. The InCoder model is trained
to perform the tasks of type inference, variable naming, doc-
string generation, and multi-region infilling. In this work,
the 350 Million, 2 Billion, 6 Billion, and 16 Billion parame-
ters model variations of the CodeGen model, and the 1 Billion
and 6 Billion parameters model variations of the InCoder
model were used for the experimental evaluation.

B. CONVERSION TO HINTS INTERNAL

REPRESENTATION SCHEMA

The process explained above is able to generate a solution
for a given problem, but the ultimate goal of our research
is to be able to provide scaffolding for tutoring a problem
proposed by the student. To this end, once an intermediate
source code representation has been obtained, this needs to
be translated into the knowledge representation used by the
ITS. In the particular case of HINTS, it relies on a hypergraph

2https://console.cloud. google.com/marketplace/details/github/github-
repos

VOLUME 11, 2023

representation of the problem solution [2]. This representa-
tion takes into account the problem quantities and creates
hyperedges which represent the relations that exist between
the quantities. In the specific case of HINTS, hyperedges
link at least three different nodes: 2 operands, and 1 result
node. Nevertheless, it is not limited to ternary relations. This
representation is aligned with the code produced by the LLM
used in this work but needs to be translated from one format
to another.

The translation is approached by using compiler technol-
ogy. In particular, a combination of the jflex and java cup tools
has been used to generate the output in the format required
by HINTS. This is a common combination typically used
in compiler construction courses [22] to teach the syntax-
driven approach. First, a lexical analyser generated by using
jflex identifies the basic elements of the language, namely
the keywords, symbols and quantity names. Then, a syntax
analyser created by using java cup is used to parse the output
of the lexical analyser, determine if the code conforms to
the expected syntax specification and generate the translated
output in HINTS’s syntax.

Both the lexical and syntax analyser are created from spec-
ifications that encode the structure of the source and target
languages, taking into account the following structure:

o The function starts with the heading def sol(): and the
first line is always context=dict():

o The last line of the function is a sentence with the
syntax return context{ name’], where name refers to the
quantity that represents the problem’s answer.

o All other lines in the source code generated define
a quantity each. There are two syntactically different
forms to do this. When the value is explicitly pro-
vided in the problem statement, the line follows the
syntax context[name’J=value, where name and value
denote a quantity name and the value is explicitly given.
When a quantity is defined in terms of other quantities,
amathematical expression is provided instead of a value,
with each quantity expressed within a context['name’]
structure.

Our experimental evaluation showed that the source code
generated by the proposed approach always conformed to the
specified syntax. Therefore, the translation step proceeded
with no errors in all cases. FIGURE 3 displays a translation
example, showing both the input source code and the output
XML file in the format required by HINTS.

IV. RESULTS

The performance of the proposed approach relies heavily
on the performance of the code generation models that are
available. As mentioned before, LLM trained on code gen-
eration are at their early stages but are rapidly progressing
towards generating better and more human-like code. In this
work, the maturity of these models is evaluated against a com-
mon benchmark dataset for MWP solving, i.e. SVAMP [23].
SVAMP is a collection of 1,000 MWPs, expressed in natural

67033

IEEE Access

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

<?xml version="1.0" encoding="UTF-8"?2>
<Exercise>

<Statement>An industrial machine worked for 5 minutes.

</Statement>

If it can make 4 shirts per minute,
did it make?

how many shirts

def sol():
context = dict()

context ['numb

ngn

<KnownQuantity name="A"

</KnownQuantity>

value="5">

<Description>number of minutes</Description>

context['shi
lcontext [" numbe
context['numbe

<KnownQuantity name="B"

</KnownQuantity>

value="4">

<Description>shirts per minute</Description>

* context['shirt per minute']
)
eturn context['number of shirts' !

