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Optimal Control of Probability on a Target Set for Continuous-Time
Markov Chains

Chenglin Ma and Huaizhong Zhao

Abstract— In this article, a stochastic optimal control problem
is considered for a continuous-time Markov chain taking values
in a denumerable state space over a fixed finite horizon. The
optimality criterion is the probability that the process remains
in a target set before and at a certain time. The optimal value
is a superadditive capacity of target sets. Under some minor
assumptions for the controlled Markov process, we establish the
dynamic programming principle, based on which we prove that
the value function is a classical solution of the Hamilton-Jacobi-
Bellman (HJB) equation on a discrete lattice space. We then prove
that there exists an optimal deterministic Markov control under the
compactness assumption of control domain. We further prove that
the value function is the unique solution of the HJB equation. We
also consider the case starting from the outside of the target set
and give the corresponding results. Finally, we apply our results to
two examples.

Index Terms— Controlled Markov chains, dynamic pro-
gramming principle (DPP), Hamilton-Jacobi-Bellman (HJB)
equation, optimal controls, risk probability criteria.

I. INTRODUCTION

Stochastic optimal control problems for Markov chains, also known
as Markov decision processes (MDPs), have been widely studied
due to their rich applications in real-world contexts, such as in
communication engineering [1], finance [6], queuing systems [21],
control of epidemics [24] and so on. Existing articles mainly focus
on MDPs with expected/average reward criteria. See, for example,
[7], [9], [12], [17], [22], [25], and [26]. However, such a setup is not
always suitable in some applications. For example, when we measure
the market risk in the areas of finance and economics, it is reasonable
to minimize the probability of loss exceeding a fixed value. Inspired
by the considerations of real-world contexts, some authors started to
study MDPs with risk probability criteria.

MDPs with risk probability criterions can be roughly divided into
two kinds: the discrete-time case and the continuous-time case. For
the discrete-time scenario, a general study can be found in [5] and
[29]. Recently, a discrete-time optimal dividend problem with risk
probability criteria has been considered in [28], the aim of which
was to minimize the risk probability of reaching a given dividend
goal before the time of ruin and find the optimal dividend policy.
In [13], a two-player nonzero-sum discrete-time stochastic games
under probability criterion was considered, and it was shown that
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the optimal value function for each player is the unique solution
to the corresponding optimality equation, and the existence of Nash
equilibria was established under mild conditions.

The continuous-time MDPs with risk probability criteria were
considered for the first time in [16]. Under some conditions, it was
proved that the value function is a solution to the optimality equation.
Following the publication of this work, there were some works on
continuous-time MDPs with risk probability criteria, such as [4]
and [15]. Bhabak and Saha [4] studied a zero-sum stochastic game
for continuous-time Markov chains. Under some assumptions, they
showed the existence of value of the game and also characterized it
as the unique solution of a pair of Shapley equations. Huo and Guo
[15] dealt with finite horizon continuous-time MDPs with unbounded
transition rates and established the existence and uniqueness of a
solution of the corresponding optimality equation. They also proved
the existence of a risk probability optimal policy.

In this article, we would like to find the optimal control processes
to maximize the probability that the controlled Markov process is
always in a target set during the fixed finite horizon [0, T ]. Such a
risk probability setup can be regarded as the surviving probability
on a safety set in many real-world contexts, such as the number of
cancer cells in a patient in a certain safety range. In the context
of this article, the admissible controls, we consider, are processes
taking values in a compact control domain and being adapted to
the natural filtration generated by the underlying Markov chain. We
firstly give the dynamic programming principle (DPP) by considering
a family of stochastic optimal control subproblems initiated by
different times and states. We find that the global optimal control
is also locally optimal over any second half-horizon [t, T ] in the
sense of conditional expectation. We then establish the relationship
among these subproblems by deriving the so-called Hamilton-Jacobi-
Bellman (HJB) equation. This is a nonlinear first-order differential-
difference equation. The value function is a classical solution of the
HJB equation due to its right differentiability with respect to (w.r.t.)
the time variable. By the compactness assumption of control domain,
we give the existence theorem of optimal deterministic Markov
controls for the dynamic programming (DP) problem by employing
measurable selection theorem (see [2] and references therein). We
further prove that the value function is the unique solution of the HJB
equation. We then also consider the case starting from the outside of
the target set to maximize the probability on the target set from any
time t0 ∈ (0, T ].

A. Problem statement

Let (Ω,F , P ) be a complete probability space on which a
continuous-time Markov chain {Xt, 0 ≤ t ≤ T} is defined over finite
horizon [0, T ] for a fixed T > 0. We denote by {Ft, 0 ≤ t ≤ T}
the natural filtration generated by X(·) and augmented by all P -null
sets of F , that is, Ft = σ{Xs, 0 ≤ s ≤ t} ∨ Np, 0 ≤ t ≤ T ,
where Np is the set of all P -null set of F . The state space S of the
process Xt is a denumerable space endowed with a discrete topology.
A finite-state subset B ⊂ S is the target set with Bc := S \B. The
control domain U ⊂ R is a nonempty compact set equipped with



2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Borel σ-algebra B(U). Let U denote the admissible control set

U := {u : [0, T ]× Ω → U |u is {Ft}-adapted}.

An admissible control u(·) is called a deterministic Markov control,
if the value of u(·) only depends on the current time and state. Denote
by M the set of all deterministic Markov controls over [0, T ]. Define
Ft
s = σ{Xt,x

r , r ∈ [t, s]}∨Np; the admissible control set Ut consists
of processes taking values in U and being adapted to {Ft

s}, and the
admissible control set Mt consists of deterministic Markov controls
over [t, T ]. Obviously, M ⊂ U and Mt ⊂ Ut, for all 0 < t ≤ T .

For any given u(·) ∈ U , the process Xt,u(·) is assumed to satisfy
the regularity condition: lims↓t P{Xt,x

s,u(·) = x′} = δxx′ , where
δxx′ = 1 if x′ = x or 0 otherwise, which implies the process Xt,u(·)
has only finitely many jumps with probability one over the finite
horizon [0, T ]. The superscript of Xt,x

s,u denotes the initial time and
state, we consider, and X0,x0

s,u can be simplified as Xx0
s,u.

For each u(·) ∈ Ut (with ut = u ∈ U ), the infinitesimal transition
probabilities of Xt,u(·) are given by

P{Xt,x
t+δ,u(·) = x′}=

{
λxx′(t, u)δ + o(δ), if x′ ̸= x,

1 + λxx(t, u)δ + o(δ), otherwise,
(1)

where λij(t, u) are transition rates of Xt and supposed to satisfy the
following assumptions.
1) If j ̸= i, λij(t, u) ≥ 0, for any (t, u) ∈ [0, T ]× U .
2) The transition rates are conservative, that is, for any (t, u) ∈
[0, T ]× U and i ∈ S, we have

∑
j∈S λij(t, u) = 0.

3) The transition rates are stable, that is, for any (t, u) ∈ [0, T ]×U ,
we have supi∈S |λii(t, u)| <∞.
4) The transition rates λij(·, ·) are continuous in [0, T ]× U for any
i, j ∈ S.

Remark 1: 1). All the properties of the controlled Markov process
are determined by the transition rates, so it is sufficient to make
assumptions about the transition rates only. However, in practice, it
is a difficult task to identify the transition rates; statistical analysis is
useful in this context. This is not the aim of this article, so we will
not expand this aspect here and leave it for a future project.
2). For each fixed i ∈ S, the transition rate λij is bounded due to
the continuity and stability.

Problem (S): The optimal control problem we are interested in is
to maximize the utility functional given by the probability staying
on the given target set B: for (t, x) ∈ [0, T ]×B,

J(t, x, u(·)) := P{Xt,x
s,u(·) ∈ B, ∀s ∈ [t, T ]} (2)

over u(·) ∈ Ut. The value function associated with (2) is defined as

V (t, x) := sup
u(·)∈Ut

J(t, x, u(·)), (t, x) ∈ [0, T ]×B. (3)

Note the boundary condition{
V (T, x) = 1, ∀x ∈ B,

V (t, x) = 0, ∀(t, x) ∈ [0, T ]×Bc.
(4)

Remark 2: 1) Let τ1 := inf{s ≥ t,Xs ̸= x|Xt = x} denote the
first jump time of Xs after t. By (1), for any control u(·) ∈ Mt, we
have

P{τ1 > T} = exp{
∫ T

t
λxx(r, u(r))dr} > 0 (5)

which implies that V (t, x) > 0 always holds for each x ∈ B.
2). For a fixed x ∈ B, let τ(u(·)) := inf{s ≥ t,Xt,x

s,u(·) /∈ B} denote

the first exit time of Xt,x
s,u(·) from B; then, the utility functional (2)

can be rewritten as

J(t, x, u(·)) = P{τ(u(·)) > T}.

Definition 1: A control u∗(·) ∈ Ut is called an optimal control of
Problem (S) if u∗(·) is the control such that

V (t, x) = J(t, x, u∗(·)). (6)
Remark 3: The optimality criterion in this article is similar to that

in [14] on optimal risk probability for first passage models of semi-
MDPs, since there is no reward/cost structure in these models. The
admissible controls we consider here are stochastic processes adapted
to the natural filtration generated by the underlying Markov chain,
which are different from the policies studied in [14] as well as some
continuous-time MDPs with risk probability criteria, such as [15],
[16]. In these works, the policies are only taken at each jump point.

II. DYNAMIC PROGRAMMING PRINCIPLE

One of the most commonly used approaches to solve stochastic
optimal control problems is to establish the DPP based on the
pioneering work of Bellman [3]. The basic idea of DPP is to consider
a family of optimal control subproblems initiated at different times
and states. Then, the next step is to establish the connections among
these subproblems and solve all of them finally. However, for any
s ∈ (t, T ], Xt,x

s is a random variable in (Ω,F , P ) rather than
a deterministic state in S, but it can be regarded as almost surely
deterministic under the conditional probability measure P{·|Ft

s}(ω)
for each fixed ω ∈ Ω, in the sense that all the dynamics of Xt,x

·
during the time period [t, s] are known under the filtration Ft

s, as
explained in [31]. Then for any s ∈ (t, T ] and a given u(·) ∈ Ut, we
have

J(s,Xs(ω), u(·)) = P{X
s,X

t,x
s,u(·)

r,u(·) ∈ B,∀r ∈ [s, T ]|Ft
s}(ω), P − a.s.

Then, for each (t, x) ∈ [0, T ) × B and s ∈ (t, T ], by taking
conditional expectation, we have

J(t, x, u) =E

[
I{Xt,x

r,u(·)∈B,∀r∈[t,T ]}

]
=E

[
I{Xt,x

r,u(·)∈B,∀r∈[t,s]}E[I{Xt,x
r,u(·)∈B,∀r∈[s,T ]}|F

t
s]

]
=E

[
I{Xt,x

r,u(·)∈B,∀r∈[t,s]}E[I{Xs,Xs
r,u(·)∈B,∀r∈[s,T ]}|F

t
s]

]
=E

[
I{Xt,x

r,u(·)∈B,∀r∈[t,s]}J(s,X
t,x
s,u(·), u(·))

]
, (7)

where IF denotes the indicator function of set F ∈ F . Here we used

the flow relation Xt,x
r,u(·) = X

s,X
t,x
s,u(·)

r,u(·) , P{· | Ft
s}(ω)−a.s., for all

t ≤ s ≤ r ≤ T and each fixed ω ∈ Ω.
Theorem 1: For any (t, x) ∈ [0, T )×B and s ∈ (t, T ], the value

function V (t, x) satisfies the DP equation

V (t, x) = sup
u(·)∈Ut

E

[
I{Xt,x

r,u(·)∈B,∀r∈[t,s]}V (s,Xt,x
s,u(·))

]
. (8)

In particular, for a sufficiently small δ > 0, we have

V (t, x) = sup
u(·)∈Ut

E
[
V (t+ δ,Xt,x

t+δ,u(·))
]
+ o(δ). (9)

Proof: First, for any ε > 0, it is easy to know that there exists
û(·) ∈ Ut such that for any t ≤ s ≤ T ,

sup
u(·)∈Ut

E

[
I{Xt,x

r,u(·)∈B,∀r∈[t,s]}V (s,Xt,x
s,u(·))

]
− ε

<E

[
I{Xt,x

r,û(·)∈B,∀r∈[t,s]}V (s,Xt,x
s,û(·))

]
=

∑
x′∈S

V (s, x′)E

[
I{Xt,x

r,û(·)∈B,∀r∈[t,s]}I{Xt,x
s,û(·)=x′}

]
.

(10)
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Note, for each x′ ∈ S, there exists a control usx
′
(·) ∈ Us such that

V (s, x′)− ε < J(s, x′, usx
′
(·)). (11)

Let

ũ(·) :=

{
ûr(·), r ∈ [t, s),∑

x′ u
sx′
r (·)I{Xs=x′}, r ∈ [s, T ],

which forms an admissible control in Ut. Thus, by (7) and combing
the 2ε’s in (10) and (11), we have

sup
u(·)∈Ut

E[I{Xt,x
r,u(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u(·))]− 2ε

<
∑
x′∈S

J(s, x′, usx
′
(·))E[I{Xt,x

r,û(·)∈B,∀r∈[t,s]}I{Xt,x
s,û(·)=x′}]

=E[I{Xt,x
r,ũ(·)∈B,∀r∈[t,s]}J(s,X

t,x
s,ũ(·), ũ(·))]

=J(t, x, ũ(·)) ≤ V (t, x).

Since ε > 0 is arbitrary, we have

V (t, x) ≥ sup
u(·)∈Ut

E[I{Xt,x
r,u(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u(·))]. (12)

Conversely, for any ε > 0, there exists uε(·) ∈ Ut such that

−ε+ V (t, x) < J(t, x, uε(·))
=E[I{Xt,x

r,uε(·)∈B,∀r∈[t,s]}J(s,X
t,x
s,uε(·), u

ε(·))]

≤E[I{Xt,x
r,uε(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,uε(·))]

≤ sup
u(·)∈Ut

E[I{Xt,x
r,u(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u(·))].

Since ε > 0 is arbitrary, we deduce that

V (t, x) ≤ sup
u(·)∈Ut

E[I{Xt,x
r,u(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u(·))]. (13)

Combining (12) and (13), we thus obtain (8).
To see (9), from (8), for a sufficiently small δ > 0, we have

V (t, x) = sup
u(·)∈Ut

E[I{Xt,x
r,u(·)∈B,∀r∈[t,t+δ]}V (t+ δ,Xt,x

t+δ,u(·))].

However, the transition probabilities (1) imply that the probability of
two jumps occurring in a small interval of length δ is o(δ). In fact,

E[I{Xt,x
s,u(·)∈B,∀s∈[t,t+δ]}V (t+ δ,Xt,x

t+δ,u(·))]

=
∑
x′∈B

V (t+ δ, x′)E[I{Xt,x
s,u(·)∈B,∀s∈[t,t+δ]}I{Xt,x

t+δ,u(·)=x′}].

However, the event {Xt,x
t+δ,u(·) = x′ ∈ B} includes two distinct

cases: Ω1:={Xs always stays in B during the period [t, t + δ] and
Xt,x

t+δ,u(·) = x′} and Ω2:={Xs jumps out of B and then returns back

with Xt,x
t+δ,u(·) = x′ ∈ B}. From (1), we have P (Ω2) = O(δ2).

Then,

E[I{Xt,x
t+δ,u(·)=x′}]

=P (Xt,x
t+δ,u(·) = x′) = P (Ω1) + P (Ω2)

=E[I{Xt,x
s,u(·)∈B,∀s∈[t,t+δ]}I{Xt,x

t+δ,u(·)=x′}] + P (Ω2)

=E[I{Xt,x
s,u(·)∈B,∀s∈[t,t+δ]}I{Xt,x

t+δ,u(·)=x′}] + o(δ).

That is,

E[I{Xt,x
s,u(·)∈B,∀s∈[t,t+δ]}V (t+ δ,Xt,x

t+δ,u(·))]

=
∑
x′∈B

V (t+ δ, x′)E[I{Xt,x
t+δ,u(·)=x′}] + o(δ).

Then, by the boundary condition (4) of V (t, x), we have

V (t, x) = sup
u(·)∈Ut

E[I{Xt,x
r,u(·)∈B,∀r∈[t,t+δ]}V (t+ δ,Xt,x

t+δ,u(·))]

= sup
u(·)∈Ut

∑
x′∈B

V (t+ δ, x′)E[I{Xt,x
t+δ,u(·)=x′}] + o(δ)

= sup
u(·)∈Ut

∑
x′∈S

V (t+ δ, x′)E[I{Xt,x
t+δ,u(·)=x′}] + o(δ)

= sup
u(·)∈Ut

E[V (t+ δ,Xt,x
t+δ,u(·))] + o(δ).

This completes the proof.
Remark 4: The DP equations we obtained in Theorem 1 are

different from the optimality equations given in [15] and [16]. The
latter describes the relationship of value functions at successive jump
points, but the DP equations here describe the relationship of value
functions at any different time points. Furthermore, a nonlinear partial
differential equation, i.e., the HJB equation, can be obtained in the
next section from the DPP. This was not obtained from optimality
equations in [15] and [16]. Our results of the DP equation and the
HJB equation for this kind of problem are new.

Remark 5: If T = ∞, we can also obtain a DP function, in which
the freely chosen time s should be replaced by some stopping times.
Some examples of DPP involving stopping times can be found in
[18], [30], and references therein.

Theorem 2: If u∗(·) is an optimal control of Problem (S), then for
any s ∈ (t, T ]

V (s,Xt,x
s,u∗(·)) = J(s,Xt,x

s,u∗(·), u
∗(·)), P − a.s., (14)

conditional on {Xt,x
r,u∗(·) ∈ B,∀r ∈ [t, s]}.

Furthermore, DP equation (8) turns out to be optimal equation

V (t, x) = E[I{Xt,x
r,u∗(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u∗(·))], (15)

and (9) turns out to be

V (t, x) = E
[
V (t+ δ,Xt,x

t+δ,u∗(·))
]
+ o(δ). (16)

Proof: By (6), (7) and (8), for any s ∈ (t, T ], we have

V (t, x) = E[I{Xt,x
r,u∗(·)∈B,∀r∈[t,s]}J(s,X

t,x
s,u∗(·), u

∗(·))]

≤ E[I{Xt,x
r,u∗(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u∗(·))]

≤ V (t, x).

Hence indeed,

E[I{Xt,x
r,u∗(·)∈B,∀r∈[t,s]}J(s,X

t,x
s,u∗(·), u

∗(·))]

=E[I{Xt,x
r,u∗(·)∈B,∀r∈[t,s]}V (s,Xt,x

s,u∗(·))].

From Remark 2, P{Xt,x
r,u∗(·) ∈ B,∀r ∈ [t, s]} > 0, and by

the definitions of utility functional and value function, one has
J(s,Xt,x

s,u∗(·), u
∗(·)) ≤ V (s,Xt,x

s,u∗(·)). It follows that

J(s,Xt,x
s,u∗(·), u

∗(·)) = V (s,Xt,x
s,u∗(·)), P − a.s.,

conditional on {Xt,x
r,u∗(·) ∈ B,∀r ∈ [t, s]}. Naturally, the DP

equations (8) and (9) turn out to be (15) and (16), respectively.
If u∗(·) ∈ Ut is an optimal control of problem (S), Theorem

2 means that u∗(·) restricted on [s, T ] is also optimal P-almost
surely for the optimal control subproblem over [s, T ] initiated by
(s,Xt,x

s,u∗(·)) conditional on {Xt,x
r,u∗(·) ∈ B,∀r ∈ [t, s]} for any

t ≤ s ≤ T .
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III. HJB EQUATION AND EXISTENCE OF OPTIMAL
CONTROL

From the DPP obtained in the last section, we will establish the
relationships among these optimal control subproblems by deriving
the so-called HJB equation in this section. In the classical DP
problems, the state processes are usually characterized as stochastic
differential equations driven by standard Brownian motions, which
implies that the state processes are continuous and the HJB equations
are normally backward partial differential equations with continuous
terminal conditions, readers are referred to [12], [31] and references
therein for more details. Different from the classical HJB equation,
the HJB equation, derived below (20) in the context of this article, is
a backward differential-difference equation with Dirichlet boundary
value and terminal value given by an indicator function of the
surviving set. We first discuss the infinitesimal generator of the
controlled Markov jump process.

Define the operator L as the infinitesimal generator of Xt. For any
(t, x) ∈ [0, T ) × S, u(·) ∈ Ut (with ut = u ∈ U ) and bounded
function f, from (1) we have

Luf(x) = lim
δ→0+

1

δ
E[f(Xt,x

t+δ,u(·))− f(x)]

= lim
δ→0+

1

δ

∑
x′ ̸=x

P{Xt,x
t+δ,u(·) = x′}(f(x′)− f(x))

=
∑
x′ ̸=x

λxx′(t, u)(f(x
′)− f(x)).

(17)

For each deterministic Markov control u(·) ∈ Mt, denote Mf
s :=

f(Xt,x
s,u(·))−

∫ s
t L

u(·)f(Xt,x
r,u(·))dr. Then Mf

s is {Ft
s}-adapted and

integrable since the transition rates of the process Xt is assumed to
be stable. Moreover, for ŝ ∈ [t, s], from the definition of infinitesimal
generator, it is easy to see

Luf(Xt,x
r,u(·)) = lim

δ→0+

1

δ
E[f(Xt,x

r+δ,u(·))− f(Xt,x
r,u(·)) | F

t
r]

=E[
d

dr
f(Xt,x

r,u(·)) | F
t
r], P − a.s.

It turns out that

E[f(Xt,x
s,u(·))− f(Xt,x

ŝ,u(·))−
∫ s

ŝ
Lu(·)f(Xt,x

r,u(·))dr|F
t
ŝ]

= 0, P − a.s.

Therefore, for any t ≤ ŝ ≤ s ≤ T , we have

E[Mf
s |Ft

ŝ] = E[f(Xt,x
s,u(·))−

∫ s

t
Lu(·)f(Xt,x

r,u(·))dr|F
t
ŝ]

=−
∫ ŝ

t
Lu(·)f(Xt,x

r,u(·))dr

+ E[f(Xt,x
s,u(·))−

∫ s

ŝ
Lu(·)f(Xt,x

r,u(·))dr|F
t
ŝ]

=f(Xt,x
ŝ,u(·))−

∫ ŝ

t
Lu(·)f(Xt,x

r,u(·))dr =Mf
ŝ , P − a.s.

That is, {Mf
s }t≤s≤T is a {Ft

s}-martingale with mean f(x). Thus
we obtain Dynkin’s formula

E[f(Xt,x
s,u(·))] = f(x) + E[

∫ s

t
Lu(·)f(Xt,x

r,u(·))dr]. (18)

Similarly, we can prove that for any function f(t, x), which is
bounded in x and right differentiable w.r.t. t, we have

E[f(s,Xt,x
s,u(·))]

=f(t, x) +

∫ s

t
E[ft(r,X

t,x
r,u(·)) + Lu(·)f(r,Xt,x

r,u(·))]dr.
(19)

Theorem 3: The value function V (t, x) is right differentiable w.r.t.
t, and is a classical solution of the following first-order nonlinear
differential-difference equation

V +
t (t, x) + sup

u∈U
LuV (t, x) = 0, ∀(t, x) ∈ [0, T )×B, (20)

with boundary condition (4), where V +
t (·, x) denotes the right

derivative of V w.r.t. t.
Proof: Consider a sufficiently small δ > 0, by (9) and for any

x ∈ B, we have

V (t+ δ, x)− V (t, x)

=V (t+ δ, x)− sup
u(·)∈Ut

E
[
V
(
t+ δ,Xt,x

t+δ,u(·)

)]
+ o(δ).

For any u(·) ∈ Ut (with ut = u ∈ U ), we have

lim sup
δ→0

1

δ
(V (t+ δ, x)− V (t, x))

≤ lim
δ→0

1

δ

 ∑
x′ ̸=x

P{Xt,x
t+δ,u(·) = x′}(V (t+ δ, x)−V (t+ δ, x′)) + o(δ)


=

∑
x′ ̸=x

λxx′(t, u)(V (t, x)− V (t, x′)).

From the definition of generator (17) of Xt and taking the supremum
over u ∈ U , we have

lim sup
δ→0

1

δ
(V (t+ δ, x)− V (t, x)) + sup

u∈U
LuV (t, x) ≤ 0. (21)

Conversely, there exists û(·) ∈ Ut (with ût = û ∈ U ) such that

1

δ
(V (t+ δ, x)− V (t, x))

>
1

δ

[
V (t+ δ, x)− E

[
V
(
t+ δ,Xt,x

t+δ,û(·)

)]
− εδ + o(δ)

]
.

In the lower limit of δ → 0, we have

lim inf
δ→0

1

δ
(V (t+ δ, x)− V (t, x)) + LûV (t, x) > −ε.

Since ε > 0 is arbitrary and taking the supremum over u ∈ U , we
have

lim inf
δ→0

1

δ
(V (t+ δ, x)− V (t, x)) + sup

u∈U
LuV (t, x) ≥ 0. (22)

Since the transition rates of Xt is continuous and V ∈ [0, 1], then

| sup
u∈U

∑
x′ ̸=x

λxx′(t, u)(V (t, x)− V (t, x′))|

≤ sup
u∈U

∑
x′ ̸=x

λxx′(t, u) = sup
u∈U

|λxx(t, u)| <∞.

This, combining (21) and (22) leads to

lim
δ→0

1

δ
(V (t+ δ, x)− V (t, x)) + sup

u∈U
LuV (t, x) = 0. (23)

Then, the limit V +
t (t, x) := limδ→0

1
δ (V (t+ δ, x)−V (t, x)) exists

and is finite and unique because of the uniqueness of supremum.
Thus, the HJB equation (20) holds and the value function V (t, x) is
its classical solution. It is easy to see the boundary conditions are
also satisfied.

Remark 6: In classical DP problems, the differentiabilities of the
value function V w.r.t. the time variable and state variable are
normally unattainable. One usually can only prove that the value
function is a viscosity solution [8]. The existence and uniqueness of
viscosity solutions to HJB equations can be found in [8] and some
other literature, such as [18], [27] and [19]. In this article, we proved
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that the value function is a classical solution of HJB equation (20),
and the uniqueness will be given in Theorem 5.

Since the transition rates of the process Xt is assumed to be stable,
then the function (u, t, x) 7→ LuV (t, x) is continuous w.r.t. u in U
and measurable w.r.t. (t, x) in [0, T ) × B, so by the compactness
assumption of U and the measurable selection theorem [2], there
exists a measurable control function ū(·, ·) in [0, T )×B such that

Lū(t,x)V (t, x) = sup
u∈U

LuV (t, x), ∀(t, x) ∈ [0, T )×B. (24)

Let
u∗(t, ω) = ū(t,Xt(ω)). (25)

Then, u∗(·) is a deterministic Markov control, that is, u∗(·) ∈ M.
Next we will prove that the deterministic Markov control u∗(·)

defined by (25) is an optimal control of Problem (S). This result
provides the conjugacy of the optimal control in terms of the HJB
equation and that of the utility surviving probability.

Theorem 4: The deterministic Markov control u∗(·) ∈ M defined
by (25) is the optimal control of Problem (S), i.e., such u∗(·) is the
control such that V (t, x) = J(t, x, u∗(·)), ∀(t, x) ∈ [0, T )×B.

Proof: Let u∗(·) be the deterministic Markov control defined
by (25). Then, by Dynkin’s formula (19), we have

E
[
V
(
T,Xt,x

T,u∗(·)

)]
=V (t, x) +

∫ T

t
E
[
V +
t

(
r,Xt,x

r,u∗(·)

)
+ Lu∗(·)V

(
r,Xt,x

r,u∗(·)

)]
dr.

Note that this does not imply that E[V (T,Xt,x
T,u∗(·))] = V (t, x),

since u∗(·) is the control such that V +
t (t, x) + Lū(t,x)V (t, x) = 0

holds only for x ∈ B.
To proceed, we consider, for a sufficiently small δ > 0 such that

(T − t)/δ is an integer, the discretization with step size of length δ,

E
[
V
(
t+ δ,Xt,x

t+δ,u∗(·)

)]
=V (t, x) + [V +

t (t, x) + Lū(t,x)V (t, x)]δ + o(δ) = V (t, x) + o(δ).

Since V (s, x′) = 0 for each x′ ∈ Bc, we have∑
x′∈B

V (t+ δ, x′)P{Xt,x
t+δ,u∗(·) = x′} = V (t, x) + o(δ).

Furthermore,∑
x′∈B

E[V (t+ 2δ,Xt+δ,x′

t+2δ,u∗(·))]P{Xt,x
t+δ,u∗(·) = x′}

=E[V (t+ δ,Xt,x
t+δ,u∗(·))] +

∑
x′∈B

P{Xt,x
t+δ,u∗(·) = x′}·

[V +
t (t+ δ, x′) + Lū(t+δ,x′)V (t+ δ, x′)]δ + o(δ)

=V (t, x) + o(δ).

On the other hand,∑
i∈B

E[V (t+ 2δ,Xt+δ,i
t+2δ,u∗(·))]P{Xt,x

t+δ,u∗(·) = i}

=
∑
x′∈B

V (t+ 2δ, x′)(
∑
i∈B

P{Xt,x
t+δ,u∗(·) = i}P{Xt+δ,i

t+2δ,u∗(·) = x′})

=
∑
x′∈B

V (t+ 2δ, x′)(
∑
i∈B

P{Xt+δ,Xt+δ

t+2δ,u∗(·) = x′, Xt,x
t+δ,u∗(·) = i})

=
∑
x′∈B

V (t+ 2δ, x′)P{Xt+δ,Xt+δ

t+2δ,u∗(·) = x′, Xt,x
t+δ,u∗(·) ∈ B}.

Since for each x ∈ B, V (T, x) = 1, by iteration, we have

V (t, x) +
o(δ)

δ

=P{XT−δ,XT−δ

T,u∗(·) ∈ B, · · · , Xt+δ,Xt+δ

t+2δ,u∗(·) ∈ B,Xt,x
t+δ,u∗(·) ∈ B}.

In the limit of δ → 0, we have

V (t, x) = P{Xt,x
s,u∗(·) ∈ B,∀s ∈ [t, T ]} = J(t, x, u∗(·)). (26)

Thus, u∗(·) is an optimal control of Problem (S).
Theorem 4 says that there exists an optimal deterministic Markov

control of Problem (S); thus, the value function can be rewritten as

V (t, x) = max
u(·)∈Mt

J(t, x, u(·)). (27)

Theorem 3 says that V is a classical solution of HJB equation (20),
and Theorem 4 gives the existence theorem of optimal control, based
on which we have the following verification theorem.

Theorem 5: The value function V is the unique solution of HJB
equation (20).

Proof: We need to prove that if there exists another bounded and
measurable function ψ(t, x) solving (20), which is right differentiable
w.r.t. t for each x ∈ B, then

ψ(t, x) = V (t, x), ∀(t, x) ∈ [0, T ]× S. (28)

In fact, we only need to prove that (28) holds for each (t, x) ∈
[0, T )×B. By Dynkin’s formula (19) and for each u(·) ∈ Mt, we
have

E[ψ(T,Xt,x
T,u(·))]

=ψ(t, x) + E[

∫ T

t
ψ+
t (r,Xt,x

r,u(·)) + Lu(r,Xr)ψ(r,Xt,x
r,u(·))dr].

Considering the discretization of the process Xt,x
s,u(·) with step size

of length δ such that (T − t)/δ is an integer, we have

E[ψ(t+ δ,Xt,x
t+δ,u(·))] = ψ(t, x) + (ψ+

t (t, x) + Lu(t,x)ψ(t, x))δ + o(δ),

since ψ(s, x′) = 0 for each x′ ∈ Bc, we have∑
x′∈B

ψ(t+ δ, x′)P{Xt,x
t+δ,u(·) = x′}

=ψ(t, x) + (ψ+
t (t, x) + Lu(t,x)ψ(t, x))δ + o(δ).

(29)

Since ψ solves (20), that is

ψ+
t (t, x) + Lu(t,x)ψ(t, x) ≤ 0,

then we have∑
x′∈B

ψ(t+ δ, x′)P{Xt,x
t+δ,u(·) = x′} ≤ ψ(t, x) + o(δ).

Similar as in the proof of Theorem 4, we have for each u(·)

ψ(t, x) ≥ P{Xt,x
s,u(·) ∈ B,∀s ∈ [t, T ]}.

Taking the maximum over u(·) ∈ Mt, we have

ψ(t, x) ≥ max
u(·)∈Mt

P{Xt,x
s,u(·) ∈ B,∀s ∈ [t, T ]}. (30)

Conversely, there exists a deterministic Markov control u∗(·) ∈ M,
such that

sup
u∈U

Luψ(t, x) = Lu∗(t,x)ψ(t, x), ∀(t, x) ∈ [0, T )×B.

Using the discretization method used to derive (26), we have

ψ(t, x) = P{Xt,x
s,u∗(·) ∈ B,∀s ∈ [t, T ]}. (31)
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Combining (30) and (31), we have

ψ(t, x) = max
u(·)∈Mt

P{Xt,x
s,u(·) ∈ B,∀s ∈ [t, T ]} = V (t, x).

That completes the proof.
It is not difficult to find that the u∗ given in the Theorem 5 also

is an optimal control of Problem (S).

IV. THE CASE STARTING FROM OUTSIDE OF THE TARGET
SET

In the previous sections, we have discussed the stochastic optimal
control problem whose utility functional is given by the probability
on a given set B, if X0 = x0 ∈ B. However, x0 does not necessarily
belong to B. For the case that x0 /∈ B and any t0 ∈ (0, T ], we can
consider the optimal control problem to find an optimal control to
maximize the probability that P{X

t0,Xt0
s,u(·) ∈ B, s ∈ [t0, T ]}.

In this section we will find the optimal control within M. In fact

P{X
t0,Xt0
s,u(·) ∈ B, s ∈ [t0, T ]}

=
∑
x∈B

P{Xx0
t0,u(·)

= x}P{Xt0,x
s,u(·) ∈ B, s ∈ [t0, T ]}.

(32)

Similar as in the proof of Theorem 1, we have

sup
u(·)∈M

∑
x∈B

P{Xx0
t0,u(·)

= x}P{Xt0,x
s,u(·) ∈ B, s ∈ [t0, T ]}


= sup

u(·)∈M

∑
x∈B

P{Xx0
t0,u(·)

= x}

× sup
u(·)∈Mt0

P{Xt0,x
s,u(·) ∈ B, s ∈ [t0, T ]}

)
.

We have proved that there exists u∗(·) ∈ Mt0 such that

sup
u(·)∈Mt0

P{Xt0,x
s,u(·) ∈ B, s ∈ [t0, T ]} = P{Xt0,x

s,u∗(·) ∈ B, s ∈ [t0, T ]}.

Denote the above probabilities by ax; then, (32) turns out to be∑
x∈B

axP{Xx0
t0,u(·)

= x}. (33)

It turns out that the optimal control problem that we consider in this
section is to maximize the utility functional: for (t, x) ∈ [0, t0]× S

J (t, x, u(·)) = E[
∑
x′∈B

I{Xt,x
t0,u(·)

=x′}ax′ ] =: E[g(Xt,x
t0,u(·)

)],

over u(·) ∈ Mt and g is a bounded function. Then, the value function
is

V(t, x) = sup
u(·)∈Mt

J (t, x, u(·)). (34)

With a similar proof to that of Theorems 1, 3, 4 and 5, we have the
following theorem.

Theorem 6: The value function V(t, x) satisfies the DP equation

V(t, x) = sup
u(·)∈Mt

E[V(s,Xt,x
s,u(·))], ∀s ∈ (t, t0]. (35)

The value function V is the unique solution of HJB equationV+
t (t, x) + sup

u∈U
LuV(t, x) = 0, (t, x) ∈ [0, t0)× S,

V(t0, x) = ax, if x ∈ B or 0 otherwise, t0 ∈ (0, T ].
(36)

There exists a deterministic Markov control u∗(·) ∈ Mt such that

V(t, x) = J (t, x, u∗(·)), (t, x) ∈ [0, t0]× S. (37)

Remark 7: In fact, the discussion in this section covers the case
that t0 = 0 with P{Xx0

s,u(·) ∈ B, s ∈ [t0, T ]} = 0 satisfying the
terminal condition in (36).

V. EXAMPLES

Example 1: Let S = {1, 2, 3} be the state space of Markov chain
Xt, t ∈ [0, T ] and B = {2} as the target set. By the discussion given
in the previous sections, the value function V (t, x) satisfies the HJB
equation (20). By the boundary condition of V , we have

V +
t (t, 2) + sup

u∈U
V (t, 2)λ22(t, u) = 0.

That is,

V (t, 2) ≥ sup
u(·)∈Mt

exp{
∫ T

t
λ22(s, u(s))ds}.

By the existence theorem of optimal control, we have

V (t, 2) = max
u(·)∈Mt

exp{
∫ T

t
λ22(s, u(s))ds}.

Example 2: Consider a controlled time-homogeneous birth-and-
death process, denoted by {Xt}0≤t≤T , as an example of general
controlled Markov processes considered in the main result of this
article. The state space of the process Xt is S = {0, 1, · · · ,K}, and
the control domain is U = [a, b]. The transition rates are given by

λxx′(u) =


rx(u− 2x

K )2, x′ = x+ 1,

dx(u− 2x
K )2, x′ = x− 1,

−(r + d)x(u− 2x
K )2, x′ = x.

Our optimal control problem is to maximize the utility function

J(t, x, u(·)) = P{Xt,x
s,u(·) ∈ B,∀s ∈ [t, T ]}, (t, x) ∈ [0, T ]×B,

over u(·) ∈ Mt. This example satisfies all conditions set in this
article, and the corresponding value function is

V (t, x) = max
u(·)∈Mt

J(t, x, u(·)).

Recall the DP equation (8) and HJB equation (20). By (24), the
optimal control is the control maximizing

LuV (t, x) =λx,x+1(u)(V (t, x+ 1)− V (t, x))

+ λx,x−1(u)(V (t, x− 1)− V (t, x))

=:Gx(u− 2x

K
)2, x ∈ B,

where Gx = rx(V (t, x+1)−V (t, x))+dx(V (t, x−1)−V (t, x)).
If Gx is positive, we need to find u ∈ [a, b] to maximize (u− 2x

K )2,
and if Gx is negative, we need to find u to minimize (u − 2x

K )2.
Because of the right-continuity of Xt, it is easy to see from (25) and
Theorem 4 that the control process is right continuous. Therefore, the
control process is measurable. Unfortunately, the partial derivative
in HJB equation is just a right-derivative, and the HJB equation
is a backward differential-difference equation, so it cannot be used
directly for the simulation of this stochastic optimal control problem.
We can investigate the properties of optimal control and simulate
value function using DP equation.

For a numerical experiment, consider d = r = 0.04, K =
100, B = {30, 31, · · · , 60}, T = 100, ∆t = 0.01, and N =
T/∆t. In addition, let a = 1, b = 2, ∆u = 0.01, and U =
{1, 1.01, 1.02, · · · , 2}. This model is discretized and naturally be-
comes a discrete-time MDP with a risk probability criterion. The
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one-step transition probabilities of Xn = Xn∆t are given by

Pxx′(u) =


rx∆t(u− 2x

K )2, x′ = x+ 1,

dx∆t(u− 2x
K )2, x′ = x− 1,

1− (r + d)x∆t(u− 2x
K )2, x′ = x.

The discrete-time version of DPP (8) (see Theorem 1) is stated in
the following steps:
Step 1. Let V (N, x) = 1, for all x ∈ B;
Step 2. For n ∈ {N − 1, · · · , 1, 0},

V (n, 30) = max
u∈U

{0.04 · 30 · 0.1 · (u− 0.6)2 · V (n+ 1, 31)

+ (1− 0.08 · 30 · 0.1 · (u− 0.6)2) · V (n+ 1, 30)},

V (n, 60) = max
u∈U

{0.04 · 60 · 0.1 · (u− 1.2)2 · V (n+ 1, 59)

+ (1− 0.08 · 60 · 0.1 · (u− 1.2)2) · V (n+ 1, 60)},

for x ∈ {31, · · · , 59},

V (n, x) = max
u∈U

{0.04x · 0.1 · (u− x

50
)2 · V (n+ 1, x+ 1)

+ 0.04x · 0.1 · (u− x

50
)2 · V (n+ 1, x− 1)

+ (1− 0.08x · 0.1 · (u− x

50
)2) · V (n+ 1, x)},

record each optimal u;
Step 3. Plot V (0, x).
We calculate V (0, x) for U = {1, 1.01, 1.02, · · · , 2} and plot the
graph in Fig. 1 as the curves in red dotted line. We also take u =1, 1.5
and 2 as three different fixed values and calculate V (0, x) according
to the above algorithm without seeking optimal control u and plot
the graph x 7→ V (0, x) in Fig. 1 as the curves in orange, blue and
black dotted lines.

Fig. 1. V(0,x) for different control domain U.

Remark 8: 1). The difference between the optimal surviving prob-
abilities with a proper control (taking U = {1, 1.01, · · · , 2}) and the
surviving probabilities have a fixed u is clearly shown especially for
x being near to the top of the target set. It is easy to see that the red
line is higher than and equal to other three lines for each x.
2). The optimal control process is recorded as a matrix, which can
provide the optimal policy for each DP problem initiated by each
state and time.

We also calculate the optimal control problems of surviving
probabilities with U = {1, 1.01, · · · , 2}, N = {30, 31, · · · , 60}
and different values of d (r is assumed to be the same as before):
d = 0.6r, 0.8r, r, 1.2r, 1.4r, respectively. We plot them in Fig.2.

It is noted that the probability V (0, x) is increasing with the
decrease of d for each x ∈ B, which means decreasing the death
rates is benefit to the controlled Markov chain staying in a safety
range under the condition that the birth rate remains unchanged.

Fig. 2. V(0,x) for different death rates d.

We also simulate value functions according to the above algorithm
(Steps 1-3) for B = {0, 1, · · · , 30} and calculate them with U =
{1, 1.01, · · · , 2} and different values of d (r is assumed to be the
same as before): d = 0.6r, 0.8r, r, 1.2r, 1.4r, respectively. We plot
them in Fig.3.

Fig. 3. V(0,x) for different death rates d.

Different from Fig.2, the value function V (0, x) in Fig.3 is increas-
ing with the increase of d for each x ∈ B under the condition that r
remains unchanged. An example of the model in Fig.2 is the human
population model staying in a set of a relatively moderate or large
size. In this case, decreasing the death rate can make a substantial
difference only when the population has a relatively moderate size.
While the model in Fig.3 show, e.g., in the cancer cell population
model, it is desirable to have less number or extinction of cancer cells.
In the latter case, increasing death rate improves the probability of
keeping the size of cancer cells to be in the safety target set.

Fig. 4. Graph of V(0, x), x ∈ {0, 1, · · · , 100}.

We also consider the case starting from the outside of the
target set B and use the value function V (0, x) with U =
{1, 1.01, 1.02, · · · , 2} (see the red line in Fig.1) as the terminal
condition of the value function V(T, x). Using the algorithm as
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explained in Step 2 with U = {1, 1.01, · · · , 2}, we carry out our
numerical computation and plot our result in Fig. 4. Note that, in
this case, the algorithm focus on the state space S, not just on the
target set B.

VI. CONCLUSION AND FURTHER CONSIDERATIONS

In this article, we consider continuous-time MDPs and derive the
DPP and HJB equation for optimal surviving probability V (t, x) =
supu(·)∈Ut

P{Xt,x
s,u(·) ∈ B,∀s ∈ [t, T ]} instead of using the

optimality equations as in [15] and [16]. The optimality criterion we
consider is the risk probability that the first exit time from a target
set of the controlled Markov chains exceeds a fixed value. Such a
setup is applicable in many real-world contexts. The main effort of
this article is to establish the DPP, derive the HJB equation, prove
the existence of optimal controls, and verify the value function is
the unique solution of the HJB equation. The problem is not covered
by the traditional stochastic optimal problem and associated DPP and
HJB equation. It is also not covered by the risk probability considered
by Huo et al. [15], [16]. In fact, as V (t, x) depends on the surviving
set B, we can define a set function as Vt,x(B) = V (t, x). Then it is
easy to see that Vt,x : V(S) → [0, 1] is a superadditive capacity.
In this sense, we obtained the HJB equation for a superadditive
capacity given by an optimal surviving probability. This is in contrast
to the traditional stochastic optimal control problems, where the
value function is a sublinear expectation operator [23]. Given the
recent progress of the ergodic theory of sublinear semigroup and
capacity [10], [11], and that the superlinear semigroup and the
sublinear semigroup are conjugate to each other, it would be very
interesting to ask whether or not there exists an invariant superlinear
distribution µ such that Vt,µ = µ. Here Vt,µ(B) = (µVt,·)(B). If
so, is µ a continuous distribution and is it ergodic? The existence of
such an invariant distribution is important in applications giving the
equilibrium of a controlled superlinear process. We will publish this
result in a further publication. The DPP and the HJB equations that
we established in this article will be important tools for the analysis
of invariant distribution and its ergodicity.

In this article, we mainly study the stochastic control problem of
a risk probability criterion of a given controlled Markov process
model. To link our results directly with applications, we should
estimate the transition rates by studying some inverse problems and
carrying out statistical analysis of datasets. This is clearly very
important and worth pursuing in a future project. Controllability
and observability for stochastic control systems are also interesting
problems to investigate; we refer to [20] and [32] and will expand
this aspect in the future.
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[17] A. Jaśkiewicz and A. Nowak. Constrained Markov decision processes
with expected total reward criteria. SIAM Journal on Control and
Optimization, 57:3118–3136, 2019.

[18] S. Lv. Two-player zero-sum stochastic differential games with regime
switching. Automatica, 114:108819, 2020.

[19] S. Lv, Z. Wu, and Q. Zhang. Optimal switching under a hybrid diffusion
model and applications to stock trading. Automatica, 94:361–372, 2018.
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