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Sequential Search Auctions with a Deadline∗

By JOOSUNG LEE†AND DANIEL Z. LI‡

A seller wants to allocate an indivisible product among a number of
potential buyers by a finite deadline, and to contact a buyer, she needs
to pay a positive search cost. We investigate the optimal mechanism
for this problem, and show that its outcomes can be implemented by a
sequence of second-price auctions. The optimal sequential search auc-
tion is characterized by declining reserve prices and increasing search
intensities (sample sizes) over time, and the monotonicity results are ro-
bust in both cases of short-lived and long-lived bidders. When bidders
are long-lived the optimal reserve prices demonstrate a one-step-ahead
property, and our results generalize the well-known results in sequen-
tial search problems (Weitzman, 1979). We further examine an efficient
search mechanism, and show that it is featured by both lower reserve
prices and search intensities than an optimal search mechanism.
JEL: D44; D82; D83
Keywords: sequential search; search mechanism, auction; deadline;
sample size; reserve prices

It is puzzling to observe that many important selling processes in markets seem not
competitive, where no obvious competition among buyers is observed. For instance, in
mergers and acquisitions (M&As), it is a well-documented fact that the dominant selling
process is one-on-one negotiation. That is, when the board of directors decides to sell a
firm, in most cases, they just contact one potential buyer. Betton, Eckbo and Thorburn
(2008) report that 95% of their sample deals in the US market, during the period from
1980 to 2005, are classified as non-competitive negotiations, and Andrade, Mitchell and
Stafford (2001) also describe the prototypical M&As in the 1990s as friendly transac-
tions, where normally there was just one bidder. This is against intuition, as conven-
tional wisdom states that competition among bidders can not only raise bid premiums,
but promote allocative efficiency in markets.

There have been some explanations for this puzzle. Boone and Mulherin (2007)
present a new measure of M&A competition, and show that many deals classified as
negotiations are actually auctions, where more than one bidders get involved in the com-
petition. After reconstructing a new sample using their measure, however, they still have
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half of the sample deals classified as non-competitive negotiations. On the other hand,
Aktas, De Bodt and Roll (2010) argue that M&A involves a seller’s sequential deci-
sion, and a negotiation in an early stage is under the threat of following-up auctions.
For instance, if the seller fails to achieve a good deal in the negotiation stage, she may
invite more bidders and run auctions among them in the following stages. Therefore,
a one-on-one negotiation is not insulated from competition indeed, and the pressure of
following-up auctions can drive up bid premiums in the negotiation stage. This argument
is supported by the empirical evidence that there is no significant difference in bid pre-
miums across the two selling processes of negotiation and auction (Boone and Mulherin,
2007, 2008).

Depending on how many bidders to contact in the first stage, Boone and Mulherin
(2009) classify the selling processes in M&As into three categories: one-on-one negoti-
ation, where a seller approaches a single most likely buyer first; private controlled sale
(auction), where a seller screens and first invites a small number of qualified bidders to
an auction; and public full-scale auction, where a seller announces and runs a public
simultaneous auction, and all interested bidders can submit bids. Besides the nature of
sequential decisions, a typical M&A selling process also involves a finite deadline for
completing the transaction, and a positive search cost for a seller to contact bidders, i.e.,
it could be the seller’s information costs due to the loss of proprietary information to
bidders in a due diligence process.

In fact, M&A can be thought of as an example of the following general problem. A
seller wants to allocate an indivisible product among a number of potential bidders; to
contact a bidder, she needs to incur a search cost; and the seller has to complete the
transaction by a finite deadline. Many important transactional processes can be thought
of as a variant of this problem, such as matching in marriage markets with age deadlines,
academic recruitment in the UK by a REF deadline, sequential talent contests, and so
on. We are interested in the optimal allocation mechanism and its implementation in
practice.

In this paper, we develop a framework for understanding the optimal choice of various
selling processes in M&As and other similar problems. Specifically, we model it as a
seller’s sequential search problem with a finite deadline. Due to the presence of search
costs, a simultaneous full-scale auction is typically not optimal. For example, if a seller
searches bidders sequentially and happens to get an ideal offer from a bidder, she may
not still have incentives to contact other bidders, as search is costly. Second, due to the
presence of a finite deadline, a one-by-one sequential search may not be optimal either, as
too few bidders might be sampled in this case. Therefore, when facing a finite deadline,
a seller may conduct a compound search in which she searches both sequentially and
simultaneously, i.e., she may sample several bidders simultaneously in a single period.
We show that the optimal search mechanism, in this case, is featured by declining reserve
prices and increasing search intensities (sample sizes). Our result of increasing search
intensities may explain why, in M&As and other similar problems, the dominant selling
process is non-competitive negotiations, rather than full scale auctions.

In our model, a (female) seller wants to allocate an indivisible product among a set N
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of potential (male) bidders. To contact a bidder, she needs to pay a positive search cost,
and she has to complete the transaction within a finite T periods. A search mechanism is
composed of both a sampling rule and a sequence of stage mechanisms. The sampling
rule specifies a sequence of bidder samples that the seller will contact in each period,
while a stage mechanism defines the allocation and payment rules for the transaction in
each period. If a product is not allocated in one period according to the stage mechanism,
then the seller moves on to the next period, e.g., continue searching, until the deadline.

We assume the seller first announces the search mechanism, and then fully commits
to it thereafter. The standard results in mechanism design show that when the search
mechanism is incentive feasible, a bidder’s expected payment is equal to his virtual value
(Myerson, 1981), and therefore, the seller’s expected revenue from a sample of bidders is
equal to the highest virtual value of those bidders. With this result, we could conveniently
transform a compound search problem into a sequential one. For instance, we can think
of a sample of bidders as an aggregate bidder, who is characterized by the highest virtual
value and the total search costs of those bidders.

We consider both cases of long-lived and short-lived bidders in our model. A long-
lived bidder, once invited, will stay in the transaction thereafter until the end of period
T . A seller then can reclaim a previously declined bid without the need of paying extra
search cost. The case of long-lived bidders is analogous to sequential search with full
recall. In contrast, a short-lived bidder will participate in the transaction only once,
when he is invited, and then goes away. A declined bid of a short-lived bidder can never
be reclaimed by the seller in later periods. The case of short-lived bidders corresponds
to sequential search with no recall.

We show that, in both cases, the outcomes of an optimal search mechanism can be im-
plemented by a sequence of second price auctions. Specifically, the rule of the sequential
auction is as follows: the seller first invites a set M1 of bidders to an auction with re-
serve price r1; if any bidder submits an effective bid, then the transaction ends, and the
payment and allocation are implemented according to the auction rule; if no bidder sub-
mits an effective bid, then the seller moves on to the next period and invites a set M2 of
new bidders to the auction, with a new reserve price r2; the seller then continues with
this process until the end of period T . If bidders are long-lived, all previously invited
bidders will participate in the stage auctions of the following periods. On the contrary,
short-lived bidders just participate in the stage auction when they are invited.

Our model generates several interesting results. Firstly, we show that an optimal
sequential search auction is characterized by decreasing reserve prices and increasing
search intensities over time, and the monotonicity results are robust in both cases of
long-lived and short-lived bidders. The result of decreasing reserve prices is known in
the literature of sequential search and sequential auctions. The intuition is that the value
of optimal reserve reflects the continuation value of following an optimal search proce-
dure in the remaining periods, which becomes smaller when the deadline approaches.
As a result, when following an optimal search procedure, the reserve prices for stage
auctions will keep on declining and reaches its lowest level in the last period.

The result of increasing search intensities is more interesting. When bidders are ex-
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ante homogeneous, the degree of search intensity is simply measured by the number of
bidders sampled in each period. Our result states that, when following an optimal search
procedure, a seller will invite increasingly more bidders in each period when the deadline
approaches. In another word, in the first period, the sell will contact the fewest number
of bidders. This result of increasing search intensities helps explain why, in M&As and
other similar problems, the dominant selling process could be non-competitive negotia-
tions.

Secondly, we show that when bidders are long-lived, the optimal reserve price demon-
strates a one-step-ahead property, in the sense that it just depends on the sample of bid-
ders to be invited in the right next period, not further. This property is implied by the
fact that optimal reserve prices are declining over time and search is with full recall. Our
result on optimal reserve prices generalizes the well-known result of Weitzman (1979),
which studies one-by-one sequential search without a deadline. Our model differs from
his in at least two aspects: first, in our model, the targets for search are strategic bidders,
while in his paper, they are non-strategic boxes containing random prizes;1 second, we
study compound search, where a seller searches both sequentially and simultaneously,
yet Weitzman just considered the case of one-by-one sequential search. Our result of
optimal reserve prices incorporates the well-known formula of Weitzman (1979) as a
special case, and the result, we believe, can be applied to the studies of a large variety
of related problems. In addition, we provide a succinct formula for maximum expected
profit, when a seller follows an optimal search procedure. When T converges to infinity
and bidders are homogeneous, our problem converges to a stationary and infinite-horizon
(SIH) search problem. Our formula also takes the well-known result on maximum search
profit in SIH search problems as a special case.

Thirdly, we examine an efficient sequential search mechanism when there is a finite
deadline. We show that an efficient search mechanism is also featured by decreasing
reserve prices and increasing search intensities over time. Interestingly, a simple com-
parative result shows that an efficient search mechanism has both lower reserve prices
(when bidder samples given) and search intensities (when cutoff values are given) than
in the corresponding optimal mechanism. Our result also indicates that, the the con-
text of sequential auctions, the inefficiency of an optimal mechanism can result from an
inefficient search procedure.

Finally, we compare the optimal search auctions across the two cases of long-lived and
short-lived bidders. We first show that, for a given sampling rule, the optimal reserve
prices for short-lived bidders are lower than those for long-lived bidders in each period.
This result is intuitive, as in the case of short-lived bidders, a seller’s fall-back revenue
is always zero, smaller than that for long-lived bidders, and therefore the seller is willing
to accept a lower reserve price. Second, we show that, in the case of short-lived bidders,
the optimal reserve prices no longer hold the one-step-ahead property, yet we are able to
provide a recurrence equation for optimal cutoff values.

1Crémer, Spiegel and Zheng (2007) also consider sequential search in an auction contexts, where a seller needs to
incur positive costs to search bidders. Like Weitzman (1979), but they focus solely on infinite sequential search with
full recall, as bidders are assumed to be long-lived in their model. In this paper, we investigate sequential search with a
deadline, and consider both cases of long-lived and short-lived bidders.
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The rest of this paper is organized as follows. Section I provides a brief review of
the related literature. Section II setups the basic model, where we also define the search
mechanism and characterize the optimal search rule. Section III proposes a sequen-
tial search auction that can implement the outcomes of the optimal search mechanism.
Section IV studies an efficient search mechanism, and compares its outcomes with the
optimal search mechanism. Section V moves on to the other important case of short-
lived bidders and characterizes the optimal search mechanism in this case. Section VI is
a short conclusion. Missing proofs appear in Appendix.

I. Related Literature

This study is motivated by the puzzling observation that many important selling pro-
cesses in markets seem non-competitive, where no obvious competition among buyers
is observed. We propose a new framework for understanding these puzzles, by mod-
eling them as a finite sequential search problem for a seller. First, our paper fills an
important gap in the theory literature on sequential search and auctions, and it is related
to the following strands of literature: (1) sequential search without or with a deadline,
(2) sequential auctions with participation costs, and (3) auctions with buy-price options.
Second, our paper also makes practical contributions to the literature, and it is related to
the persistent debate in practice on the choice among various selling processes in mar-
kets.

For the literature on search, Weitzman (1979) is a seminal paper that studies the so-
called Pandora’s problem of infinite sequential search with full recall. Specifically, Pan-
dora faces a number of closed boxes; insides each box, there is a random prize; she needs
to pay a positive search cost to open a box; Pandora can open just one box in a single pe-
riod, and her objective is to maximize the expected value of the prize discovered, net of
the total search cost. Weitzman provides a nice solution to this problem, which is known
as Pandora’s Rule. First, Pandora can derive a cutoff prize for each box, at which she is
indifferent between keeping the cutoff prize and inspecting that box at a cost. Second,
the selection rule specifies that if Pandora intends to open a box, it should be the box
with the highest cutoff prize among all the remaining unopened boxes. Third, the stop-
ping rule suggests that Pandora should stop searching whenever the highest discovered
prize so far is greater than the highest cutoff prize of all the remaining unopened boxes.
Pandora’s rule then implies that, under an optimal search procedure, the cutoff prizes are
necessarily declining over time.

Crémer, Spiegel and Zheng (2007) extend the sequential search model of Weitzman
(1979) into an auction context.2 Instead of opening boxes, they consider a seller invit-
ing bidders sequentially at positive search costs, and also asking their bids sequentially.
They just consider the case of long-lived bidders, where a seller can reclaim previously

2McAfee and McMillan (1988) precede Crémer, Spiegel and Zheng (2007) in considering sequential search in an
auction context. In their model, a monopolist buyer seeks to buy an indivisible product from one of a set of producers.
The buyer contacts the producers sequentially, each at a constant cost, and the producers are ex-ante homogeneous.
They show that the optimal search mechanism, in their model of homogeneous producers, is a combination of constant
reservation-price search and auction.
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declined bids. As mentioned earlier, this corresponds to search with full recall. They
show that Pandora’s rule is still valid in this case, and further compare the outcomes
between optimal and efficient search auctions.

