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Human activities favour prolific life histories
in both traded and introduced vertebrates

Sally E. Street 1 , Jorge S. Gutiérrez 2, William L. Allen 3 &
Isabella Capellini 4

Species’ life histories determine population demographics and thus the
probability that introduced populations establish and spread. Life histories
also influence which species are most likely to be introduced, but how such
‘introduction biases’ arise remains unclear. Here, we investigate how life his-
tories affect the probability of trade and introduction in phylogenetic com-
parative analyses across three vertebrate classes: mammals, reptiles and
amphibians. We find that traded species have relatively high reproductive
rates and long reproductive lifespans. Within traded species, introduced
species have amore extreme version of this same life history profile. Species in
the pet trade also have long reproductive lifespans but lack ‘fast’ traits, likely
reflecting demand for rare species which tend to have slow life histories. We
identify multiple species not yet traded or introduced but with life histories
indicative of high risk of future trade, introduction and potentially invasion.
Our findings suggest that species with high invasion potential are favoured in
the wildlife trade and therefore that trade regulation is crucial for preventing
future invasions.

Alien invasive species cause substantial biodiversity loss, disruption to
ecosystem services and staggering economic costs worldwide1–3.
Despite increased awareness of the harm caused by alien invasive
species, the rate of new introductions continues to accelerate in many
taxa4. Understanding why some species are more likely than others to
become invaders is essential for effective management because con-
trolling alien populations once established and spread can be prohi-
bitively difficult and expensive5,6. Most research to date has focused on
the drivers of success at the final two stages of the invasion process,
establishment and spread, at the expense of the first two, transporta-
tion and introduction (i.e. the release of non-native species into the
wild by humans either deliberately or accidentally)6,7. However, the
selection of species for introduction is highly biased: introduced spe-
cies systematically differ from non-introduced species in terms of
taxonomy, geographic origin and biological characteristics (e.g.
Refs. 8–12). These ‘introduction biases’ determine which species have
the opportunity to become future invaders6,9,12 and may have a major

influenceonoutcomes at later invasion stages, especially if they favour
the introduction of species with characteristics that predispose them
towards successful establishment and spread. Therefore, identifying at
what stage of the invasion pathway introduction biases arise is
essential for preventing future invasions.

The accelerating rate of alien introductions and their associated
costs in recent decades is largely the result of increasing international
trade3,4,13. The live wildlife trade, particularly the burgeoning interna-
tional pet trade, is increasingly the predominant introduction pathway
for vertebrates, especially reptiles and amphibians14–17, despite
increasing wildlife trade restrictions18,19. For example, slider turtles
(Trachemys scripta) have been released in over 70 countries world-
wide, primarily via the pet trade20, while released pet Burmese pythons
(Python bivittatus) are the likely cause of dramatic population reduc-
tions in several native mammal species in the Florida Everglades21.
Given the importance of trade as a pathway to introduction, intro-
duction biases may be explained by human preferences for which
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species to trade and transport, rather than forwhich species to release.
For example, taxonomic biases among introduced birds and fishes
likely reflect the popularity of certain groups for recreational
hunting11,12, and large body size in introduced vertebrates may be
explained by the appeal of larger species for a variety of common
human uses, such as food, pets or biocontrol8,9,11,12,15,22. However, we do
not yet know at what stage introduction biases arise since very few
studies distinguish biases associated with transportation from those
associated with introduction7. The distinction between these two
stages is, however, crucial as it represents the point at which species
are no longer contained in captivity and have the opportunity to sur-
vive and reproduce in thewild7. If biases differ between the two stages,
lumping them together in analyses of invasion success risks inaccurate
predictions for future invasions and misinformed management
strategies.

Species’ life histories—evolved strategies of development and
reproduction over an organism’s lifetime—play a central role in bio-
logical invasions since they influence populationgrowth rates and thus
the ability of small founder populations to survive and expand in novel
environments23,24. ‘Fast’ life history traits, such as rapidmaturation and
high reproductive rates, increase the probability of establishment and
spread among introduced mammals, reptiles, amphibians and some
plant taxa25–28 while ‘bet-hedging’ strategies, which involve adjusting
investment in reproduction over the lifespan in response to changing
environmental conditions—promote establishment in birds29. Life his-
tory biases, however, begin earlier in the invasion pathway: introduced
alien mammals, reptiles and amphibians have an unusual life history
profile that combines some ‘fast’ life history traits (large and/or fre-
quent broods) with a long reproductive (i.e. post-maturational)
lifespan25,26. Species with this life history strategy are highly prolific,
producing very largenumbers of offspring across their lifetimes. These
introduction biasesmaybe explained by human preferences for highly
fecund species in live trade, which are likely most lucrative in indus-
tries involving large-scale captive breeding such as the pet, food and
fur/skin trades14,30. Long-lived, highly fecund species may also be at a
higher risk of introduction either because longer-term care commit-
ments increase the risk of deliberate release by private owners or
because high fecundity and longer lifespans result in more frequent
opportunities for accidental escapes14,15. Human activities, therefore,
may result in the trade and introduction of species with highly prolific
life histories that predispose them towards successful establishment
and spread14. In support of this concern, a recent analysis demon-
strates that invasive species are substantially over-represented among
vertebrates in the pet trade17. However, since previous studies have
rarely separated the transportation and introduction stages, we cur-
rently do not know whether life history biases occur at transportation,
introduction or both stages, and if the latter, whether biases are con-
sistent across the two stages.

