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Abstract20

Himalayan rivers transport around a gigaton of sediment annually to21

ocean basins. Mountain valleys are an important component of this rout-22

ing system: storage in these valleys acts to buffer climatic and tectonic23

signals recorded by downstream sedimentary systems. Despite a critical24

need to understand the spatial distribution, volume, and longevity of25

these valley fills, controls on valley location and geometry are unknown,26

and estimates of sediment volumes are based on assumptions of val-27

ley widening processes. Here we extract over 1.5 million valley-floor28

width measurements across the Himalaya to determine the dominant29

controls on valley-floor morphology, and to assess sediment storage pro-30

cesses. Using random forest regression we show that channel steepness,31
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a proxy for rock uplift, is a first-order control on valley-floor width.32

Based on a dataset of 1,148 exhumation rates we find that valley-33

floor width decreases as exhumation rate increases. Our results suggest34

that valley-floor width is controlled by long-term tectonically driven35

exhumation rather than by water discharge or bedrock erodibility, and36

that valley widening predominantly results from sediment deposition37

along low-gradient valley floors rather than lateral bedrock erosion.38

Keywords: valley widening, channel steepness, tectonics, exhumation39

Valleys in mountain systems act as transient sinks for sediments that journey40

from sources on mountain hillslopes to their final resting place in forelands or41

ocean basins. This storage can buffer, shred, or destroy propagating sedimen-42

tary signals [1–3]. Therefore, understanding the spatial distribution, volumes,43

and longevity of valley sediment fills is essential to reconstruct landscape evo-44

lution from sedimentary archives. However, controls on the spatial distribution45

of valley fills across the Himalaya are currently unknown. Past efforts to map46

the volumes and residence times of valley fills at scale [4] rely on the assump-47

tion that topography underneath the valley surface is similar to that of the48

exposed side-slopes, and therefore that little lateral erosion of the valley walls49

has taken place.50

To explore valley widening, we consider a conceptual model where chan-51

nels may either abrade or deposit sediment based on the ratio of sediment52

supply (Qs) to transport capacity (Qc) (Fig. 1). In channels with low Qs/Qc,53

little sediment will be deposited on the valley floor, resulting in bedrock inci-54

sion, whereas channels with high Qs/Qc will deposit thick valley fills with55

subsequent valley widening [5–9].56

We can consider lowQs/Qc channels to behave similarly to the detachment-57

limited model for vertical incision, commonly used in mountain landscapes [e.g.58

10]. In this case, valley-floor width changes occur through lateral erosion of59

the valley walls and the balance between vertical incision and lateral erosion.60

Wall erosion is likely to occur when the channel is frequently in contact with61

the walls [6, 11], such as in narrow valleys. Valley-floor width Wv[L] in this62

case has been suggested to scale with bankfull water discharge Qw [L3 T−1],63

modulated by an erodibility coefficient K reflecting the impact of lithology64

[e.g. 12–16]:65

Wv = KQcw. (1)

In landscapes transiently adjusting to changes in rock-uplift rate this rela-66

tionship has been shown to break down [e.g. 17, 18]. An alternative formulation67

postulates that valley width is also dependent on valley slope (S) [11, 17]68

(Supplementary Equations 1 - 5).69

Despite its common application, this low Qs/Qc case is contradicted by70

field observations, which show that mountain valleys are often infilled with71
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sediment (Fig. 1). In valleys with a high Qs/Qc, widening through wall erosion72

will only occur if lateral erosion rates greatly exceed vertical incision, such that73

the channel regularly moves across the valley floor, impinging upon sidewalls [6,74

11]. However, Wv can also change purely through sediment deposition and/or75

erosion, without lateral wall erosion. If we imagine a roughly V-shaped valley76

infilled with sediment (Fig. 1), then increasing sediment fill would widen the77

valley, whereas incision into the fill would narrow it.78

These end-members of Qs/Qc represent contrasting mechanisms of valley-79

floor width changes, which are controlled by different factors (Fig. 1). In both80

cases, rock uplift is likely to be an important control on Wv, because high uplift81

rates elevate channel slopes, decreasing Qs/Qc through increased flow veloc-82

ity, resulting in narrowing and bedrock incision [17]. Alternatively, increased83

frequency of landsliding in regions of high uplift [e.g. 19] could block channels,84

inducing upstream alluviation and widening.85

The lithology of bedrock walls, K, is likely to be a more important control86

on Wv [12, 16] in the low Qs/Qc end-member. In a valley that changes width87

primarily due to sediment erosion or deposition, variations in K are unlikely88

to play a dominant role, as width is not set by lateral bedrock erosion. In the89

high Qs/Qc end-member, K may influence sediment delivery to the channel90

and thus Wv by changing the size and resistance of sediment from hillslope91

failures or upstream sediment transport [20]. However, the complex interplay92

of upstream and lateral sediment supply and downstream sediment transport93

means that it would be challenging to link variations in sediment erodibility to94