In the presence of a finite deadline, a one-by-one sequential search may no longer
be optimal. In this case, Pandora may intend to sample multiple boxes simultaneously
in a single period. This more general search procedure is known as a compound or
sequential-and-simultaneous search. Gal, Landsberger and Levykson (1981) is an early
paper that studies this compound search procedure in labor markets. They introduce a
finite deadline into the classic sequential search model of Lippman and McCall (1976).
In their model, job offers are homogeneous in terms of search cost and wage distribution,
and the number of offers sampled in a single period thus measures search intensity. They
show that, when search is with no recall, a searcher’s optimal search procedure is featured
by decreasing reservation wages and increasing search intensities over time. In another
word, when the deadline approaches, a job searcher will invest more and more in search.3

Morgan (1983) examines a similar model to that of Gal, Landsberger and Levykson
(1981), and provides more results. First, he also shows that, when search is with no
recall, the optimal sample size is increasing in time. Second, when a search is with full
recall, he provides a sufficient condition under which the optimal sample size is still
increasing in time, yet this result does not hold in general. Morgan and Manning (1985)
further present some results on the existence and properties of optimal search rules for
compound search problems, when a searcher can choose both the sample size in each
period and the number of periods she may engage in search.

Our paper fills a critical gap in the literature, by investigating finite sequential search
in an auction context. Compared with other papers studying sequential search auctions
(McAfee and McMillan, 1988; Crémer, Spiegel and Zheng, 2007), our paper differs in at
least two aspects. First, we study sequential search with a deadline, where a seller may
conduct a compound search, and it takes the one-by-one sequential search in the earlier
studies as a special case. Second, we investigate both cases of long-lived and short-lived
bidders in this paper, while the other studies focus solely on long-lived bidders.

Besides the contribution to theoretical literature, our study is also of practical impor-
tance. Many transaction processes in markets, such as M&As, matching in marriage mar-
kets, job recruitment, and among others, can be fitted into our framework. Particularly,
our paper is related to the persistent debate on the choice of various selling mechanisms,
e.g., between negotiation and auction, in markets.

Bulow and Klemperer (1996) show that an English auction with n+ 1 bidders yields
strictly higher revenue than an optimal auction with n bidders, and therefore, the value
of bargaining power is bounded above by the value of competition by inviting one more
bidder. In a recent paper (Bulow and Klemperer, 2009), they compare the selling mecha-
nisms of a sequential negotiation and a simultaneous auction. They show that a simulta-
neous auction yields higher revenue for a seller than a sequential negotiation, though the

3Benhabib and Bull (1983) also study search intensity in job markets, where job offers are homogeneous and a job
seeker can not reclaim a previously rejected offer. They show that in an optimal search, the reservation wage is decreasing
in time, while the search intensity (sample size in each period) is increasing in time. They also consider the on-the-job
search, and derive some different results.
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latter is always more efficient as more bidder information is exploited. In their model,
bidders need to pay positive entry costs to participate in the transaction, and a seller is
unable to commit to a take-it-or-leave-it offer. Under sequential negotiation, an already
entered bidder can make a jump-bid so as to deter further entry of outside bidders, which
may harm the seller. As a result, a seller usually prefers a simultaneous auction to a
sequential negotiation.

But the empirical evidence seems not supporting their results. For example, in M&As,
it is one-on-one negotiation, not competitive auction, that is the dominant selling process.
The empirical evidence also shows that there is no significant difference in bid premiums
across the two selling mechanisms of negotiation and auction in M&As (Boone and
Mulherin, 2007, 2009). In this paper, we propose a different theory and model the selling
process as a finite sequential search problem for a seller. We show the robust result that,
under optimal search procedure, a seller’s search intensity is increasing over time, and
therefore she will contact the fewest number of buyers in the first stage. Our theory helps
explain the seeming absence of competition in M&As and other similar selling processes.

Third, our paper is also related to the literature on buy-price auctions. Reynolds and
Wooders (2009) show that, when bidders are risk-averse, a buy-price then auction mech-
anism can generate higher revenue than an auction mechanism, as the presence of a
buy-price option reduces bidders’ risk-premium. In a similar model, Liu et al. (2017)
investigate and justify the online buy-price auctions as a valid selling mechanism. In a
recent paper, Zhang (2017) studies the optimal sequence of posted-price and auction in a
sequential mechanism, where running an auction is more costly for a seller. In his model,
a population of short-lived bidders enters the market periodically, and in each period, the
seller chooses between a posted-price and an auction mechanism. He shows that, when
the good has to be sold before a deadline and the auction cost is moderate, the optimal
mechanism sequence takes the form of posted-prices then auctions.

Finally, our paper is related to the growing literature on sequential auctions and rev-
enue management. Skreta (2015) investigates optimal sequential auctions with limited
commitment, where revelation principle is no longer applicable. She shows that, in the
case of no commitment, the optimal mechanism is qualitatively similar to one under full
commitment, e.g., with descending reserve prices. In her paper, the same population of
bidders participate in each round of the auction, while in our model, the population of
bidders changes over time, which may be more realistic in M&As and other related situa-
tions. Said (2011, 2012) studies sequential auctions of multi-unit product with changing
population, yet in a different environment to our model. Liu et al. (2017) study se-
quential auctions in the case of limited commitment. Other recent literature on revenue
management includes Board and Skrzypacz (2016) with forward-looking buyers, in the
case of full commitment, and Dilme and Li (2017), who study revenue management with
the arrivals of strategic buyers in the case of no commitment. In our paper, we study a
sequential search auction under the assumption of full commitment.
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II. The Model

A. Model Setup

A (female) seller wants to allocate an indivisible product among a set N = {1,2, · · · ,n}
of potential (male) bidders within T periods. Bidder i’s value of the product, denoted by
Vi, is distributed according to distribution F on [0,1], with strictly positive density f > 0
on (0,1), and Vi’s are independent across bidders. We assume that F is of increasing fail-
ure rate (IFR), which implies the virtual value function of ψ (v) = v− [1−F (v)]/ f (v)is
strictly increasing in v. The distribution of F is common knowledge, yet the realization
of Vi is only observed by bidder i.

To invite bidder i to participate in the transaction, the seller needs to incur a non-
refundable search cost of ci ≥ 0.4 A bidder can not submit a bid if not invited. The seller
is a profit maximizer, and her objective is to maximize the expected product revenue, net
of gross search costs. We normalize the seller’s value of the product to 0. All the players
are risk-neutral, and there is no time discounting.

The following assumption shows that the search cost ci is small enough, such that all
the bidders are valuable for the seller, i.e., for all i ∈ N,

(1)
∫ 1

r∗
ψ (x)dF (x)> ci,

where ψ (r∗) = 0. The left hand side of the inequality is just the maximum expected
revenue the seller can obtain from a truthful bidder, and it is assumed to be greater than
the search cost of ci for all i ∈ N.

We assume bidders are long-lived in this section. A long-lived bidder, once invited,
will stay in the transaction till the end of period T . This assumption also implies that
the seller can reclaim a previously declined bid of a bidder in later periods, without
the need of paying extra search cost. Under the assumption of long-lived bidders, the
seller’s search problem is analogous to the case of sequential search with full recall.
Later in Section 6, we will turn to the other important case of short-lived bidders, which
corresponds to sequential search with no recall.

B. A Compound Search Mechanism

Due to the presence of positive search costs, a simultaneous search mechanism, where
a seller invites several bidders simultaneously to participate in a spot transaction, is usu-
ally not optimal. Similarly, due to the presence of a deadline, a one-by-one sequential
search mechanism may not be optimal either. Here we consider a more general com-
pound search mechanism, where a seller searches both sequentially and simultaneously,
i.e., she may contact multiple bidders simultaneously in one period. This compound

4There are several possible interpretations for the presence of a positive search cost. For instance, in M&As, it could
be the information cost paid by the target firm (the seller), due to the loss of its proprietary information to potential
acquirers (bidders) in the due diligence process, as the acquirers can be its direct competitors in the same market.
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mechanism incorporates the simultaneous search mechanism and the sequential search
mechanism as its special cases.

The compound search mechanism is a combination of a sampling rule and a sequence
of stage mechanisms. For the sampling rule, we first define MT =

{
M1,M2, · · · ,MT

}
as

a family of disjoint subsets of N such that M j∩M j′ = /0 for any j 6= j′, and
⋃T

j=1 M j ⊆N.
A sampling rule of the seller is then a permutation of the set MT , denoted by M =
{M1,M2, · · · ,MT}, which specifies an ordered sequence of bidder samples that a seller
will search in each period. For instance, if Mt = M j, then the seller will invite the sample
M j of bidders in period t. We further denote Nt =

⋃t
τ=0 Mτ as the set of bidder samples

the seller has sampled until the end of period t, with N0 = /0, and Nc
t = MT\Nt denotes

the set of M j’s that the seller has yet sampled at that point.
The other component is a sequence of stage mechanisms, that specifies a pair of alloca-

tion rule of Qt and payment rule of Pt for each period. Specifically, for given a sampling
rule of M, the seller offers a stage mechanism of (Qt ,Pt) to the set Nt of bidders in period
t. Remember, under our assumption of long-lived bidders, there will be an accumulated
set Nt of bidders participating the stage transaction in period t. The allocation rule of
Qt and the payment rule of Pt are respectively a mapping from the Nt bidders’ revealed
values to the allocation probabilities and the corresponding payments made by the Nt
bidders. The sequence of the stage mechanisms is denoted by (Q,P) = {(Qt ,Pt)}1≤t≤T .

The compound search mechanism, denoted by (Q,P) ◦M, then specifies the follow-
ing search rules for the seller. The first is a compound selection rule, which consists of
selecting a family of bidder samples, MT , and the order of the bidder samples that the
seller will search in each period, which is denoted by M. The second is a stopping rule,
according to which the seller decides whether or not stop searching. If the seller de-
cides to stop searching in period t, then the allocation and payment will be implemented
according to the stage mechanism of (Qt ,Pt).

We assume that the seller announces the compound search mechanism of (Q,P)◦M in
period 0, and then fully commits to it thereafter. Under this full commitment assumption,
we can restrict our attention to a direct mechanism. A well-known result in mechanism
design (Myerson, 1981) is that, when the search mechanism is incentive feasible, the
expected product revenue a seller can obtain from a truthful bidder i is just equal to that
bidder’s virtual value of ψ (vi).

C. Optimal Search Mechanism

If we replace a bidder’s value of the product, vi, by his virtual value of ψ (vi), then
we can reformulate the seller’s sequential search problem as Pandora’s problem a la
Weitzman (1979).5 Specifically, for a given family of bidder samples, MT , we can think

5Our model is distinct from his in at least two perspectives. First, we study a sequential search auction, where the
targets for search (bidders) behave strategically, while, in Weitzman (1979), the targets for search are a set of boxes that
behave non-strategically. Second, we study a case of sequential-and-simultaneous search procedure, while, in Weitzman
(1979) and Crémer, Spiegel and Zheng (2007), they just study one-by-one sequential search procedures. Our model
explicitly incorporates the seller’s sampling strategy into consideration, and it takes the one-by-one sequential search
models as special cases.
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of the set M j of bidders as an aggregated bidder j, who is characterized by the gross
search cost of cM j = ∑i∈M j ci, and the highest virtual value of the M j bidders, which is
denoted by

(2) ψ

(
V (1)

M j

)
= ψ

(
max
i∈M j
{Vi}

)
,

where V (k)
M j denotes the k-th highest order statistics of the M j bidders’ values, with distri-

bution F(k)
M j (v). To ease notation, we denote m j as the number of bidders in the sample

of M j, and therefore F(1)
M j (v) = Fm j

(x). We know that, when the search mechanism is
incentive feasible, the maximum revenue a seller can obtain from the M j bidders is just
equal to the highest virtual value of them, that is, ψ

(
V (1)

M j

)
.

The seller needs to determine the optimal search procedure, which involves both a
selection rule and a stopping rule.6 We can formulate it as a dynamic programming (DP)
problem for the seller. Supposing that, at the end of period t, the seller has invited Nt
bidders and the highest bidder value is v, it then implies that the current best offer for
the product is ψ (v), given that the mechanism is incentive feasible. Taking the current
highest value v as a state variable, the seller then faces the decision between stopping
and continuing searching. If she decides to stop searching, then she will keep the offer
of ψ (v), and the product allocation and the bidder payments are implemented according
to the rules of the stage mechanism. If she decides to continue searching, then she needs
to decide which sample of bidders to contact in the next period.

We denote Jt (v) as the value of having an offer of ψ (v) at the end of period t,
which the seller can either accept or reject. It is obvious that JT+1 (v) = 0 and JT (v) =
max{ψ (v) ,0}. For t < T , the Bellman equation for this sequential search problem with
long-lived bidders is thus

(3) Jt (v) = max
Mt+1∈Nc

t

{
ψ (v) ,−cMt+1 +EJt+1

[
max

{
v,X (1)

Mt+1

}]}
,

where ψ (v)≥ 0 is the fall-back payoff of stop searching, and the other term in the curly
braces is the maximum expected payoff of continuing searching.7 It is easy to show
that there exists a unique cutoff value, denoted by ξ ∗t , at which the seller is indifferent
between stopping and continuing searching at the end of period t. Moreover, the value
of ξ ∗t is solely determined by the characteristics of the bidder sample of Mt+1, that the

6Given that a seller is fully committed to the search mechanism of (ξ ,M), the sequential search problem for the
seller is analogous to the Pandora’s problem in Weitzman (1979). For instance, when bidders bid truthfully, we may
think of a set of Mt bidders as a single ’box’ in Pandora’s problem, except that the prize of the ’box’ is now the highest
virtual valuation, and the distribution of the prize is now the distribution of the highest valuation of the bidders. A well-
known result is that, in an optimal sequential search procedure, the valuation cutoff ξt is necessarily decreasing over time
(Weitzman, 1979).

7The assumption of ψ (v)≥ 0 is without loss of generality, as the seller can always stop searching and receive a zero
revenue. In another word, without loss of generality, we can assume the current best off v≥ r∗.
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seller will search in the right next period.
According to Weitzman (1979), the optimal stopping rule is as follows: if the current

best offer ψ (v) ≥ ψ (ξ ∗t ), then the seller stops searching, otherwise she will continue
searching in the next period. The optimal selection rule is as follows: if a sample of
Mt+1 bidders is to be invited in the next period of t + 1, then it must be the sample
with the highest cutoff value among all the remaining uninvited bidder samples. It then
implies that, in an optimal search procedure, the cutoff values of bidder samples, denoted
as {ξ ∗t }0≤t≤T−1, must be declining over time.