<UnknownQuantity name=“cwﬁﬁme=”result">
Descripsd T eér of shirts</Description>

</UnknownQuantity>

<Graph name="Graphl">

<Relation type="Product" result="C", nodes="A,B"/>

Graph
</Exercise>

(a) Example of input to the translator

(b) Example of output from the translator

FIGURE 3. Translation from generated source code to HINTS internal representation schema.

language (English), along with the numerical answer and an
algebraic expression of the solution the problem.

The performance of the examined models is evaluated
under two different scenarios: (i) Problem solving with
unknown answer, in which we attempt to generate the graph
for problems in SVAMP directly and uniquely from the
problem statements, and (ii) problem solving with known
answer, in which we attempt to generate and choose the
correct graph from the problem statement, knowing the
solution.

A. PROBLEM SOLVING WITH UNKNOWN RESULT
In order to evaluate the MWP solving performance, the fol-
lowing methodology was used: A random MWP was first
selected from the SVAMP dataset and the corresponding
sol () function was implemented manually, following the
specifications outlined in Section III. This problem was then
used as the example problem for all of the language mod-
els’ prompts to ensure a fair evaluation across the different
models. Subsequently, each model was prompted by provid-
ing the randomly chosen solved example problem, followed
by the statement of the problem to be solved, as shown in
FIGURE 2a. For each of the 1,000 problems in the SVAMP
dataset, each model generated one potential solution, which
was then evaluated by running the generated Python code
and comparing the result to the expected solution. In order
to carry out the inference process, the Softmax’s temperature
parameter (¢) was fine-tuned to values 0.1, 0.3, and 0.5. This
parameter is used to control the level of randomness of a
model’s predictions, with higher values resulting in a model
becoming more random and less confident in its predictions,
while lower values lead to more certain predictions. To ensure
a fair evaluation, each parameter number variant of CodeGen
and InCoder was tested three times, with the aforementioned
temperature values used in each run.

Results shown in TABLE 1 and FIGURE 4 indicate that
out of all the examined models, the 16B parameter Code-
Gen model achieved the best performance on the SVAMP

67034

TABLE 1. Performance on the SVAMP dataset in terms of accuracy for the
best performing temperature (t) for each model.

Model Temperature Accuracy
InCoder-1B 0.1 0.061
InCoder-6B 0.3 0.174
CodeGen-350M 0.1 0.088
CodeGen-2B 0.1 0.272
CodeGen-6B 0.3 0.335
CodeGen-16B 0.3 0.391

dataset, reaching an accuracy of 39.1%, which was higher
than the accuracy of all other models that were tested. One
important observation that can be made from and FIGURE 4
and TABLE 1 is that there is a direct correlation between
the number of parameters a model has and its performance.
In fact, the models with more parameters achieved higher
accuracy in most cases, as demonstrated by a Pearson’s p
value of 0.77.

Moreover, this relationship between model parameters and
accuracy is also clearly displayed in FIGURE 4 that shows
the accuracy of the InCoder and CodeGen models, respec-
tively, for different temperature values. This figure reveals
that the accuracy of a model tends to increase as the num-
ber of parameters in the model increases. However, for the
CodeGen model, the relationship between the number of
parameters and the achieved accuracy is not linear, but rather
logarithmic. This means that while increasing the number
of parameters can lead to an improvement in accuracy, the
rate of improvement decreases as the number of parameters
increases. Similar conclusions cannot be extracted for the
InCoder model due to insufficient data points.

Finally, FIGURE 4 also reveals that the temperature param-
eter had minimal effects on the achieved accuracy. Overall,
results suggest that the number of parameters in a model is a
crucial factor in determining its performance, and increasing
the number of parameters can lead to an improvement in
accuracy, albeit at a diminishing rate.

VOLUME 11, 2023

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

IEEE Access

0.4

0.3

Accuracy
o
[\

0.1

—e— CG (t =0.1) —— CG (t = 0.3) —=— CG (t = 0.5)
—e- IC(t=0.1) -4- IC(t=03) - m- IC(t=0.5)

|
0 2 4 6 8 10 12 14 16
Parameters (Billions)

FIGURE 4. Accuracy obtained for different temperatures (t) and number
of parameters for each model. CG: CodeGen, IC: InCoder.