Here, we investigate the role of life history traits in the transpor-
tation and introduction of alien mammals, reptiles and amphibians in
large-scale phylogenetic comparative analyses. Our analyses allow us
to identify at which stage life history biases emerge and whether they
are consistent across stages. If introduction biases are fully explained
by human preferences for species with life histories most lucrative for
live trade, we expect that highly prolific life histories (fast traits and
long reproductive lifespans) are associatedwith higher probability and
frequency of trade, but not with introduction among traded species.
Conversely, if this life history profile increases the risk of introduction
but plays no role in species’ appeal for live trade, we should find that it
is related only to introduction and not to trade. Alternatively, if the
same, highly prolific life history strategypromotes both transportation
and introduction, we should find that it predicts both trade and
introduction among traded species. We test predictions using data on
the live international wildlife trade from the United States Fish and
Wildlife Service (USFWS) Law Enforcement Management Information

System (LEMIS) database31, and separate data on the pet trade speci-
fically from the International Union for Conservation of Nature (IUCN)
Red List32. We combine these data with our prior, global-scale compi-
lations of introductions and life history traits in mammals, reptiles and
amphibians25,26. We also obtain species occurrence records33, geo-
graphic ranges32 and population density data34 to account for a
potentially confounding effect of recording biases: longer-lived,
larger-bodied species may be more likely to be recorded in introduc-
tion databases as they are more likely to be detected by human
observers than shorter-lived, smaller-bodied species. We analyse data
using Bayesian generalized linear mixed models (GLMMs), correcting
for statistical non-independence due to shared evolutionary history
among related species by fitting phylogenetic random effects35–38.
Further, we use model predictions to investigate to what extent life
history traits distinguish traded from non-traded species and (among
traded species) introduced from non-introduced species, and thus
may be helpful for identifying species at a high risk of trade or intro-
duction in future.

Results
Live wildlife trade
Sample sizes for all analyses are summarised in Table 1. Consistently
across mammals, reptiles and amphibians, the probability and/or
frequency of live wildlife trade by the US increases with reproductive
lifespan and one or more ‘fast’ life history traits (Fig. 1, Tables 2–4).
Predictors of the probability of trade are largely consistent between
hurdle (Tables 2–4) and probit (Supplementary Tables 2–4) models
although effects tended to be slightly stronger in hurdle models. Fast
life history traits associated with increased probability and/or fre-
quency of live trade include larger litters in mammals, larger clutches,
more frequent clutches and earlier sexual maturity in reptiles, and
smaller eggs in amphibians (Fig. 1, Tables 2–4, Supplementary
Tables 2–4). Larger body size also increases the probability (but not
the frequency) of trade inmammals and amphibians (Fig. 1, Tables 2–4,
Supplementary Tables 2–4). Larger hatchling mass increases the
probability (with a weaker effect on frequency) of trade in reptiles,
which also likely reflects effects of larger adult body size given the high
collinearity of adult and hatchling mass in reptiles.

Within traded species, the probability of introduction increases
again with longer reproductive lifespans and some ‘fast’ traits, sug-
gesting that introduced species have a more extreme version of the
same life history profile associated with trade (Fig. 1, Tables 5–7).
Together with longer reproductive lifespans, introduced mammals
have shorter gestational periods and larger litters; introduced reptiles
have larger and more frequent clutches; and introduced amphibians
have larger clutches (Fig. 1, Tables 5–7), compared with those that are
traded but not introduced. Within traded species, body size does not
substantially differ between introduced and non-introduced species
(Fig. 1, Tables 5–7). When including trade frequency as a predictor of

Table 1 | Sample sizes for analyses

Trade type Class Total N species N traded N introduced

Live wildlife trade Mammals 518 312 134

Reptiles 408 285 141

Amphibians 132 75 45

Pet trade Mammals 518 67 22

Reptiles 408 183 89

Amphibians 132 48 32

Sample sizes for analyses of the role of life history traits in trade and introduction, separated by
trade type taxonomic class. The column ‘Total N species’ refers to species for which we have
complete life historydata, forming the sample sizes for analysesof life history correlates of trade.
The column ‘N traded’ indicates the number of traded species, forming the total sample sizes for
analyses of life history correlates of introductionwithin traded species, while the final column ‘N
introduced’ contains the number of introduced species among those traded.
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introduction alongside life history traits, we find that trade frequency
has a strong positive effect on the probability of introduction in
mammals and reptiles, although not amphibians (Supplementary
Tables 5–7). Effects of life history traits on introduction largely remain
intact when controlling for trade frequency (apart from litter size in
mammals, Supplementary Tables 5–7). We find that the probability of
introduction increases with the number of occurrence records relative
to range size and/or population density, suggesting that highly
detectable species are more likely to be recorded as introduced

(Supplementary Tables 8–10). However, positive effects of reproduc-
tive lifespan on introduction remain when controlling for detectability
measures, suggesting that recording biases do not confound the
relationship between reproductive lifespan and introduction (Sup-
plementary Tables 11–13).

We use areas under the receiver operating characteristic curve
(AUCs) to quantify the ability of the probit models to distinguish tra-
ded from non-traded, and introduced from non-introduced species.
AUCs vary from 0.5 to 1, where 0.5 indicates the model performs at

Fig. 1 | Effects of life history traits on trade, trade frequency and introduction.
Posterior distributions of fixed effect estimates from models based on US live
wildlife trade data, for effects of life history traits on trade probability (traded vs.
non-traded species) and trade frequency (N shipments per species) from hurdle

models and introduction (introduced vs. non-introduced species, within traded
species only) from probit models across mammals (pink), reptiles (blue) and
amphibians (gold). Silhouettes were obtained from phylopic.org under Public
Domain licences.

Table 2 | Life history predictors of US live wildlife trade probability and frequency in mammals from hurdle models

Posterior mean l-95% CI u-95% CI % crossing 0 VIF

Binary Gestation period −0.74 −3.21 1.50 26.12 4.34

Weaning age 0.97 −0.43 2.61 10.02 2.82

Litter size 5.27 3.02 7.51 0.00 2.78

Litters per year 2.43 0.38 4.42 0.80 2.62

Reproductive lifespan 6.38 4.19 8.49 0.00 3.28

Body mass 0.72 0.14 1.37 0.84 3.29

Frequency Gestation period −0.76 −1.89 0.46 10.30 4.34

Weaning age 0.86 0.11 1.60 1.18 2.82

Litter size 2.37 1.18 3.48 0.00 2.78

Litters per year 1.02 0.01 2.07 2.64 2.62

Reproductive lifespan 2.28 1.00 3.46 0.02 3.28

Body mass 0.17 −0.15 0.47 12.30 3.29

Full parameters for hurdle model predicting US live wildlife trade probability and frequency inmammals, after iteratively removing variables with the highest VIFs until none were >5 (neonatal body
mass and age at first birth,N = 518, H2 for binary component = 0.50 [0.25, 0.71], H2 for Poisson component = 0.16 [0.00, 0.53]). Post. mean =mean β coefficient from posterior distributions, l-95% CI
and u-95% CI = lower and upper 95% credible intervals from posterior distributions respectively, % crossing zero = percentage of estimates in the posterior distribution that overlap with zero in the
direction opposite to the majority of the distribution, VIF variance inflation factors. For ease of interpretation, effects from the binary component of the model are reversed in sign (so that they
represent effects on the probability that the outcome variable is 1 or more, rather than 0).
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chance level and 1 indicates perfect discrimination between categories
of the outcome variable39. We calculate AUCs based both on predic-
tions within the sample as ameasure of model fit, and for each species
left out of the sample in turn using leave-one-out cross-validation
(LOOCV) as a measure of out-of-sample predictive accuracy. Across