The above optimal search rule also implies that, when v = ξ ∗t , the seller is indifferent
between keeping the current best offer of ψ (ξ ∗t ), and continuing searching the sample
Mt+1 of bidders in the next period and then stopping right away. This is because, by
searching for one more period, the maximum bidder value max

{
v,X (1)

Mt+1

}
≥ ξ ∗t ≥ ξ ∗t+1,

and thus, at the end of the next period, the seller will certainly prefer stopping to contin-
uing searching. From the Bellman equation of (3), it then implies

(4) ψ (ξ ∗t ) =
∫ 1

0
max{ψ (ξ ∗t ) ,ψ (x)}dF(1)

Mt+1
(x)− cMt+1 ,

where F(1)
Mt+1

(x) is the distribution function of the highest value of the Mt+1 bidders. The
LHS of (4) is the current best offer of ψ (ξ ∗t ), and the RHS is the expected revenue net
of search cost if continuing searching the sample Mt+1 of bidders in period t +1. When
these two values are equal, the seller is then indifferent between stopping and continuing
searching for just another period.

It is easy to show that there is a unique solution to equation (4), we can define the
solution as the optimal cutoff value, denoted by ξ ∗t = ξ ∗ (Mt+1). The value of ξ ∗ (M)
represents the seller’s reservation value of contacting the set M of bidders, and it is deter-
mined by the gross search cost, cM, and the distribution of the highest value, F(1)

M (x). For
a given family of bidder samples, MT , the optimal search rule is then given as follows:

• Calculate the optimal cutoff value, ξ ∗
(
M j
)
, for each bidder sample M j ∈MT ;

• Selection rule: If a bidder sample is to be contacted in period t, it must be the
sample with the highest cutoff value among Nc

t−1. The optimal sampling rule
M =(M1,M2, · · · ,MT ) is such that ξ ∗ (M1)≥ ξ ∗ (M2)≥ ·· · ≥ ξ ∗ (MT ) .

• Stopping rule: If the current best offer of ψ (v) is greater than the virtual value of
the highest cutoff value of the remaining uninvited samples, then stop; otherwise,
continue to search in the next period.

III. Sequential Search Auction

In this section, we will show that the outcomes of the above optimal search mechanism
are implementable through a sequence of second price auctions, with properly set reserve
prices. Specifically, we propose the following rule of the sequential auction:
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• In period 1, the seller invites a set M1 ∈ Nc
0 of bidders to the auction at the search

cost of cM1 = ∑i∈M1 ci, and runs a second-price auction among the set N1 ≡M1 of
bidders, with a reserve price r1;

• If an effective bid is submitted by a bidder i ∈ N1 in period 1, then the game ends,
and the payment and allocation are implemented according to the auction rule.
If no effective bid submitted, the seller continues her searching by inviting a set
M2 ∈ Nc

1 of bidders in period 2, at the search cost of cM2 . She then runs an auction
among the accumulated set N2 ≡M1∪M2 of bidders, with a new reserve price r2;

• The seller continues with this process, until the end of period T . For example, in
any period t < T , if there is no effective bid submitted, then the seller continues
her searching in period t +1, by inviting a set Mt+1 ∈ Nc

t of bidders at the search
cost of cMt+1 , and runs an auction among the accumulated set Nt+1 ≡ Nt ∪Mt+1 of
bidders, with a updated reserve price of rt+1.

This sequential search auction is characterized by two components: a sequence of re-
serve prices, r≡ {rt}1≤t≤T , and a sequence of bidder samples, M≡ {Mt}1≤t≤T . Second,
as bidders are long-lived, once a bidder is invited in a period, he will stay in all the stage
auctions from that period on, until the end of period T . Therefore, a bidder can always
contribute to the auction revenue in all the remaining stage auctions. The assumption of
long-lived bidders implies that the sequential search auction is analogous to a sequential
search process with full recall.

The full commitment assumption implies that the seller announces the sequential auc-
tion of (r,M) in period 0, and fully commits to it afterwards. We will focus on the
format of sealed-bid second price auction, which is strategically equivalent to a standard
ascending open-auction. Under the full commitment assumption, if the sequential auc-
tion is incentive compatible, then bidding true value is a weakly dominant strategy for a
bidder, if he intends to bid at all.8

A. Incentive Compatibility

We first investigate the incentive compatible conditions for bidders, and will study
equilibria in the form of cutoff strategies. A cutoff strategy for a bidder is characterized
by a vector of cutoff values, ξ ≡ {ξt}1≤t≤T , such that a bidder will bid his true value v in
period t if v ≥ ξt , and wait otherwise. Given that bidders are ex-ante homogeneous ac-
cording to their value distributions, we will focus on symmetric equilibria. A symmetric
cutoff equilibrium is an equilibrium where all the bidders adopt the same cutoff strategy
in equilibrium.

Let Ūt(v) be the value function of the expected payoff of a bidder with value v in
period t, and Ub

t (v) be the expected payoff of the bidder by offering an effective bid in

8As the seller fully commits to a mechanism, without loss of generality, we assume that if Mt = /0, then for all t ′ ≥ t,
Mt′ = /0 and rt′ = rt−1. And we define T = max{t | Mt 6= /0} for given M. We also assume that the product must be sold
with a positive probability in each period t ≤ T ; otherwise, one can construct an equivalent mechanism by replacing Mt
by Mt ∪Mt+1 and rt = rt+1.
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that period. It is then obvious that ŪT+1(v) = 0, and

Ub
t (v) = F(1)

Nt\{i} (ξt)(v− rt)+ I{v≥ξt}

∫ v

ξt

(v− x)dF(1)
Nt\{i}(x).

where I is an indicator function, and F(1)
Nt\{i} is the distribution function of the highest

value of the set Nt\{i} of bidders. It is clear that

F(1)
Nt\{i} (v) =

{
Fnt (v) if i /∈ Nt ,
Fnt−1 (v) if i ∈ Nt ,

where nt denotes the number of bidders in Nt . The standard envelope theorem yields

Ūt(v) = max{Ub
t (v),Ūt+1(v)},

which is non-decreasing, convex, and right-hand differentiable for all v ∈ (0,1].9 It also
implies that the optimal strategies of bidders are necessarily in the form of cut-off strate-
gies, and therefore our previous assumption of cutoff strategies is without loss of gener-
ality. The following result is a direct application of envelope theorem, which shows that
there exists a one-to-one mapping between the sequence of reserve prices, r, and that of
the cutoff values, ξ .

LEMMA 1: Given (r,M), in each period t ≤ T , there exists a unique ξt such that each
bidder i ∈ Nt bids if and only if his true value v is greater than or equals to ξt . Further-
more, the expected payoff of a bidder with value v in period t is:

(5) Ūt(v) =

{
Ūt+1(v) if v < ξt ,

Ūt+1(ξt)+
∫ v

ξt
F(1)

Nt\{i} (x)dx if v≥ ξt .

From Lemma 1, the sequential auction of (r,M) can be equivalently represented by
(ξ ,M), and hereinafter we think of (ξ ,M) as the sequential search auction instead. We
already know that, in an optimal sequential search mechanism, the cutoff values are de-
clining over time. When the cutoff values are declining over time, we have the following
clear condition for a bidder’s equilibrium cutoff strategy.

LEMMA 2 (cutoff condition): For a given mechanism (ξ ,M) with declining cutoff val-
ues, ξt is uniquely determined by

(6) F(1)
Nt\{i}(ξt)(ξt − rt) = F(1)

Nt+1\{i} (ξt+1)(ξt+1− rt+1)+
∫

ξt

ξt+1

F(1)
Nt+1\{i}(x)dx,

for t < T , and ξT = rT . Moreover, the reserve prices {rt}1≤t≤T is also decreasing in t.

9The derivation of the cut-off strategy is standard. It also appears in the literature of buy-price auction (Reynolds
and Wooders, 2009; Chen et al., 2016) and sequential auctions with information acquisition costs (Crémer, Spiegel and
Zheng, 2009). Here we apply envelope theorem.
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Since i ∈ Nt implies i ∈ Nt+1, the other equivalent expression of (6) is

(7) F(1)
Nt−1(ξt)(ξt − rt) = F(1)

Nt+1−1 (ξt+1)(ξt+1− rt+1)+
∫

ξt

ξt+1

F(1)
Nt+1−1(x)dx

for t < T , and ξT = rT for t = T . Here, by an abuse of notation, Nt −1 represents a set
constructed by removing an arbitrary bidder from Nt , and thus F(1)

Nt−1 (v) = Fnt−1 (v).

B. Optimal Cutoff Values

The expected auction profit for the seller is equal to the expected auction revenue
minus the expected gross search cost. For a given mechanism (ξ ,M) with declining
cutoff values, the expected auction profit can be represented by

(8) π (ξ ,M) =
T

∑
t=1

F(1)
Nt−1

(ξt−1) [Rt (Nt)− cMt ] ,

where F(1)
N0

(ξ0) ≡ 1 and Rt (Nt) is the expected revenue of the stage auction in period t,
conditional on it happens. It is worthy of attention that, in period t, there are Mt strong
bidders and Nt−1 weak bidders in the auction. In another word, the values of the Mt new
bidders are independent draws from F on [0,1], while those of the Nt−1 weak bidders are
independent draws from the truncated distribution of F (v |ξt−1 ) = Pr(V ≤ v |V ≤ ξt−1 ).
Note that, if a distribution function F is of IFR, then its truncated distribution function
F (· |ξt−1 ) is also of IFR.

Substituting the bidders’ equilibrium cutoff strategies of (6) into (8), we get the fol-
lowing expression of the expected auction profit.

LEMMA 3: For a given mechanism (ξ ,M) with declining cutoff values, the expected
auction profit is

(9) π (ξ ,M) =
T

∑
t=1

∫
ξt−1

ξt

ψ (x)dF(1)
Nt

(x)+
T

∑
t=1

F(1)
Nt−1

(ξt−1)

[∫ 1

ξt−1

ψ (x)dF(1)
Mt

(x)− cMt

]
,

where ξ0 ≡ 1 and F(1)
N0

(·)≡ 1.

Another more intuitive expression of (9) is that

(10) π (ξ ,M) =
T

∑
t=1

F(1)
Nt−1

(ξt−1)

[∫ 1

ξt

ψ (x)dG(1)
Nt

(x)− cMt

]
,

where G(1)
Nt

(x) is the distribution of the highest value of the Nt bidders. Remember that,
among the Nt bidders, Nt−1 bidders’ values are independent draws from the truncated
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distribution of F (v |ξt−1 ). It then follows that

G(1)
Nt

(x) =

{
F(1)

Nt
(x)/F(1)

Nt−1
(ξt−1), if x ∈ [0,ξt−1] ;

F(1)
Mt

(x) , if x ∈ (ξt−1,1] .

The expression of also demonstrates the standard result of revenue equivalence theorem.
That is, the expected revenue of a stage auction is just equal to the highest virtual value
of the Nt bidders, given that it is greater than the cutoff value of ξt .

The expression of (9), as well as (10), also demonstrates the insight of Myerson (1981),
that the expected revenue of a stage auction is just equal to the highest virtual value of the
Nt bidders, given that it is greater than the cutoff value of ξt . Yet, different from the stan-
dard results for static auctions with symmetric bidders, (9) provides a nice formula for a
sequential search auction with asymmetric bidders. In our model, as bidders are ex-ante
homogeneous, their virtual value functions are the same, e.g. ψ (v). The stage auction
in period t happens with probability F(1)

Nt−1
(ξt−1), where there are Mt strong bidders, and

Nt−1 weak bidders whose values are truncated above from ξt−1. When the highest value
of the bidders is between ξt and ξt−1, all the Nt bidders are competing with each other
to win the product. This corresponds to the part of

∫ ξt−1
ξt

ψ (x)dF(1)
Nt

(x) in (9). When the
highest value is greater than ξt−1, then the Nt−1 weak bidders are strictly dominated by
the Mt strong bidders, and the competition happens only among the Mt strong bidders.
This corresponds to the other term of

∫ 1
ξt−1

ψ (x)dF(1)
Mt

(x) in (9).

PROPOSITION 1 (optimal cutoffs): For a given mechanism (ξ ,M) with declining cut-
off values, the expected auction profit, π (ξ ,M), is quasi-concave in ξt . The sequence of
optimal cutoff values, {ξ ∗t }1≤t≤T , is the unique solution to

(11) cMt+1 =
∫ 1

ξ ∗t

[ψ (x)−ψ (ξ ∗t )]dF(1)
Mt+1

(x) , for 1≤ t < T,

and ψ (ξ ∗T ) = 0 for t = T .

PROOF:
For t < T , due to Lemma 3, the derivative of π (ξ ,M) with respect to ξt is

∂π

∂ξt
= ψ (ξt)

[
f (1)Nt+1

(ξt)− f (1)Nt
(ξt)
]

+ f (1)Nt
(ξt)

[∫ 1

ξt

ψ (x)dF(1)
Mt+1

(x)− cMt+1

]
−ψ (ξt)F(1)

Nt
(ξt) f (1)Mt+1

(ξt)

= f (1)Nt
(ξt)

[∫ 1

ξt

(ψ (x)−ψ (ξt))dF(1)
Mt+1

(x)− cMt+1

]
= f (1)Nt

(ξt) ·η(ξt) = 0.

Note that
∂η

∂ξt
=−ψ

′ (ξt)
∫ 1

ξt

dF(1)
Mt+1

(x)< 0,
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and then ∂π

∂ξt
changes its sign from positive to negative at most once. π (ξ ,M) is then

quasi-concave in ξt , and the first order condition is also sufficient. When t = T , ∂π

∂ξT
=

−ψ (ξT ) f (1)NT
(ξT ). It is obvious that π is concave in ξT given the IFR assumption, and

thus ψ (ξ ∗T ) = 0. �
The optimal cutoff value of (11) also reflects the condition for optimal stopping rule

in sequential search, as shown in (4). For instance, to continue searching the sample
Mt+1 of bidders, the seller needs to pay a gross search cost of cMt+1 , which is the LHS
of (11). On the other hand, given the current best offer of ψ (ξ ∗t ), the RHS of (11) is the
increment in expected auction revenue, which is decreasing in ξ ∗t . When the two parts
are equal, the seller is indifferent between keeping the offer of ψ (ξ ∗t ) and continuing
searching the sample Mt+1 of bidders in the next period.