B. PROBLEM SOLVING WITH KNOWN RESULT

The second examined scenario relies on the correct genera-
tion of the graph in a setting in which the student has both
the problem statement and the solution to the problem. This
scenario is common in a learning context, since the main
objective is that the student is capable of actually reasoning
through the problem, rather than simply giving a numeri-
cal answer. Many textbooks include the problem solution
together with the statement, or in a separate section, to facil-
itate the self-correction from students. In this scenario, since
the response is known, we can generate k samples and obtain
the graph by selecting the Python script that returns a result
matching the provided solution. This scenario was validated
similar to the previous one. A random problem was picked
and manually solved using Python (the same problem as in the
previous evaluation) and the model was asked to provide the
source-code solution to each of the problems in the SVAMP
dataset. The difference is that in this case, the model was
configured to produce k different alternative solutions to the
problem.

TABLE 2 shows the percentage of problems that were
correctly solved by generating the k different solutions. Large
models, especially those with more than 2 Billion parameters,
are particularly costly to run, therefore, this experiment was
limited to exploring the top k = 10 samples. The best
performance was achieved by generating k = 10 samples
using the Codegen-6B model for a temperature t = 0.5,

VOLUME 11, 2023

TABLE 2. Performance of the examined models in terms of accuracy for
different values of k.

Model #Params Temperature k=1 k=2 k=5 k=10
0.1 0.059 0.070 0.086 0.100

1B 0.3 0.057 0.082 0.121 0.152

InCoder 0.5 0.057 0.088 0.139 0.183
0.1 0.171 0208 0.253 0.284

6B 0.3 0.175 0249 0.354 0.433

0.5 0.165 0256 0.396 0.502

0.1 0.085 0.107 0.134 0.154

350M 0.3 0.074 0.114 0.182 0.244

0.5 0.066 0.112 0.200 0.283

0.1 0267 0317 0.374 0.411

2B 0.3 0.265 0361 0.484 0.571

CodeGen 0.5 0.259 0377 0539 0.648
0.1 0.335 0380 0.432 0.467

6B 0.3 0336 0431 0.546 0.623

0.5 0322 0443 0.592 0.692

0.1 0.387 0433 0.488 0.523

16B 0.3 0.391 0482 0.587 0.654

0.5 0367 0487 0.612 0.691

Note: M: Million, B: Billion. Best performance in bold.

leading to correctly solving 69.2% of the problems in the
SVAMP dataset, whereas the second best performance was
marginally worse, reaching an accuracy of 69.1% using the
Codegen-16B model with k = 10 and r = 0.5.

The study of the effect of the temperature parameter on
the performance of each model is presented in FIGURE 5.
The results show that generating multiple samples with
higher temperatures dramatically improves the accuracy.
This trend is visible in all the examined models, being
consistent with similar findings in the field of code syn-
thesis [5]. In the case of the best performing Codegen-6B
and Codegen-16B models, FIGURE 5 indicates that, with a
temperature setting of 0.5 and generating 10 potential solu-
tions for each problem, we ensure that at least one of these
solutions will successfully solve the problem for approxi-
mately 70% of the evaluated problems. Therefore, the results
suggest that generating multiple samples with higher temper-
atures can effectively improve the accuracy of the model’s
performance.

TABLE 2 clearly illustrates that higher temperature set-
tings lead to the generation of better problem resolution
graphs, especially if the solution is already known. Conse-
quently, we can calculate the minimum number of samples
that need to be generated in order to produce a solution
that returns a correct result. This analysis is reflected in
FIGURE 6 which depicts a cuamulative histogram that shows
which percentage of problems were actually solved by gener-
ating k samples. The histogram shows that despite having an
initially lower accuracy, inference with a higher-temperature
setting consistently performs better than the lower temper-
ature counterparts. This result indicates that higher tem-
perature settings can help generate more diverse samples,
which can ultimately lead to better solutions for a given
problem.