Wv at each point along the channel. Faulting may also increase rock fracturing95

and therefore erodibility [e.g. 21]: we might therefore expect that valleys in96

fractured zones (such as near seismogenic faults) would be wider where lateral97

erosion is important, but not in the high Qs/Qc model.98

Equation 1 suggests that water discharge is an important control on Wv:99

however, in our conceptual model, the ratio of sediment flux to water dis-100

charge, Qs/Qw, rather than Qw alone, is likely to influence Wv. Field studies101

[22, 23] and physical experiments [7] have demonstrated that a decrease in102

Qs/Qw leads to incision and valley narrowing, whereas an increase in Qs/Qw103

leads to sediment deposition and widening. Over orogenic scales, we therefore104

hypothesise that the correlation between Wv and Qw would be complicated by105

spatial variations in sediment flux. Sediment-storage volume estimates across106

the Himalaya [4] implicitly use the high Qs/Qc end-member, because they107

assume that little erosion of the valley walls occurs to modify the valley-floor108

topography.109

In this contribution, we investigate dominant controls on Wv across the110

Himalaya and test these end-member models of valley widening and sediment111

storage. We generate a dataset of valley-floor widths across the Himalaya and112

investigate the relative importance of hypothesized controls on Wv through113

random forest regression. We also explore links between Wv, channel steepness114

(ksn), and exhumation rate using a compilation of thermochronometric cooling115

ages [24].116
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We use an automated method [25, 26] to extract Wv from every major117

river basin in the Himalaya, resulting in 1,644,215 width measurements. We118

grid Wv into 10 km pixels to better reveal spatial trends: Fig. 2 shows the119

distribution of Wv across the orogen. We quantify each controlling factor that120

may affect Wv outlined in Fig. 1 (Methods).121

Controls on valley-floor width122

Fig. 3a shows a bimodal distribution of Wv with elevation, where valleys are123

widest at elevations <1000 m and >4000 m. We would expect the southern,124

low elevation region to have wider valleys as discharge increases toward the125

foreland. Although we remove areas affected by glaciation (Methods), widening126

at high elevations also results from past glaciations. We tested for this by127

removing valleys affected by Last Glacial Maximum glaciation, but this did not128

alter the results (Supplementary Fig. 1 and 2). High elevations also correlate129

with lower ksn (Extended Data Fig. 1) and erodible lithologies of the Tethyan130

Himalayan Sequence (THS), suggesting that increased Wv at high elevations131

may be explained by other co-varying factors.132

Fig. 3b also shows that there is variation in median Wv among the main133

tectono-stratigraphic units. This is possibly due to lithological control on Wv,134

as the narrowest valleys are found in the high-grade gneisses and granites of135

the Greater Himalayan Sequence (GHS). The widest valleys are found in the136

sedimentary units of the Siwaliks in the Sub-Himalayan Zone (SHZ). However,137

these variations with tectono-stratigraphy co-correlate with elevation as dis-138

cussed above, making it difficult to separate these two factors. Fig. 3e shows139

there is little variation in Wv with distance from the major tectonic structures140

(MFT, MBT, MCT, or STD), suggesting that increased erodibility through141

fracturing [21] is not enhancing wall erosion.142

Rock-uplift rates across the Himalaya since the middle Miocene have been143

controlled primarily by the geometry of the Main Himalayan Thrust (MHT)144

[27], a northward-dipping décollement which is the basal detachment for the145

MFT, MBT, and MCT. The MHT is thought to be relatively flat under much of146

the Lesser Himalayan Sequence (LHS), steeper to the north over a mid-crustal147

ramp [e.g. 28] beneath the GHS, then flat again beneath the THS (Fig. 4). The148

ramp is associated with faster rock-uplift rates and steeper topography [29],149

with a ‘physiographic transition’ (PT) marking the change from the southern150

(shallower) flat to the ramp. In central Nepal, we find a distinct area of wide151

valley floors within the LHS, with the transition to narrow valleys north of the152