Moreover, the optimal cutoff value of ξ ∗t demonstrates a one-step-ahead property, in
the sense that it just depends on the sample of bidders who are invited in the next period
of t+1, not further. This property is a direct implication of the facts that the cutoff values
are decreasing over time under optimal search, and that bidders are assumed to be long-
lived. In another word, at the end of period t, if the seller is indifferent between stopping
and continuing searching, she will (weakly) prefer stopping in the next period of t + 1,
because her fall-back revenue increases while the optimal cutoff value in the next period
of t +1 decreases.

Our formula of (11) generalizes the famous result in infinite sequential search prob-
lems (Weitzman, 1979). In these problems, Pandora inspects a number of closed boxes,
each with a random prize distributed according to Fi on [0,1]; to open a box i, she needs
to pay a search cost of ci. Pandora inspects boxes one-by-one, and her objective is to
maximize the expected prize discovered, net of the gross search cost. Weitzman shows
that the optimal search procedure involves allocating a unique reservation prize ξ ∗i for
each box i, which is the unique solution to

(12) ci =
∫ 1

ξi

(x−ξi)dFi (x) .

Supposing Pandora already has a fall-back prize of ξi, then the RHS of (12) is the incre-
ment in expected utility if she inspects box i, and the LHS is the search cost. Therefore, if
the fall-back prize ξi is equal to the reservation prize ξ ∗i , Pandora is indifferent between
stopping and continuing inspecting box i.

Our formula of (11) generalizes Weitzman’s result of (12) in two important dimen-
sions. First, in our model, the target for search are strategic bidders, rather than non-
strategic boxes as in Pandora’s problem. This extension is important, as it well fits many
important situations in markets, such as M&As, job recruitment, matching in marriage
markets, and so on. Second, we extend Weitzman’s result from one-by-one sequential
search to the more general case of compound search, where a seller searches both se-
quentially and simultaneously. As a result, we could think of Weitzman’s formula of
(12) as a special case of our result of (11).

To provide further characterization of the optimal search procedure, it is helpful to
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define the optimal cutoff value for a sample M of bidders by ξ ∗ (M). Specifically,
for any M ⊆ N with M 6= /0, ξ ∗ (M) is the unique solution to the equation of cM =∫ 1

ξ
[ψ (x)−ψ (ξ )]dF(1)

M (x). Or equivalently,

(13) cM =
∫ 1

ξ ∗(M)

[
1−F(1)

M (x)
]

dψ (x) .

From the definition, ξ ∗ (M) measures the seller’s reservation value of searching the sam-
ple M of bidders, for the purpose of profit maximization. For instance, if the seller’s
current best offer of ψ (ξ ) is greater than ψ (ξ ∗ (M)), she will have no incentives to fur-
ther search the sample M of bidders. The following corollary provides some intuitive
characterizations of ξ ∗ (M).

COROLLARY 1: For two bidder samples M,M′ ⊆ N,

1) if the cardinality |M|= |M′|, then

cM < cM′ =⇒ ξ
∗ (M)> ξ

∗ (M′) ;

2) if cM = cM′ , then
|M|<

∣∣M′∣∣=⇒ ξ
∗ (M)< ξ

∗ (M′) .
The above corollary states that, for two samples of bidders, if they have the same

sample size (e.g. the number of bidders), then the sample with smaller gross search cost
is more valuable for the seller. Second, if their gross search costs are the same, then the
sample with more bidders is more valuable for the seller.

Besides the search cost and the sample size, we may also examine how the optimal
cutoff value changes with the value distribution of F . We will show that when the value
distribution becomes more riskier, in terms of mean preserving spread (MPS), the opti-
mal cutoff value of a bidder sample increases. To be specific, let {F (·,σ)} be a fam-
ily of distributions indexed by σ , with common support on [0,1]. For σ ′ > σ , we say
F (·,σ ′) is more risky than F (·,σ) in terms of MPS, if

∫ v
0 [F (x,σ ′)−F (x,σ)]dx≥ 0 for

all v ∈ [0,1], and with strict equality when v = 1. Correspondingly, for a sample M of
bidders with value distribution F (x,σ), we denote its optimal cutoff value by ξ ∗ (M;σ),
and will show that ξ ∗ (M;σ) increases in σ , the index of riskiness of value distribution.

COROLLARY 2: For a sample M of bidders, if their values are independent draws
from two distributions of F (·;σ) and F (·;σ ′) respectively, such that F (·;σ ′) �MPS
F (·;σ) in terms of MPS, then the optimal cutoff value

ξ
∗ (M;σ

′)> ξ
∗ (M;σ) .

In the remaining part of this section, we will derive a succinct formula for the maxi-
mum expected profit when the reservation values are set at the optimal levels. We will
also show that our formula for maximum profit can take the result in stationary and infi-
nite horizon search problems as a special case.
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First, comparing (11) with (13), it is clear that the optimal cutoff value of ξ ∗t =
ξ ∗ (Mt+1) for 1 ≤ t < T . This result coincides with the optimal cutoff condition of
(4). It then implies that a sequential search auctions can implement the outcomes of
an optimal search mechanism. Specifically, for a given family of bidder samples,
MT , the optimal sampling rule is a permutation of it such that ξ ∗ (Mt) ≥ ξ ∗ (Mt+1) for
1≤ t < T . With an abuse of notation, we denote this optimal sampling rule for MT also
by M = {Mt}1≤t≤T . Then for a given family of bidder samples of MT , the sequential
search auction of (ξ ∗,M) implements the outcomes of an optimal search mechanism,
where ξ ∗ = {ξ ∗ (Mt+1)}1≤t≤T with ξ ∗ (MT+1)≡ r∗.

Second, substituting the optimal cutoff values of (11) into the expected auction profit
of (9), we then have the following expression of maximum expected auction profit.

LEMMA 4: Given a family of bidder samples MT , the maximum expected auction profit
is

(14) π
∗ (MT )= π (ξ ∗,M) =

T

∑
t=1

∫
ξ ∗(Mt)

ξ ∗(Mt+1)

[
1−F(1)

Nt
(x)
]

dψ (x) ,

where ξ ∗ (MT+1)≡ r∗.

A well-known result in stationary and infinite-horizon (SIH) search problem is that,
when following the optimal search procedure, the maximum expected search profit is
equal to the value of the optimal reservation value ψ (ξ ∗) that solves c=

∫ 1
ξ ∗ [1−F (x)]dψ (x)

(Lippman and McCall, 1976). If we denote the optimal search profit of a SIH search
problem by πSIH (ξ ∗) = ψ (ξ ∗), our result of (18) incorporates this result of SIH sequen-
tial search as a special case.

For the purpose of comparison, let us consider the case of homogeneous bidders (ci =
c) and one-by-one sequential search (|Mt |= 1). Under these assumptions, when T → ∞,
our sequential search problem converges to a SIH search problem a la Lippman and
McCall (1976). Applying the formula of (14) and taking the limit T → ∞, the maximum
expected profit by following an optimal search strategy is thus

(15) lim
T→∞

π
∗ (M) = lim

T→∞

∫
ξ ∗

r∗

[
1−FT (x)

]
dψ (x) = ψ (ξ ∗) = π

SIH (ξ ∗) .

When invitation costs are different over the bidders, the seller may invite more bidders
in earlier stages.

EXAMPLE 1 (2-period with 3-buyers): Consider F = x and c1 = 0 ≤ c2 ≤ c3 = 1
16 .

By (13), the optimal cutoff ξ ∗({i}) for inviting a single bidder i is ξ ∗({i}) = 1−√ci
and the optimal cutoff ξ ∗({i, j}) for inviting two bidders {i, j} is the solution to ci +
c j =

2
3(1− ξ )2(2+ ξ ). The cutoffs are plotted in Figure 1. As the cutoffs for invit-

ing two bidders are all greater than r∗ = 1/2, consider the three sampling partitions,
{{1},{2,3}}, {{2},{1,3}}, and {{3},{1,2}}. For each sampling partition, invite the
part with a higher cutoff in the first period and invite the other part in the second pe-
riod. As ξ ∗({1}) > ξ ∗({2,3}) and ξ ∗({3}) > ξ ∗({1,2}), the candidate sampling rule
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FIGURE 1. THREE PARTITIONS AND FOUR SAMPLING STRATEGIES OVER TWO PERIODS

Note: See Example 1. Consider three bidders with heterogeneous costs, c1 = 0 ≤ c2 ≤ c3 = 1/16. As ci ≤ 1/16,
all the bidders are supposed to be invited and three sampling partitions are available: {{1},{2,3}}, {{2},{1,3}}, and
{{3},{1,2}}. For each partition, the corresponding optimal cutoffs are shown in each subfigure, where c2 changes along
the horizontal axis. Each of the sampling partition {{1},{2,3}} and {{3},{1,2}} yields the sampling order ({1},{2,3})
and ({1,2},{3}) as the order of the cutoffs is clear in each partition. For the sampling partition {{2},{1,3}}, ({2},{1,3})
should be considered as a sampling rule if c2 < c̄ ≈ 0.03327, and ({1,3},{2}) if c2 > c̄. The bottom-right subfigure
depicts the expected profits of the four sampling strategies. For c2 < c̄∗ ≈ 0.05208, inviting {1,2} in the first period
and {3} in the second period is optimal. If c > c̄∗, on the other hand, inviting only {1} in the first period and inviting
remaining {2,3} in the second period is optimal.

is ({1},{2,3}) and ({1,2},{3}), respectively associated with the sampling partitions
{{1},{2,3}} and {{3},{1,2}}. Due to Lemma 4, the profit for each sampling rule can
be computed as follows:

(16) π
∗({1},{2,3}) =

∫
ξ ∗({2,3})

ξ ∗({1})
(1−F(x))dψ(x)+

∫
ξ ∗({2,3})

r∗
(1−F3(x))dψ(x)

(17) π
∗({1,2},{3}) =

∫
ξ ∗({3})

ξ ∗({1,2})
(1−F2(x))dψ(x)+

∫
ξ ∗({3})

r∗
(1−F3(x))dψ(x)

Another candidate from the partition {{2},{1,3}} depends on c2. If c2 < c̄ ≈ 0.03327,
then ξ ∗({2})> ξ ∗({1,3}) and the profit from the sampling rule ({2},{1,3}) is greater
than that from ({1,3},{2}); otherwise, ({1,3},{2}) is better than the other. However,
one can confirm that any of these sampling rules is dominated by either ({1},{2,3}) or
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({1,2},{3}) as Figure 1 illustrates. Comparing (16) and (17), the optimal sampling rule
M∗ is ({1,2},{3}) for c2 < c̄∗ and ({1},{2,3}) otherwise, where c̄∗ ≈ 0.05208. That
is, the invitation cost of bidder 2 is lower than a certain threshold, inviting him together
with bidder 1 is better; however, if the cost is greater than the threshold, the seller is
better to invite him in the second period.

C. Optimal Sampling Rule

Now we turn to the other part of an optimal search mechanism – the optimal sampling
rule. We have known that, for a given family of bidder samples, MT , the optimal sam-
pling rule of M is such that ξ ∗ (Mt) is decreasing in t. In this section, we will provide
more characterizations of the optimal choice of MT and the sampling rule of M, and our
focus is on optimal search intensity in each period.

To fix the idea of search intensity, we consider the case of homogeneous bidders, where
all bidders have the same value distribution F , and the same unit search cost, i.e., ci = c
for all i ∈ N. For ease of notation, we denote mt = |Mt | and nt = |Nt | as the cardinality
of Mt and Nt respectively, and ξ ∗ (m) as the optimal cutoff value for searching a sample
M of bidders.

In this case of homogeneous bidders, a seller’s sampling rule is simply represented by
a sequence of sample sizes, denoted by m = (m1,m2, · · · ,mT ). Intuitively, the degree
of search intensity in period t is simply measured by the sample size of mt . We say a
seller searches more intensively in period t ′ than in period t, if and only if mt ′ ≥ mt . The
following result shows that the optimal cutoff value of ξ ∗ (m) is decreasing in m.

LEMMA 5: Suppose ci = c for all i ∈ N. The optimal cutoff value of ξ ∗ (m) for inviting
a sample M of bidders is strictly decreasing in its sample size of m. That is, for any two
sets of bidders, M,M′ ⊆ N, if m < m′, then

ξ
∗ (m)> ξ

∗ (m′) .

PROOF:
For any M ⊆ N, due to (13), we have

c =
∫ 1

ξ ∗(m)

1
m
(1−Fm (x))dψ (x) .

As F (x)< 1 for x ∈ [0,1), (1−Fm (x))/m is strictly decreasing in m. Therefore, when
m increases, ξ ∗ (m) must decreases, so as to keep the above equation to hold.

The result is more striking than it first looks. We know the optimal cutoff value ξ ∗ (m)
is decreasing in unit search cost c and increasing in sample size m. The above result then
shows that, when bidders are homogeneous, the benefit of increasing competition by
inviting one more bidder is strictly dominated by the unit cost of invitation. As a result,
the maximum value of the optimal cutoff is achieved when the seller just contacts one
bidder. Another implication is that, when a seller is not constrained by a finite deadline,
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it is optimal for her to invite the bidders one-by-one and conduct pure sequential search,
as it generates the highest expected profit, as shown in (15).

In the remaining parts of this section, we will show two results on optimal sampling
rule for this problem of sequential search with a finite deadline. First, the optimal
search intensity (sample size) is weakly increasing over time. Second, if we consider
another interpretation of sample size and allow it to take real values, then constant search
intensity is never optimal.