67035

IEEE Access

P. Arnau-Gonzalez et al.:

Toward Automatic Tutoring of Math Word Problems in ITS

InCoder-1B InCoder-2B CodeGen-350M
0.8 T T T 0.8 T 0.8 T T T
—o—k =
k=2
06| * k=5 . 0.6 - . 0.6 .
—— k=10
= = =
Q Q Q
£ g - g
2 041 - g 041 —o—— g 04 al
S 3 o 3
< < <
o n] —
0.2 o) E—— 0.2 53— ———————— 0.2} § — e——— |
- i . .
— H . S —————e— o
0 Il Il Il Il Il 0 Il Il Il Il Il 0 Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Temperature () Temperature (%) Temperature (%)
CodeGen-2B CodeGen-6B CodeGen-16B
0.8 T 0.8 T 0.8 T T T
0.6 - - . | 0.6 - * —* 0.6 -
_ o)
5 e 5 . 5 . - -
S ¥ _— s) o = u 8 -
§ 0.4 - — . . § 04 4 o § 04 ¢ - e]
< z < o <
— ————————— o
0.2 | 0.2 | 0.2 |
0 Il Il Il Il Il 0 Il Il Il Il Il 0 Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Temperature (t)

Temperature ()

FIGURE 5. Accuracy vs. temperature (t) for different values of k for the examined models.

Temperature ()

TABLE 3. MWP solving performance of the proposed approach and of

B0z = 0.1 oo Mo [] state-of-the-art methods on the SVAMP dataset.
0.6 ot =0.3 T A m B Model Accuracy
ot =05 HEEE s b Codegen-6B Known Result (Ours) 0.692
r — U HIF| B b DeductReasoner [13] 0.473
t | - Roberta-Graph2Tree [23] 0.438
304l o Roberta-GTS [23] 0.410
g | | | Codegen-16B Unknown Result (Ours) 0.391
8 | | Graph2Tree [36] 0.365
< BERT-Tree [18] 0.324
| b GTS [31] 0.308
0.2 I Roberta-Roberta [15] 0.303
. 1 BERT-BERT [15] 0.248
L i GroupAttn [16] 0.215

0

1 2 3 4 5 6 7 8 9 10
n-th sample

FIGURE 6. Histogram displaying the least amount of samples for solving
a problem.

C. COMPARISON TO STATE OF THE ART

The results presented in this study directly compete with
the latest state-of-the-art methods for solving MWPs. Our
approach to solving problems with a known answer demon-
strated a maximum accuracy of 69.5%, outperforming state-
of-the-art methods, as shown in TABLE 3, even though it
was not explicitly designed for MWP solving. In the case

67036

of solving problems with unknown answer, our Codegen-
16B-based approach achieved a best accuracy of 39.1%,
performing better than six out of the nine state-of-the-art
methods. In comparison to other available MWP solving
methods, our proposed approach enables the automation of
translating MWPs from natural language to the internal repre-
sentation of ITS like HINTS, addressing a major limitation of
these systems. Therefore, other state-of-the-art MWP solving
methods cannot replace our proposed approach for the task
at hand since they cannot provide the required source code
representation of the MWP. As language models continue to
grow in the number of parameters, we expect our proposed
approach to surpass existing methods without requiring spe-
cific domain knowledge. Overall, our study shows promising

VOLUME 11, 2023

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

IEEE Access

results in the development of efficient methods for MWP
solving, paving the way for future research in this area.