the three vertebrate classes, AUCs for trade are 0.89 or above for
within-sample predictions and 0.75 or above for out-of-sample pre-
dictions (Fig. 2, SupplementaryTable 14). For introduction, AUCs are at
least 0.85 and 0.65 for within- and out-of-sample predictions respec-
tively (Supplementary Table 15). AUCs for introduction are little
affected by including trade frequency as an additional predictor
(Supplementary Table 16). Both within- and out-of-sample predictions
identify very similar lists of species as at high risk of future trade or
introduction (Supplementary Data 1). Non-traded species with high
out-of-sample predicted probabilities of trade include, for example,
golden jackals (Canis aureus, 0.86), red-bellied black snakes (Pseu-
dechis porphyriacus, 0.98) and Northwestern salamanders (Ambys-
toma gracile, 0.93) (Supplementary Data 1). Non-introduced species in
trade with high out-of-sample predicted probabilities of introduction
include, for example, Virginia opossums (Didelphis virginiana, 0.89),
Blanding’s turtle (Emys blandingii, 0.81) and spotted salamanders
(Ambystoma maculatum, 0.91) (Supplementary Data 1).

Pet trade
Similar to species in the live wildlife trade, pet-traded mammals, rep-
tiles and amphibians consistently have longer reproductive lifespans
than non-pet-traded species (Fig. 3, Supplementary Fig. 1, Supple-
mentary Tables 17–19). However, in contrast with the effects of life
history traits on general live trade by the US, ‘fast’ life history traits do

Table 4 | Life history predictors of US live wildlife trade probability and frequency in amphibians from hurdle models

Posterior mean l-95% CI u-95% CI % crossing 0 VIF

Binary Clutch size −0.43 −1.78 0.95 26.06 2.58

Egg size −5.94 −11.38 −0.71 1.60 2.67

Age of sexual maturity −2.72 −6.42 1.20 8.30 1.32

Reproductive lifespan 4.35 2.19 6.70 0.00 1.12

Snout-vent length 5.51 0.74 9.97 0.68 1.68

Frequency Clutch size 0.09 −0.68 1.02 44.46 2.58

Egg size −1.90 −5.11 1.38 12.68 2.67

Age of sexual maturity −1.10 −3.26 1.30 16.52 1.32

Reproductive lifespan 1.26 −0.08 2.53 3.74 1.12

Snout-vent length 0.34 −2.25 2.73 39.22 1.68

Full parameters for hurdlemodel predicting US livewildlife trade probability and frequency in amphibians, including all predictors as none had VIFs>5 (N = 132,H2 for binary component = 0.28 [0.01,
0.63],H2 for poisson component = 0.20 [0.00, 0.95]). Posteriormean =mean β coefficient fromposterior distributions, l-95%CI andu-95%CI = lower andupper 95% credible intervals fromposterior
distributions respectively,%crossing zero = percentageofestimates in theposterior distribution thatoverlapwithzero in thedirectionopposite to themajority of thedistribution,VIFvariance inflation
factors. For ease of interpretation, effects from the binary component of the model are reversed in sign (so that they represent effects on the probability that the outcome variable is 1 or more,
rather than 0).

Table 3 | Life history predictors of US live wildlife trade probability and frequency in reptiles from hurdle models

Posterior mean l-95% CI u-95% CI % crossing 0 VIF

Binary Clutch size 2.99 1.53 4.39 0.00 1.57

Clutches per year 2.59 0.84 4.17 0.10 1.36

Age of sexual maturity −2.80 −4.56 −1.08 0.02 2.36

Parity −0.28 −1.47 0.95 32.74 1.41

Reproductive lifespan 2.36 1.29 3.55 0.00 1.88

Hatchling mass 1.24 0.40 2.12 0.30 2.58

Frequency Clutch size 1.17 0.48 1.88 0.06 1.57

Clutches per year 1.20 0.26 2.10 0.54 1.36

Age of sexual maturity −1.23 −2.19 −0.34 0.48 2.36

Parity −0.54 −1.20 0.13 5.58 1.41

Reproductive lifespan 1.32 0.69 1.90 0.00 1.88

Hatchling mass 0.35 −0.08 0.82 6.48 2.58

Full parameters for hurdle model predicting US live wildlife trade probability and frequency in reptiles, after iteratively removing variables with the highest VIFs until none were >5 (body mass,
N = 408, H2 for binary component = 0.37 [0.15, 0.61], H2 for poisson component = 0.63 [0.40, 0.82]). Posterior mean =mean β coefficient from posterior distributions, l-95% CI and u-95% CI = lower
andupper95%credible intervals fromposterior distributions respectively, %crossing zero = percentageof estimates in the posteriordistribution that overlapwith zero in thedirectionopposite to the
majority of the distribution, VIF variance inflation factors. For ease of interpretation, effects from the binary component of the model are reversed in sign (so that they represent effects on the
probability that the outcome variable is 1 or more, rather than 0).