PT coinciding with increased exhumation rate (Fig. 4). Considering that the153

PT cuts across the LHS in this region, the flat-ramp-flat structure of the MHT154

appears to influence Wv in central Nepal more strongly than the transitions155

across tectono-stratigraphic units.156

Existing valley-widening models predict a monotonic relationship between157

Qw and Wv (Equation 1). Our results do not show this relationship (Fig. 3c).158

Although the widest valleys are found in regions with the highest Qw, the159

narrowest valleys (99 ± 280 m) tend to coincide with intermediate Qw of 0.2160
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- 1.0 m3 yr−1. At the lowest Qw of 0.01 - 0.05 m3 yr−1, median Wv increases161

to 139 ± 169 m. This lack of correlation suggests that, in contrast to the162

commonly applied model of width evolution through lateral bedrock erosion,163

Qw is not the dominant control on Wv across the actively uplifting Himalayan164

orogen.165

There is, however, a negative correlation between Wv and ksn (Fig. 3d).166

We tested this relationship across different tectono-stratigraphies, and found167

it is consistent between lithologies (Extended Data Fig. 2). To account for168

the competing influence of Qw and S, we also calculated a discharge-weighted169

channel steepness, ksn-q [62]. We found this did not alter the relationship170

between ksn and Wv (Supplementary Fig. 3). ksn is a widely accepted proxy171

for rock-uplift rate [e.g. 31], suggesting that Wv responds to spatial variations172

in rock-uplift rate. We also find no relationship between Wv and mean annual173

rainfall (Extended Data Fig. 3).174

To further test tectonic control of Wv, we use a compilation of 1,148 ther-175

mochronometric ages [24] (Fig. 5), from which we estimate exhumation rates176

(E) using a simple 1D thermal model (Methods). Fig. 5b and 5c show a corre-177

lation between Wv, E, and ksn. The lowest E of 0.1 - 0.2 mm yr−1 correspond178

to the widest valleys and lowest ksn. Intermediate E between 0.3 - 0.9 mm179

yr−1 show less variation in both Wv and ksn, whereas E ≥ 2 mm yr−1 cor-180

respond to narrow valley floors and steep channels. Variations in E in the181

Himalaya have been argued to be strongly tectonically controlled [27, 32, 33].182

The correlation between Wv and E, along with the changes in Wv across the183

flat-ramp-flat geometry of the MHT (Figure 4), indicate that Wv is likely184

controlled by tectonics.185

Thermochronologic cooling ages are representative of exhumation over long186

timescales (105 to 107 years) [34]. Patterns of exhumation across the Himalaya187

are likely to change through time with tectonic or climatic variations [e.g.188

35–37], potentially disconnecting long-term exhumation measurements and189

valley-forming processes. We focus here on thermochronometry rather than190

cosmogenic radionuclide-derived (CRN) erosion rates because the spatial cov-191

erage of thermochronometric data is far greater than CRN, and because the192

relationship between Wv and A makes it challenging to determine a represen-193

tative Wv to compare with catchment-averaged erosion rates. Examining Wv194

and E separately by thermochronometer (Extended Data Fig. 4) shows that195

the relationship between Wv and E is strongest in chronometers with lower clo-196

sure temperatures, representing more recent exhumation rates. Nevertheless,197

the correlations between Wv, ksn and E across the dataset (Fig. 5) indicate a198

tectonic control on Wv and ksn despite potential temporal variations.199

Importance of valley-floor width controls200

Figs 3a to 3e demonstrate that many factors may control Wv across the201

Himalayan orogen; we therefore take a data-driven approach to determine202

which has the strongest influence using random forest (RF) regression. To203

explore key controls on Wv we focus on the following variables based on our204
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conceptual model (Fig. 1): i) elevation, z; ii) ksn; iii) Qw; iv) K; and v) dis-205

tance from the nearest fault, df (MFT, MBT, MCT or STD). We calculate K206

using CRN-derived erosion rates and ksn (Methods).207

RF-regression estimates of variable importance (Methods) indicate that208

ksn is the most important predictor across all regression models (Fig. 3f),209

with K consistently the least important. z, Qw and df have relatively similar210

importance, although z tends to be more important among these three. There211

are distinct spatial trends in ksn with z, with highest ksn found at intermediate212