V. CONCLUSION

A. SUMMARY AND FINDINGS

This study presents a novel method for solving mathematical
word problems (MWPs) and converting them to the internal
representation of Intelligent Tutoring Systems (ITS). The
proposed method exploits Large Language Models (LLM)
to generate Python source code that can solve the problem.
One of the major advantages of this approach is that it
allows for the automatic naming of the quantities that appear
in the MWP. This capability is particularly useful for pro-
viding a conversational interaction between the student and
the system. In addition to automated problem-solving and
automatic naming, the proposed approach has the potential
to enable the automated translation of problem statements
into the ITS’s internal knowledge representation schema.
This capability would allow learners to add new MWP to
an ITS, enabling them to practice solving a wide variety
of math problems, while also enabling tutors to add new
MWP at scale. Experimental results show that the proposed
approach achieved high accuracy in solving MWPs with
known and unknown solutions. Specifically, Salesforce’s
CodeGen model with 16B parameters achieved the high-
est accuracy, reaching a 39.1% accuracy for the case of
unknown solution and 69.1% accuracy for the known solution
scenario.

This work presents a promising new approach for solving
MWPs that has the potential to significantly improve math
education via online learning environments. By automating
the problem-solving process, providing automatic naming of
quantities, and enabling the translation of problem statements
into an ITS’s internal knowledge representation schema,
this approach can help learners to develop their math
skills more efficiently and effectively, while also enabling
tutors to provide a more personalised and scalable learning
experience.

The effectiveness of the suggested method heavily depends
on the performance of the code generation models. This
is demonstrated by the substantial performance disparities
between the CodeGen and InCoder models studied. Nonethe-
less, it is worth noting that there is a noticeable link between
amodel’s size and its performance, indicating that the quality
of the outputted solutions could potentially improve with
the emergence of more sophisticated models with a greater
number of parameters in the future.

It is interesting to mention the trade-off that exists between
the size of the model, the number of samples generated,
and the performance of the method. While larger models
tend to perform better, it is possible and probably desired
to use a smaller model in order to reduce the computational
complexity in favour of being able to generate a larger amount
of samples. However, integration of such a system into an
ITS is still highly experimental, as we understand that while

VOLUME 11, 2023

69% accuracy is not enough to make it to a final product,
it is however sufficient to ease the encoding of MWPs by
producing a simple-to-debug intermediate representation and
providing sufficient performance if human supervision is
present.

B. FINAL CONSIDERATIONS

The suggested approach, however, is not without its limita-
tions. Generating plain Python code limits the model’s output
to arithmetic solutions. Therefore, the approach is not able
to solve problems that require the use of algebraic equation
systems. Moreover, it produces just one solution graph for
each problem, which although frequently the most apparent
solution, may not always be the sole option. To address these
drawbacks, future work will aim to develop methods for
handling these issues. Furthermore, it would be interesting to
explore the various different created source code snippets to
extract all potential resolution paths to a particular problem.
Finally, the end goal of this research is to be integrated into
ITS so that new problems can be tutored without having
been pre-registered on the system. Future work will propose
an integration of the method and an evaluation of the stu-
dents’ Quality of Experience and acceptance of the tutoring
system.

ACKNOWLEDGMENT

Artificial Intelligent agents, such as ChatGPT® or Gram-
marly* have been used for improving the quality of written
English language and grammatical error corrections.

REFERENCES

[1] D. Arnau, M. Arevalillo-Herraez, and J. A. Gonzilez-Calero, ‘“Emulat-
ing human supervision in an intelligent tutoring system for arithmetical
problem solving,” IEEE Trans. Learn. Technol., vol. 7, no. 2, pp. 155-164,
Apr. 2014, doi: 10.1109/TLT.2014.2307306.

[2] D. Arnau, M. Arevalillo-Herrdez, L. Puig, and J. A. Gonzélez-Calero,
“Fundamentals of the design and the operation of an intelligent tutoring
system for the learning of the arithmetical and algebraic way of solving
word problems,” Comput. Educ., vol. 63, pp. 119-130, Apr. 2013.

[3] D. G. Bobrow, “Natural language input for a computer problem solv-
ing system,” Massachusetts Inst. Technol.,, Cambridge, MA, USA,
Tech. Rep., AIM-066, 1964.