The first result of increasing search intensity is a direct implication of the above
Lemma 9 and the fact that, in an optimal search mechanism, the optimal cutoff value
ξ ∗t is necessarily decreasing in t. Therefore, it is optimal for the seller to sample in-
creasingly more bidders in each period when the deadline approaches. If we denote
m∗ = (m∗1,m

∗
2, · · · ,m∗T ) as the optimal sampling rule for the seller, we have the following

result.

PROPOSITION 2 (Optimal Sampling): Suppose ci = c for all i∈N. The optimal search
intensity is increasing in t, that is, for 1≤ t < T ,

m∗t ≤ m∗t+1.

This is a second main result of this paper, which states that, in the presence of positive
search cost and a finite deadline for completing a transaction, a seller will search increas-
ingly more intensively when the deadline gets closer. In another word, in the first round
of the transaction, she will contact the fewest number of buyers for participation. Each
time when she does not receive a satisfactory offer for the product, in the next period,
she will invite more buyers to join the competition.

This result may help our understanding of the puzzle that why many important selling
processes seem non-competitive in markets, such as in M&As, sequential academic re-
cruitment, matching in marriage markets, and so on. For instance, if we interpret M&As
as a finite sequential search process for a seller, then it is optimal for her to contact
relatively fewer bidders and set higher reserve prices in the early stages of the transac-
tion. However, when the deadline gets closer and the seller has fewer opportunities to
increase her payoff, it is better for her to lower the reserve prices and invite more bidders
to the transaction. Our model may help explain why one-on-one negotiation can be the
dominant selling mechanism in M&As.

Second, we will show that, when search intensity is continuous, i.e., mt can take real
values, the optimal search intensity must be strictly increasing in t. For continuous search
intensity, there are many interpretations, i.e., it could be the periodical expenditure spent
on job searching, or it could be the periodical effort invested in interviewing a job candi-
date. We already show that, under optimal search, the maximum expected auction profit
is

(18) π
∗ (m) =

T

∑
t=1

∫
ξ ∗(mt)

ξ ∗(mt+1)

[
1−F(1)

nt (x)
]

dψ (x)

Now we assume the degree of search intensity, measured by mt , can take real values.
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For a marginal increase of search intensity in period τ , the increase in expected profit is
denoted by Dτπ∗ (m) = ∂π∗ (m)/∂mτ . Simple calculation from (18) gives that

Dτπ
∗ (m) = F(1)

nτ−1 (ξ
∗ (mτ))

[
−
∫ 1

ξ ∗(mτ )
F(1)

mτ
(x) lnF (x)dψ (x)− c

]
−

T

∑
t=τ

∫
ξ ∗(mt)

ξ ∗(mt+1)
F(1)

nt (x) lnF (x)dψ (x) .

The marginal profit of Dτπ∗ (m) can be decomposed into two parts. The first is the
instant marginal profit of

−F(1)
nτ−1 (ξ

∗ (mτ))

{∫ 1

ξ ∗(mτ )
F(1)

mτ
(x) lnF (x)dψ (x)+

∫
ξ ∗(mτ )

ξ ∗(mτ+1)
G(1)

nτ
(x) lnF (x)dψ (x)+ c

}
where F(1)

nτ−1 (ξ
∗ (mτ)) is the probability for the stage auction in period τ to happen, and

the term in the curly braces is the stage marginal profit of inviting one more bidder in
that period. The second part is the continuation marginal profit of

(19) −
T

∑
t=τ+1

∫
ξ ∗(mt)

ξ ∗(mt+1)
F(1)

nt (x) lnF (x)dψ (x) ,

due to the effect that there is one more bidder participating in all the following stage-
auctions. A necessary condition for a sampling rule of m to be optimal is that

(20) D1π
∗ (m) = D2π

∗ (m) = · · ·= DT π
∗ (m)≥ 0.

If the total number of bidders is sufficiently large and the resource constraint of ∑
T
t=1 mt ≤

n is not binding, then the Dτπ∗’s are all equal to 0 in optimum. Otherwise, the marginal
profit in all periods are equal and strictly positive in optimum.

The following result shows that, when search intensity is constant across all the peri-
ods, the marginal profit of increasing search intensity in a later period is strictly greater
than that in an earlier period. In another word, the optimal search intensity must be
strictly increasing over time, when the degree of search intensity can take real values. In
other words, the equality in Proposition 2 may hold but only due to integer restrictions.

PROPOSITION 3 (Strict Monotonicity): The optimal search intensity is strictly decreas-
ing over time, when the search intensity can take real values.

PROOF:
Suppose mτ = mτ ′ , then ξ ∗ (mτ) = ξ ∗ (mτ ′) and

Dτ ′π
∗−Dτπ

∗ =
[
F(1)

nτ−1 (ξ
∗
τ )−F(1)

nτ
(ξ ∗τ )

][∫ 1

ξ ∗(mτ )
F(1)

mτ
(x) lnF (x)dψ (x)+ c

]
> 0,
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FIGURE 2. EXPECTED PROFIT IN THE 2-PERIOD 3-BIDDER PROBLEM

Note: See Example 2. When the invitation cost is lower than c∗ ≈ 0.164, it is optimal to invite one bidder in the first
period and two the remaining bidders in the second period. If c∗ < c < 1/4, however, it is optimal to invite just one bidder
sequentially in both periods. For a higher invitation cost of c > 1/4, not inviting is optimal, as the expected profit from
inviting any bidder is negative.

as nτ = nτ−1 +mτ and∫ 1

ξ ∗(mτ )
F(1)

mτ
(x) lnF (x)dψ (x)+ c =−

[
1−F(1)

mτ
(ξ ∗ (mτ))

]
∂ξ ∗

∂mτ

> 0,

which contradicts to the necessary condition (20) of optimality. �
It is a well-known result in the literature that, when bidders (or boxes) are homoge-

neous and search is infinite, then the optimal reservation values (prices) are constant
across all the periods. This is because it is a stationary and infinite horizon problem for a
seller, and in each period she faces the same decision as in the previous period. However,
when a seller faces a finite deadline, this dynamic programming problem becomes non-
stationary. Our result shows that, for finite sequential search problems, if search intensity
can take continuous values, then optimal search intensity is strictly increasing over time,
and constant search intensity is never optimal.

The example below considers a simple 2-period search problem with 3-homogeneous
long-lived bidders.

EXAMPLE 2: Bidders are ex-ante homogeneous, with uniform value distribution on
[0,1] and unit search cost of c ∈ (0,1/4). In this case, the virtual value function is
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ψ (x) = 2x− 1. We denote the sampling rule by m = (m1,m2), where mt is the bidder
sample size in period t. We know that, under optimal search procedure, it must be true
that m1 ≤ m2, and the candidates for optimal sampling rule is thus m = (1,1) or (1,2),
depending on the value of c. From formula (13), the optimal cutoff value for different
sample size is given by:

• If m = 1, then ξ ∗ (1) is the solution to c = (1−ξ )2, e.g., ξ ∗ (1) = 1−
√

c;

• If m = 2, then ξ ∗ (2) is the solution to 2c = 2
3 (1−ξ )2 (2+ξ ).

Case 1: If c = 1
16 , then ξ ∗ (1) = 3

4 and ξ ∗ (2)≈ 0.738. For a sampling rule of (1,1), the
expected profit, from (18), is

π (1,1) =
∫

ξ ∗(1)

ξ ∗(1)
[1−F (x)]dψ (x)+

∫
ξ ∗(1)

r∗

[
1−F2 (x)

]
dψ (x) =

29
96
≈ 0.302.

The expected profit for a sampling rule of (1,2) is

π (1,2) =
∫

ξ ∗(1)

ξ ∗(2)
[1−F (x)]dψ (x)+

∫
ξ ∗(2)

r∗

[
1−F3 (x)

]
dψ (x)≈ 0.365.

Therefore, the sampling rule of (1,2) is optimal.

Case 2: If c = 5
24 , then ξ ∗ (1) ≈ 0.544 and ξ ∗ (2) = 0.5. For a sampling rule of (1,1),

the expected profit, from (18), is

π (1,1) =
∫

ξ ∗(1)

ξ ∗(1)
[1−F (x)]dψ (x)+

∫
ξ ∗(1)

r∗

[
1−F2 (x)

]
dψ (x)≈ 0.0634.

The expected profit for a sampling rule of (1,2) is

π (1,2) =
∫

ξ ∗(1)

ξ ∗(2)
[1−F (x)]dψ (x)+

∫
ξ ∗(2)

r∗

[
1−F3 (x)

]
dψ (x)≈ 0.0417.

Therefore, the sampling rule of (1,1) now is optimal.

IV. Efficient Mechanism

It is well-known that an optimal static auction usually leads to inefficient outcomes,
due to the possibility of no trade in some states, and sometimes biased allocations. In
our model of sequential search auctions, there is a third source of inefficiency in an
optimal search mechanism, due to a seller’s inefficient search procedures. First, the
optimal search mechanism may exclude some bidders who would have been invited in
an efficient search mechanism. Second, the optimal search mechanism may provide
excessive incentives for a profit-maximizing seller to invite bidders (Li, 2017; Li and Xu,
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2016). Third, the order of searching bidders in an optimal mechanism may be different
from that in an efficient mechanism.

A. Efficient Cutoffs

In an efficient mechanism, a seller’s objective is to maximize expected social welfare.
Following the same analysis as in Section II.C, we can show that an efficient search
mechanism is also featured by declining cutoff values. In addition, although the seller’s
objective has changed from profit to welfare maximization, the incentive problem for
bidders remains the same as in Section III.A. As a result, we still have the same results of
(6) on bidders’ equilibrium cutoff strategies. Given a mechanism (ξ ,M) with declining
cutoff values, similar to (8), the expected social welfare is

(21) W (ξ ,M) =
T

∑
t=1

F(1)
Nt−1

(ξt−1) [Wt (Nt)− cMt ] ,

where Wt (Nt) is the expected social welfare of the stage auction in period t, conditional
on it happens. The value of social welfare is equal to the value of the winner of the
product. In a second price auction, as the bidder with the highest value wins the auction,
the social welfare is just equal to the highest value of the participating bidders. As in
Section IV, by substituting the cutoff condition of (6) into (21), we have the following
result.

LEMMA 6: For a given mechanism (ξ ,M) with declining cutoff values, the expected
social welfare is

(22) W (ξ ,M) =
T

∑
t=1

∫
ξt−1

ξt

xdF(1)
Nt

(x)+
T

∑
t=1

F(1)
Nt−1

(ξt−1)

[∫ 1

ξt−1

xdF(1)
Mt

(x)− cMt

]
,

where ξ0 ≡ 1 and F(1)
N0

(ξ0)≡ 1.

Similar to (10) in the case of expected auction profit, we could provide another more
intuitive expression of the expected social welfare as follows

(23) W (ξ ,M) =
T

∑
t=1

F(1)
Nt−1

(ξt−1)

[∫ 1

ξt

xdG(1)
Nt

(x)− cMt

]
,

where G(1)
Nt

(x) = F(1)
Nt−1

(x |ξt−1 )F(1)
Mt

(x) is the distribution of the highest value of the Nt
bidders. Remember that among the Nt bidders, the set Nt−1 of bidders are weak bidders,
while the sample Mt of bidders are strong ones. Another measure of the social welfare is
the sum of auction revenue, which is equal to the winning bidder’s virtual value of ψ (x),
and the winning bidder’s information rent, which is equal (1−F (x))/ f (x). Apparently,
the sum of these two part is just equal to x, the value of the winning bidder, as what is
shown in (22) and (23).
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PROPOSITION 4 (efficient cutoffs): For a given mechanism (ξ ,M) with declining cut-
off values, the expected social welfare, W (ξ ,M), is quasi-concave in ξt . The sequence
of efficient cutoff values, {ξ ∗∗t }1≤t≤T , is the unique solution to

(24) cMt+1 =
∫ 1

ξ ∗∗t

(x−ξ
∗∗
t )dF(1)

Mt+1
(x) , for 1≤ t < T,

and ξ ∗∗T = 0 for t = T .

PROOF:
For 1≤ t < T , from (22), the derivative of W (ξ ,M) with respect to ξt is

∂W
∂ξt

= f (1)Nt
(ξt)

[∫ 1

ξt

(x−ξt)dF(1)
Mt+1

(x)− cMt+1

]
= f (1)Nt

(ξt)η̃ (ξt) = 0.

Note that η̃ (ξt) is decreasing in ξt , then W is quasi-concave in ξt , and the first order
condition is also sufficient. Second, when t = T , the partial derivative of W with respect
to ξt is ∂W

∂ξT
=−ξT f (1)Nt

(ξT )≤ 0, and therefore ξ ∗∗T = 0. �

Not surprisingly, the efficient cutoff ξ ∗∗t in (24) also demonstrates a one-step-ahead
property, as it depends only on the set Mt+1 of bidders who will be invited in the next
period. If we replace the true value v by its virtual value of ψ (v), the formula for efficient
cutoff value, (24), is identical to that for optimal cutoff value, (11). The connection
between these two is clear: the virtual value ψ (v) is the maximum revenue a seller can
obtain from a truthful bidder, while the bidder’s value v measures the social welfare if
that bidder wins the product.

Similarly, we can define a function of efficient cutoff for searching a sample M of
bidders, denoted by ξ ∗∗ (M). For any M ⊆ N with M 6= /0, ξ ∗∗ (M) is the unique solution
to the equation of cM =

∫ 1
ξ
(x−ξ )dF(1)

M (x), or equivalently,

(25) cM =
∫ 1

ξ ∗∗(M)

[
1−F(1)

M (x)
]

dx.

From the definition, ξ ∗∗ (M) measures the value of contacting the sample M of bidders,
for the purpose of social welfare maximization. For example, if a seller has currently
achieved a welfare level of ξ and it is equal to ξ ∗∗ (M), then she will has no incentive
to further contact the sample M of bidders at the cost of cM, for the purpose of welfare
maximization, as the net return is 0.