z and lower ksn at both low and high z (Extended Data Fig. 1). This co-213

variation may explain the high relative importance of z in the RF model.214

Implications for valley-widening processes215

Our results indicate moderate importance of Qw and low importance of K on216

Wv, contrasting with common valley-widening models (Equation 1). We pro-217

pose that observed Wv are likely set by sediment accumulation, corresponding218

to the higher Qs/Qc end-member in Fig. 1. This suggests little modification of219

topography under these fills, supporting a key assumption of Himalayan sedi-220

ment volume estimates [4]. For a given Qs and Qw, the likelihood of a channel221

to incise or aggrade is set by S, dependent on uplift. The relationship between222

E, ksn, and Wv indicates that high rock-uplift rates in rapidly exhuming223

regions, reflected by high values of ksn, are likely to increase Qc, mobilising sed-224

iment which acts as tools for bedrock incision during peak Qw, with subsequent225

valley-floor narrowing. Therefore, rivers in high-uplift regions are likely to typ-226

ify the low Qs/Qc end-member, whereas slowly-uplifting regions exemplify the227

higher Qs/Qc scenario. Nevertheless, the low importance of K suggests that228

sediment is important across the full range of E, and that even under the high-229

est rock-uplift rates, rivers are likely to contain substantial alluvial cover, with230

bedrock incision only during extreme transport events.231

Damming behind landslides or uplifting structures increases Wv upstream.232

Considering that landslides occur more frequently in rapidly exhumation233

regions [19], a landslide-dam control on Wv at the orogen scale would generate234

wider valley floors in faster exhuming regions (Fig. 1), or at least highly vari-235

able widths. In contrast, if damming behind uplifting structures [e.g. 38, 39]236

controlled Wv, wider valleys may be randomly distributed. We find that ksn237

is a first-order control on Wv, and that ksn increases and Wv decreases with238

E. This implies that the distribution of valley fills is driven by tectonically-239

controlled exhumation, rather than landsliding or structural damming. An240

exception is that at intermediate E of 0.3 - 0.9 mm yr−1, increased E does not241

lead to concomitant changes in ksn or Wv. If at these intermediate exhumation242

rates, channels are insufficiently steep to regularly flush aggraded sediment,243

the impact of landslide and structural damming could be enhanced.244

Although our results point to Wv being set by the depth of sediment fill245

rather than wall erosion, valleys must experience lateral erosion during their246

evolutionary history. The Qs/Qc ratio may vary during climate oscillations247

[5, 6], leading to alternating periods of bedrock incision and widening through248
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wall erosion and periods of sediment deposition and filling. However, valleys249

that are currently alluviated must also facilitate bedrock erosion to adjust to250

long-term uplift rates. The frequency of incision should be limited to the most251

extreme events that can remobilise valley fills [40–43]. Recent work shows that252

valleys regularly affected by glacial lake outburst floods (GLOFs) are gener-253

ally narrower and contain less sediment, facilitating bedrock erosion, while254

valleys with less frequent GLOFs showed sediment trapping and lower inci-255

sion rates [44]. Along the Bhote Koshi River GLOFs were observed to mobilise256

the largest boulders [41], indicating that they can effectively flush valleys and257

cause bedrock erosion.258

Our findings raise questions about the residence times of valley-fill deposits259

compared to extreme event frequencies. The adjustment of Wv to E aver-260

aged over 105 - 107 year timescales indicates either that valley fills persist261

over geological timescales, or that Wv adjusts relatively rapidly to the local262

exhumation rate. Residence times of Himalayan fills have been proposed to263

exceed 105 years for the largest valleys [4]. Recurrence intervals of extreme264

events are likely shorter, with the Bhote Koshi River affected by GLOFs with265

a return interval of ≈30 years [45], although it is unlikely that every GLOF will266

strip all sediment from the valley floor. Dating of far-travelled boulders in the267