[4] T.B.Brown etal., “Language models are few-shot learners,” in Advances
in Neural Information Processing Systems, vol. 33. Red Hook, NY, USA:
Curran Associates, 2020, pp. 1877-1901.

[5] M. Chen etal., “Evaluating large language models trained on code,” 2021,
arXiv:2107.03374.

[6] T.-R. Chiang and Y.-N. Chen, ““Semantically-aligned equation generation
for solving and reasoning math word problems,” in Proc. Conf. North,
2019, pp. 2656-2668.

[7]1 A.Chowdhery et al., “PaLM: Scaling language modeling with pathways,”
2022, arXiv:2204.02311.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North, 2019, pp. 4171-4186, doi: 10.18653/v1/N19-1423.

[9] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-T. Yih, L. Zettlemoyer, and M. Lewis, “InCoder: A generative model
for code infilling and synthesis,” 2022, arXiv:2204.05999.

3 https://chat.openai.com
4https:// ‘grammarly.com

67037

http://dx.doi.org/10.1109/TLT.2014.2307306
http://dx.doi.org/10.18653/v1/N19-1423

IEEE Access

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy,
“The pile: An 800GB dataset of diverse text for language modeling,” 2021,
arXiv:2101.00027.

D. Goldwasser and D. Roth, “Learning from natural instructions,”
Mach. Learn., vol. 94, pp.205-232, Sep. 2013. [Online]. Available:
https://www.ijcai.org/Proceedings/11/Papers/301.pdf

D. Huang, J. Liu, C. Y. Lin, and J. Yin, “‘Neural math word problem solver
with reinforcement learning,” in Proc. 27th Int. Conf. Comput. Linguistics,
Santa Fe, NM, USA, Aug. 2018, pp. 213-223.

Z. lJie, J. Li, and W. Lu, “Learning to reason deductively:
Math word problem solving as complex relation extraction,”
in Proc. 60th Annu. Meeting Assoc. Comput. Linguistics, 2022,
pp. 5944-5955.

'W. Kintsch and J. G. Greeno, ““Understanding and solving word arithmetic
problems.,” Psychol. Rev., vol. 92, no. 1, pp. 109-129, 1985.

Y. Lan, L. Wang, Q. Zhang, Y. Lan, B. T. Dai, Y. Wang, D. Zhang,
and E.P. Lim, “MWPToolkit: An open-source framework for deep
learning-based math word problem solvers,” in Proc. AAAI Conf. Artif.
Intell., vol. 36, Jun. 2022, pp. 13188-13190, doi: 10.1609/aaai.v36il1.
21723.

J. Li, L. Wang, J. Zhang, Y. Wang, B. T. Dai, and D. Zhang, “Modeling
intra-relation in math word problems with different functional multi-head
attentions,” in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 6162-6167, doi: 10.18653/v1/P19-1619.

S. Li, L. Wu, S. Feng, F. Xu, F. Xu, and S. Zhong, “Graph-to-
tree neural networks for learning structured input-output translation
with applications to semantic parsing and math word problem,” in
Proc. Findings Assoc. Comput. Linguistics, 2020, pp. 2841-2852, doi:
10.18653/v1/2020.findings-emnlp.255.

Z. Li, W. Zhang, C. Yan, Q. Zhou, C. Li, H. Liu, and Y. Cao, “Seeking
patterns, not just memorizing procedures: Contrastive learning for solving
math word problems,” 2021, arXiv:2110.08464.

Z. Liang, J. Zhang, L. Wang, W. Qin, Y. Lan, J. Shao, and X. Zhang,
“MWP-BERT: Numeracy-augmented pre-training for math word problem
solving,” in Proc. Findings Assoc. Comput. Linguistics, NAACL, 2022,
pp. 997-1009.

C. Liguda and T. Pfeiffer, “Modeling math word problems with augmented
semantic networks,” in Natural Language Processing and Information
Systems, G. Bouma, A. Ittoo, A. Métais, E. H. Wortmann, Eds. Berlin,
Germany: Springer, 2012, pp. 247-252.