Table 5 | Life history predictors of introduction within traded
mammals from probit models

Posterior mean l-95% CI u-95% CI % crossing 0 VIF

Gestation period −1.95 −3.82 0.09 2.16 3.71

Weaning age −0.13 −1.36 1.03 41.98 2.98

Litter size 1.77 0.01 3.69 2.28 2.65

Litters per year 1.29 −0.45 2.84 6.00 2.84

Age at first birth −0.46 −1.85 1.00 25.30 4.69

Reproductive
lifespan

2.81 0.88 4.81 0.16 3.38

Body mass 0.33 −0.16 0.81 9.38 2.94

Full parameters for model predicting introduction status within mammals traded live by the US,
after iteratively removing variables with the highest VIFs until none were >5 (neonatal body mass,
N = 312,H2 = 0.54 [0.25, 0.79]). Posterior mean =mean β coefficient from posterior distributions, l-
95% CI and u-95% CI = lower and upper 95% credible intervals from posterior distributions
respectively, % crossing zero = percentage of estimates in the posterior distribution that overlap
with zero in the direction opposite to themajority of the distribution, VIF variance inflation factors.
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not predict involvement in pet trade (Supplementary Fig. 1, Supple-
mentaryTables 17–19). Pet-tradedmammals have laterweaning ages in
addition to longer reproductive lifespans (Supplementary Fig. 1, Sup-
plementary Tables 17–19). Therefore, pet-traded species have traits
more consistent with ‘slower’ life histories, although life history pre-
dictors are generally less consistent across taxa for the pet trade
compared with the general live wildlife trade. Interestingly, effects of
bodymasson trade arenot entirely consistent between the general live
wildlife trade and the pet trade specifically—for example, while larger
mammal species are more likely to be involved in the general live
wildlife trade (Table 2), smaller mammal species appear to be targeted
for the pet trade, likely for practical reasons (Supplementary Table 17).
Long reproductive lifespans also increase the probability of intro-
duction among pet-traded reptiles and amphibians, as do some fast
traits in reptiles (clutch size and clutches per year), but otherwise there
are no consistent life history predictors of introduction among pet-
traded species across the three classes (Supplementary Tables 20–22).
Smaller sample sizes for analyses of introduction within pet-traded
species compared to US-traded species (Table 1) may partly explain
some of these disparities.

AUCs for pet trade models are at least 0.84 and 0.69 for within-
and out-of-sample predictions respectively (Supplementary Table 23).
Within-sample discriminability for introduction is similar with AUCs of
0.84 or more, while out-of-sample predictive ability is more variable,
and in some cases very close to chance levels (Supplementary
Table 24). Both within- and out-of-sample predictions flag similar lists
of species as having a relatively high risk of future involvement in the
pet trade and of introduction within pet-traded species (Supplemen-
tary Data 1). However, the predicted probabilities are in fact relatively
low in many cases (Supplementary Data 1). For example, in mammals,
both sets of predictions identify red-faced spider monkeys (Ateles
paniscus) among the non-traded species with the highest predicted
probabilities of pet trade, but out-of-sample predictions estimate that

this species has only a 0.72 probability of involvement in the pet trade
(Supplementary Data 1). Similarly, meerkats (Suricata suricatta) are
consistently identified as among pet-traded species at a relatively high
risk of introduction by both sets of predictions, but have an estimated
introduction probability of only 0.65 (Supplementary Data 1). We do
not run additional introduction models controlling for detectability
among pet-traded species due to smaller sample sizes than for US live
trade (Table 1).

Discussion
Life history traits are known to play an important role in the estab-
lishment and spread of alien species due to their effects on population
growth rates23–28, but to our knowledge, no prior study had explained
why species selected for introduction have life histories that predis-
pose them towards success at later invasion stages. Here, we addres-
sed this question by disentangling life history biases at the two earliest
stages of the invasion pathway: transportation and introduction, with
large scale phylogenetic comparative analyses of mammals, reptiles
and amphibians. We find that the earliest two invasion stages pro-
gressively select for species with increasingly prolific life histories:
mammals, reptiles and amphibians in the live wildlife trade have rela-
tively fast life history traits combined with a long reproductive life-
span, while among traded species, those that have been introduced
have a more extreme version of this same life history strategy. In
mammals and reptiles, species traded most frequently are also most
likely to be introduced, consistent with previous studies identifying
the wildlife trade as a key introduction pathway in vertebrates14–17.
Effects of reproductive lifespan on introduction remain when con-
trolling for measures of species detectability, suggesting that obser-
vational biases cannot account for these findings. Therefore, our
results suggest that ‘introduction biases’ in fact result from a two-stage
filtering process early in the invasion pathway, favouring species with
distinctive life history profiles. Our findings support the hypotheses
that humans prefer to trade in highly fecund species because they are
more lucrative for industries involving captive breeding14,30, and that
species producing numerous offspring over long lifespans have more
frequent opportunities to escape and/or are more likely to be delib-
erately released by owners due to longer-term care requirements14,15.
The consistency of the life history effects across stages and taxa sug-
gests that human preferences for which species to trade and introduce
are not random or arbitrary, but partly determined by widely-shared
functional concerns. Given that highly fecund species of mammals,
reptiles and amphibians are more likely to establish and spread if
released25,26, our results suggest that human activities bias the pool of
potential invaders towards thosemost likely to succeed and thatmany
traded species represent a major threat as potential future invaders.
While previous analyses identified larger body size as an introduction
bias in vertebrates (e.g Refs. 8,9,11,12,15,22.), we find that it is in fact
associated only with live trade, not with introduction among traded
species. This finding highlights the importance of separating the

Table 6 | Life history predictors of introduction within traded reptiles from probit models

Posterior mean l-95% CI u-95% CI % crossing 0 VIF

Clutch size 1.26 0.29 2.17 0.26 1.56

Clutches per year 1.43 0.33 2.69 0.94 1.45

Age of sexual maturity 0.23 −0.89 1.45 34.96 2.48

Reproductive lifespan 1.12 0.37 1.87 0.12 1.81

Parity −0.42 −1.21 0.35 13.56 1.47

Hatchling mass −0.28 −0.79 0.40 17.86 2.57

Full parameters for model predicting introduction within reptiles traded live by the US, after iteratively removing variables with the highest VIFs until none were >5 (body mass, N = 285, H2 = 0.42
[0.05, 0.74]). Posterior mean =mean β coefficient from posterior distributions, l-95% CI and u-95% CI = lower and upper 95% credible intervals from posterior distributions respectively, % crossing
zero = percentage of estimates in the posterior distribution that overlap with zero in the direction opposite to the majority of the distribution, VIF variance inflation factors.

Table 7 | Life history predictors of introduction within traded
amphibians from probit models

Posterior mean l-95% CI u-95% CI % crossing 0 VIF

Clutch size 0.76 −0.09 1.66 4.04 2.32

Egg size 1.59 −2.66 5.99 22.46 2.44

Age of sexual
maturity

−1.68 −4.79 1.53 14.24 1.50

Reproductive
lifespan

2.75 0.83 4.90 0.24 1.10

Snout-vent length −0.88 −4.04 2.11 28.36 1.80

Full parameters for model predicting introduction status within amphibians traded live by
the US, including all predictors as none had VIFs>5 (N = 75, H2 = 0.30 [0.00, 0.76]). Posterior
mean =mean β coefficient from posterior distributions, l-95%CI and u-95%CI = lower andupper
95% credible intervals from posterior distributions respectively, % crossing zero = percentage of
estimates in the posterior distribution that overlap with zero in the direction opposite to the
majority of the distribution, VIF variance inflation factors.
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transportation and introduction stages for accurate predictions and
well-informed management of future invasions.