The following properties of ξ ∗∗ (M) are straightforward: For two sets of bidders, M,M′⊆
N, 1) if the cardinality |M|= |M′| and cM < cM′ , then ξ ∗∗ (M)> ξ ∗∗ (M′); 2) if cM = cM′

and |M|< |M′|, then ξ ∗∗ (M)< ξ ∗∗ (M′). The proof is similar to that of Corollary 6, and
therefore is omitted here.

From (24) and (25), it is clear that the efficient cutoff value of ξ ∗∗t = ξ ∗∗ (Mt+1) for 1≤
t < T . Substituting (24) into (22), we then have the following expression of maximum
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expected welfare, for a given family of bidder samples of MT .

LEMMA 7: Given a family of bidder samples MT , the maximum expected social wel-
fare is

(26) W ∗∗
(
MT )=W (ξ ∗∗,M) =

T

∑
t=1

∫
ξ ∗∗(Mt)

ξ ∗∗(Mt+1)

[
1−F(1)

Nt
(x)
]

dx

B. Efficient Sampling Rule

To fix the idea of efficient sampling, as above, we consider the case of homogeneous
bidders, by assuming that ci = c for all i ∈ N. In this homogeneous case, we denote
ξ ∗∗ (m) as the efficient cutoff value for searching a sample of m bidders, as given in (25).
Intuitively, the sample size of mt measures the seller’s search intensity in period t.

LEMMA 8: Suppose ci = c for all i∈N. The efficient cutoff value of ξ ∗∗ (m) for inviting
a sample M of bidders is strictly decreasing in its sample size of m. That is, for any two
bidder samples, M,M′ ⊆ N, if m < m′, then

ξ
∗∗ (m)> ξ

∗∗ (m′) .
The following result is a direct implication of the above Lemma and the fact that, in

an efficient search mechanism, the efficient cutoffs are declining over time. It shows the
same result that, in an efficient search mechanism, it is optimal for the seller to sample
increasingly more bidders when the deadline approaches.

PROPOSITION 5 (efficient sampling): Suppose ci = c for all i∈N. If an sampling rule
M∗∗ is efficient, then the efficient sampling size is increasing in t, that is,

m∗∗t ≤ m∗∗t+1, for t = 1, · · · ,T −1.

It is useful to make some comparison between the efficient and optimal cutoffs, as well
as sample sizes. We have the following results.

COROLLARY 3: Suppose ci = c for all i ∈ N. For a given sampling rule of M, the
optimal cutoff value is higher than the efficient one in each period, that is, for 1≤ t ≤ T ,

ξ
∗ (mt)> ξ

∗∗ (mt) .

PROOF:
1) For 1≤ t < T , ξ ∗ and ξ ∗∗ are given by (11) and (24) respectively. If we define

η̃ (v) =
∫ 1

v
(x− v)dF(1)

Mt
(x)− cMt and η (v) =

∫ 1

v
[ψ (x)−ψ (v)]dF(1)

Mt
(x)− cMt ,
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then both η̃ (v) and η (v) are decreasing in v. Note that

η (v)− η̃ (v) =
∫ 1

v

[
1−F (v)

f (v)
− 1−F (x)

f (x)

]
dF(1)

Mt
(x)> 0,

due to the IFR assumption. Finally, for t = T , we already know r∗ = ξ ∗T > ξ ∗∗T = 0.
This result is reminiscent of the standard results in static auctions. In a symmetric

static auction, the optimal reserve price r∗ is set at the level such that its virtual value of
ψ (r∗) = 0, which is strictly positive, while the efficient reserve price is simply 0. The
same comparative result still holds in the case of sequential search auctions. When the
sequence of bidder samples is given, the optimal cutoff value is strictly greater than the
efficient one in each period.

Second, as the optimal and efficient cutoff functions of ξ ∗ (m) and ξ ∗∗ (m) are both
strictly decreasing, we could define their inverse functions, denoted by m∗ (ξt) and m∗∗ (ξt)
respectively, which roughly measure when the cutoff value ξt is given, what would be
the corresponding optimal and efficient sample sizes.

PROPOSITION 6: Suppose ci = c for all i∈N. For a given sequence of declining cutoff
values ξ , the efficient sample size in each period is greater than the optimal one, that is,

m∗ (ξt)> m∗∗ (ξt) , for t = 1, · · · ,T .

PROOF:
From (13) and (25), it follows that, for given ξ ,

c =
∫ 1

ξ

1−Fm∗ (x)
m∗

·ψ ′ (x)dx =
∫ 1

ξ

1−Fm∗∗ (x)
m∗∗

dx.

As ψ ′ (x) > 1 from the IFR assumption and [1−Fm (x)]/m is decreasing in m, we then
get the result. �

The result shows that, when the sequence of declining cutoff values is given, there will
be more bidders invited in each period in an optimal search auction than in an efficient
one. As a result, the expected total number of participating bidders is also greater in
an optimal search mechanism. This over-invitation result is also reported in the case of
static search auctions, where a seller invites bidders at positive search costs and then runs
a one-shot auction (Szech, 2011; Li, 2017; Li and Xu, 2016).

Let us consider the efficient search mechanism in a simple sample of 2-period with 3
long-lived bidders.

EXAMPLE 3: Bidders are ex-ante homogeneous, with uniform value distribution on
[0,1] and unit search cost of c ∈ (0,1/2). We denote the sampling rule by m = (m1,m2),
where mt is the bidder sample size in period t. We know that, under an efficient search
procedure, it must be true that m1 ≤m2, and the candidates for efficient sampling rule is
thus m = (1,1) or (1,2), depending on the value of c. From formula (25), the efficient
cutoff value for different sample size is given by:
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c

c∗∗

c∗

W (1,2)>W (1,1) W (1,2)<W (1,1)

π(1,2)> π(1,1) π(1,2)< π(1,1)

over-invitation by a profit-maximizing seller

FIGURE 3. EXPECTED WELFARE IN THE 2-PERIOD 3-BIDDER PROBLEM

Note: See Example 3. When the invitation cost is lower than c∗∗ ≈ 0.142, the expected welfare from sequentially inviting
one bidder and two bidders is greater than that from inviting one and one. If c∗∗ < c < 1/2, however, inviting just one in
both periods is better than inviting the three bidders over the two periods. It is also worth noting that the threshold c∗∗
is lower than that c∗ in Example 2. That is, for any cost between c∗∗ ≈ 0.142 and c∗ ≈ 0.164, the welfare-maximizing
seller invites only one in the second period, while the profit-maximizing seller invites two in that period. This example
confirms the tendency of over-invitation by profit-maximizing sellers, which causes inefficiency.
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• If m = 1, then ξ ∗∗ (1) is the solution to c = 1
2 (1−ξ )2, e.g., ξ ∗∗ (1) = 1−

√
2c;

• If m = 2, then ξ ∗∗ (2) is the solution to 2c = 1
3 (1−ξ )2 (2+ξ ).

Case 1: If c = 1
16 , then ξ ∗∗ (1) ≈ 0.646 and ξ ∗∗ (2) ≈ 0.622. For a sampling rule of

(1,1), the expected social welfare, from (26), is

W (1,1) =
∫

ξ ∗∗(1)

ξ ∗∗(1)
[1−F (x)]dx+

∫
ξ ∗∗(1)

0

[
1−F2 (x)

]
dx≈ 0.556.

The expected welfare for a sampling rule of (1,2) is

W (1,2) =
∫

ξ ∗∗(1)

ξ ∗∗(2)
[1−F (x)]dx+

∫
ξ ∗∗(2)

0

[
1−F3 (x)

]
dx≈ 0.593.

Therefore, the sampling rule of (1,2) is optimal.

Case 2: If c = 5
24 , then ξ ∗∗ (1) ≈ 0.355 and ξ ∗∗ (2) = 0.256. For a sampling rule of

(1,1), the expected profit, from (18), is

W (1,1) =
∫

ξ ∗∗(1)

ξ ∗∗(1)
[1−F (x)]dψ (x)+

∫
ξ ∗∗(1)

0

[
1−F2 (x)

]
dψ (x)≈ 0.340.

The expected profit for a sampling rule of (1,2) is

W (1,2) =
∫

ξ ∗∗(1)

ξ ∗∗(2)
[1−F (x)]dψ (x)+

∫
ξ ∗∗(2)

0

[
1−F3 (x)

]
dψ (x)≈ 0.323.

Therefore, the sampling rule of (1,1) now is efficient.

V. Optimal Search with Short-Lived Bidders

In this section, we will investigate the other important problem of finite sequential
search with shorted-lived bidders. In contrast to a long-lived bidder, who will stay in the
transactions until the deadline, a short-lived bidder, when invited, just participates in the
stage transaction of that period, and then goes away. The case of short-lived bidders is
analogous to sequential search with no recall.

We show that, with short-lived bidders, the optimal search mechanism is still featured
by declining cutoff values and increasing search intensities (sample sizes). Therefore, the
monotonicity results for optimal search mechanisms are robust, regardless of whether
bidders are long-lived or short-lived. We also show that the outcomes of an optimal
search mechanism, in this case, can also be implemented by a sequence of second price
auctions.

Our first observation is that, when bidders are short-lived, the incentive problem for
bidders becomes much simpler, and the cutoff value is always equal to the reserve price,
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that is, ξt = rt for t = 1,2, · · · ,T . This is because an invited short-lived bidder has but a
single chance to submit a bid, and therefore, he will bid if and only if his value is greater
than the reserve price of that period.

Similar to Section 3.3, we can also formulate a seller’s sequential search problem
with short-lived bidders as a DP problem. With the same notations, MT is a family of
bidder samples, and Nc

t = MT\Nt is the set of bidder samples that the seller has yet
sampled till the end of period t. Suppose at the end of period t the seller’s best offer
is ψ (v). The seller then faces the decision between the following two options: she can
accept the current best offer and realize a revenue of ψ (v), or she can decline it and
continue searching in the next period. Different from the case of long-lived bidders,
where a current best offer of ψ (v) is always reclaimable in the future, now with short-
lived bidders, the seller’s fall back offer is always 0 = ψ (r∗), if she declines the current
best offer and continues to search in the next period.

When bidders are short-lived, we denote Ĵt (v) as the value of having an offer of ψ (v)
in hand at the end of period t, which the seller can either accept or reject. It is obvious
that ĴT+1 (v) = 0 and ĴT (v) = max{ψ (v) ,0}. For t < T , the Bellman equation for this
sequential search problem with short-lived bidders is thus

(27) Ĵt (v) = max
Mt+1∈Nc

t

{
ψ (v) ,−cMt+1 +EĴt+1

[
max

{
r∗,X (1)

Mt+1

}]}
.

Remember, in this case of sequential search with no recall, when the seller decides to
continue searching, she already rejects the current best offer of ψ (v) and her fall-back
offer is thus ψ (r∗) = 0 in the next period, which corresponds to the virtual value of a
bidder with value r∗.

As an analogue of (4), the Bellman equation (27) yields the recurrence relation be-
tween ξ̂ ∗t and ξ̂ ∗t+1

(28) ψ(ξ̂ ∗t ) = max
Mt+1∈Nc

t

{∫ 1

0
max

{
ψ(ξ̂ ∗t+1),ψ(x)

}
dF(1)

Mt+1
(x)− cMt+1

}
,

where the left-hand side is the seller’s value from stopping the search with the current
cutoff ξ̂ ∗t and the right-hand side refers her continuation value from keeping searching
with the sample of Mt+1. It is important to note that the current cutoff ξ̂ ∗t not only
depends on the next period sample Mt+1, but also on the next period cutoff ξ̂ ∗t+1. In other
words, the one-step-ahead property does not hold any more with short-lived bidders, as
the current cutoff is determined recursively from the final period.

Rearranging the terms of (28), it follows that

ψ(ξ̂ ∗t ) = max
Mt+1∈Nc

t

{∫ 1

ξ̂ ∗t+1

ψ(x)dF(1)
Mt+1

(x)+ψ(ξ̂ ∗t+1)F
(1)

Mt+1
(ξ̂ ∗t+1)− cMt+1

}
= max

Mt+1∈Nc
t

{∫ 1

ξ̂ ∗t+1

[
ψ(x)−ψ(ξ̂ ∗t+1)

]
dF(1)

Mt+1
(x)− cMt+1

}
+ψ(ξ̂ ∗t+1).(29)
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Therefore, compared to (11), when the next period sample Mt+1 is given, the cutoff
ξ̂ ∗t with short-lived bidders is lower than ξ ∗t with long-lived bidders. The following
proposition characterizes the optimal cutoffs with short-lived bidders.

PROPOSITION 7 (optimal cutoffs with short-lived bidders): Given sample rule M, the
sequence of optimal cutoffs ξ̂ is recursively determined: ψ(ξ̂ ∗T ) = 0 and for any t < T ,

ψ(ξ̂ ∗t )−ψ(ξ̂ ∗t+1) = max
Mt+1∈Nc

t

{∫ 1

ξ̂ ∗t+1

[
1−F(1)

Mt+1
(x)
]

dψ(x)− cMt+1

}
.

We next show that the optimal search mechanism in this case is still featured by de-
clining cutoff values and increasing search intensities. The proof of the following propo-
sition uses the Principle of Optimality, which enables us to derive an optimal search rule
by backward induction. At the end of period t, if a seller decides to continue searching,
she needs to select the optimal bidder sample to contact in the next period, given that an
optimal search rule will be followed in the following periods of t +1, · · · ,T . As before,
to fix the idea of search intensity, we consider the case of homogeneous bidders, where
ci = c for all i ∈ N.

PROPOSITION 8: In an optimal search mechanism with short-lived bidders, the opti-
mal cutoff value ξ̂ ∗t is decreasing, and the optimal sample size m̂∗t is increasing over time.
That is, for all t = 0,1, · · · ,T −1, we have

ξ̂
∗
t > ξ̂

∗
t+1, m̂∗t ≤ m̂∗t+1.