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “CodeGen: An open large language model for code with
multi-turn program synthesis,” 2022, arXiv:2203.13474.

F. Ortin, J. Quiroga, O. Rodriguez-Prieto, and M. Garcia, ‘“Evaluation of
the use of different parser generators in a compiler construction course,”
in Information Systems and Technologies, vol. 3. Cham, Switzerland:
Springer, 2022, pp. 338-346.

A. Patel, S. Bhattamishra, and N. Goyal, “Are NLP models really
able to solve simple math word problems?”” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2021,
pp. 2080-2094.

S. Roy and D. Roth, “Mapping to declarative knowledge for word prob-
lem solving,” Trans. Assoc. Comput. Linguistics, vol. 6, pp. 159-172,
Dec. 2018.

Y. Shen and C. Jin, “Solving math word problems with multi-encoders
and multi-decoders,” in Proc. 28th Int. Conf. Comput. Linguistics, 2020,
pp. 2924-2934, doi: 10.18653/v1/2020.coling-main.262.

J. R. Slagle, “Experiments with a deductive question-answering pro-
gram,” Commun. ACM, vol. 8, no. 12, pp. 792-798, Dec. 1965, doi:
10.1145/365691.365960.

L. Wang, Y. Wang, D. Cai, D. Zhang, and X. Liu, “Translating a math word
problem to a expression tree,” in Proc. Conf. Empirical Methods Natural
Lang. Process., 2018, pp. 1064-1069.

L. Wang, D. Zhang, L. Gao, J. Song, L. Guo, and H. T. Shen, ‘““MathDQN:
Solving arithmetic word problems via deep reinforcement learning,” in
Proc. AAAI Conf. Artif. Intell., vol. 32, 2018, pp. 1-12.

L. Wang, D. Zhang, J. Zhang, X. Xu, L. Gao, B. T. Dai, and H. T. Shen,
“Template-based math word problem solvers with recursive neural net-
works,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 7144-7151,
doi: 10.1609/aaai.v33i01.33017144.

67038

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Q. Wu, Q. Zhang, and Z. Wei, “An edge-enhanced hierarchical
graph-to-tree network for math word problem solving,” in Proc. Find-
ings Assoc. Comput. Linguistics, EMNLP, 2021, pp. 1473-1482, doi:
10.18653/v1/2021 findings-emnlp.127.

Z. Xie and S. Sun, “A goal-driven tree-structured neural model for math
word problems,” in Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019,
pp. 5299-5305.

F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proc. 6th ACM SIGPLAN
Int. Symp. Mach. Program., Jun. 2022, pp. 1-10.

W. Yu, Y. Wen, F. Zheng, and N. Xiao, “Improving math word problems
with pre-trained knowledge and hierarchical reasoning,” in Proc. Conf.
Empirical Methods Natural Lang. Process., 2021, pp. 3384-3394, doi:
10.18653/v1/2021.emnlp-main.272.

D. Zhang, L. Wang, L. Zhang, B. T. Dai, and H. T. Shen, “The gap of
semantic parsing: A survey on automatic math word problem solvers,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 9, pp. 2287-2305,
Sep. 2020, doi: 10.1109/TPAMI.2019.2914054.

J. Zhang, R. K.-W. Lee, E.-P. Lim, W. Qin, L. Wang, J. Shao, and
Q. Sun, “Teacher-student networks with multiple decoders for solving
math word problem,” in Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020,
pp. 4011-4017.

J. Zhang, L. Wang, R. K.-W. Lee, Y. Bin, Y. Wang, J. Shao,
and E.-P. Lim, “Graph-to-tree learning for solving math word prob-
lems,” in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics, 2020,
pp. 3928-3937.

