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Abstract

In U(1) Abelian gauge theory coupled to fermions, the non-conservation of the axial cur-
rent due to the chiral anomaly is given by a dynamical operator Fµν F̃µν constructed from
the field-strength tensor. We attempt to describe this physics in a universal manner by
casting this operator in terms of the 2-form current for the 1-form symmetry associated
with magnetic flux conservation. We construct a holographic dual with this symmetry
breaking pattern and study some aspects of finite temperature anomalous magnetohy-
drodynamics. We explicitly calculate the charge susceptibility and the axial charge relax-
ation rate as a function of temperature and magnetic field and compare to recent lattice
results. At small magnetic fields we find agreement with elementary hydrodynamics
weakly coupled to an electrodynamic sector, but we find deviations at larger fields.
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1 Introduction

In this work we will discuss the finite temperature physics of a magnetohydrodynamic chiral
plasma, i.e. an electrodynamic plasma with an axial U(1)A current jA that is afflicted by an
Adler-Bell-Jackiw anomaly:

∂µ jµA = −
1

16π2
εµνρσ fµν fρσ . (1)

Here it is understood that this expression arises in a theory of dynamical electromagnetism,
and fµν is the field strength of this fluctuating gauge field. We stress that the non-conservation
of the axial current is given by a dynamical operator. While the analysis presented here will be
from a more formal, holographic, perspective, the system has clear phenomenological interest,
with applications to baryon number violation [1–5], primordial magnetic fields [6–8], magne-
tised baryogenesis [9–11], and Dirac and Weyl semi-metals in condensed matter systems (for
a review see [12]).

As described in [1], a quantity of interest in U(1) anomalous processes is the relaxation rate
of the chiral charge density j0A . This is what we seek to compute in this work. In our opinion
a fully universal hydrodynamic treatment of this problem has not yet been given; indeed it is
somewhat unclear whether one should exist.

We begin by carefully stating the problem and distinguishing it from the large existing
literature on anomalous hydrodynamics. To orient ourselves, it is helpful to first imagine a
weakly-coupled realization of the physics that we are interested in. Consider the following
Lagrangian describing a massless Dirac fermion coupled to dynamical electromagnetism with
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photon a:

S[a,ψ] =

∫

d4 x
�

−
1

4e2
f 2 + ψ̄

�

/∂ − i/a
�

ψ

�

. (2)

We will be interested in placing this system at finite temperature and understanding the hy-
drodynamic description.

What are the global symmetries of this system? It has a 1-form U(1)(1)-symmetry associ-
ated with the conservation of magnetic flux:

∂µJµν = 0 , Jµν ≡
1
2
εµνρσ fρσ . (3)

In this work we assume the reader is familiar with higher-form symmetries [13] and we will
often denote a p-form U(1)-symmetry by U(1)(p). A recent review of applications of higher-
form symmetries can be found in [14].

The symmetry associated with vector phase rotations of the ψ field ψ→ eiαψ is gauged
and does not correspond to a global symmetry. Classically, the theory appears to have a conven-
tional (i.e. 0-form) U(1)(0)A -symmetry associated with ψ → eiαγ5

ψ; however at the quantum
mechanical level the conservation of the associated current is broken by the Adler-Bell-Jackiw
anomaly (1). Note that the right-hand side of this expression is an operator, as f is a fluctuat-
ing dynamical field. This should be contrasted with the case of a ’t-Hooft anomaly, where the
right-hand side of a current-conservation equation involves a fixed external source that can be
set to zero.

We are interested in understanding the realization of the symmetries at finite tempera-
ture. This is the domain of hydrodynamics, which describes how conserved quantities relax
towards thermal equilibrium. Hydrodynamics in the presence of a ’t-Hooft anomaly is a rich
and well-studied field [15,16] (see also [12]). The situation with the anomaly above is some-
what different. As the right-hand side is a fluctuating operator, there is no longer a strictly
universal sense in which the axial current is conserved. Thus it appears that the only true
global symmetry of the system is the 1-form symmetry (3). A naive application of the conven-
tional formalism of hydrodynamics applied to this system would then only involve a study of
the 1-form symmetry in thermal equilibrium. Such an analysis was performed in [17], where
it was shown that the resulting framework is essentially a reformulation of conventional rela-
tivistic magnetohydrodynamics, i.e. a description of an electrodynamic plasma (a holographic
description of this plasma from this point of view was given in [18,19]). The only conserved
quantity here is the usual magnetic flux, and this description of course makes no reference to
the axial current whatsoever.

Nevertheless, to us this situation seems somewhat unsatisfactory; after all, from an ap-
plied viewpoint, it seems clear that the finite-temperature dynamics of (2) has a rich and
physically relevant phenomenology. This physics is usually accessed by coupling the equations
of (ungauged) hydrodynamics with a ’t Hooft anomaly to weakly coupled electrodynamics
“by hand” [7, 20]; in particular see [21] which constructs a hydrodynamic theory in a formal
expansion in the anomaly coefficient. These constructions are not fully universal, and the do-
main of validity of the resulting theories is not entirely clear. In particular, recent work on
the lattice [1, 2] that computes the charge relaxation rate ΓA shows a disagreement with the
predictions of the above hydrodynamic theories, suggesting that short-distance fluctuations
play an important role that is not captured by the non-universal theories above.

It is difficult to come up with a universal hydrodynamic theory for this model. In fact, to-
wards the end of our analysis, we will see that we have reasons to believe that such a universal
hydrodynamic description might not exist for such a set up. For now we will explore this prob-
lem in a new way, by using holographic duality to explore aspects of the finite-temperature
dynamics of a system in the same universality class as the weakly coupled theory described
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above. To construct our holographic dual theory, we must first carefully understand the sym-
metries in a manner that is independent of the description. One route to understand this is to
note that the right-hand side of the expression above can be written in terms of the current
Jµν for the 1-form symmetry:

∂µ jµA = k εµνρσJµνJρσ , k ≡
1

16π2
. (4)

We may now try to describe the dynamics of a system with a conserved 2-form current Jµν

and a 1-form axial current jµA that satisfies the above non-conservation equation; this may be
thought of as a kind of intertwining of the (genuine) 1-form symmetry and the (broken by the
anomaly) 0-form symmetry. (To our knowledge, this particular intertwining does not appear
to have a precise universal characterization in the field theory literature; however see further
discussion in the conclusion).1

In this work we will first construct a holographic model that possesses the above symme-
tries. We will then perform a preliminary investigation of the resulting holographic system.
In particular, we study the system in the presence of a background magnetic field. We will
explicitly compute the charge relaxation rate in this model and compare it both to elementary
hydrodynamics with weakly coupled electromagnetism and to recent lattice results; we will
find agreement with hydrodynamics at low magnetic fields, but disagreement at large mag-
netic fields; this suggests that UV fluctuations are important for a quantitative determination
of this relaxation rate.

A short outline of the rest of this paper is as follows. In Section 2 we review a simple hydro-
dynamic discussion of the charge relaxation rate. In Section 3 we introduce the holographic
model that we will study in the remainder of the paper. In Section 4 we place this model at
finite temperature and study some aspects of static response (i.e. the analogue of the charge
susceptibility). In Sections 5 and 6 we study finite-frequency response (both analytically at
small frequencies and numerically) and we conclude with a brief discussion in Section 7.

2 Hydrodynamic calculation of relaxation rate

We begin our study by defining the relaxation rate that we will compute and using elementary
physical arguments to understand what may control it; at the end we will compare the resulting
physics to our holographic construction.

We first review the usual hydrodynamic computation of this charge relaxation rate. This
is done in the usual framework of “chiral MHD”. As described above, this means we assume a
certain anomalous contribution to the dynamical electric current and couple it perturbatively
to an MHD sector. We particularly highlight [21], where the authors perform a hydrodynamic
study where the anomaly coefficient k is treated perturbatively; they compute the chiral charge
relaxation rate ΓA for small k. In this limit, they find that, ΓA ∼ k2 B2 with B being the magnetic
field.

We review a similar calculation below: this is physically instructive but as discussed above
is not truly universal. This calculation is a very slight generalization of the one presented
in [1].

In our notation the anomaly takes the form

∂µ jµA = −2kFµν F̃µν = kεµνρσJµνJρσ , (5)

1Note added: after the first version of this paper was released on the arXiv, [22, 23] appeared: these works
present a precise field-theoretical characterization of the ABJ anomaly in terms of non-invertible symmetries.
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where jµA is the chiral current, F̃µν is the Hodge dual of the field strength Fµν. (In the case

of a single Dirac fermion studied in [1] we have 2k = − e2

8π2 , where e is the electromagnetic
coupling.)

For the homogeneous case (see [1]), we have j⃗A = 0 and thus the anomaly equation be-
comes (for j0A ≡ ρ = χµA),

χ
dµA

d t
= −

8k
V

∫

d3 x E⃗ · B⃗ , (as , Fµν F̃µν = 4E⃗ · B⃗) , (6)

where µA is the space-independent axial chemical potential, ρ the axial charge density, and
χ the axial charge susceptibility, which in principle could depend on the temperature and
background magnetic field.

Thus, we have the chiral relaxation rate as,

dµA

d t
= −

8k
χV

∫

d3 x E⃗ · B⃗ . (7)

Following [1] we give below the chiral MHD equations as,

∂ B⃗
∂ t
=∇× E⃗ ,

∂ E⃗
∂ t
+∇× B⃗ = −σE⃗ + 8kµAB⃗ , (8)

where σ is the electric conductivity of the plasma, and we have assumed that the density
of electric charge is zero, and the plasma has zero velocity. The last term: 8kµAB⃗, is the
contribution from the chiral magnetic effect (CME).2 This system of equations is complemented
by the anomaly equation above (7).