PROOF:
Denote Z(1)

mt+1 = max
{

r∗,X (1)
mt+1

}
, and define

Bt = max
mt+1

{
EĴt+1

[
Z(1)

mt+1

]
−mt+1c

}
,

which is the continuation value of following an optimal search strategy after the end of
period t. Temporarily, we define

(30) Ĵt (v) = max
mt+1

{
ψ (v) ,EĴt+1

[
Z(1)

mt+1

]
−mt+1c

}
= max{ψ (v) ,Bt} ,

which will later be shown is equivalent to (27). It is clear that BT = 0, and for t < T ,

Bt = max
mt+1

{
EĴt+1

[
Z(1)

mt+1

]
−mt+1c

}
= max

mt+1

{
Emax

{
ψ

(
Z(1)

mt+1

)
,Bt+1

}
−mt+1c

}
.

When t = T −1,

BT−1 = max
mT

{
EĴT

[
Z(1)

mT

]
−mT c

}
= max

mT

{
Emax

{
ψ

(
Z(1)

mT

)
,BT

}
−mT c

}
> 0 = BT .
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When t = T −2, similarly,

BT−2 = max
mT−1

{
Emax

{
ψ

(
Z(1)

mT−1

)
,BT−1

}
−mT−1c

}
> max

mT−1

{
Emax

{
ψ

(
Z(1)

mT−1

)
,BT

}
−mT−1c

}
= BT−1.

Continuing in this manner, we see that

Bt > Bt+1 for t = 0,1, · · · ,T −1.

The result is then implied by the fact that the optimal cutoff satisfies ψ

(
ξ̂ ∗t

)
= Bt . Sec-

ond, note that the optimal sample size mt is the maximizer of

ς

(
mt , ξ̂

∗
t

)
= Emax

{
ψ

(
Z(1)

mt

)
,Bt

}
−mtc.

Simple transformation gives

ς

(
mt , ξ̂

∗
t

)
=Emax

{
ψ

(
X (1)

mt

)
,ψ
(

ξ̂
∗
t

)}
−mtc=ψ

(
ξ̂
∗
t

)
+
∫ 1

ξ̂ ∗t

[
ψ (x)−ψ

(
ξ̂
∗
t

)]
dF(1)

mt (x)−mtc

which is concave in mt given the fact that the virtual value function, ψ (x), is increasing
and ξ̂ ∗t is independent of mt (Szech, 2011, Lemma 1). Furthermore,

ς

(
mt +1, ξ̂ ∗t

)
− ς

(
mt , ξ̂

∗
t

)
=
∫ 1

ξ̂ ∗t

F(1)
mt (x) [1−F (x)]dψ (x)− c

is decreasing in ξ̂ ∗t . The optimization condition for mt is

ς

(
mt −1, ξ̂ ∗t

)
− ς

(
mt , ξ̂

∗
t

)
≥ 0 > ς

(
mt +1, ξ̂ ∗t

)
− ς

(
mt , ξ̂

∗
t

)
.

Given that ξ̂ ∗t > ξ̂ ∗t+1, then the concavity of ς

(
mt , ξ̂

∗
t

)
in mt then implies m̂∗t ≤ m̂∗t+1. �

The optimal cutoff values are declining over time. The intuition is that, if an offer is
good enough to be acceptable in period t, it should also be acceptable in period t+1 when
there is one less chance for improvement. Alternatively, we can interpret the virtual value
of ψ

(
ξ̂ ∗t

)
as the outside option (reservation value) for a seller, which is determined by

the continuation value of following an optimal search procedure. For any given sampling
rule, the continuation value is obviously decreasing over time, as there is fewer trial
opportunities for the seller to improve her payoff.

Now let us consider the implementation of the optimal search outcomes by a sequential
auction. In our proof of the above Proposition, we solve for the optimal search mech-
anism by backward induction. For example, in the last period of T , it is obvious that
the optimal reserve price ξ̂ ∗T = r∗, and there exists an optimal sample size of m̂∗T that



34

maximizes the expected auction profit.10 With the optimal solution of
(

ξ̂ ∗T , m̂
∗
T

)
in the

last period, we then have the continuation value of BT−1, which is also the seller’s reser-
vation revenue at the end of period T −1. The optimal cutoff value in period T −1 such
that ψ

(
ξ̂ ∗T−1

)
= BT−1, with which we can derive the optimal sample size of m̂∗T−1, that

the seller will sample in period T − 1. Continuing this process, we then have the solu-
tion to the optimal mechanism of

(
ξ̂ ∗,M̂∗

)
. Simply setting a sequence of reserve prices

r̂∗ = ξ̂ ∗, then the sequential auction of
(
r̂∗,M̂∗

)
implements the outcomes of an optimal

sequential search mechanism with short-lived bidders.
When bidders are short-lived, we do not have an analytical solution of the optimal

cutoff value of ξ̂ ∗t , as in the case of long-lived bidders. However, by comparing the two
Bellman equations of (3), for long-lived bidders, and (27), for short-lived bidders, we can
show that, for a given sampling rule M, the optimal cutoff value for short-lived bidders
is always lower than that for long-lived bidders. The intuition is that, when bidders
are short-lived, a seller can not reclaim any offer declined in the previous periods, and
therefore she is willing to accept lower cutoff prices, as her fall-back revenue is always
lower than that with long-lived bidders.

PROPOSITION 9: For a given sampling rule M, the optimal cutoff value for short-lived
bidders is smaller than that for long-lived bidders. That is, for 0≤ t < T −1,

ξ̂
∗
t < ξ

∗
t ,

and ξ̂ ∗T = ξ ∗T = r∗ for t = T .

PROOF:
For t = T , ĴT (v) =max{ψ (v) ,0}= JT (v), and therefore, ξ̂ ∗T = ξ ∗T = r∗. For t = T−1,

for long-lived bidders, from (3),

JT−1 (v) = max
{

ψ (v) ,−cMT +EJT

[
max

{
v,X (1)

MT

}]}
,

and v≥ r∗ as ψ (v)≥ 0. For short-lived bidders, from (27),

ĴT−1 (v) = max
{

ψ (v) ,−cMT +EĴT

[
max

{
r∗,X (1)

MT

}]}
.

As ĴT (v)= JT (v) and both are increasing function, it is then clear that JT−1 (v)≥ ĴT−1 (v)
with equality only when v = 0. Repeating this process, we then reaches the conclusion
that Jt (v) ≥ Ĵt (v), for 0 ≤ t < T − 1. The indifference condition for cutoff value then
implies ξ̂ ∗t < ξ ∗t , for 0≤ t < T −1. �

PROPOSITION 10: Given a sequence of cutoff values ξ such that ξt > ξt+1, the optimal
sample size for long-lived bidders is smaller than that for short-lived bidders in each
period.

10This optimization problem is a well-defined convex problem, given the IFR assumption (Szech, 2011; Li, 2017).
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c

ĉ∗

c∗

π̂(1,2)> π̂(1,1) π̂(1,2)< π̂(1,1)

π(1,2)> π(1,1) π(1,2)< π(1,1)

higher search intensity for short-lived bidders

FIGURE 4. EXPECTED PROFIT WITH SHORT-LIVED BIDDERS

Note: See Example 4. When the invitation cost is lower than ĉ∗ ≈ 0.167, it is optimal to invite one bidder in the first
period and two the remaining bidders in the second period. If c > ĉ∗, however, it is optimal to invite just one bidder
sequentially in both periods. Compared to Example 2, if the cost is in between c∗ ≈ 0.164 and ĉ∗ ≈ 0.167, the seller
invites more bidders in the second period when they are short-lived.

PROOF:
Recall the condition (4) for long-lived bidders and the recurrence equations (28) for

short-lived bidders. Given a sequence of cutoff values ξ such that ξt > ξt+1, the above
equations define the inverse real-value functions of m∗t+1 (ξt) for long-lived bidders and
m̂∗t+1 (ξt ,ξt+1) for short-lived bidders. That is, for given ξ , m∗ (ξt) and m̂∗ (ξt ,ξt+1)
are respectively the optimal sample sizes for long-lived and short-lived bidders in period
t +1. Our objective is to show m∗t+1 (ξt)< m̂∗t+1 (ξt ,ξt+1). We can define a new function

η (m,ξ ) =
∫ 1

0
max{ψ (ξ ) ,ψ (x)}dFm (x)−mc

which is strictly concave in m (Szech, 2011), and obeys single-crossing difference in
(m,ξ ) given that, for m′ > m, η (m′′,ξ )−η (m′,ξ ) is decreasing in ξ . The well-known
result of Milgrom and Shannon (1994)(Theorem 4) gives that

m̃(ξ )≡ argmax
ξ

η (m,ξ )

is strictly decreasing in ξ , and hence m̃(ξt)< m̃(ξt+1). In addition, from (4), it follows

ψ (ξt) =
∫ 1

0
max{ψ (ξt) ,ψ (x)}dFm∗(ξt) (x)−m∗ (ξt)c

≤
∫ 1

0
max{ψ (ξt) ,ψ (x)}dF m̃(ξt) (x)− m̃(ξt)c

Therefore,
m∗ (ξt)≤ m̃(ξt)< m̃(ξt+1) = m̂∗ (ξt ,ξt+1) ,

where the last equality is implied by (28). �
We now consider a simple 2-period example to illustrate how to derives the optimal

search procedure in the case of short-lived bidders.

EXAMPLE 4: Bidders are ex-ante homogeneous, with uniform value distribution on
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[0,1] and unit search cost of c > c ≈ 0.047.11 We denote the sampling rule by m̂ =
(m̂1, m̂2), where m̂t is the bidder sample size in period t. We consider two candidates for
optimal sampling rule, m̂ = (1,1) and (1,2).

We define Bt , t = 1,2, as the continuation value of following an optimal search proce-
dure after the end of period t, and the optimal cutoff value ξ̂ ∗t satisfies ψ

(
ξ̂ ∗t

)
= Bt , as

implied by the Bellman equation of (27). It is clear that B2 = 0 and ξ̂ ∗2 = r∗; and

(31) B1 = max
m̂2

{∫ 1

r∗
ψ (x)dF m̂2 (x)− m̂2c

}
,

where the virtual value function ψ (x) = 2x−1. Following an optimal search procedure
of
{(

ξ̂ ∗1 ,r
∗
)
,(m̂∗1, m̂

∗
2)
}

, the expected profit is

π̂
∗ =

[∫ 1

ξ̂ ∗1

ψ (x)dF m̂∗1 (x)− m̂∗1c
]
+F m̂∗1

(
ξ̂
∗
1

)[∫ 1

r∗
ψ (x)dF m̂∗2 (x)− m̂∗2c

]
.

Case 1: c < c≤ ĉ∗ = 1/6
m̂∗2 = 2 maximizes (31) with B1 =

5
12 −2c and ξ̂ ∗1 = 17

24 − c

Case 2: ĉ∗ < c < 1/4
m̂∗2 = 1 maximizes (31) with B1 =

1
4 − c and ξ̂ ∗1 = 5

8 −
1
2 c

This example also verifies the result of Proposition 8, that is, for given sampling rule, the
optimal cutoff value with short-lived bidders is smaller that with long-lived bidders, in
each period. For instance, for c = 1

16 , it follows m̂∗2 = 2, B1 =
7
24 and

ξ̂
∗
1 =

31
48
≈ 0.646 < ξ

∗
1 ≈ 0.738,

and for c = 5
24 , it follows m̂∗2 = 1, B1 =

1
24 , and

ξ̂
∗
1 =

25
48
≈ 0.521 < ξ

∗
1 ≈ 0.544,

where ξ ∗1 ’s are derived in Example 2.

VI. Conclusion

This paper studies sequential search auctions with a deadline, where a seller needs
to allocate a non-divisible product among a number of bidders by a finite deadline, and
to contact a bidder, she needs to incur a positive cost. We show that an optimal search
auction is featured by declining reserve prices and increasing search intensities (sample

11For a very low c < c, it is optimal to invite all the three bidders in the first period, as m̂∗2 = 3 maximizes (31).
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sizes). Our results help explain why, in practice, many selling processes seem not com-
petitive, where no obvious competition among bidders is observed, such as in M&As.

To confirm the robustness of the monotonicity results, in addition to an optimal search
auction, this paper also considers an efficient mechanism as well as the cases of both
long-lived and short-lived bidders. We find that both both the optimal reserve prices and
the optimal search intensities are higher than the efficient ones. This identifies a source
on inefficiency in sequential auctions as the profit-maximizing seller has an incentive to
over-invite bidders, compared to the efficient level. In the case with short-lived bidders,
we show that the optimal reserve prices are lower but the optimal search intensities are
higher than those with long-lived bidders. This implies that the seller tends to set a
lower reserve price and to spend a higher search intensity in each period when she faces
short-lived bidders.