Trishuli and Sunkoshi Rivers indicated a recurrence interval of ≈ 5 ka for the268

most extreme GLOFs [46]. Our results suggest that valley re-filling to adjust269

to local exhumation occurs on shorter timescales than valley-fill removal.270

The link between E and Wv also has important implications for sediment271

routing systems and the transmission of sedimentary signals to basins. If slower272

exhumation rates lead to wider valleys, then sedimentary signals of external273

forcing in slowly exhuming areas are likely to spend more time in storage274

compared to rapidly exhuming areas, resulting in either buffering or shredding275

of the signal before it reaches its depositional sink [e.g. 2, 3]. Future work is276

needed to further explore i) the timescales of Himalayan valley fill preservation;277

ii) the impact of exhumation rate on the propagation of allogenic signals; and278

iii) the sub-surface geometry of valley deposits to allow further investigation279

into valley widening mechanisms.280
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Fig. 1 End-members of sediment-transport capacity model of valley-widening mechanisms
and different factors that may control valley-width changes in each scenario. The pho-
tographs show examples of the two end-member valley types in the Upper Ganga basin
(photo credit R. Devrani)
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Fig. 2 Spatial distribution of valley-floor width and channel steepness across the Himalaya.
(a) Map of the Himalayan orogen showing basins used for width analysis [51]; (b) Topography
across the region with main structural boundaries: MFT = Main Frontal Thrust, MBT =
Main Boundary Thrust, MCT = Main Central Thrust, STD = South Tibetan Detachment;
(c) distribution of valley-floor width; and (d) distribution of normalised channel steepness
(ksn) across the Himalaya. The data in (c) and (d) are gridded into cells with 10 km spatial
resolution.
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Fig. 3 Boxplots of valley-floor width (n=7,414) against controlling variables. (a) Elevation,
z; (b) tectono-stratigraphic unit, where erodibility values (K, m1−2m yr−1) for each unit
are labelled; (c) water discharge, Qw (m3s−1); (d) normalised channel steepness, ksn (m0.9);
and (e) distance from nearest major fault, df (km, MFT, MBT, MCT, or STD). The solid
black line shows the median of each distribution; the box represents the inter-quartile range;
and the whiskers represent 1.5 times the inter-quartile range. Minima and maxima have
been omitted to ensure readability. Panel (f) shows the normalised importance of each vari-
able using random forest regression with two different methods for calculating importance:
weighted impurity reduction (light grey) and permutation reduction (dark grey). Normal-
isation is performed by dividing each variable importance by the most important variable
(ksn in both cases).
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Fig. 4 The impact of tectonics on valley-floor widths. (a) Illustration of valley-floor width
across part of the Narayani basin in central Nepal, where line width is scaled by valley-floor
width (widths are scaled up for visibility), and line colour represents channel steepness (ksn).
The dashed lines show the main structural boundaries. Note the presence of glacially widened
valleys in the Greater Himalayan Sequence, and the distinct valley widening and flattening
to the south of the physiographic transition (PT) within the LHS. M = Marsyandi river; BG
= Budhi Gandaki river; Trishuli river. (b) Median valley-floor width (black line, n=81,208)
and exhumation rate derived from thermochronometry [24] (blue line, n=218) binned by
0.1◦ latitude across the region shown in (a), showing valley narrowing and rapid exhumation
to the north of the PT at the location of the MHT mid-crustal ramp. The shaded areas
show the range between the 25th and 75th percentiles. The points show the exhumation rate
samples where the error bars represent the 1σ uncertainty in exhumation rate. (c) Schematic
cross section across the region in (a) showing the location of the mid-crustal ramp within
the MHT (modified from [48]).
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Fig. 5 The relationship between valley-floor width, channel steepness, and exhumation rate.
(a) Map of exhumation rate derived from thermochronometry data across the Himalaya: the
colours represent the exhumation rate in mm yr−1, symbols represent the thermochrono-
metric system. AHe: apatite (U-Th)/He; AFT: apatite fission track; ZHe: zircon (U-Th)/He;
ZFT: zircon fission track; ArAr: 40Ar/39Ar. (b) Boxplots showing relationship between
valley-floor width and exhumation rate: the numbers above each box show the number of
samples in the corresponding bin (n=1,148). (c) Boxplots showing the relationship between
normalised channel steepness (ksn) and exhumation rate (n=1,148). The solid black line
shows the median of each distribution; the box represents the inter-quartile range; and the
whiskers represent 1.5 times the inter-quartile range. Minima and maxima have been omitted
to ensure readability.
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orthogonal to this. The minimum possible width measurement is 60 m, which488

is set by the resolution of the DEM (2 DEM pixels).489

Following extraction of width measurements for every channel, we removed490

any measurements that intersected each other (i.e., at tributary junctions) as491

these measurements are unlikely to represent the true valley-floor width. We492

removed measurements from modern glaciers across the Himalayas using the493

glacier outline shapefiles from the Randolph Glacier Inventory (RGI) [52]: we494

removed any measurements within the boundaries of each shapefile. Alongside495

modern glaciation, valleys which have been affected by glaciation through the496

Quaternary may have a topographic signature of glaciation rather than flu-497

vial processes. We therefore performed a sensitivity analysis of our results to498

estimated glacial extents during the Last Glacial Maximum by estimating the499

minimum elevation of the LGM equilibrium line altitudes (ELAs) for glaciers500

across the orogen, using a regional compilation [53]. We found that removing501

the signature of Quaternary glaciations did not affect the results (Supplemen-502

tary Fig. 1 and 2). After filtering, we gridded the valley-floor width data using503

a grid cell size of 10 km, taking the mean valley-floor width within each grid504

cell. We tested the sensitivity of the random forest regression to grid cell size505

(Supplementary Fig. 4) and found that the result were insensitive to gridding506

at cell sizes from 1 - 10 km.507

We calculated the mean elevation of each 10 km valley-floor grid cell508

using the Copernicus 30 m DEM, and determined the underlying tectono-509

stratigraphic unit using a geologic database [50]. We calculated normalised510

channel steepness (ksn (m0.9)) across each river basin using a segmentation511

approach [54] as implemented in LSDTopoTools [55]. ksn is often used as a512

proxy for rock-uplift or erosion rates and has been shown to correlate with513

local relief and catchment-averaged erosion rate across the Himalaya [e.g. 56–514

60]. We used a reference concavity value, θ = 0.45, which has previously been515

estimated for the Himalayan region [e.g. 61]. We gridded the ksn data using516

the same approach as for valley-floor width (Fig. 2b).517

To estimate water discharge, Qw, we use a simple proxy based on weighting
upstream drainage area (A) by mean annual rainfall (P ) [62]:

Qw = PA, (2)

We estimated P from 1981-2019 across the Himalaya using the Climate Haz-518

ards Group InfraRed Precipitation with Station (CHIRPS) dataset, which519

combines 0.05◦ resolution satellite imagery with ground-station data [63]. The520

advantage of using the CHIRPS dataset is that it has a near-global rainfall521

time series for more than 30 years, giving longer term estimates of P that522

should be less sensitive to short-term temporal variations. We calculated P523

from this dataset using Google Earth Engine, then resampled P to a spatial524

resolution of 30 m to correspond to that of the topographic data. We test dis-525

charge rather than drainage area as the Himalaya have a strong orographic526

rainfall gradient resulting in an order-of-magnitude variation in P across strike527

as well as an ≈6-fold increase in rainfall from west to east [64, 65]. To test the528
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ability of this simple model to reflect real variations in Qw, we compared the529

model predictions to measured Qw from gauging stations across major rivers530

in Nepal [66, 67]. We found good agreement between modelled and measured531

Qw across a range of discharges (Supplementary Fig. 5).532

To investigate the potential impact of fracturing on bedrock erodibility we533

also calculated the Euclidean distance of each grid cell from the nearest major534

tectono-stratigraphic boundary (either the Main Frontal Thrust (MFT), Main535

Boundary Thrust (MBT), Main Central Thurst (MCT), or South Tibetan536

Detachment (STD)) [50].537

Compilation of thermochronology data and calculation of exhuma-538

tion rates. We updated an existing compilation of thermochronometric data539

from the Himalaya [68] to include more recent publications up to July 2022,540

including all data falling within the basins outlined in Fig. 2a. We include541

results from five thermochronometric systems in our analysis: apatite and zir-542

con (U-Th)/He (AHe, ZHe) and fission-track (AFT, ZFT), and white-mica543

40Ar/39Ar (MAr). We removed any cooling ages ≥ 50 Ma, as these ages are544

pre-Himalayan [49] and are therefore unrepresentative of valley-forming pro-545

cesses, as well as samples from the SHZ, as these are generally incompletely546

reset since deposition [69]. In some cases, multiple thermochronometric cooling547

ages were available for a single location: we filtered the dataset to only keep548

the youngest age for these samples, as these are more likely to be representa-549

tive of the erosion rate shaping the modern topography. We also filtered the550

dataset based on uncertainty by removing any samples where the 1σ uncer-551

tainty in predicted exhumation rate was greater than the exhumation rate552

itself (Supplementary Fig. 6), and we removed any samples within the bound-553

aries of modern glaciers [52]. The complete dataset and associated references554

can be found in [24].555

We use a 1D thermal model that assumes vertical exhumation and thermal556

steady state to estimate exhumation rates from the thermochronology data.557

The model (refer to [24] for details) takes into account the advective pertur-558

bation of the geotherm by rapid exhumation [70] and the control of cooling559

rate on closure temperature of each thermochronometric system [71]. We use560

the sample elevation to estimate the surface temperature using a linear atmo-561

spheric lapse rate (5 ◦C/km) and a constant sea-level temperature (25 ◦C), as562

well as to estimate the vertical difference between the sample elevation and563

the average elevation smoothed within a radius that depends on the estimated564

closure depth of each thermochronometric system [72]. The latter is used to565

correct the estimated exhumation rate for relative sample elevation. For other566

model parameters, we assume the following: an initial linear geotherm of 25567

◦C/km, a thermal diffusivity of 30 km2/Myr, and a model thickness of 30 km.568

We then mapped each exhumation rate sample to the corresponding valley-569

floor width cell in the gridded 10 km dataset, and binned valley-floor width570

and ksn by exhumation rate.571
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Erodibility index. We calculated an erodibility index, K, for each of the
main tectono-stratigraphic units across the Himalayan orogen using a compi-
lation of catchment-averaged erosion rate data from cosmogenic radionuclides
[73], similar to the approach of [74]. The commonly-used stream power inci-
sion model (SPIM) predicts a non-linear relationship between channel slope
and erosion rates:

E = KAmSn, (3)

which we can rearrange to find an expression for channel slope, S:

S =
E

K

1/n

A−θ, (4)

where θ = m/n. We can simplify this equation to:

S = ksnA
−θ, (5)

ksn = E/K1/n. (6)

We estimate ksn as described above, and then assume that the CRN-derived
erosion rates are representative of erosion across the entire basin, such that for
each point on the network, we know ksn and set E as the catchment-averaged
erosion rate. We can then rearrange Equation 6 to solve for erodibility at each
point on the channel network, Ki:

Ki =
E

ksni
n . (7)

Many studies have suggested through both numerical modelling and field572

studies that n is likely to be > 1 [e.g. 74–76], with n ≈ 2 thought to be573

reasonable in most cases [77]. We therefore set n = 2 in Equation 7: a similar574

approach was also taken by [78]. As we set m/n = 0.45 in our ksn calculation,575

this results in m = 0.9. We then separate the calculated erodibilities based on576

tectono-stratigraphic unit and calculate the median K for each. The median577

values of K for each unit can be found in Table S1.578

A similar approach to calculating K can be taken which also accounts for579

the impact of climate, by back-calculating K from the relationship between580

erosion rates and a channel steepness calculated by weighting drainage area by581

precipitation, ksn-q [79]. We calculated ksn-q, and found that the relationship582

between Wv and ksn-q was similar to that of ksn (Supplementary Fig. 3).583

Furthermore, we found no relationship between P and Wv, suggested that584

weighting K by P is unlikely to change the relationship between K and Wv.585

Other approaches to estimating erodibility have derived an erodibility index586

that incorporates i) a rock strength index (LL), related to its composition, and587

ii) an age index based on the stratigraphic age of the unit [80, 81]. We also588

tested this method of determining erodibility and found that it did not alter589

the relative importance in the random forest analysis (Supplementary Fig. 7).590
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Random forest regression. Random forest (RF) regression is a form of591

supervised machine learning, which uses an ensemble of decision trees to pre-592

dict a target variable (here Wv) from a high-dimensional dataset [e.g. 82]. It593

allows the calculation of variable importance (VI) for each variable used to594

predict the target variable. It requires no assumptions about the structure of595

the underlying data, and therefore is useful in cases where the relationship596

between the target variable and the predictors is unknown a-priori [83]. We597

performed RF regression on the 10 km gridded dataset to isolate the key sig-598

nals of valley widening and reduce dataset noise. Supplementary Fig. 8 shows599

the spatial distribution of additional metrics used in the RF regression across600

the Himalayan orogen (elevation, water discharge, distance from nearest fault,601

and tectono-stratigraphy). Before running the regression model we split the602

gridded dataset into 80% training and 20% testing to allow for validation.603

The number of decision trees (NT ) used to build the regression model has604

shown to be important when using RF regression, particularly when investi-605

gating VI [82]. We therefore performed a sensitivity analyses on the regression606

varying the number of decision trees from 10 to 2000 (Supplementary Fig. 9).607

This analysis showed that the root mean square error (RMSE) of the regres-608

sion model became relatively insensitive when the number of decision trees is609

greater than 1000, with RMSE 167 m. We therefore ran all RF regression runs610

with 1000 decision trees to ensure greatest computational efficiency.611

VI in random forest regression can be determined through two approaches:612

average impurity reduction; and permutation reduction [e.g. 84, 85]. Average613

impurity reduction [82] states that the importance (Imp) of any variable Xj in614

predicting the target variable, Y , can be calculated by summing the weighted615

impurity decreases p(t)∆i(st, t), where t represents each node where Xj is616

used, and ϕm is tree m in the forest containing all trees m = 1, ...,M :617

Imp(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

δjt,j [p(t)∆i(st, t)], (8)

where:

δjt,j =

{
1 if jt = j

0 otherwise,
(9)

p(t) is the proportion of samples reaching t, and jt is the variable used to split618

node t [85]. This approach gives the most importance to the variable that most619

decreases the mean impurity across all trees in the forest. However, the impu-620

rity reduction approach has been shown to be biased towards predictors that621

have a large number of values [86]. Therefore, an alternative approach to esti-622

mating variable importance called permutation reduction has been suggested623

[82], which estimates the change in the mean standard error of the regression624

model when permuting a variable. The reader is referred to [82] and [85] for625

a full derivation and discussion of permutation reduction VI. We performed626

a sensitivity analysis of the variable importances derived for the valley-floor627

width regression model to choice of VI metric across a range of different deci-628

sion trees (Supplementary Fig. 10). We find that the VIs are insensitive to the629
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number of decision trees used in the regression model, and that the order of630

VI is identical with our chosen model run of 1,000 trees.631

Data availability. The thermochronometric dataset used in632

this paper is available through the Zenodo data repository633

(https://doi.org/10.5281/zenodo.7053115). The valley-floor width634

dataset is available through Durham University Collections635

(https://doi.org/10.15128/r2z890rt27d).636

Code availability. The code for topographic analysis, including valley-637

floor width extraction, is available as part of the open-source LSDTopo-638

Tools software package [55]. The code to estimate exhumation rates from639

thermochronology data is available through the Zenodo data repository640

(https://doi.org/10.5281/zenodo.7053218).641
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dence should be addressed to Fiona Clubb (fiona.j.clubb@durham.ac.uk).778

Supplementary information. This article has supplementary information.779

Extended Data Fig. 1 Boxplots showing the relationship between ksn and elevation
across the Himalayan orogen (n=7,414). The solid black line shows the median of each
distribution; the box represents the inter-quartile range; and the whiskers represent 1.5 times
the inter-quartile range. Minima and maxima have been omitted to ensure readability.
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Extended Data Fig. 2 The relationship between valley-floor width and ksn separated by
each stratigraphic unit, coloured by elevation. LHS = Lesser Himalayan Sequence, GHS =
Greater Himalayan Sequence, THS = Tethyan Himalayan Sequence, SHZ = Sub-Himalayan
Zone. The dashed grey line shows a linear least-squares regression through the data in log-
log space: the equation of the regression line, R2 and p value (two-sided) are noted. LHS:
R2 = 0.37, p = 4.86 × 10−145 ; GHS: R2 = 0.25, p = 8.76 × 10−146 ; THS: R2 = 0.44, p =
1.63 × 10−157 ; SHZ: R2 = 0.35, p = 6.58 × 10−57

Extended Data Fig. 3 Boxplots of valley-floor width against mean annual precipitation
P from 1989-2019 extracted from the CHIRPS dataset [64] (n=7,414). The solid black line
shows the median of each distribution; the box represents the inter-quartile range; and the
whiskers represent 1.5 times the inter-quartile range. Minima and maxima have been omitted
to ensure readability.
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Extended Data Fig. 4 Boxplots showing the relationship between valley-floor width
and thermochronometric-derived exhumation rate, separated by chronometric system. The
number of samples in each plot is indicated (AHe, n=79; AFT, n=608; ZHe, n=141; ZFT,
n=79; ArAr, n=234). The solid black line shows the median of each distribution; the box
represents the inter-quartile range; and the whiskers represent 1.5 times the inter-quartile
range. Minima and maxima have been omitted to ensure readability.
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