Now if we neglect the time-derivative of E⃗ in (8) we can express E⃗ in terms of B⃗ using (8).
Then, we get for long-range fluctuations of the gauge fields (that is ∇× B⃗→ 0),

dµA

d t
= −

8k
σχV

∫

d3 x
�

8kµAB⃗
�

· B⃗ = −
64k2B2

σχ
µA ≡ −ΓAµA , (9)

where in the last equality ΓA is defined as the rate of chirality non-conservation in the presence
of an external homogeneous magnetic field B⃗. The solution of Eq.(9) goes as,

µA(t) = e−ΓAtµA,0 (where µA,0 is an integration constant) . (10)

From Eq.(9) we see that,

ΓA =
64k2B2

σχ
, (11)

i.e. the relaxation rate is quadratic in the magnetic field. We will compare this elementary
discussion to an explicit holographic calculation later.

We note that in [1,2], the authors perform a numerical lattice computation in determining
the chiral charge relaxation rate ΓA. They also found it to be quadratic in the magnetic field B.
As mentioned above, it was observed that the pre-factor in ΓA ∼ B2 is approximately 10 times
that of the theoretical predictions of the same pre-factor from hydrodynamics. Calculating
this pre-factor in a strongly coupled yet solvable holographic model and comparing it to the
existing literature serves as a pragmatic motivation for this study.

2Note that there is a factor of 2 difference in the CME between this paper and that of [1]. This is owing to the

fact that in [1], µA couples to
j0A
2 while here in the definition of µA, we have chosen it to couple to j0

A .
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3 Overview of holographic model

In this section, we will present a bulk holographic theory which realizes the pattern of symme-
try non-conservation in (4). We will begin by presenting the bulk action and demonstrating
the deformed Ward identity; in the next section, we will describe how we arrived at this theory
from dualizing a different bulk action. (For a summary of our conventions and notation see
Appendix A.)

3.1 Holographic bulk action

We desire a bulk theory with the following properties: it should have a bulk massless 2-form
BMN ; as explained in detail in [18], this is associated with a global 1-form symmetry in the
boundary, as BMN is dual to the boundary 2-form current Jµν. The action should also have a
vector field which we call EM . EM is dual to a vector operator representing the axial current
jµA on the boundary; this vector operator should be understood as the axial current, and it is
not conserved. Thus, EM should not enjoy a bulk gauge symmetry. (We will see in a later
section that EM is of the form AM − ∂Mφ, where AM and φ enjoy (bulk) gauge symmetries
in such a way that EM is gauge-invariant). However, the divergence of jµA on the boundary
is not completely unconstrained; rather its divergence should be related to the a double-trace
operator of the 2-form current Jµν by the following anomaly equation

∂µ jµA = k εµνρσJµνJρσ , (12)

where k is a parameter that should enter the bulk action.
We now present a bulk action which satisfies the above properties:3

S[E, B] =

∫

d5 x
p

−g
�

−
1
4

G2 −
1
12

H2 + 16k2 (E ·H)2 −
k
3
εPQRMN HPQRELH LMN

�

. (13)

Here G = dE and H = dB are the field strengths of E and B respectively, and we have
defined H2 = HPQRHPQR, (E ·H)2 = ELH LMN EP HPMN . The theory has an invariance under a
1-form gauge symmetry:

B→ B + dΛ , (14)

withΛ an arbitrary 1-form. E clearly enjoys no explicit gauge symmetry; note however that the
“mass” terms for E have a specific structure, involving couplings to H that are parameterized
by a single coupling k. We will show that this structure encodes the anomaly (12). This action
should be understood as being correct to order O(E2); as we will show, the anomaly structure
(12) above is only correctly represented to that order. Below we will also present an algorithm
that can be used to obtain an action that is correct to all orders in E, though we will not require
it for our purposes.

Motivated by studies pertaining to similar anomalies, a bulk action involving anomaly-
inspired mass terms for gauge fields was studied in [24] (see Eq.(30) in [24]). There, the
anomaly is thought to be sourced by a dynamical non-Abelian gauge field, which does not
have an associated 1-form symmetry. In our case, the dynamical gauge field is Abelian, and
thus the non-conservation of the current is precisely related to a 2-form current with universal
dynamics; thus our action takes a more constrained form (and describes somewhat different
physics) compared to that in [24].4

3In the action below one can certainly have higher order terms consistent with the symmetry structure described
above but they won’t contribute to the holographic calculation which we describe at linear order in k.

4We note that [24] also consider external vector Abelian magnetic fields; however these fields act as sources
and are non-dynamical.
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The variation of the action above with respect to B results in the following equations of
motion:

−
1
2
∂L

�p

−gH LMN
�

− k ∂L

�p

−g εLMNQREP HPQR

�

−
k
3
∂L

�p

−g HPQR

�

E LεPQRMN + EMεPQRN L + ENεPQRLM
��

= 0 , (15)

and similarly, we have the following equations for the variation with respect to E:

1
p
−g
∂M

�p

−gGM L
�

= −32k2H LQREP HPQR +
k
3
εPQRMN HPQRH LMN . (16)

Note that if k = 0 these equations of motion decouple into free Maxwell equations for E and B
respectively. Here we work only to linearized order in E.

We would now like to interpret this bulk physics holographically. We begin with the 2-
form B. As usual, we may construct the boundary 2-form current Jµν by varying the action with
respect to the boundary value of Bµν (see appendix A for convention regarding the boundary
current defined below)

Jµν(x) = 2
δS

δBµν (∞)
. (17)

The on-shell variation of the boundary value of the action may be reduced to a variation
with respect to the radial derivative ∂r Bµν, and we thus find

Jρσ(x) = 2 lim
r→∞

δS

δ
�

∂r

�

Bρσ
�� (18)

= lim
r→∞

p

−g
�

−H rρσ − 2k εrρσµνEαHαµν −
2k
3

�

Hαβγ{E rεαβγρσ + Eρεαβγσr + Eσεαβγrρ}
�

�

. (19)

Here the first term is standard [18]; the others arise from the physics associated with the
anomaly. We have omitted terms of order O(E2); this is because in this work we will study
only the linearized equations of motion of E.

Note that the radial component of the bulk wave equation (15) for B2 ensures that we have

∂µJµν(x) = 0 , (20)

i.e. that the 2-form current is conserved.
We now turn to E. We may construct the dual current as in (17):

jµA =
δS

δEµ (∞)
= −

p

−gGrµ (r →∞) . (21)

The last expression is standard for the boundary operator dual to a vector field.
Let us now understand the non-conservation of jµA , i.e. let us derive (12) holographically

at linear order in O(E). From the above expression for the 2-form current at the boundary let
us now compute5 k J ∧4 J :

�

−
k
4
εαβµνJαβ Jµν

�

=
�p

−g
�2
�

8k2

p
−g

EαHαµνH rµν −
k
4
εαβµνH rαβH rµν

�

. (22)

(Note the explicit appearance of factors of the determinant of the metric; this arises from the
fact that from the point of view of the bulk Jαβ is not a tensor, as can be seen from its definition
in (18).) Now let us consider L = r in (16),

32k2H rµνEαHαµν − k
p

−gεαβµνH rαβH rµν = −∂σGσr (σ ̸= r) . (23)

5Note, the boundary metric is flat. Thus we have the following expression relating boundary and bulk Levi-Civita
tensors, εrabcd =

p
−g εabcd .
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Usually in AdS/CFT this component of the bulk Maxwell equations of motion is a radial
constraint that enforces the conservation of the current jµA ; here we see that the current is
instead not conserved. Using (22) we see that it is equal to

∂σ jσA = ∂σ
�p

−gGσr
�

= kεαβµνJαβ Jµν , (24)

i.e. equivalent to (12) as desired.
This shows that this holographic theory is in the correct universality class, by which we

mean that it correctly links the non-conservation of the 1-form axial current with a bilinear
constructed from the 2-form current Jµν. The fact that E has no gauge symmetry at all in the
bulk is dual to the fact that its non-conservation is given in terms of a dynamical operator that
cannot be turned off. We note also that the intermediate steps are somewhat complicated and
rely on the detailed structure of the action (13). The reader who is willing to take this action
as a given and is interested only in results can now skip to the next section, where we compute
the holographic observables of interest.

In the remainder of this section we describe how we construct this action through bulk
Poincaré duality.

3.2 Dualizing the action

Our approach to constructing the bulk action is essentially the bulk dual of the operation of
“gauging a global U(1) symmetry”; i.e. we begin by considering the very well-studied bulk
action [24–26]6 for a theory with two 0-form global symmetries U(1)A× U(1)V with a mixed
’t Hooft anomaly between them:

S5 [A1, V1] =

∫

M5

�

−
1
2

F2 ∧ ⋆F2 −
1
2

G2 ∧ ⋆G2 − 4k A1 ∧ F2 ∧ F2 −
4k
3

A1 ∧ G2 ∧ G2

�

. (25)

Here A1 and V1 are two 1-form potentials which are holographically dual to the 0-form axial
and vector currents respectively, and F2 = dV1 and G2 = dA1. The action is invariant (up to a
boundary term) under the following gauge symmetries:

A1→ A1 + dΛ0 , V1→ V1 + dλ0 . (26)

The boundary variation of the above gauge-transformation is nonzero, and it is well-
understood [25] that this means that the dual field theory has a ’t Hooft anomaly for the
axial current:

∂µ jµA = kεµνρσ
�

FµνFρσ +
1
3

GµνGρσ

�

, (27)

where F and G are the field strengths of the fixed external sources for the vector and axial
currents respectively.

We now want to study a field theory where we have “gauged” the global symmetry U(1)V .
In this operation the boundary gauge field V1 will become dynamical, and we will thus lose
the 0-form symmetry U(1)V . However we expect to obtain a new 1-form symmetry (and 2-
form current) associated with the conserved magnetic flux in our new U(1) gauge theory; in
holographic duality, we thus expect to obtain a new 2-form bulk field which we call B2.

It is thus very natural to expect that the bulk operation equivalent to “gauging” on the
boundary is to perform a bulk Poincaré duality on the bulk 1-form potential V1, replacing it
with a 2-form B2. Similar operations have a long history in AdS/CFT, and may be viewed as a

6We also found the exposition in [27,28] useful.
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higher-form generalization of [29]; see [30,31] for applications of such holographic operations
in hydrodynamics. Also, see [32,33] for recent work in a similar holographic context.

We now describe the dualization process below, which proceeds essentially as it would in
flat space. This is a well-posed operation, but to the best of our knowledge the details are not
present in the literature for a non-linear action of the form (25) even in flat space. We will see
some interesting wrinkles arising from the presence of the mixed Chern-Simons term.

3.2.1 Poincaré dualization

We follow the usual algorithm to dualize V1, as can be found e.g. in Appendix B of [34] (see
also [35]). The action does not depend on V1 directly, but only on its field strength F2; it is
thus possible to treat F2 as the dynamical variable rather than V1. However we then need to
impose its closure dF2 = 0 through the use of a Lagrange multiplier B2.

We construct the parent action S5p by adding the Lagrange multiplier term’s action (Sc) to
the action S5. We get for S5p,7

S5p [A1, F2, B2] =

∫

M5

−
1
2

F2 ∧ ⋆F2 −
1
2

G2 ∧ ⋆G2 − 4k A1 ∧ F2 ∧ F2 −
4k
3

A1 ∧ G2 ∧ G2

︸ ︷︷ ︸

S5

+

∫

M5

dB2 ∧ F2

︸ ︷︷ ︸

Sc

, (28)

where,

Sc =

∫

M5

dB2 ∧ F2 =

∫

M5

d(B2 ∧ F2)− B2 ∧ dF2 . (29)

Then, δB2
Sc = 0 gives dF2 = 0 (closure of F2). Now imposing the equation of motion

δF2
S5p = 0 yields,

⋆F2 = dB2 − 8k (A1 ∧ F2) . (30)

The standard procedure is to now solve for dB2 as a function of F2 and eliminate the latter
from the action entirely.

3.2.2 Gauge symmetries of S5

Before doing so, we discuss the symmetries: note that the realization of the 0-form gauge
symmetry associated with A1 has changed, as F2 is now closed only on-shell. In the action as
given in (28), consider instead the following gauge transformations,

A1→ A1 + dΛ0 , B2→ B2 + 8kΛ0 F2 . (31)

It is easy to show that with the above gauge transformations, the action S5p as given in (28) is
gauge-invariant but the equation of motion (30) is not (off-shell). It fails to be gauge-invariant
by a term 8kΛ0 dF2; since F2 is an independent dynamical field now, it is not necessarily a
closed 2-form unless we impose B2’s equations of motion. This may appear problematic: the
action is gauge-invariant under the gauge transformations but the equations of motion are
not off-shell gauge-invariant under the same gauge transformations. We shall remedy this
below by introducing a new auxiliary field φ0. The equations of motion of φ0 shall serve as

7In the action S5p, F2 is now a dynamical field.
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a constraint (which we refer to as a gauge-invariant constraint) for imposing the closure of
F2 ∧ dF2.

Alternatively, we can introduce φ0 by the following argument. Taking a step back, let us
first consider variations of the action S5 as given in Eq.(25) w.r.t. the gauge transformations
as given in Eq.(26). We have,

δS5 = 8kΛ0F2 ∧ dF2 +
8k
3
Λ0 G2 ∧ dG2 + boundary terms , (32)

where the first two terms on the LHS vanish owing to the fact that both F2 and G2 in S5 are
closed 2-forms. This then ensures the invariance of S5 (up to boundary terms) under gauge
transformations (26). However, in the dualized form S5p, F2 is an arbitrary 2-form and not
necessarily closed. So, due to the non-closure of F2 we now may or may not have F2∧dF2 = 0
(off-shell). Therefore, in addition to imposing the closure of F2 by a Lagrange multiplier B2 we
have to add to S5p another Lagrange multiplier to impose the constraint F2 ∧ dF2 = 0 (gauge-
invariant constraint). From the degree of the term F2 ∧ dF2, it is clear that the Lagrange
multiplier in this case would be a 0-form, say φ0. Furthermore, as S5p has to remain gauge-
invariant under A1→ A1 + dΛ0, φ0 has to be a gauge field with its own gauge transformation
given as, φ0→ φ0 +Λ0 (by construction). Then, we have S5p as,

S5p =

∫

M5

−
1
2

F2 ∧ ⋆F2 −
1
2

G2 ∧ ⋆G2 − 4k A1 ∧ F2 ∧ F2 −
4k
3

A1 ∧ G2 ∧ G2 + dB2 ∧ F2

−
∫

M5

8k φ0 F2 ∧ dF2 , (33)

which can be re-written as,

S5p =

∫

M5

−
1
2

F2 ∧ ⋆F2 −
1
2

G2 ∧ ⋆G2 − 4k (A1 − dφ0)∧ F2 ∧ F2 −
4k
3

A1 ∧ G2 ∧ G2 + dB2 ∧ F2 , (34)

with E1 ≡ A1 − dφ0 being a vector field. Note that the emergence of the gauge-invariant field
E1 is precisely the structure anticipated earlier, which we now see emerges naturally when
demanding off-shell gauge-invariance. We also note that the equations of motion of φ0 are
redundant – they follow automatically from the equations of A1.8

Now let us give below the gauge transformations of A1 and φ0,

A1→ A1 + dΛ0 , φ0→ φ0 +Λ0 . (35)

With these gauge transformations the F2 equation of motion, F2 = − ⋆ [dB2 − 8k (E1 ∧ F2)],
remains gauge-invariant even off-shell, and everything is consistent with the Poincaré dualiza-
tion procedure. Clearly, S5p is also invariant under (35) up to boundary terms.

The conclusion of the above discussion is that one should be careful while performing
Poincaré dualization, as at times one may be required to impose a gauge-invariant constraint
along with the usual closure constraint.

3.2.3 Inverse operation

Let us now proceed to eliminate F2 from the action. We can now invert (30) to get F2 in terms
of E1 and B2 as below. See Appendix B for details of this calculation.

FMN = −
c̃1

6
εPQRMN HPQR + 8c̃1k EP HPMN +

64
3

c̃1k2 HPQRE LεPQRL[M EN] , (36)

8Another way to understand φ0 is that eiφ0 is an operator that is charged under the bulk 0-form “instanton”
current ⋆5F ∧ F ; in a conventional formalism where F = dA this current is conserved identically. However, in this
formalism its conservation must be enforced by φ0’s equations of motion.
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where HPQR = ∂P BQR + ∂QBRP + ∂RBPQ (as, H3 = dB2) and c̃1 ≡
1

1+64k2E2 .
Note that, if in S5 we have k→ 0, F2’s equations of motion become F2 = −⋆ dB2 and if we

take k→ 0 in the above equation we get F2 = − ⋆ dB2. FMN above has been written in such a
way so that it is manifestly anti-symmetric.

Now let us substitute Eq.(36) into Eq.(34) to obtain below the full non-linear bulk action,

S5p =

∫

M5

p

−g d5 x

��

−
H2

12
−

k
3
εPQRMN HPQREDHDMN + 16k2

�

(E ·H)2 −
2
3

E2H2
�

−64k3εPQRMN EP ELH LQREJ HJ MN + 256k4
�

E2(E ·H)2 −
1
3

E4H2
�ª

c̃2
1

+
§

k
3
εPQRMN EP GQRGMN −

1
4

G2
ª

�

. (37)

Note that truncating the above action to O(E2) results in the quadratic action in Eq.(13) above,
which we will use for the remainder of this study, in which we consider only small fluctuations
about equilibrium.

Now we give below the full 2-form current Jµν obtained from the action above Eq.(37),

Jρσ = 2 lim
r→∞

δS5p

δ
�

∂r Bρσ
�

= lim
r→∞

p

−g
�

−H rρσ − 2kεrρσµνEηHηµν −
2k
3

Hαβγ
�

E rεαβγρσ + Eρεαβγσr + Eσεαβγrρ
�

+64
�

k2 + 32k4E2
�

Eα (E
r Hαρσ + EρHασr + EσHαrρ)− 8

�

1+ 32k2E2
�

k2E2H rρσ

−256k3EαEκHκβγ
�

E rεαβγρσ + Eρεαβγσr + Eσεαβγrρ
��

c̃2
1 . (38)

Now one can, in principle, check that the anomaly structure of Eq.(12) can be obtained from
the above 2-form current by performing an order-by-order (in k) comparison of coefficients
on both sides of Eq.(12). We have checked this explicitly to O(k3).

4 Finite temperature physics: Zero frequency

With the holographic action in hand, we will now study the plasma that is obtained from the
realization of these symmetries at finite temperature. To heat up our system, we consider the
background metric given by the usual planar black brane background

ds2 = r2
�

− f (r)d t2 + d x⃗2
�

+
dr2

r2 f (r)
, (39)

where f (r) = 1 −
� rh

r

�4
and where we are working in units where the AdS radius R = 1.

The Hawking temperature of the black brane is T = rh
π . We are interested in the physics

in the presence of a background magnetic field in the z direction, i.e. a configuration where
〈J tz〉 = −b. From the holographic dictionary (19), we see that this means that H r tz ̸= 0;
solving the equations of motion (15) we see that the background profile is:

H r tz =
b
r3

, Hr tz = −
b
r

, E = 0 . (40)

Note that, here we are working in the so called probe limit – where we neglect the backreaction
of the magnetic field onto the geometry. In other words, we assume the above background
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profile (Eq.(40)) doesn’t affect the metric components given in Eq.(39). This is justified in the
high-temperature limit; at low temperatures this backreaction cannot be neglected, and one
would replace the background with a magnetic brane solution [36,37]. Now we will begin our
study by computing the static axial charge susceptibility χ in the presence of the background
magnetic field. For a theory with a conserved charge, the susceptibility can be defined as:

χ =
∂ 〈 j t

A〉
∂ µA

, leading to, 〈 j t
A〉= χµA (in the linear regime) , (41)

where µA is the axial chemical potential. In the case of a non-conserved axial current the
precise definition of the axial chemical potential as a dynamical hydrodynamic variable is
somewhat more subtle (see e.g. [25]), but in thermal equilibrium it can be understood as the
value of the axial source At , which coincides with Et when all fields are static.

4.1 Susceptibility

In this section we shall consider the low frequency limit of Eq.(16) and compute the axial
charge susceptibility in this model. From Eq.(16) we find,

δEr =
(iωr2)∂r (δEt) + 4kb f ∂r

�

δBx y

�

r2ω2 − 64b2k2 f
(with L = r in Eq.(16)) , (42)

∂ 2
r (δEt) + iω∂r (δEr) +

�

3
r

�

∂r (δEt) +
�

3
r

�

iωδEr =
64b2k2

r6 f
δEt −

4kbiω
r6 f

δBx y

(with L = t in Eq.(16)) . (43)

Now plugging δEr from Eq.(42) in Eq.(43) and taking the ω→ 0 limit we obtain,9

∂ 2
r (δEt) +

�

3
r

�

∂r (δEt)−
64b2k2

r6 f
δEt = 0 . (44)

4.1.1 General solutions

Let us define the following dimensionless combination of temperature and background mag-
netic field for later convenience:

ζ(b/T2)≡

q

r4
h − 64b2k2

r2
h

=
�

b
T2π2

�

√

√ π4

(b2/T4)
− 64k2 . (45)

In the small magnetic field limit (with T fixed), that is b→ 0, we have,

ζ(b/T2) →
b→0

1−
32k2

π4

�

b
T2

�2

−
512k4

π8

�

b
T2

�4

+O
�

�

b
T2

�6
�

. (46)

In the large magnetic field limit (with T fixed), that is b→∞, we have,

ζ(b/T2) →
b→∞

8ik
π2

�

b
T2

�

−
iπ2

16k

�

b
T2

�−1

−
iπ6

4096k3

�

b
T2

�−3

+O
�

�

b
T2

�−5
�

. (47)

Notice from the definition of ζ (in Eq.(45)), it appears that ζ = 0 could be a point of non-
analyticity for the susceptibility χ(ζ); we shall show below that χ is actually a function of ζ2

and not of ζ and hence is analytic at ζ= 0.

9Note that we could have obtained Eq.(44) by directly taking ω→ 0 limit in Eq.(43). This is because in ω→ 0
limit δEr and δEt decouple.
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Solving Eq.(44) analytically we find the general solution as,

δEt(r)gen = d1 r1+ζ
h r−1−ζ

2F1

�

−
1
4
−
ζ

4
,
1
4
−
ζ

4
;1−

ζ

2
;

r4

r4
h

�

+ d2 r1−ζ
h r−1+ζ

2F1

�

−
1
4
+
ζ

4
,
1
4
+
ζ

4
; 1+

ζ

2
;

r4

r4
h

�

, (48)

where d1 and d2 are integration constants. From Eq.(48) we will fix them such that
δEt(r) is regular near the horizon (or in the interior). The boundary condition we seek is
δEt(r = rh)gen = 0. We define

δEt(r, rh, b, k, d3)|p ≡ r1+ζ
h r−1−ζ

2F1

�

−
1
4
−
ζ

4
,
1
4
−
ζ

4
; 1−

ζ

2
;

r4

r4
h

�

+ d3 r1−ζ
h r−1+ζ

2F1

�

−
1
4
+
ζ

4
,
1
4
+
ζ

4
;1+

ζ

2
;

r4

r4
h

�

(49)

(such that δ(Et)gen = d1 δEt(r, rh, b, k, d3)|p and d3 := d2/d1) .

Then we evaluate δEt(r = rh, rh, b, k, d3)|p at the horizon and find,

δEt(r = rh, rh, b, k, d3)|p =
Γ
�

1− ζ2
�

Γ
�

3
4 −

ζ
4

�

Γ
�

5
4 −

ζ
4

� +
d3 Γ

�

1+ ζ
2

�

Γ
�

3
4 +

ζ
4

�

Γ
�

5
4 +

ζ
4

� . (50)

We further fix d3 as

d3(rh, b, k) = −
Γ
�

1− ζ2
�

Γ
�

3
4 +

ζ
4

�

Γ
�

5
4 +

ζ
4

�

Γ
�

1+ ζ
2

�

Γ
�

3
4 −

ζ
4

�

Γ
�

5
4 −

ζ
4

� . (51)

Note that, d3 is chosen such a way that δEt(r = rh, rh, b, k, d3)|p = 0 or in other words,
δEt(r = rh)gen = 0.10

4.1.2 Regular solution

After d3 is fixed as above we obtain the following regular solution,

δEt(r) = r1−ζ
h r−1−ζ Γ

�

1−
ζ

2

�

�

r2ζ
h 2 F̃1

�

−
1
4
−
ζ

4
,
1
4
−
ζ

4
;1−

ζ

2
;

r4

r4
h

�

− 2−ζ r2ζ
Γ
�

3
2 +

ζ
2

�

Γ
�

3
2 −

ζ
2

� 2 F̃1

�

−
1
4
+
ζ

4
,
1
4
+
ζ

4
;1+

ζ

2
;

r4

r4
h

�



 , (52)

where 2 F̃1 is the regularized hypergeometric function.
Now we examine Eq.(52) in the vanishing magnetic field limit that is for b = 0,

δEt(r) →
b→0
−1+

r2
h

r2
+O

�

1
r2

�

. (53)

10Note that, δEt(r = rh, rh, b, k, d3)|p is a ‘particular’ solution (hence the notation δEt |p) which satisfies the
boundary condition δEt(r = rh)gen = 0.
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Now let us look at the boundary expansion of Eq.(52)
�

up to O
� 1

r2

��

),

δEt(r) →r→∞

�

−
1

r4
h

�
1
4−

ζ
4

r1−ζ
h





�

−
1

r4
h

�
ζ
2

r2ζ
h − tan

��

1
4
+
ζ

4

�

π

�









p
π Γ

�

1− ζ2
�

Γ
�

1
4 −

ζ
4

�

Γ
�

5
4 −

ζ
4

�





+
2
r2

�

−
1

r4
h

�
3
4−

ζ
4

r5−ζ
h





�

−
1

r4
h

�
ζ
2

r2ζ
h − cot

��

1
4
+
ζ

4

�

π

�









p
π Γ

�

1− ζ2
�

Γ
�

−1
4 −

ζ
4

�

Γ
�

3
4 −

ζ
4

�



 .

(54)

Notice that the above expression is of the form, A+ Br−2. From this we can find the charge
susceptibility as χ = −2B

A (using the definition of the current from (21)).

χ(rh, b) = − 2r2
h

�

ζ2 − 1
16π2

cos
�

ζπ

2

�

Γ 2
�

1− ζ
4

�

Γ 2
�

1+ ζ
4

�

�

= −2r2
h g(ζ)≡ −2T2 g̃(b/T2) ,

(55)

where11 g̃(b/T2) = π2 g(ζ) ≡ ζ2−1
16 cos

�

ζπ
2

�

Γ 2
�

1−ζ
4

�

Γ 2
�

1+ζ
4

�

. Note that g(ζ) is manifestly

an even function of ζ. Hence, g(ζ) is analytic as a function of ζ2 and not ζ which we wanted
to show (see (45)), and g(ζ) is analytic at ζ = 0 (see Appendix C for further details on the
ζ= 0 case).

Note that lim
ζ→±1

g(ζ) = −1. Furthermore, the vanishing magnetic field limit is b = 0 which

corresponds to ζ= ±1 (from the definition of ζ). Hence, we find that in the vanishing magnetic
field limit, χ(rh, b = 0) = 2r2

h , which is the usual charge susceptibility for the conventional
black brane, and matches with what we would have gotten from computing the susceptibility
from Eq.(53)).

In the field-theoretical study [1], the corresponding susceptibility was taken to be the free
fermion result at zero magnetic field χs =

1
6 T2. Let us contrast this to the susceptibility

obtained above in Eq.(55) from holography. A key difference is that the proportionality factor
relatingχ and T2 is no longer a constant but a function of b/T2, namely g̃(b/T2). (Presumably
a similar effect would exists in a perturbative approach, where one would simply consider the
effects of Landau levels on the charge susceptibility).

A plot of χ/T2 as a function of kb/T2 is shown in Figure 1.

5 Hydrodynamic limit

We now solve the bulk equations of motion in a small frequency limit; we will see an analogue
of the chiral magnetic effect appear in this limit, and we will also reproduce from the bulk
certain aspects of the hydrodynamic calculation in Section 2.

Let us begin by noting from (19) that the equation of motion for the 2-form B2 can be
written as

∇PHPQR = 0 , (56)

where the 3-form H3 is defined as

HPQR ≡ HPQR + 2k
�

εPQRMN E LHLMN

�

+
2k
3

�

HLMN

�

EPεLMNQR + EQεLMNRP + ERεLMN PQ
��

,

(57)

11We have used Γ (1+ x) = xΓ (x) and Γ (x)Γ (1− x) = π
sin(πx) to obtain Eq.(55) from Eq.(54).
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Figure 1: χ/T2 as a function of kb/T2.

with H3 = dB2. This general form – i.e. that the equation of motion can be written as the
divergence of a 3-form H3 – follows from the fact that the action is a function of dB2 alone.

We are now interested in solving these equations of motion in a hydrodynamic limit, i.e.
with ω

T → 0. When taking a small frequency limit in AdS/CFT, it is useful to use the formalism
of the membrane paradigm [38]. The usual infalling membrane boundary condition as applied
to the modified field-strength H results in the following condition at the black hole horizon:

p

−gHr x y(rh) =Ht x y(rh)Σ(rh) , Σ(r)≡
√

√ −g
−gr r gt t

g x x g y y . (58)

See [18] for an application of these techniques to a minimally coupled 2-form B2. Impor-
tantly, it is shown there that the quantity Σ(rh) can be understood as the conventional electric
resistivity ρ.

We now study the consequences of this boundary condition for fluctuations about a back-
ground field configuration where Hr tz ̸= 0 as in (40). We will study a configuration where the
nonzero components of the fluctuations are Hr x y ,Ht x y , Et and Er .

We begin by writing out:

Ht x y = Ht x y + 8k
p

−gEt H
r tz (59)

(where we have used an orientation in which εt x y rz < 0). The boundary condition (58) thus
implies that at the horizon we have

p

−gHr x y(rh) = Σ(rh)
�

Ht x y + 8k
p

−gEt H
r tz
�

�

�

�

�

r=rh

. (60)

We would now like to propagate this information to the boundary, where it can be given an
interpretation in the field theory. The equations of motion in the low-frequency limit take the
form

∂r

�p

−gHr x y
�

= 0 , ∂r Ht x y = 0 , (61)

where the former is the x y component of the diagonal equation of motion (56) and the latter
is the Bianchi identity associated with H3 = dB2. Thus we can evaluate the expression above
at the AdS boundary:

p

−gHr x y(∞) = Σ(rh)
�

Ht x y(∞) + 8k
p

−gEt(rh)H
r tz(rh)

�

. (62)
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Now we note that J x y = − limr→∞
p
−gHr x y , and we thus find that

J x y = −Σ(rh)
�

Ht x y(∞) + 8k
p

−gEt(rh)H
r tz(rh)

�

. (63)

Here J x y may be understood as the electric field in the z direction Ez; as explained before,
J tz = −

p
−gH r tz is the background magnetic field. Now Ht x y is the applied source; let us set

it to zero. We then find the following expression:

J x y = 8kΣ(rh)Et(rh)J
tz . (64)

Let us now pause to dissect this result. This appears reminiscent of the chiral magnetic effect;
in the conventional language of electric and magnetic fields as in (3), J x y is proportional to
the electric field in the z direction; thus we see that in the absence of external sources, there
is an electric field parallel to the applied magnetic field, where the constant of proportionality
is 8kΣ(rh)Et(rh). In comparing to field theory, we note that Σ(rh) = ρ, i.e. the conventional
electric resistivity in this theory.

Of course, if we are at precisely zero frequency, then we are required to have that Et(rh) = 0.
This is completely consistent with the known physics of the chiral magnetic effect, which states
that the equilibrium value of the chiral magnetic effect for the consistent vector current is
zero [12].12 This is thus an unexciting but expected result.

Now we should note however that in this work we are interested in small fluctuations
around equilibrium. If ω ̸= 0, then it is no longer required that Et(rh) = 0 (indeed, in the
conventional case of a massless gauge field, this quantity is no longer even gauge invariant).
Let us instead allow Et(r) ̸= 0 and use the small frequency analysis above to compute the
relaxation rate of the axial charge. Here we will make contact with the hydrodynamic calcu-
lation above, and we will thus study a situation where Et(∞) = 0, i.e. there is no axial source
applied.

We first use (24) to write down

∂t j t
A = 8kJ x y J tz . (65)

This equation holds at all r, (indeed, from above, all of the expressions in it are radially con-
stant), and so we can evaluate it at the boundary to find:

−iω j t
A = 64k2Σ(rh)(J

tz)2Et(rh) . (66)

Solving this for ω we find:

ω= 64i

�

Et(rh)
j t
A

�

Σ(rh)
�

kJ tz
�2

. (67)

Thus we see that there is a diffusion pole, where the coefficient of the pole varies as the
magnetic field squared. We stress that the approximation made was ω → 0; from above we
see that this also requires that kJ tz → 0. Away from that limit, we expect to see deviations
from the quadratic expression above.

Let us also examine the pre-factor of the expression in the limit kJ tz → 0. We see that
the ratio of Et(rh) and j t

A appears. We can evaluate this from Eq.(53) (with the appropriate
boundary conditions: Et(rh) ̸= 0 and Et(∞) = 0) and Eq.(21) to get,

Et(rh)
j t
A
→

r→∞
−

1

2r2
h

≡ −χ−1 . (68)

12Here – as explained in detail in [12] – one must be careful about the distinction between the consistent and
covariant currents; the covariant chiral magnetic effect is not zero, but the consistent one receives contributions
both from the axial chemical potential and the value of the axial gauge field source, which precisely cancel in
equilibrium.
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We thus find (evaluating Σ(rh) =
1
rh

from (39)):

ω= −32ik2

�

b2

r3
h

�

. (69)

We should compare it to the expectation from elementary hydrodynamics given in (11).
Putting in the holographic expressions for the field-theoretical quantities in (11) in the small
magnetic field limit, using σ = 1

ρ = rh, and χ = 2r2
h , and B = b, we find that (11) becomes

ΓA =
32k2 b2

r3
h

, i.e. precisely the same as the pole exhibited above. This agreement is not surpris-

ing; indeed it can be seen that the derivation above parallels in the bulk the hydrodynamic
calculation leading to (11).

However, here we see the limitations of the hydrodynamic calculation – in particular, we
see explicitly in this holographic model that the analytic calculation is expected to break down
if kJ tz is not small; i.e. the result above is valid only in the small b limit. In the next section
we explicitly compute the same relaxation rate numerically and compare with lattice results.

In this work we have neglected the backreaction of the charge degrees of freedom on the
geometry. Our calculation is also entirely classical, in that we have ignored fluctuations, which
in this framework are suppressed by 1

N , with N a proxy for the number of field-theoretical de-
grees of freedom. It is reasonable to ask whether such effects will change the picture above. As
the actual low-frequency calculation in the bulk essentially exactly parallels the hydrodynamic
calculation (given in Sec.2), it seems reasonable to expect that such corrections would change
individually the values of things like ΓA and the resistivity ρ, but not change the relationship be-
tween them that we find here (see for instance Eq. (67)). This is broadly the expectation from
the usual fluid-gravity correspondence. We note however that there are known examples in a
similar hydrodynamic context where loop effects in the bulk can qualitatively change the in-
frared physics (see e.g. [39,40]). Generally such effects can be anticipated on field-theoretical
grounds, and we return to this issue in the conclusion.

6 Numerical results

In this section we calculate the quasi-normal modes of our system using standard holographic
techniques.

6.1 Contributing equations of motion

From here on we shall work in ingoing Eddington-Finkelstein coordinates (r, v, x , y, z) rather
than the Schwarzschild coordinates used above (see Appendix A for a brief review of the
coordinate system). First let us give some useful expressions,

E r = (Ev + r2 f Er) , Ev = Er ,

H r x y =
f
r2
∂r

�

Bx y

�

−
iω
r4

Bx y , H vx y =
1
r4
∂r

�

Bx y

�

.

We will study finite frequency fluctuations about the equilibrium solution (40). Consider
H → H0 + δH and E → E0 + δE with E0 = 0 and H0 = H rvz , which are the background
solutions Eq.(40) (in the ingoing coordinates). H0 and E0 are the background fields and δH
and δE are the fluctuations of the fields that we are interested in.

Before proceeding to solve Eq.(15) let us first note that we are interested in wave-like
solutions for δB and δE of the form e−iωv . So, we are considering the corresponding wave
vector to be of the form kµ = (ω, k⃗) = (ω, 0), i.e. the only non-zero momentum is in the
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time direction. Furthermore, since the magnetic field is in the z-direction, the little group
for fluctuations is SO(2): the group of rotations in the x − y plane. Therefore, we have the
following contributing equations of motion in the relevant channels for the fluctuations: in
the antisymmetric tensor channel (i.e. from the (ρσ = x y) components of Eq.(15)),

−
�

∂v

�p

−g δH vx y
�

+ ∂r

�p

−g δH r x y
��

−8k
�

∂v

�p

−g δEvεrvzx y Hrvz

�

+ ∂r

�p

−g δE rεrvzx y Hrvz

��

= 0 (ρσ = x y) . (70)

Similarly, from Eq.(16) we have

64k2H2 δEv − 4kεrvzx y H rvz δH vx y = −
1
p
−g
∂r

�p

−g δGrv
�

, (71)

64k2H2 δE r − 4kεrvzx y H rvz δH r x y = −
1
p
−g
∂v

�p

−g δGvr
�

. (72)

In the above contributing equations of motion, we have not considered terms with ∂x , ∂y , ∂z
as we have set spatial momenta to vanish. The vector channel involving δE x , δH x yz decouples
and we will not consider it.

In these coordinates, the background solutions (40) become,

H rvz =
b
r3

, Hrvz = −
b
r

. (73)

Now we solve for δE r in Eq.(72) to obtain,

δEr =
iωr4 ∂r(δEv) + 64k2 b2δEv + 4kbr2 f ∂r(δBx y)− 4kbiωδBx y

γ̃
, (74)

where γ̃ := r4ω2 − 64b2k2r2 f .
Next we give Eqs.(70) and (71) in terms of the fields with all indices downstairs,

∂ 2
r

�

δBx y

�

[−r f ] + ∂r

�

δBx y

�

�

− f −
4r4

h

r4
+

2iω
r

�

+δBx y

�

−iω
r2

�

− ∂r (δEv)
�

8kb
r

�

+δEv

�

8kb
r2

�

− ∂r (δEr) [8kbr f ] +δEr

�

−8kb f −
32kbr4

h

r4
+

8kbiω
r

�

= 0 , (75)

−64b2k2

r4
δEr −

4kb
r4
∂r

�

δBx y

�

= ∂ 2
r (δEv) +

�

3
r

�

∂r (δEv) + iω∂r (δEr) +
�

3
r

�

iωδEr . (76)

If we substitute δEr from Eq.(74) into Eqs.(75) and (76), then we obtain two coupled ODEs
– these are somewhat lengthy so we do not present them explicitly, but we solve them numer-
ically below.

6.2 Numerics

Now we shall solve Eq.(75) and Eq.(76) numerically using a mid-point shooting13 method
(see e.g. [41] for a discussion of the shooting method, with some previous applications to
quasinormal modes in [42, 43]). Below we present some details of the boundary conditions;
the reader interested only in the results can feel free to skip to the next section.

13In mid-point shooting method we numerically integrate the boundary solution from boundary and horizon
solution from horizon and adjust these till they meet somewhere in the middle and this adjustment yields the
QNM.
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6.2.1 Logarithmic fall-off

Bx y has a logarithmic fall-off near the boundary, associated with the fact that the double-trace
deformation associated with J2 on the boundary is marginally (ir)relevant [18]. As explained
in detail in that work, the correct boundary condition at the UV cut-off u= uΛ takes the form:

Bx y (uΛ)−
J
κ
= 0 , (77)

where J = u∂uBx y and κ the double-trace coupling for J2. The form of Bx y we take is,

Bx y(u) = d0 +
∑

j

d j u j + ln(u)



d
′

0 +
∑

j

d
′

j u j



 , (78)

where the di are expansion coefficients. Using (77) we then find:

d0 +
∑

j

d j u j + ln(uΛ)



d
′

0 +
∑

j

d
′

j u j



 −
1
κ





∑

j

jd j u j + d
′

0 +
∑

j

d
′

j u j +
∑

j

j u j ln(z)d
′

j



= 0 .

Now at u= uΛ, (79) becomes (for u→ 0),

d0 + ln(uΛ)d
′

0 −
d
′

0

κ
= 0 ,

d0 = d
′

0

�

ln
�

e
1
κ /uΛ

��

. (79)

Thus, at the boundary (u= 0) we obtain Bx y as,

Bx y(u) = d
′

0 ln
�

ue
1
κ /uΛ

�

+
∑

j

d j u j + (ln(u))
∑

j

d
′

j u j ,

Bx y(u) = d
′

0 ln (u/u∗) +
∑

j

d j u j + (ln(u))
∑

j

d
′

j u j , (80)

where u∗ = uΛe−
1
κ is an RG-invariant combination of the double-trace coupling and the UV cut-

off; this is the analogue of the Landau pole in regular QED, and by dimensional transmutation
all physical results can depend on this alone (see [18, 44] for a discussion in the holographic
context).

Now since Bx y at the boundary has a logarithmic fall-off, the coupled nature of the equa-
tions of motion as given in Eq.(75) and Eq.(76) imply that Ev has the following form at the
boundary:

Ev(u) = u2

 

c0 +
∑

j

c j u j

!

+ ln(u)

 

∑

j

cc j u j

!

. (81)

The logarithm appearing in this boundary condition appears to follow from the fact that the
axial current jµA mixes with the 2-form current Jµν.

Next we present the numerical results; see Appendix D for further details on the numerical
implementation.
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Figure 2: ΓA vs b with k = 0.0375 and rh = 1 (blue curve is numerics, orange curve
is quadratic fit).

6.2.2 Hydrodynamic mode

The lowest quasinormal mode ωl = −iΓA approaches the origin as b approaches zero. For
small b (i.e. for 0< b ≤ 3) it varies with b as

ΓA(rh, b) = 0.048

�

b2

r3
h

�

, (82)

where the prefactor was obtained from a numerical fit, and where we have restored rh on
dimensional grounds.

Next we move onto some higher values of b to show that away from a small neighbourhood
of b = 0; the quadratic b2 behaviour of no longer captures the full dependence and we obtain
a more complicated function of b. We consider 0 < b ≤ 6.5 and obtain the behaviour shown
in Fig.(2), where the orange curve is as given in Eq.(82). Note that both the curves above
match till about b ≈ 3.

Now let us compare the above result obtained from numerics to the result obtained in
Section 5 using the membrane paradigm formalism (in the kJ tz → 0 limit) in Eq.(69). Note
that if we put k = 0.0375 in Eq.(69) then we find,

ΓA(rh, b) = 0.045

�

b2

r3
h

�

, (83)

in approximate agreement (within 6%) with the small-frequency limit of the numerics. As
mentioned in that section, the membrane paradigm analysis also agrees with elementary hy-
drodynamics arguments arising from treating electrodynamics perturbatively; thus we con-
clude that at small b the conventional chiral MHD approach from weakly gauged electrody-
namics is valid.

However, from Fig.(2) we notice that for b ≫ 1, the functional dependence of ΓA on b is
no longer quadratic, and is a non-trivial function of b. This function now appears to depend
on UV physics, and is not simply determined by other thermodynamic quantities such as the
susceptibility χ.

For example, we can try to improve the hydrodynamic result for ΓA in (11) with the holo-
graphically determined susceptibility in (55). The resulting plot as a function of the magnetic
field B = b is shown in Figure 3. It appears barely different from the quadratic dependence as
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Figure 3: Γ improved
A from (11) (i.e. chiral MHD with weakly coupled electrodynamics)

as a function of b with k = 0.0375 and rh = 1; note it does not capture the non-trivial
dependence on b seen in the numerical results of Figure 2.

χ does not depend strongly on b. Indeed if we expand this improved hydrodynamic attempt
at approximating Γ improved

A as a series in b we get,

Γ
improved
A (b) = 32 k2

�

b2

r3
h

�

+O(b4) = 0.045 b2 +O(b4) , (84)

where in the second equality above we have put k = 0.0375 and rh = 1 (for a comparison with
the numerical parameters) and the coefficient of O(b2) is 100 times that of the coefficient of
O(b4). Thus the dependence of the charge susceptibility on b is insufficient to account for the
non-trivial dependence of ΓA(b), and it appears to not be determined by thermodynamic data.

Finally, in our numerical investigation we also observed many non-hydrodynamic gapped
modes. These do not seem to have model-independent relevance, but we discuss them in
Appendix E.

7 Conclusion

In this work we have discussed a holographic model that is in the same universality class
as a massless Dirac fermion coupled to QED at finite temperature, i.e. where axial charge is
non-conserved due to an anomaly with a dynamical operator (involving a topological density
constructed from the 2-form current associated with magnetic flux conservation) on the right
hand side. We described the bulk dualization process by which we constructed the holographic
model and computed some basic observables.

Perhaps our most significant result was explicit computation of the axial charge relaxation
rate ΓA in the presence of a background magnetic field; we found that due to the anomaly the
axial charge density j t

A is not conserved, and instead obeys an equation of the form j t
A ∼ e−ΓAt ,

where ΓA was numerically found through solving the bulk equations of motion. It is a nontrivial
function of the background magnetic field B and the temperature T , and can be seen in Figure
2. Note that at small magnetic field this relaxation rate is quadratic in the field B; indeed as
the pole approaches the origin the pre-factor may be computed analytically from the small
frequency limit of the bulk equations of motion. This pre-factor can also be obtained from
elementary magneto-hydrodynamic arguments that essentially treat the anomaly coefficient
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perturbatively, as reviewed in Section 2. The resulting pre-factor agrees with our holographic
computation, and we thus find that at small magnetic fields:

Γ hol
A (B→ 0)≈ γMHDB2 . (85)

At larger magnetic fields this is a non-trivial function of B and can only be obtained from a full
holographic treatment.14

We now discuss the previous literature on this result. A lattice study of a field-theoretical
model in the same universality class was recently performed in [1,2]; in particular, [1] studied
the diffusion of the operator F ∧ F (which can be related to the charge relaxation rate by a
fluctuation-dissipation argument), and [2] directly measured ΓA. Those works numerically
observe an expression of the form:

Γ lattice
A (B)≈ γlatticeB2 . (86)

Interestingly, those works found that γlattice/γMHD ≈ 10, i.e. that the pre-factor obtained from
the lattice differs from the hydrodynamic estimate by an order of magnitude [2]. In those
works it was argued that this means that short-distance physics that is not taken into account
in the hydrodynamic analysis is important. Interestingly, this is not what we find from our (UV-
complete) holographic calculation; instead our holographic result precisely coincides with the
hydrodynamic result at small magnetic fields, differing from it only at larger fields when the
magnetic field itself probes UV scales.

It is interesting to speculate on the cause of this discrepancy between the lattice and holog-
raphy. An ingredient entering into the computation of γMHD is the resistivity of the electro-
magnetic sector; in holography it is very easy to see how this enters into the calculation and
separate it from the anomalous dynamics but in a purely field-theoretical treatment it seems
possible that uncertainties in this conductivity – a notoriously complicated quantity to calculate
from first principles – could cloud this analysis, as was already suggested in [2]. It would be
interesting to perform further tests of this hypothesis, perhaps by computing more observables
from holography and the lattice and comparing them further.

If we take our results at face value, it suggests that for this observable, a hydrodynamic
treatment of conventional MHD (treating the anomaly as a perturbation) is sufficient at weak
magnetic fields, though it differs quantitatively from the true result at stronger fields.15

There are many directions for future research. Our bulk action Eq.(37) permits the explicit
study of a strongly interacting system in the same universality class as the chiral plasma. It
would be very interesting to understand other phenomena, e.g. if the instabilities (due to non-
vanishing k⃗) [21] exist in this model, or the study of chiral magnetic waves [46].

From a field-theoretical point of view, it would be very interesting to go further than our
holographic considerations and construct a true effective hydrodynamic theory for this sys-
tem. Indeed this was one of the motivations for our construction of the holographic action
(37), though it is sufficiently complicated that it does not shed much immediate light on how
(or whether) an effective description could be computed. Indeed, the prospect of such an
analysis is clouded by the fact that we are not aware of a completely universal field-theoretical
description of the anomaly (1); conventional lore would tell us the axial symmetry is simply
completely broken, though as we have argued this appears to miss important physics asso-
ciated with the fact that it is broken not by a generic operator but rather by a topological

14We note that Eq.(11) states that the relaxation rate vanishes in the limit of vanishing magnetic field. It is at
the moment not clear to us whether this is an artifact of the classical description; for example it is possible that
when one includes fluctuations there is a non-vanishing relaxation rate even at zero magnetic field. In principle
this could be evaluated using an appropriate Kubo formula of the topological density; we leave this for further
investigation, and we thank Luca Delacrétaz for this comment.

15This is philosophically aligned with previous results [45] that argue that various transport coefficients are
generically renormalized if the gauge fields sourcing the anomaly are dynamical.
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density J ∧ J constructed from the current of a 1-form symmetry. Indeed, along these lines
recent work describes a novel higher group structure that is present when the axial symmetry
is spontaneously broken [47–49]. It would be very interesting to understand whether such an
analysis could be extended to the phase when the axial symmetry is unbroken or realized at
finite temperature, as a first step towards constructing a hydrodynamic EFT.

Note added: Shortly after the first version of this paper appeared on the arXiv, two papers
[22, 23] appeared where a precise characterization of the ABJ anomaly is given in terms of
non-invertible symmetries. It would be very interesting to use this refined understanding to
construct a hydrodynamic theory.
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A Conventions

A.1 Units and conventions regarding differential forms

We work in natural units with c = ħh = 1 and our metric signature is mostly plus:
(−,+,+, · · · · · · ,+).

For boundary indices we have µνρσλ · · · and for bulk indices we have MN PQR · · · . We
have for the epsilon symbol, ε̃0123··· = +1 and for the volume form, ε = +

p
−g dD x , in D

spacetime dimensions.
In ingoing EF coordinates (r, v, x , y, z) we have,

ds2
5 = −r2 f (r)dv2 + 2dvdr + r2

�

d x2 + d y2 + dz2
�

, (A.1)
p

−g = r3 , (A.2)

εrvzx y = r3ε̃rvzx y = r3 , (A.3)

εrvzx y = −r−3 , (A.4)

where f ≡ f (r) :=
�

1−
r4
h

r4

�

and ∂r f (r) =
4r4

h
r5 .

We also record a few useful identities relating differential forms to their components, start-
ing with:

Ap ∧ ⋆Ap =
1
p!

Aµ1···µp
Aµ2···µpε . (A.5)

Integrating we find,
∫

MD

Ap ∧ ⋆Ap =
1
p!

∫

MD

dD x
p

−gAµ1···µp
Aµ1···µp . (A.6)
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We also sometimes use expressions of the following form,
∫

M5

H3 ∧ F2 =
(−1)s

2!3!

∫

M5

d5 x
p

−gεµνραβHµνρFαβ , (A.7)

where s is the number of minus signs in the metric.

A.2 Conventions regarding definition of the boundary current

For this let us consider free Maxwell action in D spacetime (bulk) dimensions as given below,

S =
1
2

∫

MD

Fp+1 ∧ ⋆Fp+1 =
1
2

∫

MD

1
(p+ 1)!

�

Fp+1

�2
, (A.8)

where
�

Fp+1

�2 ≡ Fµ1...µp+1 Fµ1...µp+1
. The boundary dual of the above theory has a magnetic

(D− p− 3)-form symmetry, JD−p−2 ≡ ⋆ Fp+1

�

�

r→∞. So, in D = 5 spacetime (bulk) dimensions
we have the usual story that J2 ≡ ⋆ F2|r→∞ (with r being the holographic radial coordinate).

Now let us Poincaré dualize the above action to get,

Sdual =
1
2

∫

MD

HD−p−1 ∧ ⋆HD−p−1 =
1
2

∫

MD

1
(D− p− 1)!

�

HD−p−1

�2
, (A.9)

where, HD−p−1 = dBD−p−2 with BD−p−2 being the Lagrange multiplier to enforce the closure
of Fp+1 during the dualization procedure. The dualization gives, HD−p−1 = ⋆Fp+1 which in
turn implies that,

JD−p−2 = HD−p−1

�

�

r→∞ . (A.10)

The AdS/CFT dictionary we need to define the boundary current is,
�

exp

�

1
p!

∫

bµ1...µp
Jµ1...µp

��

CFT

= Zgrav

�

Bµ1...µp
(r →∞) = bµ1...µp

�

,

leading to, Jµ1...µp = p! lim
r→∞

δSbulk

δ
�

∂r Bµ1...µp

� . (A.11)

Note that there is a factor of p! in the definition of the boundary current in A.11. This factor
is needed to get A.10. Let us show this below.

Now let us obtain the boundary current from Sdual using A.11.

δS

δ
�

∂r Bµ1...µD−p−2

� =
1

2(D− p− 1)!

∂
�

HD−p−1

�2

∂
�

∂r Bµ1...µD−p−2

� =
1

2(D− p− 1)!
2H rµ2...µD−p−2 (D− p− 1)

=
1

(D− p− 2)!
H rµ2...µD−p−1 . (A.12)

Thus, we see that to get A.10, we should have the following normalization in the boundary
current definition,

Jµ2...µD−p−1 = (D− p− 2)! lim
r→∞

δSbulk

δ
�

∂r Bµ2...µD−p−1

� . (A.13)

So, A.13 explains the factor of p! in A.11.
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B Inverse operation

In terms of tensor-index notation, Eq.(30) is,

FMN = −
1
2
εPQRMN (∂

P BQR) + 4k εPQRMN AP FQR ,

leading to,
�

δQ
Mδ

R
N − 4k εI JKMN gJQ gKRAI

�

FQR = −
1
2
εI JKMN ∂

I(BJK) , (B.1)

leading to, OQR
MN FQR = −

1
2
εI JKMN ∂

I(BJK) , (B.2)

where OQR
MN ≡ δ

Q
Mδ

R
N − 4k εI JKMN gJQ gKRAI .

Now the task is to invert OQR
MN to obtain (O−1)MN

LK such that OQR
MN (O

−1)MN
LK = δ

Q
Lδ

R
K .16

Then, (O−1)MN
LK would enable us to write F2 in terms of B2 and A1 and their derivatives which

is what we are after.
Note that we are not assuming that OQR

MN or (O−1)MN
LK is anti-symmetric at this point.

However, ultimately they will be contracted with FQR (for instance, see Eq.(B.1)), and their
symmetric parts would cancel out and things will turn out to be consistent.

Let us consider the most general (O−1)MN
LK possible (arranged in ascending powers of A1)

and then we shall demand it to be OQR
MN ’s inverse. The most general expression for (O−1)MN

LK
is,

(O−1)MN
LK = c0 δ

M
L δ

N
K + c̄0 δ

M
K δ

N
L + 4c1k εPIJ LK AP g I M gJN + 16c2k2δM

L AN AK

+ 16c̄2k2δN
L AM AK + 16c

′

2k2δN
K AM AL + 16c̃2k2δM

K AN AL , (B.3)

where c0, c̄0, c1, c2, c̄2, c
′

2, c̃2 are coefficients to be determined by demanding that (O−1)MN
LK is

the inverse of OQR
MN (their subscript is numbered as per the powers of A1 they are coefficients

of). Note that we cannot have any more powers of A1 in the above expression (in the sense
of anti-symmetric indices of A1) as when they would be contracted with εPIJQR they would
cancel. Note that, every term other than terms whose coefficients are c0 and c̃0 have to come
with some powers of k otherwise on k→ 0 limit they would not give the proper inverse of the
OQR

MN

�

�

k→0 = δ
Q
Mδ

R
N as they would survive the k→ 0 limit.

Now demanding, OQR
MN (O

−1)MN
LK = δ

Q
Lδ

R
K we get the following equation,

(c0 + 32c1k2A2)δQ
Lδ

R
K + (c̄0 − 32c1k2A2)δQ

Kδ
R
L + (c1 − c0 + c̄0)4k εPIJ LKAP g IQ gJR

+ (c2 − 2c1)16k2δQ
L ARAK + (c̄2 + 2c1)16k2δR

LAQAK + (c
′

2 − 2c1)16k2δR
KAQAL

+ (c̃2 + 2c1)16k2δQ
KARAL = δ

Q
Lδ

R
K .

So the above equation is satisfied if,

c1 =
1

1+ 64k2A2
, c0 =

1+ 32k2A2

1+ 64k2A2
, c̄0 =

32k2A2

1+ 64k2A2
, (B.4)

c2 = c
′

2 = 2c1 =
2

1+ 64k2A2
, c̄2 = c̃2 = −2c1 =

−2
1+ 64k2A2

. (B.5)

One can readily check that with the above values for the coefficients (O−1)MN
LK as given in

Eq.(B.3) is the inverse of OQR
MN (and also gives the correct inverse in the k → 0 limit when

c0→ 1 and only the term with c0 as the coefficient survives).
Next we multiply, Eq.(B.2) with (O−1)MN

LK to get Eq.(36),

16Note that δQ
Lδ

R
K FQR = FLK . So, in the space of 2 forms δQ

Lδ
R
K is the identity operator.
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For completeness here we express the differential forms that make up S5p in terms of their
components (up to quadratic orders in E),

−
1
2

F2 ∧ ⋆F2→
�

H2

12
− 48k2 (E ·H)2 +

32
3

k2H2E2 +
2k
3
εPQRLK HPQREM HM LK

�

c̃2
1 , (B.6)

+H3 ∧ F2→
�

−
H2

6
−

64
3

k2H2E2 −
2k
3
εPQRLK HPQREM HM LK + 32k2 (E ·H)2

�

c̃2
1 , (B.7)

− 4kE1 ∧ F2 ∧ F2→
�

32k2 (E ·H)2 −
k
3
εPQRLK HPQREM HM LK

�

c̃2
1 , (B.8)

−
1
2

G2 ∧ ⋆G2→−
1
4

G2 , (B.9)

and when expanded in powers of small k, c̃2
1 = 1− 128 k2E2 +O(k4).

C ζ→ 0 and hypergeometric differential equation

Note that if we naively put ζ= 0 in (48), then we do not get two linearly independent solutions
at ζ = 0. This is related to the structure of the Riemann differential equation about the point
ζ= 0. Here we give the general solution to Eq.(44) in the limit of ζ→ 0,17

δEt(r)gen

�

�

ζ→0 =
rh

r



m1 2F1
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−
1
4

,
1
4

;1;
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r4
h

�
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(
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−
1
4

,
1
4

; 1;
r4

r4
h

�

ln

�

r4

r4
h

�

+
∞
∑
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(a)i (b)i
(c)i i!

�

r4
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h

�i
�

ψ

�

i −
1
4

�

+ψ
�

i +
1
4

�

− 2ψ (1+ i)
�

)



 , (C.1)

where a = −1
4 , b = 1

4 , c = 1, ψ(x) ≡ d
d x ln(Γ (x)) is the digamma function, m1 and m2 are

integration constants, and (a)i is the rising Pochhammer symbol defined as,

(a)i :=

¨

1 , i = 0 ,

a(a+ 1) · · · · · · (a+ i − 1) , i > 0 .

D Implementation of numerics

In this appendix we aim to find a searching condition for the numerical implementation of
our quasinormal modes. To do this we perform a simple linear algebra exercise. Suppose
we have N fields ΦI(r). Let ΦI

a(r) be a basis for the solutions that are ingoing at horizon
(a ∈ {1, · · · · · · , N}). Let ΦI

α(r) be a basis for the solutions that are outgoing at horizon
(α ∈ {1, · · · · · · , N}). Let r∗ be the matching point. We wish to know when ∃ Ca and Dα
such that,

∑

a

CaΦ
I
a(r
∗) =

∑

α

DαΦ
I
α(r
∗) , (D.1)

∑

a

CaΦ
′ I
a (r
∗) =

∑

α

DαΦ
′ I
α (r
∗) , (D.2)

17For more information see section 15.10 of [50].
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which implies that there exists a solution that satisfies both sets of boundary conditions.
We can frame the above as a linear algebra problem. Consider X A

a :=
�

ΦI
a(r
∗),Φ

′ I
a (r
∗)
	

(with A ∈ {1, · · · · · · , 2N}) and view X A
a as a subspace of R2N . Similarly, consider

Y A
α :=

�

ΦI
α(r
∗),Φ

′ I
α (r
∗)
	

. We wish to know when the subspaces X A
a and Y A

α overlap. This
condition will then imply the existence of a solution that would satisfy both sets of boundary
conditions (D.1) and (D.2). Let us consider

�

Y⊥
�A

b that satisfies,

∑

A

�

Y⊥
�A

b Y A
α = 0 , (D.3)

where b ∈ {1, · · · · · · , N}.
Then we want,

∑

A

�

Y⊥
�A

b X A
a = 0 , (D.4)

to have a non-trivial solution. Eq.(D.4) will have a non-trivial solution if and only if,

det
a,b

�

∑

A

�

Y⊥
�A

b X A
a

�

= 0 . (D.5)

Eq.(D.5) is the QNM searching condition that we have been looking for. Next we per-
form the numerics18 with the mid-point shooting method. For the matching point, we have,
ym = 0.6. The numerical parameters used are,

Tolerance (tm) Horizon radius (rh) UV cut-off (uΛ)
0.1 1 0.1

Double-trace coupling (κ) RG parameter (u∗) Anomaly coefficient (k)
−1/ ln(10) 1 0.0375

E Non-hydrodynamic (gapped) modes and quasinormal mode ta-
ble

We observe from the numerics that, there exists a higher (generically) complex non-
hydrodynamic mode ∀ b ∈ [0.00001,20]. This mode seems to be independent of b as it
exists ∀ b ∈ [0.00001,20] and has the value,

Γ
cplx
non-hydro,0 = ±0.965− 1.736i . (E.1)

However, ∀ b ∈ (0, 15.3], Γ cplx
non-hydro,0 is not the lowest QNM and for ∀ b ≥ 15.4, Γ cplx

non-hydro,0
becomes the lowest QNM.

18An order of convergence of 10−11 and lower has been treated as zero in the numerics. The numerical results that
are presented have been verified (up to very slight variations) for the matching point in the range ym ∈ [0.2,0.8].
We have also dropped a few terms in the UV and the IR expansions of the fields and have verified the robustness
of the numerical results.
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We also give below some more generically complex non-hydro (gapped) modes which exist
∀ b ∈ [0.00001,20],

Γ
cplx
non-hydro,1 = ±3.359− 3.697i , (E.2)

Γ
cplx
non-hydro,2 = ±5.334− 5.663i , (E.3)

Γ
cplx
non-hydro,3 = ±7.175− 6.797i , (E.4)

Γ
cplx
non-hydro,4 = ±8.96− 8.604i , (E.5)

Γ
cplx
non-hydro,5 = ±10.537− 7.337i , (E.6)

Γ
cplx
non-hydro,6 = ±13.102− 5.463i . (E.7)

Table 1: Lowest QNM vs b.

S.No b −iΓA
0 10−5 −2.3721962× 10−12 i

1 0.1 −0.000450031 i

2 0.2 −0.0018005 i

3 0.3 −0.00405253 i

4 0.4 −0.00720806 i

5 0.5 −0.0112698 i

6 0.6 −0.0162414 i

7 0.7 −0.0221275 i

8 0.8 −0.0289337 i

9 0.9 −0.036667 i

10 1.0 −0.0453354 i

11 1.1 −0.0549485 i

12 1.2 −0.0655176 i

13 1.3 −0.0770557 i

14 1.4 −0.0895777 i

15 1.5 −0.103101 i

16 1.6 −0.117644 i

17 1.7 −0.13323 i

18 1.8 −0.149884 i

19 1.9 −0.167633 i

20 2.0 −0.186508 i

21 2.1 −0.206544 i

22 2.2 −0.227778 i

23 2.3 −0.250252 i

24 2.4 −0.27401 i

25 2.5 −0.299101 i

26 2.6 −0.325573 i

27 2.7 −0.353477 i

28 2.8 −0.382864 i

29 2.9 −0.41378 i

30 3.0 −0.446263 i

31 3.1 −0.480341 i

32 3.2 −0.516016 i

33 3.3 −0.553261 i
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