Live transportation and release of non-native vertebrates is
increasingly driven by the ‘exotic’ pet trade14–16. We therefore expected
to find the same life history profiles among species in the pet trade as
in the live wildlife trade more generally. Apart from long reproductive
lifespans, however, pet-traded species do not appear to share the same
life history traits as those involved in the general live wildlife trade.
Instead, pet-traded species have traits more consistent with a slow life
history, such as longer weaning periods inmammals, which should not
be advantageous for captive breeding14,30. Unlike some prior analyses
which have used general live trade as a proxy for the pet trade

(e.g. Refs. 15,19), our analyses are able to isolate effects specific to the pet
trade and somay suggestdistinct life historybiases associatedwith the
demand for exotic pets. The IUCN records species both in large-scale,
industrialised trade for pets as well as those harvested directly from
the wild on a smaller scale. While high fecundity is advantageous for
the former, slow life histories may be favoured for the latter as a by-
product of consumer demand for rarer, threatened species which
develop slowly40, such asprimates. Slowlydeveloping speciesmay also
bemore appealing aspets due to longer juvenile periods, duringwhich
they are less aggressive and perceived as ‘cuter’. However, direct
comparison of results based on the US and IUCN trade datasets is
difficult given disparities in sample size and representativeness. While

Fig. 2 | Model classification performance. Classification performance for models
based on the US live wildlife trade data across mammal (pink), reptile (blue) and
amphibian (gold) species using within-sample predictions (top row) and LOOCV
(bottom row). Histograms show distributions of predicted probabilities for traded

and non-traded species, while plots show receiver operating characteristic (ROC)
curves and areas under the ROC curves (AUC). Silhouettes were obtained from
phylopic.org under Public Domain licences.

Fig. 3 | Role of reproductive lifespan in trade. Plots illustrating the relationship
between reproductive lifespan and US live trade (top row) and reproductive life-
span and the pet trade (bottom row) for mammals (pink), reptiles (blue) and
amphibians (gold). Points represent the raw data values. Faint lines are predicted
probit curves from the entire posterior distribution, holding all life history

predictors other than reproductive lifespan at the mean. Thick lines represent the
mean curve from the posterior distribution, again holding all predictors at the
mean apart from reproductive lifespan. Silhouettes were obtained from phylopi-
c.org under Public Domain licences.
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theUSdataset records imports and exports of all wildlife species, IUCN
use and trade descriptions vary in their completeness, likely under-
estimating the true number of species involved in the pet trade. Pet-
traded mammals appear to be particularly under-represented
(Table 1), which may be partly due to recording biases: mammals are
often traded in small numbers on request, while reptiles and amphi-
bians more openly at markets41. In any case, our results suggest that
prolific life histories are favoured for large-scale, international trade in
live species for purposes that include the pet trade, but are not
necessarily associated with demand for pets per se.

Predicting which species are most likely to become invaders in
future is a critical issue for conservation and invasive species man-
agement, since controlling alien populations once established is often
unfeasible5,6. Our study shows that life history traits can make above-
chance predictions of trade and introduction status, including for
species outside of the study sample. Our analyses may therefore help
to identify species with life history traits that increase their risk of
entering the invasion pathway in the future. For example, analyses
based on US wildlife trade data flag golden jackals, red-bellied black
snakes andNorthwestern salamanders as at high risk of involvement in
the live wildlife trade (with out-of-sample predicted probabilities of
>0.85). All are plausible candidates for future international trade: since
the time of analysis, golden jackals have been reported for sale live at
local markets in India42, red-bellied black snakes, though venomous,
are relatively docile and well-suited to captivity43, and many sala-
mander species are already popular in the international pet trade44.
Ourmodels also highlight several species predicted tobe at high risk of
future trade that are in fact domesticated and thus already widely
traded, but not recorded as such in the US LEMIS dataset, which pri-
marily monitors the wildlife trade. These include for example horses
(Equus caballus), gayals (Bos frontalis) and bantengs (Bos javanicus),
the latter two being domesticated species that are widely used as
livestock and working animals in South and Southeast Asia (Supple-
mentaryData 1). The identification of domesticated species as high risk
of trade therefore suggests that ourmodels performwell in identifying
species with life histories suitable for human exploitation.

Our models also flag several species traded by the US that have
both high (>0.80) out-of-sample predicted probabilities of introduction
(Supplementary Data 1) and high invasion potential. For example, Vir-
ginia opossums (Didelphis virginiana) are closely related to the com-
mon opossum (Didelphis marsupialis), which has spread extensively in
the US following historical introductions beyond its native range45.
Blanding’s turtle (Emys blandingii) is another strong candidate, having
already been releasedwithin its native range in theUS via thepet trade46

and belonging to the same family as one of themost notorious invaders
in the world: the red-eared slider (Trachemys scripta elegans), with
which it shares similar life history characteristics20,25. Among amphi-
bians, plausible candidates include spotted salamanders (Ambystoma
maculatum), which have been exported in large numbers from the US
for commercial purposes over the last 20 years31. A congener species,
the tiger salamander (Ambystoma tigrinum), has already been intro-
duced in Europe via the pet trade where it has established alien
populations46. However, our models also identify some species as at
high risk for future trade and introduction that are much less plausible
candidates, such as sea turtles (Supplementary Data 1).While sea turtles
conform to the life history profile typical of internationally traded and
introduced species, with very long reproductive lifespans and large
clutches25, the high conservation value and inherent difficulty of
breeding these species in captivity makes them unlikely candidates.
Therefore, predictions are likely to improve in accuracy when further
ecological and anthropogenic factors that capture the desirability and
feasibility of species for trade and release are factored into future
analyses. Such factors, which likely include aesthetic appeal, captive
care requirements and associated monetary costs, are poorly under-
stood, partly because they are difficult to quantify, highlighting a need

for further research into the motivations of wildlife traders, breeders
and owners. A recent study showing that colourful songbird species are
targeted for the pet trade47, however, suggests that such analyses are
feasible and may be usefully applied to other vertebrate groups. While
we focus on the effects of life history traits here, the approach we
demonstrate has great potential to provide meaningful recommenda-
tions for conservation management decisions when expanded to
include a wider range of predictors.

Given the ecological and economic harm caused by alien inva-
sive species, understanding why some species are invasive and pre-
dicting which species are most likely to be introduced and become
invaders in future is a vital issue. The extent to which species traits
predict invasion success is a long-standing question, which remains
contentious despite numerous comparative analyses5–7,48,49. Previous
studies have focused on the establishment stage, while those that
have considered the introduction stage have typically conflated
barriers associated with transportation and release, and few have
fully accounted for phylogenetic effects. Here we overcome these
limitations by identifying life history predictors of success at the two
earliest stages of the invasion pathway, transportation and intro-
duction, using fully phylogenetically informed analyses. We show
that mammals, reptiles and amphibians with a highly prolific life
history combining fast traits with a long reproductive lifespan are
more likely to be transported internationally in the live wildlife trade
and to be introduced into non-native regions. These results, together
with our earlier findings that highly fecund mammals, reptiles and
amphibians are also more likely to establish and spread once
introduced25,26, demonstrate that human activities favour the release
of species with life histories that predispose them towards becoming
abundant, widespread invaders. Taken together, our studies show
that species’ life histories are a key predictor of success across the
entire invasion pathway and that barriers at each stage of the path-
way—transportation, introduction, establishment and spread—pro-
gressively select for the most prolific species. While species with
slower life histories may be at greater risk of demand for exotic pets,
only those with life histories suited to captive breeding are likely to
be favoured for industrial-scale pet trade. Many of our models are
able to predict the trade and introduction status of species outside
the sample at well above chance levels, and thus allow us to identify
several plausible candidates for future trade and introduction,
including some species with high invasion potential. Our approach
therefore offers a valuable framework for both understanding why
some species are invasive and identifying which are most likely to
become invasive in future.

Methods
Data collection
We obtained trade data from two different sources: the United States
Fish and Wildlife Service (USFWS) Law Enforcement Management
Information System (LEMIS)31 and the International Union for Con-
servation of Nature (IUCN) Red List32. We used the former to obtain
data on the live wildlife trade in general and the latter for data on the
pet trade specifically. We thenmatched trade data with our previously
compiled global scale datasets of life history traits and introductions in
mammals, reptiles and amphibians25,26.

We obtained data on the US live wildlife trade from LEMIS by a
Freedom of Information Act Request on 12/08/2019. We requested
summary data on all US imports and exports of wildlife across all
available years (1999-2019) and all trade purposes, including infor-
mation on species identities and shipment contents (e.g. live indivi-
duals, meat, skins, etc.). For each species, we summed the total
number of recorded shipments of live individuals (including indivi-
duals that died in transit, and live eggs) as a measure of trade fre-
quency. We classified species as in trade if there was at least one
shipment of live individuals recorded in the LEMISdatabase, and as not
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traded otherwise. The LEMIS dataset is geographically limited to trade
by the US, and therefore may not capture the full diversity of species
involved in the wildlife trade. For example, the LEMIS databasemay be
missing some species involved in the substantial trade in live wildlife
between South–East Asian countries50. However, the US represents
one of the most dominant players in the global market for live
wildlife16, and by summing both imports and exports we capture
demand for species in countries beyond the US to some extent. Sup-
plementary Fig. 2 illustrates the frequency of trade between theUS and
countries represented in the US LEMIS dataset. LEMIS data should be
considered a minimum estimate of the diversity of species involved in
the wildlife trade since they mostly record only legal trade (although
confiscated shipments are recorded), and shipments are sometimes
not identified to the species level16,51–53. The LEMIS database also con-
tains somemis-spelled and incorrectly identified species due to human
input errors52. To minimise the effect of misidentified shipments on
our species level classifications of US trade status, we discarded all
LEMIS records that were not identified to the species level (i.e. those
identified using genus, common or generic names only), andmanually
checked the LEMIS data for synonyms and alternate spellings when we
couldnot automaticallymatch any records in LEMISwith species in our
life history datasets. Species classified as traded on the basis of a single
recorded live shipment in LEMIS are most vulnerable to species level
misclassification due to misidentified shipments. The vast majority of
traded species have multiple shipments recorded in LEMIS (259/312
[83%] of traded mammals, 265/285 [93%] of traded reptiles and 72/75
[96%] of traded amphibians), reducing the potential impact of ship-
ment level misidentification over the reliability of species level trade
classifications. However, to investigate the robustness of our findings
to possible errors in species identification in LEMIS, we re-ran our key
analyses excluding species classified as traded on the basis of a single
live shipment. We found qualitatively the same effects of life history
traits on the probability of tradewhen removing these species as inour
full sample (Supplementary Tables 25–27). Despite its limitations,
LEMIS is an invaluable resource for identifying broad scale trends in
the wildlife trade since few other countries maintain such detailed
records, and it is the only large-scale international trade dataset that
includes both CITES- and non-CITES-listed species16,41. Including non-
CITES listed species in our analyses is important because CITES-listed
species represent only a smallminority of those in trade14 and are likely
to be a biased sample in terms of life history traits, since species vul-
nerable to extinction typically have slower life histories40.

We obtained separate data on the pet trade from the IUCN Red
List. The IUCN has assessed the vast majority of mammal, reptile and
amphibian species (91%, 79% and 86% respectively54). Here, we classi-
fied a species as involved in the pet trade if the IUCN species account
included at least one clear description of involvement in the pet trade.
Otherwise, we considered a species as not involved in the pet trade.
Although LEMIS records the purpose of trade, it uses broad categories
(e.g. ‘Commercial’, ‘Personal’, ‘Breeding in captivity’), none of which
refers specifically to nor necessarily equates to trade for pets. There-
fore,wesought this additional data on thepet trade from the IUCNRed
List instead of following the approach of some previous studies which
have used LEMIS data as a proxy for the pet trade (e.g. Refs. 15,19). In
contrast, the IUCN Red List contains clear textual descriptions of use
and trade for many species, allowing us to identify which species are
traded specifically for pets32. The IUCN data has further com-
plementary strengths compared with LEMIS in that it is global in scope
and includes both legal and illegal trade. We obtained data from the
IUCN Red List by manually searching the binomial name of each spe-
cies in our samples and consulting the ‘Threats’ and ‘Use and Trade’
sections of the species accounts. We classified species as in the pet
trade if the information clearly stated this was the case (e.g. “It has
been recorded in the pet trade”, “This species appears in the interna-
tional pet trade”). We discounted descriptions where the information

was uncertain (e.g. the species is described as “probably” or “possibly”
traded for pets). We did not count as pets those species that the IUCN
categorises as used for “Pets/display animals, horticulture” but which
are used only for zoos or captive display, such as beluga whales (Del-
phinapterus leucas). All species described as pets by the IUCN are
‘exotic’, i.e. those without a long history of domestication14, since the
IUCN does not list domesticated species.

Wematched trade data with our previously published global scale
datasets on life history traits and introductions25,26. Internationally
traded species may or not be released in the wild outside their native
range: some may remain in the confines of captivity (e.g. in zoos or
kept by private owners). We defined a species as introduced if there
was at least one reliable record of its release, by humans, into the wild
outside of its native range, either accidentally or intentionally25,26. We
includedonly specieswith complete data for the same life history traits
as used in our prior analyses (mammals: body mass, gestation period,
weaning age, neonatal bodymass, litter size, litters per year, age atfirst
reproduction and reproductive lifespan; reptiles: bodymass, hatchling
mass, clutch size, clutches per year, age of sexual maturity, repro-
ductive lifespan and parity; amphibians: snout-vent length, egg size,
clutch size, age of sexual maturity and reproductive lifespan) to facil-
itate direct comparisons with previous results and to allow us to
account for covariation between life history traits55. Species with
complete life history data represent 7.8%, 3.5% and 1.6% of the total
estimated number of species of mammals, reptiles and amphibians
respectively56–58. These samples are not random as they over-represent
orders containing many species of interest and utility to humans (e.g.
ungulates, primates, crocodilians) (Supplementary Tables 28–30).
However, these biases are unlikely to undermine our results since we
examine life history effects on trade and introduction within these
samples. Trade and introduction data do not necessarily cover the
same time periods: the US dataset covers only the years 1999-present
and the IUCN descriptions also typically refer to recent trade. In con-
trast, our introduction dataset includes both historical and recent
introductions25,26. Therefore, the goal of our analyses is not to test
causal hypotheses on the direct relationship between trade and
introduction but rather to investigate whether the same life history
traits predispose species towards both trade and introduction across
diverse taxa, locations and circumstances. When combining the data-
sets and phylogenies59–63, we resolved species name mis-matches by
referring to taxonomic information from the IUCN Red List32, the
Global Biodiversity Information Facility (GBIF33) and the Integrated
Taxonomic Information System (ITIS64). Table 1 summarises final
sample sizes and Supplementary Table 1 the degree of overlap
between the trade datasets.Most species in thepet trade are also in the
general live wildlife trade, butmanymore species are traded by the US
for general purposes than are involved in the pet trade specifically.

Finally, we obtained data for a proxy measure of species detect-
ability in order to control for a potential confounding effect on rela-
tionships between life history traits and introduction: larger bodied
and longer-lived species may be more likely to be recorded by human
observers when introduced compared with smaller and shorter-lived
species. We obtained data on species occurrence records, geographic
range size and population density, assuming that highly detectable
species will have a disproportionately large number of recorded
observations than expected based on the size of their geographic
ranges and average population densities, following similar approaches
by e.g. Refs. 65,66. We obtained occurrence records from the Global
Biodiversity Information Facility (GBIF33) via the R package rgbif67

selecting only records resulting fromhumanobservation.Weobtained
range sizes (in decimal degrees squared) from the IUCN Red List32 and
processed them for analysis using functions from the rgdal package68,
excluding areas of uncertain presence (i.e. limiting range to presence
code 1, ‘extant’). We obtained population density estimates from the
TetraDENSITY database (version 134), a global database of population
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density estimates for terrestrial vertebrates. Most species in the Tet-
raDENSITY dataset are represented by estimates from multiple dif-
ferent studies (median = 3, range 1–408). We collapsed density
estimates to the species level by taking the median value across stu-
dies, including all estimates regardless of sampling method to max-
imise sample size, and converting all units to individuals/km2 to ensure
comparability.

Statistical analyses
To investigate relationships between life history traits and trade, we
run models treating US or pet trade as the outcome variable and life
history traits as the predictors. For all analyses, all life history variables
were included in the same models to account for covariation among
life history traits55. For US trade, where data on trade frequency are
available, we run models both in which trade is treated as a binary
variable (traded vs. not traded) and as a count variable (frequency of
live shipments, including zero values), while for the pet trade, we have
no data on trade frequency and so we treat pet trade as a binary
variable only. To investigate the effects of life history traits on intro-
duction, we run models in which introduction is the outcome variable
and life history traits are the predictors. In introduction models, we
only include traded species (running separate models for the set of
species in US trade and the set of species in the pet trade). This
approach allows us to disentangle effects associated with trade and
introduction and thus identify at which stage(s) life history biases
emerge. We also run introduction models in which frequency of US
trade is included as an additional predictor alongside life history traits,
anticipating that highly traded species are more likely to be intro-
duced. Finally, to investigate possible confounding effects of species
detectability on relationships between life history traits and intro-
duction, we investigate effects of number of observations, geographic
range size and, where sample sizes allowed, population density on the
probability of introduction. If highly detectable species aremore likely
to be recorded as introduced, we expect to find a positive effect of the
number of observations (while accounting for geographic range size
and population density) on the probability of introduction. If this
effect confounds relationships between body mass/lifespan and
introduction, the effect of these life history traits on the probability of
introduction should disappear when detectability measures are
included in the models alongside life history traits. All analyses were
conducted using the R statistical programming environment (Version
4.2.069). Plots were coloured using palettes from the viridis package70.

To estimate effects of predictor variables, wefit generalized linear
mixed models (GLMMs) using Markov chain Monte-Carlo (MCMC)
estimation, implemented in theMCMCglmmpackage35,36. For analyses
with binary outcome variables (traded vs. not traded, introduced vs.
not introduced) we fit probit models, while for analyses with US trade
frequency as the outcome variable we fit hurdle models. Hurdle
models estimate two latent variables: the probability that the outcome
is zero (on the logit scale), and the probability of the outcome mod-
elled as a Poisson distribution for non-zero values71. This method
therefore allows us to estimate effects of life history traits on the
probability and frequency of trade in the samemodel.While the binary
component of a hurdlemodel estimates the probability that outcomes
are zero, when reporting results we reverse the sign of coefficients
from the binarymodel for ease of interpretation, so that effects can be
interpreted as the probability that the outcome is not zero. Therefore,
here predictors with consistent effects on the probability and fre-
quency of trade in hurdlemodelswill have the same sign (so that if, for
example, litter size has a positive effect on both the probability and
frequency of trade, both coefficients for litter size from the hurdle
model will be positive).

Datasets comprising biological measures from multiple related
species violate the fundamental statistical assumption thatobservations
are independent of one another, since closely related species are more

phenotypically similar than expected by chance due to their shared
evolutionary history72. To account for the non-independence of species
due to shared ancestry, we included a phylogenetic random effect in all
models, represented by a variance-covariance (VCV) matrix derived
from the phylogeny. The off-diagonal elements of the VCV matrix
contain the amount of shared evolutionary history for each pair of
species35,37,38 based on the branch lengths of the phylogeny (here pro-
portional to time)59–63. This approach allowsus to estimatephylogenetic
signal using the heritability (H2) parameter, which measures the pro-
portion of total variance in the latent variable attributable to the
phylogeny35,37,38.Heritability is interpreted in the samewayas Pagel’sλ in
phylogenetic generalized least squares regression35,37,38,72. Specifically,
phylogenetic signal is constrained between 0, indicating no phyloge-
netic effect so that species can be treated as independent, and 1, indi-
cating that similarity between species is directly proportional to their
amount of shared evolutionary history35,38,72. As hurdle models estimate
two latent variables, for each hurdle model we report two heritability
estimates, one for the binary and one for the Poisson component. All
continuous independent variables were log-10 transformed due to
positively skewed distributions. Although GLMMs do not require nor-
mally distributed predictor variables, log-transforming positively
skewed life history predictors in phylogenetic comparative analyses
allows us to model life history evolution on proportional rather than
absolute scales. This is important as it facilitates biologicallymeaningful
comparisons between species across large scales of life history
variation73. Further, log-transforming positively skewed predictors
helps tomeet assumptionsof theunderlyingBrownianmotionmodel of
evolutionary change, which assumes that phenotypic change along
branches of the phylogeny is normally distributed74.

We calculated variance inflation factors (VIFs) using functions
from the car R package75 to check for multicollinearity between pre-
dictor variables. Where any model reported a variance inflation factor
of 5 or above, indicating potentially problematic levels of collinearity76,
we re-ran the model removing the variable with the highest VIF itera-
tively until all the remaining variables had VIFs of <5. We also illustrate
the correlations between the life history variables included in our
models in Supplementary Figs. 3–5, which suggest evidence for both
classic fast-slow life history trade-offs (e.g. smaller, less frequent litters
in larger, longer-lived mammal species) and more complex patterns
(e.g. larger clutches in larger-bodied, longer-lived reptile species). For
each model, we report the mean estimates from posterior distribu-
tions for all parameters, and the percentage of fixed effect parameter
estimates crossing zero in the direction opposite to the majority of
estimates, as ameasure of the strength of evidence for individual fixed
effects in a specific direction. We used default, diffuse normal prior
probability distributions for the fixed effects (mean= 0, variance =
1010). For the phylogenetic random effect in probit models, we used a
chi-squared prior distribution which better approximates a uniform
prior compared with more commonly used inverse-Gamma priors37

(with V = 1, ν = 1000, αμ =0, αV = 171). The residual variance is fixed to
1 since models with binary dependent variables do not provide suffi-
cient information to estimate residual variance (following37). For the
binary component of the hurdle model, we used the same chi-squared
prior for the phylogenetic random effect and fixed prior for the
residual variance as we used in the probit model. For the Poisson
component of the hurdle model, we used commonly implemented
inverse-Wishart priors (with V = 1 and ν =0.002, equivalent to
inverse-gamma distributions with shape and scale = 0.00171) for the
phylogenetic random effect and the residual variance. By modelling
residual variance separately, MCMCglmm accounts for over-
dispersion in the distribution of the non-zero response values71,
which is common in count data. We ran each model for a
sufficient number of iterations to obtain effective sample sizes of at
least 1000 for all parameters (5,010,000 iterations, with a burn-in
period of 10,000 iterations, sampling every 1000 generations).
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Model convergence was also confirmed by visual examination of
posterior distributions and chain plots.

Finally, we assessed the ability of our models to predict the
probability of trade and introduction for species within and outside
the sample, based on both fixed effects (life history traits and body
mass) and the phylogenetic random effect. For out-of-sample pre-
dictions, we used leave-one-out cross-validation (LOOCV), i.e. we re-
ran the model excluding each species in turn, obtained predictions
for the missing species and compared these with the observed
values. For both types of predictions, we calculated the area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve as a measure of classification performance, using the cvAUC
package77. AUC values indicate the probability that a randomly drawn
positive observation (in this case, a species that is traded or intro-
duced) has a predicted value that is greater than a randomly drawn
negative observation (i.e. a species that is not traded or
introduced)39. AUCs vary from 0.5 to 1, where 0.5 indicates that the
model predictions are nobetter than randomguesses, and 1 indicates
perfect distinction (i.e. positive observations always have greater
predicted probabilities than negative observations)39. Next, we used
predicted values from the model to identify species not listed as
traded or introduced in our datasets, but with high predicted prob-
abilities of trade or introduction which may indicate high risk of
future trade or introduction. To do so, we extracted predicted
probabilities from models and identified non-traded or non-
introduced species with high predicted probabilities for each verte-
brate class. LOOCV required re-running each of our models as many
times as the N species in the sample, which necessitated shorter
MCMC chains to avoid impractically long run-times. In supplemen-
tary analyses, we show that predictions do not differ betweenmodels
based on short versus long chains (Supplementary Table 31).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data required to replicate the results of this study have been
deposited in the Dryad repository and are available at the following
link: https://doi.org/10.5061/dryad.8cz8w9gvb.

Code availability
All R scripts required to replicate the results of this study are available
from the Dryad repository at the following link: https://doi.org/10.
5061/dryad.8cz8w9gvb.
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