PABLO ARNAU-GONZALEZ received the degree
in computer engineering from Universitat de
Valéncia (UV), in 2015, and the Ph.D. degree
from the University of the West of Scotland
(UWS) under the supervision of Prof. Naeem
Ramzan and Miguel Arevalillo-HerrAez. He is
currently a Postdoctoral Research Fellow with
UV. He has participated in three national research
projects. He has authored and coauthored over
15 research publications, including peer-reviewed

journals, book chapters, and conference proceedings. His research interests
include intelligent tutoring systems, natural language processing, and applied
machine learning.

ANA SERRANO-MAMOLAR received the B.Sc.
degree (Hons.) in telecommunications from the
University of Valladolid, Spain, in 2006, the M.Sc.
degree in artificial intelligence and pattern recog-
nition from the Polytechnic University of Valencia
(UPV), Spain, in 2012, and the Ph.D. degree from
the University of the West of Scotland (UWS),
in 2019. She is currently an Assistant Professor
and a Postdoctoral Research Fellow with Universi-
dad de Burgos, Spain. She has alternated academic

career with private industry over years and is back to academia. She has par-
ticipated international and international research projects. She has authored
or coauthored over 14 research publications, including peer-reviewed jour-
nals and conference proceedings. Her research interests include affective
computing, applied machine learning, and adaptive systems.

VOLUME 11, 2023

http://dx.doi.org/10.1609/aaai.v36i11.21723
http://dx.doi.org/10.1609/aaai.v36i11.21723
http://dx.doi.org/10.18653/v1/P19-1619
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.255
http://dx.doi.org/10.18653/v1/2020.coling-main.262
http://dx.doi.org/10.1145/365691.365960
http://dx.doi.org/10.1609/aaai.v33i01.33017144
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.127
http://dx.doi.org/10.18653/v1/2021.emnlp-main.272
http://dx.doi.org/10.1109/TPAMI.2019.2914054

P. Arnau-Gonzalez et al.: Toward Automatic Tutoring of Math Word Problems in ITS

IEEE Access

STAMOS KATSIGIANNIS (Member, IEEE)
received the B.Sc. degree (Hons.) in informat-
ics and telecommunications from the National
and Kapodistrian University of Athens, Greece,
in 2009, the M.Sc. degree in computer sci-
ence from the Athens University of Economics
and Business, Greece, in 2011, and the Ph.D.
degree in computer science (biomedical image
and general-purpose video processing) from the
National and Kapodistrian University of Athens,
in 2016. He is currently an Assistant Professor with the Department of Com-
puter Science, Durham University, U.K. He has participated in seven national
and international research projects. He has authored or coauthored over
60 research publications, including peer-reviewed journals, book chapters,
and conference proceedings. His research interests include machine learning,
natural language processing, affective computing, image analysis, and image
and video quality.

TURKE ALTHOBAITI received the B.Sc. degree
in computer science from Taif University,
Saudi Arabia, in 2009, the M.Sc. degree in com-
puter science from Ball State University, USA,
in 2014, and the Ph.D. degree in computer science
from the University of the West of Scotland, U.K.,
in 2019. He is currently an Assistant Professor
with Northern Border University, Saudi Arabia.
His research interests include affective computing
and machine learning, wearable and flexible sen-
sors, and the Internet of Things.

VOLUME 11, 2023

MIGUEL AREVALILLO-HERRAEZ received the
degree in computing from the Technical Univer-
sity of Valencia, Spain, in 1993, and the B.Sc.
degree (Hons.) in computing, the P.G.Cert. degree
in teaching and learning in higher education, and
the Ph.D. degree from Liverpool John Moores
University, UK., in 1997 and 1997, respectively.
He was a Postdoctoral Research Fellow and a
Senior Lecturer with Liverpool John Moores Uni-
versity, until 1999. Then, he left to work in private
industry for one year and came back to academia, in 2000. He was a Program
Leader of the computing and business degrees with the Mediterranean Uni-
versity of Science and Technology, until 2006. Since 2006, he has been a Full
Professor of computer science and artificial intelligence with Universitat de
Valéncia.

67039