This paper develops a framework for studying finite sequential search problems in
strategic environments, e.g., in auctions as studied in this paper. We believe this frame-
work can be applied to a large variety of related problems, such as sequential matching in
marriage markets, sequential contests, or job recruiting by a deadline. These extensions
may be left for future research.
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MATHEMATICAL APPENDIX

PROOF OF LEMMA 1:
It is obvious that Ūt(0) = Ūt+1(0) = 0. Since the product must be sold at a positive

probability, there exists v◦ such that Ūt(v◦)> Ūt+1(v◦). First, we show Ūt(v)> Ūt+1(v)
for any v ≥ v◦. Suppose, for a contradiction, that there exists Ūt(v) = Ūt+1(v) for
some v ≥ v◦. Let v̄ = min{v ≥ v◦ | Ūt(v) = Ūt+1(v)}, which is well-defined as Ūt and
Ūt+1 are continuous. Then for any ṽ ∈ [v◦, v̄), it must be Ūt(ṽ) > Ūt+1(ṽ) and hence
Ū ′t (ṽ) = F(1)

Nt\{i}(ṽ), which is in turn strictly greater than F(1)
Nt+1\{i}(ṽ)≥ Ū ′t+1(ṽ). It contra-

dicts to the continuity of Ūt and Ūt+1 and hence Ūt(v) > Ūt+1(v) for any v ≥ v◦. Then,
ξt = max{v | Ūt(v) = Ūt+1(v)} is uniquely defined and the standard payoff equivalence
argument yields the bidder’s payoff function as (5). �

PROOF OF LEMMA 2:
For t < T , a bidder with the cutoff value ξt is indifferent between bidding and waiting,

and therefore Ūt(ξt) = Ub
t (ξt) = Ūt+1(ξt). As ξt ≥ ξt+1, he then prefers bidding to

waiting in period t +1, and hence Ūt+1(ξt) =Ub
t+1(ξt). It then follows that, for t < T ,

Ub
t+1(ξt) = F(1)

Nt+1\{i} (ξt+1)(ξt − rt+1)+ I{ξt≥ξt+1}

∫
ξt

ξt+1

(ξt − x)dF(1)
Nt+1\{i}(x)

= F(1)
Nt+1\{i} (ξt+1)(ξt+1− rt+1)+

∫
ξt

ξt+1

F(1)
Nt+1\{i}(x)dx,

and Ub
t (ξt) = F(1)

Nt\{i}(ξt)(ξt − rt). We then prove the result of (6). Second, ξT = rT

obviously, as ŪT+1(v) = 0.
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We next show the reserve prices {rt}1≤t≤T are also decreasing in t. From (6),

F(1)
Nt\{i}(ξt)(ξt − rt) = F(1)

Nt+1\{i}(ξt+1)(ξt+1− rt+1)+
∫

ξt

ξt+1

F(1)
Nt+1\{i}(x)dx

≤ F(1)
Nt+1\{i}(ξt)(ξt+1− rt+1)+F(1)

Nt+1\{i}(ξt)(ξt −ξt+1)

= F(1)
Nt+1\{i}(ξt)(ξt − rt+1) .

The result then implies rt ≥ rt+1, as desired. �

PROOF OF LEMMA 3:
In the stage auction of period t, there are total Nt = Nt−1 ∪Mt bidders. Among them,
Mt bidders are strong whose values are independent draws from F on [0,1], and the
other Nt−1 bidders are weak, whose values are independent draws from the truncated
distribution of F (v |ξt−1 ) = Pr(V ≤ v |V ≤ ξt−1 ). The reserve price is rt , and bidders’
cutoff value for submitting bid is ξt , with ξt > rt for t < T , as shown in Proposition 2.

We need to introduce some new notations here. We denote the truncated distribution
by F (x |ξt−1 ) = F (x)/F (ξt−1). Moreover, let G(k)

Nt
, k = 1,2, denote the distribution

function of the k-th highest order statistics of the values of the Nt bidders’. Based on the
properties of order statistics, we have the following expressions of G(k)

Nt
.

G(1)
Nt

(x) = F(1)
Nt−1

(v |ξt−1 )F(1)
Mt

(v) ,

G(2)
Nt

(x) = F(1)
Nt−1

(v |ξt−1 )F(2)
Mt

(v)+nt−1F̄ (x |ξt−1 )F(1)
Nt−1−1 (v |ξt−1 )F(1)

Mt
(v) ,(A1)

where F̄ (x |ξt−1 ) = 1−F (x |ξt−1 ) is the survival function. The expected revenue of the
stage auction in period t is thus

Rt (Nt) = rt

[
G(2)

Nt
(ξt)−G(1)

Nt
(ξt)
]
+
∫ 1

ξt

xdG(2)
Nt

(x)

It is helpful to do the following transformation,
(A2)

Rt (Nt) =

{
ξt

[
G(2)

Nt
(ξt)−G(1)

Nt
(ξt)
]
+
∫ 1

ξt

xdG(2)
Nt

(x)
}
− (ξt − rt)

[
G(2)

Nt
(ξt)−G(1)

Nt
(ξt)
]
,

where the part in the curly braces is the expected revenue of a one-shot auction with a
reserve price of ξt . From Myerson (1981) and Kirkegaard (2012), it is equal to

(A3)
F(1)

Nt−1
(ξt |ξt−1 )

∫ 1
ξt

ψ (x)dF(1)
Mt

(x)

+
∫ ξt−1

ξt

[
ψ (v |ξt−1 )F(1)

Mt
(v)+

∫ 1
v ψ (x)dF(1)

Mt
(x)
]

dF(1)
Nt−1

(v |ξt−1 )

where ψ (v |ξt−1 ) is the virtual value function of the Nt−1 weak bidders. Substituting
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ψ (v |ξt−1 ) =ψ (v)+ F̄(ξt−1)
f (v) into (A3) and integrating by parts, we then have the expected

revenue of (A3) is equal to

(A4)
∫

ξt−1

ξt

ψ (x)d
F(1)

Nt
(x)

F(1)
Nt−1

(ξt−1)
+
∫ 1

ξt−1

ψ (x)dF(1)
Mt

(x)+
nt−1F̄ (ξt−1)

F(1)
Nt−1

(ξt−1)

∫
ξt−1

ξt

F(1)
Nt−1 (x)dx

Second, from the cutoff condition of (6) for bidders’ equilibrium strategies, we have

(A5)
∫

ξt−1

ξt

F(1)
Nt−1 (x)dx = F(1)

Nt−1−1 (ξt−1)(ξt−1− rt−1)−F(1)
Nt−1 (ξt)(ξt − rt) .

Moreover, the the property of order statistics implies that

(A6) G(2)
Nt

(ξt)−G(1)
Nt

(ξt) = mt F̄ (ξt)
F(1)

Nt−1 (ξt)

F(1)
Nt−1

(ξt−1)
+nt−1F̄ (x |ξt−1 )

F(1)
Nt−1 (ξt)

F(1)
Nt−1−1 (ξt−1)

.

Substituting the results of (A3)-(A6) into (A2), we then have the ex-ante expected stage
revenue in period t:

F(1)
Nt−1

(ξt−1)Rt (Nt) =
∫

ξt−1

ξt

ψ (x)dF(1)
Nt

(x)+F(1)
Nt−1

(ξt−1)
∫ 1

ξt−1

ψ (x)dF(1)
Mt

(x)

+nt−1F̄ (ξt−1)
[
F(1)

Nt−1−1 (ξt−1)(ξt−1− rt−1)−F(1)
Nt−1 (ξt)(ξt − rt)

]
−(ξt − rt)

[
mt F̄ (ξt)F(1)

Nt−1 (ξt)+nt−1 (F (ξt−1)−F (ξt))F(1)
Nt−1 (ξt)

]
=

∫
ξt−1

ξt

ψ (x)dF(1)
Nt

(x)+F(1)
Nt−1

(ξt−1)
∫ 1

ξt−1

ψ (x)dF(1)
Mt

(x)

+nt−1F̄ (ξt−1)F(1)
Nt−1−1 (ξt−1)(ξt−1− rt−1)−nt F̄ (ξt)F(1)

Nt−1 (ξt)(ξt − rt) .

Summing all of them together, we then get the result of (9). �

PROOF OF COROLLARY 1:
Result 1) is straightforward from (13), as F(1)

M (x) = F(1)
M′ (x) = F |M| (x). For result 2), as

cM = cM′ , then from (13),∫ 1

ξ ∗(M)

[
1−F(1)

M (x)
]

dψ (x)=
∫ 1

ξ ∗(M′)

[
1−F(1)

M′ (x)
]

dψ (x)>
∫ 1

ξ ∗(M′)

[
1−F(1)

M (x)
]

dψ (x)

where the inequality is due to F(1)
M (x) > F(1)

M′ (x). It then follows that ξ ∗ (M′) > ξ ∗ (M)

as
∫ ξ ∗(M′)

ξ ∗(M)

[
1−F(1)

M (x)
]

dψ (x)> 0. �

PROOF OF COROLLARY 2:
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The definition of MPS implies
∫ v

0
∂F(x,σ)

∂σ
dx ≥ 0, and ∂F(0,σ)

∂σ
= ∂F(1,σ)

∂σ
= 0 for all σ .

From (13), it follows from simple calculation that

cM = Eψ

(
V (1)

M

)
−ψ (ξ ∗ (M;σ))+

∫
ξ ∗(M;σ)

0
F(1)

M (x;σ)dψ (x)

where Eψ

(
V (1)

M

)
is constant across σ by definition of MPS. Taking partial derivative

with respect to σ and by re-arrangement, we then arrives at

[
1−F(1)

M (ξ ∗;σ)
]

ψ
′ (ξ ∗)

∂ξ ∗

∂σ
=
∫

ξ ∗(M;σ)

0

∂F(1)
M (x;σ)

∂σ
dψ (x) ,

and therefore ∂ξ ∗/∂σ > 0 as ∂F(1)
M /∂σ > 0 due to MPS and ψ ′ > 0 due to IFR. �

PROOF OF LEMMA 4:
From (13) and (11), we have ξ ∗ (Mt+1) = ξ ∗t for 1 ≤ t < T , and define ξ ∗ (MT+1)≡ ξ ∗T
Substituting (11) into (9), we then get

π
∗ (M) =

[∫
ξ0

ξ ∗1

ψ (x)dF(1)
N1

(x)− cM1

]
+

T

∑
t=2

[∫
ξ ∗t−1

ξ ∗t

ψ (x)dF(1)
Nt

(x)+F(1)
Nt−1

(ξ ∗t−1)
∫ 1

ξ ∗t−1

ψ
(
ξ
∗
t−1
)

dF(1)
Mt

(x)
]

=

[∫ 1

ξ ∗1

ψ (x)dF(1)
N1

(x)− cM1

]
+

T

∑
t=2

[
ψ
(
ξ
∗
t−1
)

F(1)
Nt−1

(ξ ∗t−1)−ψ (ξ ∗t )F(1)
Nt

(ξ ∗t )−
∫

ξ ∗t−1

ξ ∗t

F(1)
Nt

(x)dψ (x)
]

=

[∫ 1

ξ ∗1

ψ (x)dF(1)
N1

(x)− cM1

]
+ψ (ξ ∗1 )F(1)

N1
(ξ ∗1 )−ψ (ξ ∗1 )+

T

∑
t=2

∫
ξ ∗t−1

ξ ∗t

[
1−F(1)

Nt
(x)
]

dψ (x)

=
∫

ξ ∗(M1)

ξ ∗(M2)

[
1−F(1)

N1
(x)
]

dψ (x)+
T

∑
t=2

∫
ξ ∗(Mt)

ξ ∗(Mt+1)

[
1−F(1)

Nt
(x)
]

dψ (x) .

For the last equality, we apply the definition that cM1 =
∫ 1

ξ ∗(M1)

[
1−F(1)

M1
(x)
]

dψ(x). �

PROOF OF LEMMA 6:
The conditional expected social welfare in period t is

Wt (Nt) =
∫

ξt−1

ξt

xdG(1)
Nt

(x)+
∫ 1

ξt−1

xdF(1)
Mt

(x) .
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where G(1)
Nt

(x) = F(1)
Nt−1

(x |ξt−1 )F(1)
Mt

(x). Summing up all the terms of F(1)
Nt−1

(ξt−1)Wt (Nt),
we then get the result of (22). �

PROOF OF LEMMA 7:
From (25) and (24), we have ξ ∗∗ (Mt+1) = ξ ∗∗t for 1 ≤ t < T . For t = T , we define
ξ ∗∗ (MT+1) = ξ ∗∗T = 0. We then have

W ∗∗ =

[∫
ξ0

ξ ∗∗1

xdF(1)
N1

(x)− cM1

]
+

T

∑
t=2

[∫
ξ ∗∗t−1

ξ ∗∗t

xdF(1)
Nt

(x)+F(1)
Nt−1

(ξ ∗∗t−1)
∫ 1

ξ ∗∗t−1

ξ
∗∗
t−1dF(1)

Mt
(x)
]

=

[∫ 1

ξ ∗∗1

xdF(1)
N1

(x)− cM1

]
+

T

∑
t=2

[
ξ
∗∗
t−1F(1)

Nt−1
(ξ ∗∗t−1)−ξ

∗∗
t F(1)

Nt
(ξ ∗∗t )−

∫
ξ ∗∗t−1

ξ ∗∗t

F(1)
Nt

(x)dx
]

=

[
ξ
∗∗
1 −ξ

∗∗
1 F(1)

N1
(ξ ∗∗1 )+

∫
ξ ∗∗(M1)

ξ ∗∗1

[
1−F(1)

N1
(x)
]

dx
]

+
T

∑
t=2

[
ξ
∗∗
t−1F(1)

Nt−1
(ξ ∗∗t−1)−ξ

∗∗
t F(1)

Nt
(ξ ∗∗t )+

∫
ξ ∗∗t−1

ξ ∗∗t

[
1−F(1)

Nt
(x)
]

dx−
(
ξ
∗∗
t−1−ξ

∗∗
t
)]

=
T

∑
t=1

∫
ξ ∗∗(Mt)

ξ ∗∗(Mt+1)

[
1−F(1)

Nt
(x)
]

dx,

where in the third equality, we substitute cM1 =
∫ 1

ξ ∗∗(M1)

[
1−F(1)

M1
(x)
]

dx. �

PROOF OF LEMMA 8:
We would like to show ξ ∗∗ (m+1)< ξ ∗∗ (m). For m+1 bidders, we have

(m+1)c =
m+1

m

∫ 1

ξ ∗∗(m+1)
[x−ξ

∗∗ (m+1)]F (x)dFm (x) .

Therefore,

mc =
∫ 1

ξ ∗∗(m+1)
[x−ξ

∗∗ (m+1)]F (x)dFm (x) =
∫ 1

ξ ∗∗(m)
[x−ξ

∗∗ (m)]dFm (x) .

As F (x) < 1 for x ∈ [0,1), the only way to get the equality hold is that ξ ∗∗ (m+1) <
ξ ∗∗ (m). �


