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Abstract

This paper explores the possibilities for sellers to usefully transmit product infor-

mation to buyers by cheap talk public advertising. We explore two polar cases, con-

trasting vertically di¤erentiated products (à la Milgrom Weber�s (1982) general sym-

metric model) with horizontally di¤erentiated products (à la Hotelling�s (1929) line).

We consider both the message only case and where reserve price-message pairs can

be chosen by the seller. For horizontally di¤erentiated products partitional message-

only informative equilibria are shown to exist providing the number of bidders is

su¢ ciently large. The equilibrium is characterized by more precise information pro-

vided for less popular product attributes. The seller optimal disclosure policy displays

a complementarity relationship between the number of bidders and the amount of

product information disclosed. In contrast, for the vertically di¤erentiated products

benchmark, message-only informative equilibria do not exist. With reserve prices,

informative equilibria exist in both cases. For the vertical case these equilibria yield

lower seller revenue than uninformative equilibria. In the horizontal case with su¢ -

ciently large number of bidders higher revenue is possible and full disclosure becomes

feasible and seller optimal in the limit.
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1 Introduction

One of the important contributions in Milgrom and Weber�s (1982) (hereinafter MW)

seminal paper was to the question of optimal information disclosure. MW showed that in

context of their general symmetric model the ex-ante expected revenue maximizing policy

is to inform buyers as fully as possible. The object of choice of the seller here is the ex-

ante disclosure rule which maps the information which the seller receives to the message

transmitted to buyers. Although this modeling choice �ts many economic scenarios, there

are also certainly others in which it is more natural to think of sellers not as choosing a

disclosure rule before they receive their private information, but rather simply trying to

sell what they have. It also appears that in much product advertising the seller seeks to

convey information about the product by vague statements or by imagery which give no

right of legal redress1. In other words, much advertising is cheap-talk in which o¤ the

equilibrium path the informed seller will opportunistically send misleading messages if it

is in her interest to do so.

In general, what information may be transmitted by cheap-talk depends on character-

istics of the joint distribution of valuations of bidders, their private information and the

information available to the seller. This paper explores two important polar cases repre-

senting the benchmark case of vertically di¤erentiated (VD) products à la MW�s (1982)

general symmetric model and horizontal di¤erentiated (HD) products à la Hotelling�s

(1929) line.

To be speci�c, in this paper, a seller o¤ers a product to a number of ex ante homogenous

bidders in a �rst price auction2. We focus on disclosure policies in the form of partitions

over seller information, as is familiar in the literature on cheap-talk (Crawford Sobel

(1982)). De�ning the expected auction revenue conditional on a message as the interim

expected revenue, it follows that since under cheap-talk, the seller is not committed to

executing a preset disclosure rule, all the equilibrium interim expected revenues must be

equal� otherwise the seller will deviate to report the message that generates the highest

level of expected revenue, regardless of what the real attribute is.

In the benchmark case of VD products, it follows easily from the analysis of MW (1982)

that a message-only informative equilibrium does not exist. This is because bidders share

the same direction of preference for VD products, and the corresponding messages can

also be ranked in terms of their induced interim expected revenues. As a result, the

seller will always announce the message that generates the highest expected revenue, no

1For instance, following a complaint by the FTC of misleading advertising for failure to mention high
sodium content Campbell Soup Co. reverted from a "Soup is good food" campaign and returned to its
"M�m m�m good" theme, Abernethy and Franke (1998). Intuitively, one does not expect to see equilibrium
cheap talk adverts of the kind "M�m m�m good" when the alternative is "M�m m�m bad". But it seems
more plausible to see an image of a child uttering "M�m m�m good" when the alternative is an image of a
hungry worker saying "M�m m�m good�. As Nelson (1974) notes, "advertisements for experience goods are
dominantly soft or indirect information". This contrasts with hard information disclosure Milgrom (1981)
and Grossman (1981) in which the seller must state the truth, but not necessarily the whole truth. And
Celik (2014) considers this sort of information disclosure in a model of horizontally di¤erentiated products.

2Our assumptions will mean that the revenue equivalence theorem holds so our results will hold for any
standard auction.
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matter what the real attribute is, and the revealed information is hence not credible. In

contrast, a fully revealing equilibrium can be sustained in a message-price informative

equilibrium, where setting reserve price message pairs is allowed. However, we show that

this fully revealing informative equilibrium results in lower interim revenue than would

obtain from null information disclosure with optimal reserve price. Therefore, the seller

optimal price-message equilibrium consists of a single reserve price and null message.

The case of HD products leads to a richer set of possibilities. In our model, the

e¤ect of a message about the product attribute on bidder valuations can be decomposed

into two distinct e¤ects. One, which is uniform across bidders, is the risk reduction

e¤ect. That is, providing more precise information reduces the risk of mismatch for all the

bidders, and thus raises their valuations. The other is the idiosyncratic e¤ect of attribute

revelation, if a message shifts the conditional expectation of the product attribute towards

the extremes of the Hotelling line then given our distributional assumptions the product

becomes less popular and the distribution of conditional valuations becomes worse by �rst

order stochastic dominance. We thereby show that, in message-only informative equilibria

(without reserve prices) equilibrium partitions must have the property that more precise

information is revealed for less popular product attributes. Only in this way can the risk

reduction e¤ect and attribute revelation e¤ects be balanced to yield equal interim revenue

for all messages.

This necessary condition begs the question of existence. The condition implies that in

an equilibrium with a given partition degree3, it must be possible to divide the Hotelling

line into the given number of intervals each having positions and lengths which are some-

how balanced with each other. Our second result supplies the necessary existence theorem.

We prove that, for each partition degree J , a message-only informative equilibrium can

always be supported by a partition of degree J , as long as the number of bidders is su¢ -

ciently large. Rather than the usual �xed-point approach, we apply an Intermediate Value

Theorem de�ned on partially order sets. Furthermore, we also show that, given the num-

ber of bidders, n, there exists a maximum partition degree below which a message-only

informative equilibrium can be supported, and that maximum partition degree is non-

decreasing in n. And in the limit, when n approaches in�nity, the equilibrium partition

will converge to a partition where all the messages are of the same level of signal precision.

The intuition for these results is that, with increasing number of bidders, the di¤erence

in popularity across di¤erent product attributes converges to zero, and the di¤erences in

interim expected revenues are increasingly determined by the di¤erence in signal precision.

Therefore, as the popularity across di¤erent attributes become more and more equal it

becomes easier for the seller to adjust the precision of signals to satisfy the equal revenue

conditions. In the limit, when the number of bidders converge to in�nity and all the

product attributes are of the same level of popularity, the equilibrium partitions will

naturally converge to one where all the messages are of the same signal precision.

3For an interval partition, the degree of partition J is de�ned as the number of subintervals in the
partition. Roughly speaking, a larger J corresponds to �ner partition of the attribute interval, and thus,
on average, more precise information revealed to the bidders.
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Third, we establish a complementarity relationship between the number of bidders

and the optimal amount of information measured by the degree of equilibrium partitions.

That is, when the number of bidders increases, it is better for seller revenue to construct

an informative equilibrium using higher degree partitions. The intuition here is similar to

that behind the existence theorem. When the number of bidders increase, the di¤erence

in popularity across di¤erent product attributes vanishes, and it is easier to construct

informative equilibria using more precise signals, which in turn increase the valuations of

the bidders and thus the expected revenue of the auction. Hence, roughly speaking, as

the number of bidders increase, not only are sellers able (in some equilibria) to transmit

more information in terms of higher degree partitions, but it is in their interests to do so.

When setting reserve prices is allowed at the same time as disclosing product infor-

mation, we further show that full revealing equilibrium is sustainable in a message-price

informative equilibrium for HD products, as in the case of VD products. This is because

the seller can adjust the reserve prices such that all the interim expected revenues be

equal. However, in contrast to the case of VD products, for HD products, a full-revealing

message-price informative equilibrium can result in higher revenue level than null infor-

mation with optimal reserve price, as long as the number of bidders is su¢ ciently large.

The remainder of this paper is organized as follows. Section 2 is a short discussion of

related literature. Section 3 sets up our model. Section 4 examines cheap-talk information

disclosure for VD products. Section 5 focuses on cheap-talk information disclosure for HD

products. Speci�cally, Section 5.1 investigates the properties of the interim expected rev-

enue. Section 5.2 provides some interesting characterizations of message-only informative

equilibria. Section 5.3 proves an existence theorem for message-only informative equilib-

ria. Section 5.4 shows the complementarity property of the optimal disclosure policies.

Section 5.5 studies the message-price informative equilibria under cheap-talk. Section

6 re-investigates the information disclosure problem for HD products, yet under truthful

disclosure. Section 7 is a short conclusion.

2 Related Literature

This paper examines cheap talk information disclosure for HD and VD products taking as

given that the sale will take place a standard auction mechanism. In two interesting recent

contributions Balestrieri and Izmalkov (2016) and Koessler and Skreta (2016) consider

the design of more general mechanisms for selling goods in a HD context. Balestrieri and

Izmalkov (2016) derive the optimal selling mechanism for a monopolist who is privately

informed about the attributes of a horizontally di¤erentiated good. They show that a

rather rich class of mechanisms can obtain depending on the precise details of the model.

For instance, optimal mechanism may involve type-speci�c probabilistic allocations, which

can also be implemented through private transmission of di¤erent information to di¤erent

buyer types. Koessler and Skreta (2016) consider a single buyer whose willingness to pay

depends on his privately-known taste and on product characteristics privately known by

the seller. They explore general properties of the class of selling procedures that can arise
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as an equilibrium of the game in which the seller chooses mechanisms conditional on her

information. Such mechanisms include for instance bilateral cheap talk.

Chakraborty and Harbaugh (2010) consider informative multidimensional cheap talk

in which an expert can make credible comparative statements that trade o¤ her incentive

to exaggerate on each dimension. They give an example applied to product advertising

in which the product in question has elements of both horizontal and vertical di¤erenti-

ation. This multidimensional trade-o¤ theme which is developed further in Chakraborty

and Harbaugh (2014) has some similarities with the mechanism supporting cheap talk

equilibria in our model.

There is a strand of literature that studies information policies in various situations,

such as in monopoly pricing (Lewis and Sappington, 1994; Johnson and Myatt, 2006), and

in auctions (Board, 2009; Ganuza and Penalva, 2010; Hummel and McAfee, 2015). As in

MW (1982), they assume that a seller commits to a preset information policy. However,

rather than public disclosure of a signal, the information policy relates to the precision with

which buyers will learn their valuations. Relatedly, but closer to our approach, Ganuza

(2004) constructs an explicit HD model but in which buyer preferences are distributed on

a circle, rather than line. In that paper the seller chooses a public disclosure rule à la MW

(1982) (but from a restricted class of rules) rather than cheap talk. He shows that the

optimal amount of information disclosure increases with the number of bidders, under the

assumption that it is more costly to reveal more precise information. This complementary

result is related to but di¤erent to the one reported in this paper. Both occur because of

competition tending to eliminate the negative consequences of releasing information.

3 A Symmetric Model

An auctioneer sells a single nondivisible product to n bidders, indexed by i 2 f1; 2; � � � ; ng.
Bidder i�s valuation of the product depends on his own taste ~�i as well as the product

attribute ~s. Both ~�i and ~s are real-valued random variables, with �i and s as their typical

realizations respectively. Bidder i�s valuation of the product is

vi = u (s; �i;��i) ; (1)

where ��i is a vector of the tastes of all other bidders, and u is symmetric in ��i, as in

the general symmetric model of MW (1982). We normalize the seller�s valuation of the

product to 0, and she is a revenue maximizer.

The distribution function of ~s is G (s), with strictly positive density g (s). Bidders�

tastes, ~�i�s, are independent draws from the same distribution of F (�), with strictly posi-

tive density f (�), and ~s and ~�i�s are also independent from each other. The distributions

of G (s) and F (�) are common knowledge, but the realized product attribute s and bidder

i�s taste �i, are respectively the seller and bidder i�s private information.

Prior to the auction, the seller has the option of revealing product information to the

bidders, by sending a public cheap-talk message. We focus on information structure in the
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form of partitions, as common in the literature on cheap-talk. Speci�cally, the disclosure

strategy is a mapping from the attribute space S to the message space M , denoted by

� : S ! M , and for each message m, ��1 (m) is a (connected) subinterval on S. We

suppose M is rich enough such that � can be an unto function. For a given message m,

the conditional distribution of ~s is denoted by G (sjm) with the corresponding density

g (s jm) = � (m js) g (s)R
x2S � (m jx) dG (x)

; (2)

and bidder i�s posterior expected valuation of the product, denoted by v (�i;m), is thus

v (�i;m) =

Z
s2S

E [u(�i;��i; s)] g (s jm) ds; (3)

based on which he submits his bids b (�i;m). We denote the vector of n bidders�bidding

strategies as b (m) = (b (�1;m) ; � � � ; b (�n;m)), and bidder i�s optimal bidding strategy
as b� (�i;m) that maximizes his expected payo¤ in the auction. Conditional on s and

the public message m, the bidders submit their bids, and we de�ne the expected auction

revenue as interim expected auction revenue, denoted by R (m; s).

The timing of the game is as follow: �rst, Nature selects the realizations of product

attribute ~s and the bidders� tastes, ~�i�s, which are privately observed by the seller and

corresponding bidders respectively; second, based on her observation of s, the seller sends

a public message m (and set a reserve price r (s), if setting reserve prices is allowed); third,

bidders update their beliefs and o¤er bids in a standard auction; �nally, the auction and

the �nal payo¤s are implemented.

The equilibrium concept applied here is perfect Bayesian equilibrium (PBE): i) bidders�

belief follows Bayesian rule of (2), when it is applicable; ii) given the beliefs, bidders�

bidding strategies are optimal; iii) the seller�s disclosure strategy is also optimal. When

reserve prices are not considered, the seller�s strategy is to set the disclosure policy, and

we de�ne the message-only equilibrium, denoted as m-PBE, as follows.

De�nition 1 A m-PBE consists of a strategy pro�le (�;b) and belief system g (s jm)
such that: i) g (s jm) is derived from Bayesian rule of (2) when applicable; ii) bidders

o¤er their optimal bids given their beliefs, that is, b (�i;m) = b� (�i;m) for all i; iii) the

seller chooses optimal signalling strategy such that

R (� (s) ; s) � R
�
�
�
s0
�
; s
�
; for 8s; s0 2 S: (4)

Under cheap-talk, the seller can send any possible message she likes. The incentive

compatible condition of (4) implies that, in equilibrium, the seller will prefer truthful infor-

mation disclosure rather than deviation. Therefore, them-PBE constitutes an informative

equilibrium where the revealed information is credible and informative.

Auction, as a selling mechanism, may involve the selection of reserve prices, which is

similar to posted prices in the context of monopoly pricing. When reserve prices are con-

sidered, the seller�s strategy becomes twofold: besides the signalling strategy of � (s), she
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also needs to set the reserve price r (s) conditional on the realization of product attribute.

With reserve prices, the interim expected auction revenue is denoted by R (� (s) ; r (s) ; s).

Similarly, we de�ne the message-price equilibrium, denoted by (m; r)-PBE, as follows.

De�nition 2 A (m; r)-PBE consists of a strategy pro�le (�; r;b) and belief system g (s jm; r )
such that: i) g (s jm; r ) is derived from Bayesian rule of (2) when applicable; ii) bidders

o¤er their optimal bids given their beliefs, that is, b (�i;m; r) = b� (�i;m; r) for all i; iii)

the seller chooses optimal signalling strategy such that

R (� (s) ; r (s) ; s) � R
�
�
�
s0
�
; r
�
s0
�
; s
�
; for 8s; s0 2 S:

The above de�nitions correspond to the PBEs under cheap-talk, where the interim

incentive conditions, e.g. (4), must be satis�ed in equilibria. If the seller is committed

to truthful information disclosure, we can similarly de�ne the corresponding m-PBE and

(m; r)-PBE, by simply removing the incentive compatible condition of (4).

With this symmetric model, our interests lie in the characterization of relevant infor-

mative equilibria, and the optimal strategies of cheap talk disclosure in auctions. Here we

focus on standard auctions, where the bidder o¤ering the highest bids wins, such as �rst-,

second-price and English auctions. And, as mentioned before, we will investigate both

vertically and horizontally di¤erentiated products, where the former is closely related to

MW (1982), and the latter is more of our interests in this paper.

4 Vertically Di¤erentiated (VD) Products

In the general symmetric model of MW (1982), the valuation function of u (s; �i;��i) is

assumed to be increasing in both s and (�i;��i). This corresponds exactly to the case of

VD products. We may think of s in this case as the vertical quality of the product, and

all bidders prefer high quality to low quality product, when other things are equal. We

keep the same assumption of MW (1982) here for this Section.

Assumption 1 (A1) u (s; �i;��i) is non-decreasing in both (�i;��i) and s.

Speci�cally, when we mention VD products, we mean assumption A1 is true. Under

Assumption 1 and that the seller is committed to truthful disclosure, MW (1982) prove

the following well-known result on optimal disclosure.

Proposition 3 (MW, 1982) For VD products and under truthful disclosure, in standard
auctions without reserve prices, revealing full information (� (s) = s) maximizes expected

auction revenue.

Compared with MW (1982), here in our symmetric model, we impose a weak version

of positive a¢ liation between ~s and ~�i�s, by assuming that they are all independent from

each other. MW (1982) further consider the e¤ects of introducing reserve prices, and show

that the introduction of reserve price, r (s), may raise the expected auction revenues.
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Proposition 4 (MW, 1982) For VD products and under truthful disclosure, in standard
auctions with given reserve prices, revealing full information maximizes expected revenue.

For any other disclosure policy, there is a (� (s) ; r (s)) policy with � (s) = s which yields

higher ex-ante expected revenue.

We now turn to the case of cheap-talk information disclosure, and focus on information

structure in the form of partitions. For the VD products in our symmetric model, as

implied in assumption A1, we show that a partition m-PBE does not exist. The basic

intuition is that, for VD products, the seller always has incentive to announce that the

product is of high quality, regardless of what the real product quality is. As a result, the

revealed information can not be credible in equilibrium.

Proposition 5 For VD products and under cheap-talk disclosure, in standard auctions

without reserve prices, there does not exist a m-PBE in the form of partitions.

Proof. Suppose there is a partition m-PBE with a �nite number of messages, � (s) 2
fm1;m2; � � � ;mKg. Then for a message mj , ��1 (mj) is a (connected) subinterval on

the attribute space of S � R. And we can order two messages mj < mj0 , in such a

way that for any s 2 ��1 (mj) and s0 2 ��1
�
mj0

�
, s < s0. Under assumption A1,

bidders�valuations u is non-decreasing in s, therefore for two messages mj < mj0 , both

R
�
mj0 ; s

0� > R (mj ; s
0) and R

�
mj0 ; s

�
> R (mj ; s), which violates the incentive compatible

condition of (4). Hence mj and mj0 can not both be messages in a partition m-PBE.

Proposition 6 For VD products and under cheap-talk disclosure, in standard auctions

with reserve prices: (1) there exists a full revealing (m; r)-PBE; (2) but the expected auction

revenue in the full revealing (m; r)-PBE is lower than that in a babbling equilibrium with

optimal reserve price.

Proof. Under assumption A1, let s be the worse product attribute (quality), and r be
the corresponding optimal reserve for it. (1) For any s 2 S and s > s, choose the reserve
price r (s) such that R (s; r (s) ; s) = R (s; r; s), which is always possible by continuity,

since R (s; r� (s) ; s) > R (s; r; s), where r� (s) is the optimal reserve when s is revealed,

and limr!1R (s; r; s) = 0. (2) The expected revenue under full revealing is R (s; r; s),

which is smaller than R (?; r?) by MW (1982), where ? means revealing no information
and r? is the optimal reserve in this case.

Gardete (2013) proposes a model of informative cheap-talk advertising for vertically

di¤erentiated products, and his key assumption is that di¤erent types of consumers have

access to di¤erent outside options, which plays a similar role of setting di¤erent reserve

prices here in our symmetric model.

5 Horizontally Di¤erentiated (HD) Products

For HD products, the valuation u (s; �i;��i) is non-monotonic in s, and bidders of di¤erent

tastes prefer di¤erent product attribute s. A standard setting for product horizontal
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di¤erentiation is that, a bidder�s valuation of the product depends on the match between

his own taste �i and the product attribute s. Therefore, u is single-peaked and may have

the single-crossing property in (s; �i). And we adopt the leading example of quadratic

valuation that possesses the above properties,

u (s; �i) = V � � (s� �i)2 ; (5)

where V is a commonly know vertical value of the product, and � is a parameter measuring

the degree of disutility of mismatch. Without loss of generality, we assume both ~s and �i�s

are de�ned on the attribute space of S = [�1; 1], and we introduce the following symmetry
assumption on their distributions.

Assumption 2 (A2) Both g (s) and f (�) are log-concave and symmetric to 0.

Many distributions are log-concave, such as normal, uniform distribution and so on.

The log-concavity assumption implies that the density functions of f and g are unimodal.

And with the symmetry assumption, f and g have the common mean and mode of 0.

Without speci�cation, assumption A2 always holds in our analysis in Section 5 and 6.

As for the disclosure policy, we de�ne a J-partition of the attribute interval S by a

sequence of cutting point, PJ = (s0; s1; s2; � � � ; sJ), such that �1 = s0 < s1 < � � � < sJ�1 <
sJ = 1, and J 2 Z+ is de�ned as the degree of partition. Thus a J-partition divides S

into J subintervals. Denote PJ the space of all J-partitions, and PJ is apparently a
convex set, as the convex combination of any two J-partitions is still a J-partition. Let

�j = jsj � sj�1j be the length of the subinterval [sj�1; sj ], and we de�ne an equal partition
as a partition where all the subintervals are of equal length, denoted by P J .

Under a partition of PJ , the message spaceM is composed of J distinct messages, and

the disclosure policy is denoted by �J , which is

�J (s) = mj i¤ s 2 [sj�1; sj) , 0 � j < J; (6)

and for j = J , �J (s) = mJ i¤ s 2 [sJ�1; sJ ]. Given a message mj in partition PJ , the

conditional mean and variance of ~s are denoted respectively by

�j = E (~s jmj ) ; �2j = Var (~s jmj ) : (7)

We de�ne signal precision intuitively based on the conditional variance of �2j . Formally,

for two messages mj and mj0 in partition PJ , mj is said to be more precise than mj0 i¤

�2j < �
2
j0 . In particular, when G follows a uniform distribution, �2j = �

2
j=12, and mj is

more precise than mj0 i¤�j < �j0 .

Under the symmetry assumption of f and g, we focus on partitions that are symmetric

to 0, and assume �j � 0 without loss of generality. For a partition PJ symmetric to

0, it can be equivalently represented by its positive cutting points, and there are two

possibilities: when J = 2K, K 2 Z+, then PJ = (�sK ; ; � � � ;�s1; 0; s1; � � � ; sK), where
sK = 1 and we de�ne �1 = js1j; when J = 2K�1, then PJ = (�sK ; � � � ;�s1; s1; � � � ; sK),
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and we de�ne �1 = j2s1j; in both cases, for j = 2; � � � ;K, �j = jsj � sj�1j, as de�ned
before. Then a partition of PJ that is symmetric to 0 can be equivalently represented by

the sequence of positive cutting points, PJ = (s1; s2; � � � ; sK).

5.1 Interim Expected Auction Revenue: an Analysis

We �rst provide some characterizations of the interim expected revenue R (m; s), where

reserve prices are not considered. For horizontally di¤erentiated products, a bidder�s valu-

ation of the product is given by (5). Given our assumption that ~s and ~�i�s are independent

from each other, when a message m is announced, bidders�posterior valuations are actu-

ally independent draws from the same distribution. And the auction is in fact a standard

independent private value auction, where the bidder with the highest bid wins, and the

revenue is equal to the second highest valuation of the bidders. Therefore, R (m; s) is

equal to the expected value of the second highest v (�i;m)�s. It will be shown later that

R (m; s) does not explicitly depend on s, and we then simplify the notation as R (m).

A simple calculation from (3) and (5) shows that bidder i�s posterior valuation

v (�i;mj) = V � �
h
Var (~s jmj ) + (�i � E (~s jmj ))

2
i
= V � �

h
�2j +

�
�i � �j

�2i
: (8)

It is interesting to �nd that revealing product attribute information, mj , has two di¤erent

e¤ects on bidders�posterior valuations. One is the universal e¤ect of risk reduction, that

is, providing more precise signal (smaller �2j ) reduces the risk or mismatch for all of the

bidders, and thus raises their valuations ceteris paribus. The other is the idiosyncratic

e¤ect of attribute revelation, that is, by sharpening the conditional expectation of the

product attribute (�j), it not only drives up the valuations of some bidders whose tastes

closely match �j , but drives down those of other bidders who �nd they are poorly matched.

To spare notation, we introduce a new random variable ~�i (s), which measures the

distance between a bidder�s taste and the product attribute, as follows,

~�i (s) =
�
~�i � s

�2
: (9)

We denote the distribution function of ~�i (s) by H(�; s), with the corresponding density
h(�; s). Our �rst result is to show that, H(�; s), as a family of distributions indexed by s,
can be ordered by dispersive order and �rst order stochastic dominance. We �rst provide

the relevant de�nitions of the stochastic orders.

De�nition 7 Given two random variables ~�i (s
0) and ~�i (s

00) with distribution functions

H(�; s0) and H(�; s00) respectively, we say that
1) ~�i (s

0) is smaller than ~�i (s
00) in the dispersive order, denoted by ~�i (s

0) �disp ~�i (s00),
if H�1(q; s0)�H�1(p; s0) � H�1(q; s00)�H�1(p; s00) for all 0 < p < q < 1.

2) ~�i (s
0) is smaller than ~�i (s

00) in the �rst order stochastic dominance, denoted by
~�i (s

0) �FOSD ~�i (s00), if H(x; s0) � H(x; s00) for all x 2 R.

Dispersive order is a stochastic order that helps to compare the variability of two

10



random variables, and ~�i (s
0) �disp ~�i (s00) implies that the variance of ~�i (s0) is smaller

than that of ~�i (s
00). Compared with the direct comparison of variances of two random

variables, dispersive order provides more information on the underlying distributions. And

the �rst order stochastic dominance is more related to the comparisons of the expectation

of two random variables, and ~�i (s
0) �FOSD ~�i (s00) implies that E~�i (s0) � E~�i (s00). Based

on our symmetry assumption of A2 on F (�), we have the following result.

Lemma 8 For 0 � s0 < s00 � 1,

i) ~�i (s
0) �disp ~�i (s00);

ii) ~�i (s
0) �FOSD ~�i (s00).

Proof. From (9), it is clear that

H (x; s) = F
�
s+

p
x
�
� F

�
s�

p
x
�
; x 2

�
0; �� (s)

�
; (10)

where �� (s) = (1 + s)2. i) From result (3.B.11) of Shaked and Shanthikumar (2007), to

prove ~�i (s
0) �disp ~�i (s00), it is equivalent to show that h

�
H�1 (p; s) ; s

�
is monotonically

decreasing in s for all p 2 (0; 1). Di¤erentiating with respect to s,

@h

@s
=
@h

@x

@H�1

@s
+
@h

@s
= �hx

�
H�1 (p; s) ; s

� Hs �H�1 (p; s) ; s
�

h (H�1 (p; s) ; s)
+ hs

�
H�1 (p; s) ; s

�
:

By substituting H (x; s) in (10) and H�1 (p; s) = x, we get

@h

@s
= �

�
f 0
�
s+

p
x
�
� f 0

�
s�

p
x
�� f (s+px)� f (s�px)
f (s+

p
x) + f (s�

p
x)
+
�
f 0
�
s+

p
x
�
+ f 0

�
s�

p
x
��
:

The condition for @h@s � 0 appears to be equivalent to

f 0 (s+
p
x)

f (s+
p
x)
+
f 0 (s�

p
x)

f (s�
p
x)
� 0:

The symmetry assumption of A2 implies that
f 0(
p
x)

f(
p
x)
+
f 0(�

p
x)

f(�
p
x)
= 0. So the above condition

�nally becomes
f 0 (
p
x+ s)

f (
p
x+ s)

� f
0 (
p
x� s)

f (
p
x� s) � 0;

which is true given A2 that f (�) is log-concave and s � 0.
ii) It is clear that H (x; s) is decreasing in s under A2 and s � 0, and then ~�i (s

0) is

�rst-order stochastically dominated by ~�i (s
00).

Dispersive order and FOSD measure the variabilities and expectations of two random

variables respectively. It then follows from Lemma 8 that, with increasing s, ~�i (s)

becomes more and more dispersed with both increasing variance and increasing mean.

We next derive the expression of the interim expected auction revenue, R (mj). For

a given public message mj , ~�i
�
�j
�
�s are n independent draws from the same distribution

11



of H
�
�;�j

�
. The corresponding order statistics of ~�i�s are

~�1:n � ~�2:n � � � � � ~�n:n;

where ~�k:n is the kth smallest order statistic of the n random variables of ~�i�s.

Apparently, ~�1:n corresponds to the bidder whose taste is the closest to �j , and he also

has the highest posterior valuation of the product. In a standard auction, the bidder with
~�1:n wins, and his expected payment is equal to the expected valuation of the bidder with
~�2:n. From (8), the interim expected auction revenue is thus

R (mj) = V � �
h
�2j + E~�2:n

�
�j
�i
: (11)

Then conditional on a public message mj , the interim expected auction revenue, R (mj),

is jointly determined by signal precision, �2j , and the expected value of ~�2:n
�
�j
�
. To

characterize R (mj), we �rst prove some interesting properties of E~�2:n (s), which are
related to the results of Lemma 8. The result below shows that E~�2:n (s) is decreasing in
n, and both increasing and convex in s.

Lemma 9 For s 2 [0; 1],

i) E~�2:n (s) is strictly decreasing in n, and limn!1 E~�2:n (s) = 0 uniformly;

ii) E~�2:n (s) is strictly increasing in s;

iii) E~�2:n (s) is strictly convex in s.

Proof. We denote the distribution function of ~�2:n (s) by H2:n(�; s), and the corresponding
density function by h2:n(�; s). It is easy to show that

H2:n(x; s) = 1� [1�H (x; s)]n � n [1�H (x; s)]n�1H (x; s) : (12)

i) For x 2
�
0; �� (s)

�
, H2:n(x)�H2:n+1(x) = �nH (x)2 [1�H (x)]n�1 < 0, and thus

E
h
~�2:n+1 (s)� ~�2:n (s)

i
=

Z ��(s)

0
[H2:n(x)�H2:n+1(x)] dx < 0:

Moreover, for any s 2 [0; 1], it is clear that

lim
n!1

E~�2:n (s) = �� (s)�
Z ��(s)

0
lim
n!1

H2:n(x; s)dx = 0

pointwisely. Dini�s Theorem implies that E~�2:n (s) uniformly converges to 0 on s 2 [0; 1].
ii) For the distribution function of H2:n(x; s), di¤erentiating with respect to s, we get

@H2:n(x;s)
@s = n (n� 1) [1�H (x)]n�2H (x) @H(x;s)@s < 0 for all x 2

�
0; �� (s)

�
, as @H(x)

@s < 0

from Lemma 8. Therefore, with increasing s, the family of H2:n(x; s) is ordered by �rst-

order stochastic dominance, and E~�2:n (s) is strictly increasing in s.

12



iii) We have @E~�2:n
@s = �

R ��(s)
0

@H2:n(x;s)
@s dx > 0, where

@H2:n
@s

= n (n� 1) (1�H)n�2H@H
@s

=
@H2:n
@x

@H=@s

@H=@x
:

Let � (x; s) = � @H=@s
@H=@x , which is strictly positive. Therefore,

@E~�2:n
@s

=

Z ��(s)

0
� (x; s) dH2:n(x; s):

To prove E~�2:n (s) is convex in s, it is equivalent to prove
@E~�2:n
@s is increasing in s. Given

H2:n(x; s) is decreasing in s, it is su¢ cient to show � (x; s) is increasing in s. We have

1

2
p
x
� (x; s) =

f (s+
p
x)� f (s�

p
x)

f (s+
p
x) + f (s�

p
x)
=

f(s+
p
x)

f(s�
p
x)
� 1

f(s+
p
x)

f(s�
p
x)
+ 1

=

f(
p
x+s)

f(
p
x�s)

� 1

f(
p
x+s)

f(
p
x�s)

+ 1
:

Since y�1
y+1 is increasing, � (x; s) is increasing in s if

f(
p
x+s)

f(
p
x�s)

is decreasing in s. This is

true as f is log-concave by A2.

The intuition for i) of Lemma 9 is straightforward: with increasing n, there are more

and more bidders in the auction, and it then becomes more likely that bidders�tastes are

on average closer to a given attribute s. Second, ii) and iii) of Lemma 9 show that, when

s moves from the centre of 0 to the extreme of 1, E~�2:n (s) is increasing at an accelerating
rate. This is because, under assumption A2, when s increases from 0 to 1, the value of

f (�) gets smaller and smaller, implying that fewer bidders favor the product attribute,

and therefore the average distance between � and s gets larger. Figure 1 below provides

a numerical example, where f (�) follows a uniform distribution, that helps illustrate the

properties of E~�2:n (s). The example shows that E~�2:n (s) converges to 0 when n increases,
and for given n, E~�2:n (s) is increasing and convex in s.

Figure 1. Properties of E~�2:n (s)

The next result shows that, for two di¤erent product attributes, the increment in

E~�2:n (s) is also decreasing in n, and moreover, that increment converges to 0 uniformly
when n converges to in�nity.
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Lemma 10 For 0 � s0 < s00 � 1,

i) E
h
~�2:n (s

00)� ~�2:n (s0)
i
is decreasing in n;

ii) limn!1 E
h
~�2:n (s

00)� ~�2:n (s0)
i
= 0 uniformly.

Proof. For 0 � s0 < s00 � 1, (i) we know ~�i (s00) �disp ~�i (s0), and therefore

X =
h
V � � ~�i

�
s00
�i
�disp

h
V � � ~�i

�
s0
�i
= Y;

by the property of dispersive order. From Theorem 6 of Ganuza and Penalva (2010), we

have E [X2:n � Y2:n] � E [X2:n�1 � Y2:n�1], which is equivalent to

E
h
~�2:n

�
s00
�
� ~�2:n

�
s0
�i
� E

h
~�2:n�1

�
s00
�
� ~�2:n�1

�
s0
�i
:

(ii) As limn!1 E~�2:n (s) = 0 uniformly on s 2 [0; 1] from Lemma 9, then for any 0 �
s0 < s00 � 1, limn!1 E

h
~�2:n (s

00)� ~�2:n (s0)
i
= 0 pointwisely. From Dini�s Theorem, we

have limn!1 E
h
~�2:n (s

00)� ~�2:n (s0)
i
= 0 uniformly.

It is worth attention that the results in Lemma 8, 9 and 10 do not depend on the

speci�c format of a disclosure rule, e.g. whether it is partition or not. What really

matters is the assumption that the distribution of bidders�tastes, F , is log-concave and

symmetric to 0. We will repeatedly apply these results in our following discussion of the

informative equilibria and the proof of equilibrium existence.

5.2 Informative Equilibria: Characterizations

If a m-PBE exists, then the seller�s incentive compatible condition of (4) at the interim

stage must be satis�ed. As R (m; s) does not explicitly depend on s, as shown in (11), it

then follows from (4) that, in equilibrium

R (mj) = R
�
mj0

�
; for 8s; s0 2 S: (13)

This condition implies that, in a m-PBE, all the interim expected revenues are equal.

Given our symmetric setting, we just focus on partitions symmetric to 0, which can be

equivalently represented by a sequence of positive cutting points. We denote the optimal

partition by P �J = (s
�
1; s

�
2; � � � ; s�K). For a given message mj , �j and �

2
j
denote the condi-

tional mean and variance of the product attribute respectively. The following equilibrium

property is a direct implication of the equal revenue condition of (13).

Proposition 11 For HD products and under cheap-talk, if there exists a m-PBE partition
P �J , then for any two distinct messages mj and mj0 such that �j < �j0, we have

�2
j
> �2j0 ; (14)

which is equivalent to �j > �j0 if G (s) is uniform distribution.
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Proof. From (11), the interim expected auction revenue is R (mj) is decreasing in both

�2j and �j , as E~�2:n (s) is strictly increasing in s. For two distinct messages mj and

mj0 , if �j < �j0 , then it is necessary that �
2
j
> �2j0 in equilibrium, otherwise the equal

revenue condition of (13) can not be satis�ed. Second, the result for uniform distribution

is obvious as �2
j
= �2j=12 when G is uniform.

Proposition 11 states that, in a m-PBE , when the expected product attribute moves

from the centre towards the extremes, it is necessary to provide more precise signals for

those attributes. The intuition is as follows. Given the assumption that the distribution of

bidders�tastes is unimodal and symmetric to 0, it is clear that when the product attribute

moves from 0 to the extreme of 1, the product becomes less and less popular. For the

less popular products, the interim expected revenue is lower ceteris paribus. However, in

a m-PBE, it is necessary that all the R (mj)�s be equal, otherwise the seller will deviate

from truthful revealing. For example, she will just report the message that generates the

highest interim expected revenue, regardless of the real product attribute, which makes

the revealed information not credible. As a result, it is necessary to provide more precise

signals for the less popular product attributes in equilibrium, so as to compensate that

revenue de�cit.

We could provide a formal de�nition on the popularity of a product attribute, as

follows: a product attribute s is more popular than s0, if at any positive price, the demand

for s is greater than that for s0. Given our assumption of symmetric distribution of F (�)

in A2, it is evident that, when the product attribute moves from the centre of 0 to the

extremes of �1, it becomes less and less popular. We then have the following corollary.

Corollary 12 For HD products and under cheap-talk, in a m-PBE, the seller provides

more precise information for less popular product attributes.

Another implication of Proposition 11 is that full information disclosure is not possible

under cheap-talk, when the number of bidders is given. Full information disclosure implies

that the seller reports the true value of s to the bidders, and thus � (s) = s and �2j = 0

always. However, as E~�2:n (s) is strictly increasing in s, the equal revenue condition of
(13) can never be satis�ed in equilibrium, in this case.

Corollary 13 For HD products and under cheap-talk, full information disclosure can not
happen in a m-PBE, when n is given.

This result is distinct from the full disclosure result in the literature (Ganuza, 2004;

Board, 2009; Ganuza and Penalva, 2010; Hummel and McAfee, 2015), where the seller

is committed to truthful disclosure. We next show that, when n converges to in�nity,

then the m-PBE partition will converge to a partition where all the signals are of the

same precision level. This is because, with increasing n, the di¤erence in E~�2:n (s) across
di¤erent product attributes converges uniformly to 0 (Lemma 10), and therefore the equal

revenue condition of (13) necessarily implies that the seller needs to provide equal precise

signals for all the product attributes in equilibrium.
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Corollary 14 For HD products and under cheap-talk, in a m-PBE partition P �J , for any
two signals mj and mj0, we have

lim
n!1

�
�2j � �2j0

�
= 0 for 8j; j0:

Moreover, if G is uniform distribution, then limn!1 P �J = P J .

Proof. The equal revenue condition of (13) implies that

0 = lim
n!1

h�
�2j + E~�2:n

�
�j
��
�
�
�2j0 + E~�2:n

�
�j0
��i

= lim
n!1

�
�2j � �2j0

�
+ lim
n!1

E
h
~�2:n

�
�j
�
� ~�2:n

�
�j0
�i

= lim
n!1

�
�2j � �2j0

�
[from Lemma 10 (ii)]

Second, when G is uniform, then limn!1
�
�2j � �2j0

�
= 1

12 limn!1
�
�2j ��2j0

�
= 0, which

implies that limn!1 P �J = P J .

Below we provide a numerical example, where both F (�) and G (s) follow a uniform

distribution on S, that helps to illustrate the properties of the m-PBEs. And the example

shows that, in an equilibrium partition, more precise information is provided for less

popular product attributes, and that, with increasing number of bidders, the equilibrium

partition P �J converges to the equal partition of P J .

Example 15 We provide an numerical example where both F (�) and G (s) follow a uni-
form distribution on S = [�1; 1]. We restrict out attention to partitions of degree 3, and
denote the partition as P3 = (�1;�s1; s1; 1). And an equal partition corresponds to the

cutting point of s1 = 1
3 , apparently.

Figure 2. Properties of Informative Equilibria: an Example

First, Proposition 11 implies that, for given n, in an equilibrium partitions of P �3 , it is

necessary that s�1 >
1
3 . Second, Corollary 14 implies that, when n!1, P �3 will converge
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to equal partition, that is limn!1 s�1 =
1
3 .

We select V = 10 and � = 1. In Figure 2, the solid lines shows how the interim

expected revenue R (m1) changes with s1 for di¤erent n�s. Similarly, the dashed lines

shows that of R (m2). For a given n, the crossing point of R (m1) and R (m2) represents

a m-PBE partition, where the equal revenue condition of (13) is satis�ed. Figure 2 shows

that for n = 6; 8 and 20, the crossing points s�1 are all to the right of
1
3 , which con�rms

the results of Proposition 11. Second, when n increases, the crossing point moves up-left,

and becomes more and more close to the equal partition point of s1 = 1
3 , which con�rms

the convergence result of Corollary 14.

5.3 Informative Equilibria: an Existence Theorem

We have provided some characterizations of them-PBEs, yet haven�t shown such equilibria

do exist. In this section, we provide an existence theorem, which shows that, for any given

partition degree J 2 Z+, there always exists am-PBE in the form of partitions, P �J , as long
as the number of bidders is su¢ ciently large. In the proof, we apply the Intermediate Value

Theorem (IVT) de�ned on partial order sets (Guilerme, 1995), and the main objective of

the proof is to show that, under certain conditions, there exists a partition such that all

the interim expected revenues are equal.

The interim expected revenue, as in (11), is determined by both E~�2:n
�
�j
�
and �2j .

Speci�cally, the conditional variance of �2j is related to the underlying distribution of

G (s jmj ). When G (s) is a uniform distribution, there is a simple expression of the con-

ditional variance, �2j =
1
12�

2
j , which is solely determined by the length of the subinterval.

To make the basic intuition more clear, while at the same time avoid unnecessary compli-

cations, we make the following simpli�cation assumption on G (s). Without speci�cation,

we assume the following assumption of A3 is true for the parts of Section 5 and 6.

Assumption 3 (A3) G (s) is uniform distribution on S.

The proof of the existence of m-PBEs is composed of four steps: 1) to de�ne a metric

space of partitions, (PJ ; d), and the partial order on it, and to show that it is convex

and thus connected; 2) to de�ne a continuous vector valued function f : PJ �! RK�1,
with its jth element fj (PJ) = 1

� [R (mj)�R (mj�1)], j = 2; � � � ;K, which is the revenue
di¤erence of two neighboring subintervals; 3) to construct two particular partitions, P J
and �PJ , such that P J < �PJ , and show that for n being large enough, f (P J) < 0 < f

�
�PJ
�
;

4) �nally, applying the IVT, we then can prove that, if n is su¢ ciently large, there exists

a partition P �J , such that P J < P
�
J <

�PJ and f (P �J ) = 0.

The IVT approach is somehow di¤erent from the standard approach of using �xed

point theorems to prove equilibrium existence. As to be shown later, compared with

�xed point theorems, the condition for applying the IVT is more restrictive, in the sense

that it imposes more restrictions on the monotonicity of functions. However, the result

is also more informative, as, di¤erent from �xed point theorems, it indicates the relative

location of the equilibrium. And the proof is proceeded as follows.
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First, a partition PJ symmetric to 0 can be equivalently presented by a sequence of K

positive cutting points, that is, PJ = (s1; s2; � � � ; sK) where sj > 0 and sK = 1. For the

partition space PJ , we de�ne a metric d (�; �) in the usual way that, for any PJ ; P 0J 2 PJ ,

d (PJ ; P
0
J) =

rPK
j=1

�
sj � s0j

�2
, and we then de�ne the metric space of (PJ ; d). Next,

we introduce a partial order, �, on PJ that, for any PJ ; P 0J 2 PJ , PJ � P 0J i¤ sj � s0j for
all j = 1; � � � ;K, and we then de�ne the partial order set of (PJ ;�). Apparently, the

partition space PJ is convex, as any convex combination of two partitions PJ ; P 0J 2 PJ is
also a partition in PJ . Convexity implies that PJ is connected.

Second, we de�ne a vector-valued function f : PJ �! RK�1, with its jth element

fj (PJ) =
�
�2j � �2j+1

�
�
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
; j = 1; 2; � � � ;K � 1: (15)

In fact, fj (PJ) = 1
� [R (mj+1)�R (mj)], which is the di¤erence in interim expected auc-

tion revenues of two neighboring subintervals. And f (PJ) = 0 implies that all the interim

expected revenues are equal.

Third, we construct two particular partitions, denoted by P J = (s1; s2; � � � ; sK) and
�PJ = (�s1; �s2; � � � ; �sK), such that P J < �PJ and when n is su¢ ciently large, f (P J) < 0 <

f
�
�PJ
�
. In fact, P J is just the equal partition, where all the subintervals are of the same

length. In an equal partition of P J , under assumption A3, we have �
2
j = �

2
j0 for any j; j

0,

which implies that fj (P J) = E
h
~�2:n

�
�j
�
� ~�2:n

�
�j+1

�i
< 0 for all j = 1; 2; � � � ;K � 1,

as E~�2:n (s) is strictly increasing in s from Lemma 9. We then have, for any given n

f (P J) < 0: (16)

Furthermore, the partition of �PJ = (�s1; �s2; � � � ; �sK) is constructed in such a way that

��j = ��j+1 + � (J) for j = 1; � � � ;K � 1 and ��K 2 (0; 2=J) ; (17)

where ��j = j�sj � �sj�1j and � (J) is a strictly positive term, which is fully determined by
��K . We next show that, by construction, P J < �PJ .

Lemma 16 For P J and �PJ , we have

i) P J < �PJ ;

ii) for any PJ = (s1; s2; � � � ; sK) such that P J � PJ � �PJ ,

(sj+1 � sj) � ��K for all j = 1; 2; � � � ;K � 1: (18)

Proof. For the equal partition P J = (s1; s2; � � � ; sK), it follows that

sj = 1� (K � j) 2
J
; j = 1; 2; � � � ;K;
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where J = 2K or 2K � 1. And for �PJ = (�s1; �s2; � � � ; �sK), it is easy to show that

�sj = 1� (K � j)
�
��K +

1

2
(K � j � 1) � (J)

�
; j = 1; 2; � � � ;K;

where

� (J) =

8<:
4

(J�1)2
�
2� J ��K

�
if J = 2K � 1

4
(J�1)2�1

�
2� J ��K

�
if J = 2K

:

For �PJ to be non-trivial, it�s needed that K � 2. We �rst show that for all j < K, we

always have sj < �sj : i) when J = 2K, it follows that �sj�sj = (K � j)
�
1
K ��K

� j
K�1 > 0;

ii) when J = 2K � 1, similarly, we have �sj � sj =
�
2
J ��K

� (K�j)
2(K�1)

�
2K�1
K�1 j � 1

�
> 0.

Then we show that, by construction, P J < �PJ .

Second, for any partition PJ = (s1; s2; � � � ; sK) satisfying P J � PJ � �PJ , we have

sj+1 � sj � sj+1 � sj = � (j), which is shown to be bounded below by ��K : i) when

J = 2K,

� (j) =
1

K
�
�
�sj � sj

�
=
1

K
� (K � j)

�
1

K
� ��K

�
j

K � 1 ;

which is strictly increasing in j, so minj � (j;�K) = s2 � �s1 = �K ; ii) when J = 2K � 1,

� (j) =
2

J
�
�
�sj � sj+1

�
=
2

J
�
�
2

J
��K

�
(K � j)
2 (K � 1)

�
2K � 1
K � 1 j � 1

�
;

which is again strictly increasing in j, so minj � (j) = s2 � �s1 � �K .
At this stage, we have shown that f (P J) < 0 for any given n, and that P J < �PJ by

construction. Next we will show that, when n is su¢ ciently large, f
�
�PJ
�
> 0.

Lemma 17 There exists an �NJ 2 Z+ such that for any n � �NJ , f
�
�PJ
�
> 0.

Proof. From (17), the partition of �PJ is fully determined by ��K . And it is easy to show

that, in partition �PJ ,

min
j

�
��2j � ��2j+1

�
= ��2K�1 � ��2K = � (J)

�
2 ��K + � (J)

�
= �

�
��K
�
> 0:

As E~�2:n (s) uniformly converges to 0 (Lemma 7), there exists a �NJ 2 Z+ such that for
any n � �NJ , 0 < E~�2:n (s) < 1

12�
�
��K
�
for all s 2 [0; 1]. Therefore, for n � �NJ , and

8j = 1; 2; � � � ;K � 1;

fj
�
�PJ
�
=
�
�2j � �2j+1

�
�
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
>
1

12
�
�
��K
�
� 1

12
�
�
��K
�
= 0;

and hence, f
�
�PJ ;n

�
> 0.

So far we have shown that, for the two particular partitions P J and �PJ , by construction

P J < �PJ , and when n is large enough, f (P J) < 0 < f
�
�PJ
�
. To prove the existence of

an m-PBE, we next show that, when n is su¢ ciently large, there exists an equilibrium

partition, denoted by P �J , such that P J < P
�
J <

�PJ and f (P �J ) = 0. Here we apply the
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IVT for semi-continuous functions de�ned on partial order sets (Guillerme,1995). The

theorem is quoted as below

Theorem 18 (IVT, Guillerme, 1995) Let h := (hi)i2I be a function from an interval

of [u;v] in RI with u � v. Suppose that, for each i in I and each x in [u;v], the following
properties are ful�lled:

(1) the function hi (�; x�i) is upper semi-continuous on the right on [ui; vi];
(2) the function hi (�; x�i) is lower semi-continuous on the left on [ui; vi];
(3) the function hi (xi; �) is nonincreasing on [u�i;v�i].
Then the interval [h (u) ;h (v)] is contained in the set h ([u;v]).

Compared with the standard IVT theorem for real-valued function, the IVT theorem

for vector-valued functions not only requires the continuity of the function, but imposes

some monotonicity restrictions on its element functions. We will show that these condi-

tions are all naturally satis�ed in our model, and we have the following existence theorem.

Theorem 19 (Existence Theorem) For any J 2 Z+, there exists a minimum number

of bidders, N (J), such that for any n � N (J), a m-PBE can be supported by a J-

partition.

Proof. As shown above, the set of J-partitions, PJ , is a convex hull in RK+ and therefore
connected. Next, for the de�ned vector-valued function f : PJ �! RK�1, its jth element

fj (PJ) =
�
�2j � �2j+1

�
�
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
; j = 1; 2; � � � ;K � 1;

is continuous in PJ and thus conditions (1) and (2) of Guillerme (1995)�s IVT Theorem
are satis�ed. And by construction, we know P J < �PJ and, for any n � �NJ ,

f (P J) < 0 < f
�
�PJ
�
:

We next show that, when n is su¢ ciently large, the monotonicity condition of (3) is

satis�ed. First, @fj
@sj+1

= �1
6�j+1�

1
2

@E~�2:n(�j)
@�j

< 0 as E~�2:n (s) is increasing in s. Second,

@fj
@sj�1

= �1
6
�j +

1

2

@E~�2:n
�
�j
�

@�j
;

where the �rst term is negative and the second is positive. We already know from (18) in

Lemma 15, that, for any partition PJ 2
�
P J ; �PJ

�
, �j = sj�sj�1 � ��K > 0. Furthermore,

as E
h
~�2:n

�
�j+1

�
� ~�2:n

�
�j
�i
uniformly converges to 0 (Lemma 10), then there exists an

N
�
��K
�
such that for any n � N

�
��K
�
,
@E~�2:n(�j)

@�j
< 1

3
��K , and thus

@fj(PJ )
@sj�1

< 0. Let

N (J) = max
�
�NJ ; N

�
��K
�	
. Then for any n � N (J), conditions (1), (2) and (3) of the

IVT are all satis�ed, and there exists an equilibrium partition P �J 2
�
P J ; �PJ

�
, such that

f (P �J ) = 0:
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And a message-only informative equilibrium can be supported by a partition of P �J .

Therefore, we can always �nd an informative equilibrium for given partition degree J ,

as long as the number of bidders is su¢ ciently large. The intuition is that, with increasing

number of bidders, the di¤erences in popularity, measured by E~�2:n (s), across di¤erent
product attributes converge to zero (Lemma 10), and it becomes easier for the seller to

adjust signal precision, measured by �2j , to get the equal revenue condition of (13) to be

satis�ed. In the limit, when the number of bidders converges to in�nity, the di¤erences

in popularity across product attributes converge to 0, and the equilibrium partitions will

converge to partitions where all the signals are of the same level of precision. And the

following corollary shows that, with increasing n, the equilibrium partitions P �J (n) will

get smaller and smaller, and gradually converge to the equal partition of P J .

Corollary 20 For given n, if a m-PBE J-partition exists, denote as P �J (n), then for any
n0 > n, there also exists a m-PBE J-partition, denoted as ~P �J (n

0). Moreover,

P J < ~P �J
�
n0
�
< P �J (n) ;

and limn!1 P �J (n) = P J .

Proof. Suppose in a n bidder auction, the J-partition of P �J (n) = (s�1; s
�
2; s

�
3; � � � ; s�K)

supports a m-PBE. Then we have, for any j = 1; 2; � � � ;K � 1

fj (P
�
J (n)) =

�
�2j � �2j+1

�
�
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
= 0:

For n0 > n, in the same J-partition P �J (n), we have

fj
�
P �J
�
n0
��

=
�
�2j � �2j+1

�
�
h
E~�2:n0

�
�j+1

�
� E~�2:n0

�
�j
�i

>
�
�2j � �2j+1

�
�
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
= 0;

because E~�2:n
�
�j+1

�
� E~�2:n

�
�j
�
is strictly decreasing in n, from Lemma 4. Therefore,

f (P �J ) > 0, and we still have f (P J) < 0. By applying the IVT on poset again, it follows

that there exists a J-partition ~P �J (n
0) 2 [P J ; P �J (n)] such that f

�
~P �J (n

0)
�
= 0. The

convergence result of limn!1 P �J (n) = P J is self-evident, given the property in Lemma

10 that limn!1
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
= 0.

The corollary shows that, when the number of bidders increases, the equilibrium par-

tition ~P �J (n) gets smaller and smaller, and gradually converges to the equal partition of

P J when n converges to in�nity. The intuition is straightforward. For an equilibrium

partition, we know from (13) that all the interim expected revenues are equal, which are

jointly determined by signal precision �2j and E~�2:n
�
�j
�
. With increasing n, the di¤er-

ences in E~�2:n
�
�j
�
�s across di¤erent messages converge to 0 (Lemma 10), and therefore the

di¤erences in signal precision also need to decrease, such that the equal revenue condition

continues to be held in the new equilibrium ~P �J (n
0). In consequence, with increasing n, the

equilibrium partitions become smaller and smaller and under assumption A3, converge to

the equal partition of P J .
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Another result is that, when the number of bidders is given, the maximum possible

degree for an m-PBE partition is bounded above. This result, as Corollary 13, also

implies that full information disclosure is not achievable in an m-PBE, when the number

of bidders is given. Formally, the result is as below.

Corollary 21 For given n, there exists a maximum degree for m-PBE partitions, denoted
as �J (n). Furthermore, �J (n) is nondecreasing in n.

Proof. The �rst part is just the contrapositive of the existence theorem, and the second
part is implied by Corollary 20.

Corollary 21 shows that for given n, there exists an upper bound for the possible

degree of m-PBE partitions. On the other hand, the Existence Theorem above shows

that, for given J , there exists an equilibrium J-partition as long as the number of bidders

n is su¢ ciently large. Next, we will show that, for given n, if there exists an equilibrium

partition of degree J , then for any positive integral J 0 < J , there also exists an equilibrium

partition of degree J 0. The proof is similar as before, we �rst show that for J 0 = J � 1 or
J�2, there exists an equilibrium J 0-partition, and then the result is proved by mathematics
induction.

As before, we construct two particular partitions, P J 0 and �PJ 0 , where P J 0 is an equal

partition of degree J 0. Let P �J = (s
�
1; s

�
2; � � � ; s�K) be an equilibrium partition when there

are n bidders, and �PJ 0 is constructed as follows. First, for J 0 = J�2, �PJ�2 is constructed
by removing the two cutting points of �s�1, and it is easy to show that P J�2 < �PJ�2.

Second, for J 0 = J�1, there are two possible cases: i) if J = 2K, then �PJ�1 is constructed
by removing the cutting point of s�0 = 0; ii) if J = 2K � 1, then �PJ�1 is constructed by

removing the two cutting points of �s�1 and introducing a new cutting point of s�0 = 0. It
is clear that P J�1 < �PJ�1 in both cases.

Proposition 22 For given n, if there exists a m-PBE partition of degree J , then for any
J 0 < J , there also exist an equilibrium partition of degree J 0, denoted as P �J 0. Furthermore,

P J 0 < P
�
J 0 <

�PJ 0.

Proof. For J 0 < J , we de�ne the vector-valued function, f : PJ 0 �! RK0�1, with its jth

element being

fj (PJ 0) =
�
�2j � �2j+1

�
�
h
E~�2:n

�
�j+1

�
� E~�2:n

�
�j
�i
;

for j = 1; 2; � � � ;K 0 � 1. We also denote the two particular partitions by P J 0 and �PJ 0

respectively. As before, P J 0 is the equal partition of degree J
0, and it is clear that

f (P J 0) < 0. We will consider the cases of J 0 = J � 2 and J 0 = J � 2, and �PJ 0 will be

constructed in the following way.

Let P �J = (s
�
1; s

�
2; s

�
3; � � � ; s�K) be the equilibrium J�partition when there are n bidders,

and denote the corresponding conditional means and variances under mj by �2j and �j
respectively. In the �rst case of J 0 = J � 2, �PJ�2 is constructed by removing the cutting
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point of s�1, and therefore �PJ�2 = (�s1; �s2; � � � ; �sK�1) = (s�2; s
�
3; � � � ; s�K). It then follows

that
f1
�
�PJ�2

�
=
�
��21 � ��22

�
� E

h
~�2:n (��2)� ~�2:n (��1)

i
=
�
��21 � �22

�
� E

h
~�2:n (�2)� ~�2:n (��1)

i
>
�
�21 � �22

�
� E

h
~�2:n (�2)� ~�2:n (�1)

i
= 0;

as ��21 > �21 and ��1 > �1. And for other j > 1, fj
�
�PJ�2

�
= 0 as P �J is an equilibrium

partition. Therefore, f
�
�PJ 0
�
� 0.

In the second case of J 0 = J � 1, if J = 2K, then the partition �PJ 0 is constructed by

removing the cutting point of s�0 = 0 in P
�
J , and we then have

�PJ�1 : �1 = �s�K < � � � < �s�1 < s�1 < � � � < s�K = 1:

In this new partition of �PJ�1, ��1 = 0 and

E~�2:n (��K)� E~�2:n (��1)
= E~�2:n (��K)� E~�2:n (�1) + E~�2:n (�1)� E~�2:n (��1)
< 2E

h
~�2:n (�K)� ~�2:n (�1)

i
(E~�2:n convex in � & ��K � �1 > �1)

= 2
�
�21 � �2K

�
(��K = �

�
K & P �J is equilibrium partition)

<
�
��21 � �2K

�
(��21 = 4�

2
1 & �

2
1 > �

2
K)

and thus f1
�
�PJ�1

�
> 0. Similarly, from the equilibrium condition, we have for j > 1,

fj
�
�PJ�2

�
= 0, and therefore f

�
�PJ 0
�
� 0 as before. Following the similar reasoning,

we can also show that it is also true for the case of J = 2K � 1. Therefore, we have

P J 0 < �PJ 0 , f (P J 0) < 0 and f
�
�PJ 0
�
� 0 for J 0 = J � 1 and J � 2. By the Intermediate

Value Theorem, there exists a partition of degree J 0, P �J 0 , such that f
�
P �J 0
�
= 0. Finally,

by mathematical induction, we get the result.

5.4 Optimal Disclosure Policy

We next investigate the optimal disclosure policy for the seller. We know that in a

m-PBE, all the interim expected revenues are equal, and therefore the ex ante expected

auction revenue in equilibrium is just equal to the interim ones. We denote the ex ante

expected auction revenue in a J-degree m-PBE partition equilibrium by R (J).

The �rst question is when revealing information would be pro�table, if compared with

revealing no information at all. In our model, when the partition degree J = 1, it is

equivalent to revealing null information. The question is then when R (J) > R (1) for

J � 2. The advantage of withholding information is that it won�t change bidders�ex ante
expectation of the product attribute, which is 0, the most popular attribute. However, not

revealing product information also implies that bidders face the largest risk of mismatch

between their tastes and the exact product attribute. So the combined e¤ect on expected

auction revenue is mixed. The result below shows that, when the number of bidders is

large enough, it is pro�table for the seller to reveal product information.
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Lemma 23 There exists a N̂ such that, for any n � N̂ , revealing product information

generates higher expected auction revenue than withholding information.

Proof. When there�s no information disclosure, J = 1 and the mean and variance of the
product attribute in this case is � = 0 and �2 =

R 1
�1 x

2dG (x). Therefore, the expected

revenue is

R (1) = V � �
h
�2 + E~�2:n (0)

i
:

We just need to show that a symmetric partition of J = 2 generates higher expected

revenue than R (1) when n is large enough. When J = 2, then the conditional mean and

variance of product attribute is �1 =
R 1
0 xdG (x jx � 0) > 0 and �

2
1 =

R 1
0 x

2dG (x jx � 0)�
�21 < �

2. And the expected revenue is

R (2) = V � �
h
�21 + E~�2:n (�1)

i
:

As E
h
~�2:n (�1)� ~�2:n (0)

i
uniformly converges to zero from Lemma 10, then there exists

an N̂ such that, for any n � N̂ , 0 < E
h
~�2:n (�1)� ~�2:n (0)

i
< �2� �21, which implies that

R (2) > R (1).

When both G (s) and F (�) follow uniform distribution on S, it follows that N̂ = 3.

So in this case, when n � 3, it is better for the seller to reveal product information to the
bidders, rather than withhold it. A related yet di¤erent result is reported in Board (2009),

in a reduced-form model. Board (2009) shows that, when bidders�valuation distribution

is symmetric, the seller is indi¤erent between revealing product information or not when

n = 3. This is because, when n = 3, the expectation of the second highest valuation

is just equal to the ex ante expectation of bidders�valuations, and as a result, revealing

information has no impacts on expected auction revenue. The uniform example of our

model shows that, in contrast, when n = 3, the seller strictly prefers revealing product

information, rather than not.

We next turn to a general result of the optimal disclosure policy. The existence

theorem states that, for any given J 2 Z+, there exists an equilibrium partition of degree

J , as long as the number of bidders, n, is su¢ ciently large. On the other hand, for given

n, there exists a maximum degree for equilibrium partition, denoted as �J (n), and for any

partition degree J 0 � �J (n), there also exists an equilibrium partition of degree J 0. And
�J (n) is non-decreasing in n.

Roughly speaking, a higher degree equilibrium partition corresponds to �ner partition

of the attribute space, and thus more precise signals. And more precise signals correspond

to smaller conditional variances of the product attribute, which raise bidders�posterior

valuations. For given n, let J� (n) denote the optimal degree of m-PBE partitions,

at which the seller achieves the highest ex ante expected auction revenue. Obviously

J� (n) � �J (n). The following result shows that when n is large enough, J� (n) = �J (n).

Theorem 24 When n is large enough, the optimal degree of m-PBE partition J� (n) is
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equal to the maximum possible degree of m-PBE partitions, that is,

J� (n) = �J (n) (19)

Proof. For given n, let us consider two degrees of equilibrium partitions, Ĵ and �J (n)

with Ĵ < �J (n). In equilibrium partition P ��J , the minimum length of its subintervals is

� �K =
��1� s �K�1��, where �J = 2 �K or 2 �K � 1. Obviously, � �K < 2= �J , and the ex ante

expected auction revenue is equal to

R
�
�J
�
= V � �

�
1

12
�2�K + E~�2:n (� �K)

�
:

In equilibrium partition P �
Ĵ
, the maximum length of its subintervals is �1 = ~s1 if Ĵ = 2K̂,

or �1 = 2ŝ1 if Ĵ = 2K̂ � 1. And we have �1 > 2=Ĵ as well, and the ex ante expected

auction revenue is equal to

R
�
Ĵ
�
= V � �

�
1

12
�21 + E~�2:n (�̂1)

�
;

and we get

1
�

h
R
�
�J (n)

�
�R

�
Ĵ
�i

=
h
1
12�

2
1 + E~�2:n (�̂1)

i
�
h
1
12�

2
�K
+ E~�2:n (� �K)

i
> 1

3

�
1
Ĵ2
� 1

�J2

�
� E

h
~�2:n (� �K)� ~�2:n (�̂1)

i
;

which is strictly positive for su¢ ciently large n, as E
h
~�2:n (� �K)� ~�2:n (�̂1)

i
uniformly

converges to 0 when n converges to in�nity.

The result states that, when n is large enough, it is optimal to select the disclosure

policy corresponding to the largest possible degree of equilibrium partitions, that is, �J (n).

The intuition behind this result is similar to that behind the Existence Theorem. When

the number of bidders increases, the di¤erence in popularity across di¤erent product at-

tributes becomes more and more negligible, and signal precision becomes the principle

determinant for auction revenue. In this case, it is better to provide more precise product

information to the bidders.

We already know that �J (n) is non-decreasing in n. Then the optimal disclosure policy

then shows a complementarity relationship between the number of bidders and the degree

of optimal equilibrium partitions. Roughly speaking, it implies that when the number of

bidders increases, it is better to reveal more precise production information to the bidders.

This complementarity result looks similar to the results reported in Ganuza (2004) and

Ganuza and Panelva (2010), who also �nd that when there are more bidders in an auction,

it is better for the seller to reveal more precise information. However, their results are

derived under the assumption of costly information, that is, it is more costly to reveal more

precise information. If information is costless, that complementarity result disappears,

and the optimal disclosure policy will again be extreme, just as in Lewis and Sappington

(1994), Johnson and Myatt(2006) in monopoly pricing, and Board (2009) and Hummel
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McAfee (2015) in auction context.

The requirement of n to be large enough is non-trivial, as it is possible for J� (n) < �J (n)

when n is small. One example is implied in the previous result of Lemma 23. For example,

under our symmetric setting, for any number of n, there always exists an equilibrium

partition of degree J = 2. If both F (�) and G (s) are uniform distributions, then when

n < 3, J� (n) = 1 from Lemma 23, which is strictly smaller than �J (n) = 2. Below we

provide a numerical example where both F and G are uniform.

Example 25 Suppose both product attribute and bidders� types are uniform distribution

on S = [�1; 1]. And we can derive the exact results on optimal and maximum equilibrium

partition degree, J� (n) and �J (n), following similar methods as in Example 15. We

conduct our calculation till n = 22, and the results are as follows

J� (n) =

8>>>>>>>>><>>>>>>>>>:

1 if n 2 f1; 2g
2 if n 2 f3; � � � ; 7g
3 if n 2 f8; � � � ; 11g
4 if n 2 f12; � � � ; 17g
5 if n 2 f18; � � � ; 21g
6 if n = 22

; �J (n) =

8>>>>>><>>>>>>:

2 if n 2 f1; 2 � � � ; 5g
3 if n 2 f6; � � � ; 11g
4 if n 2 f12; � � � ; 17g
5 if n 2 f18; � � � ; 21g
6 if n = 22

:

The numerical result shows that J� (n), the optimal degree of m-PBE partition, is non-

decreasing in n. And when n � 8, J� (n) = �J (n), as shown in Theorem 24. Figure 3.

below provides an illustration of the numerical results.

Figure 3. an Example of Optimal Information Disclosure

5.5 Informative Equilibria: with Reserve Prices

As shown in Corollary 13, in a standard auction without reserve prices, when n is given,

full information disclosure is not achievable in a m-PBE. Following a similar reasoning as

in Proposition 6, we next show that, if reserve prices are allowed, there full revealing can

be achieved in (m; r)-PBE. The intuition is that, with the additional price instrument,

the seller can adjust the reserve prices such that all the interim expected revenues be

equal. And that interim expected revenue is equal to that for the worst attribute (s = 1)
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with optimal reserve. A di¤erent result from Proposition 6 for VD products is that, in

this case of HD products, when n is su¢ ciently large, full revealing equilibrium generates

higher expected auction revenue than that for null information disclosure.

Proposition 26 For HD products and under cheap-talk, when setting reserve prices is

allowed in standard auctions,

i) There exist fully revealing (m; r)-PBE;

ii) If n is su¢ ciently large, full revealing (m; r)-PBE generates higher expected auction

revenue than null disclosure.

Proof. i) The extreme attribute of s = 1 is the worst attribute, let r� (1) be the seller�s
optimal reserve price for that attribute. For any other attribute s0 2 S, there exists

a reserve price r (s) such that R (1; r� (1) ; 1) = R (s0; r (s0) ; s0), which is always possible

as R (1; r� (1) ; 1) � R (s0; r� (s0) ; s0) and limr(s0)!V R (s0; r (s0) ; s0) = 0. ii) Under null

disclosure, the expected second highest valuation of the bidders is V � �
h
�2 + E~�2:n (0)

i
which is bounded below V � ��2. Under full information disclosure, the expected second
highest valuation of the worst attribute s = 1 is V � �E~�2:n (1). When n ! 1, V �
�E~�2:n (1) converges to V with probability 1, and therefore, in an auction with optimal

reserve prices, full revealing equilibrium generates higher expected revenue than that of

null disclosure.

6 Horizontally Di¤erentiated Products: Truthful Disclosure

For horizontally di¤erentiated products, we now turn to the case where the seller is com-

mitted to truthful information disclosure. Similar questions have been studied in Ganuza

(2004), Board (2009), Ganuza and Penalva (2010) and Hummel and McAfee (2015), but

the key di¤erence here is that we re-investigate it in a model with endogenous valuations

of the bidders. Our main result is that, in this case of full commitment, when n is large

enough, it is optimal for the seller to reveal full information.

When the seller is committed to a preset disclosure rule, such as (7), the incentive

compatible of (4) at the interim stage is absent in equilibrium. The seller�s problem is

thus to maximize the ex ante expected auction revenue R (J) which is

R (J) =
JX
j=1

Pr (mj)R (mj) = E ~m [R (m)] ; (20)

where ~m is the random variable of signal and m is its typical realization.

Proposition 27 For HD products and under truthful disclosure, when n is su¢ ciently

large, full information disclosure is optimal.

Proof. Applying the rule of total variance, we have

Var (~s) = Var ~m [E [~s j ~m ]] + E ~m [Var (~s j ~m)] = Var ~m [~�] + E ~m
�
~�2
�
;
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where ~� = E (~s j ~m) and ~�2 = Var (~s j ~m), and Var ~m [~�] = E ~m
�
~�2
�
. Therefore,

E ~m
�
~�2
�
= Var (~s)� E ~m

�
~�2
�
:

Substituting back to the expression of R (m) in (11), we then have

R = E ~m [R (m)] = V � �E ~m
�
~�2 + E~s [�2:n (~�)]

�
= V � �Var (~s) + �E ~m

�
~�2 � E~s [�2:n (~�)]

�
:

As limn!1 E~s [�2:n (s)] = 0 uniformly, then the function s2 � E~s [�2:n (s)] is convex when
n is su¢ ciently large. And from Jasen�s inequality, R achieves its maximum under full

revealing, when n is su¢ ciently large.

This result of full information disclosure is also reported in Board(2009) and Ganuza

and Penalva (2010) in the reduced-form models, where there is no explicit matching be-

tween preference and product attribute. It is also worth noting that the result of full

disclosure in our model does not depend on the speci�c format of disclosure rules, whether

it is partition or not. We next prove a convergence property of the optimal partition P̂ �J ,

as below.

Proposition 28 For HD products and under truthful disclosure, when n!1, the opti-
mal partition of P̂ �J satis�es

ŝ�j =
1

2

�
�̂j + �̂j+1

�
; for j = 1; 2; � � � ;K � 1:

Speci�cally, when G (s) is uniform, limn!1 P̂ �J = P J .

Proof. We have, when n converges to in�nity,

lim
n!1

[Pr (mj)R (mj) + Pr (mj+1)R (mj+1)]

= (G (sj+1)�G (sj�1))V � �
"Z sj

sj�1

�
x� �j

�2
g (x) dx+

Z sj+1

sj

�
x� �j+1

�2
g (x) dx

#
:

Furthermore, as limn!1R (mj) = V � ��2j uniformly, then limn!1 @R
@sj

= @
@sj
[limn!1R].

It follows that the �rst order condition

�1
�
lim
n!1

@R

@sj
=
h�
sj � �j

�2 � �sj � �j+1�2i g (sj) = 0:
As g (sj) > 0, we then get 2ŝ�j = �̂j + �̂j+1. It is easy to show that ŝ

�
j � 1

2

�
ŝ�j�1 + ŝ

�
j+1

�
under A2. Finally, when G is uniform, �j =

1
2 (sj�1 + sj) and the optimal partition P̂

�
J

then converges to equal partition.
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7 Concluding Remarks

This paper contributes to a large existing literature on information disclosure in auctions

but it is among the �rst, and only, to study cheap talk information disclosure (Li (2012)).

We investigate how an informed seller may reveal information to bidders through parti-

tional cheap-talk, prior to a standard auction. We show that this cheap sales talk has

quite di¤erent implications for VD and HD products. In the case of VD products, we

re-examine the general symmetric model of MW (1982) and con�rm that seller optimal

cheap talk equilibria convey no information to bidders whether or no sellers may also set

reserve prices.

In the case of HD products, we prove that, for given partition degree J , a message-

only informative equilibrium can always be supported by a partition of degree J , as long

as the number of bidders is su¢ ciently large. On the other hand, we also show that,

for given number of bidders n, there exists a maximum partition degree �J (n), below

which a message-only informative equilibrium can be supported, and that �J (n) is non-

decreasing in n. Equilibria have the feature that more precise information is revealed for

less popular product attributes. We show that the seller optimal disclosure policy displays

a complementarity between the number of bidders and the optimal amount of product

information disclosed to the bidders.

We also consider the impacts of setting reserve prices on the equilibrium outcomes,

and show that in contrast to the case of VD products, a full-revealing equilibrium for

HD products can result in higher revenue level than null information with optimal reserve

price, as long as the number of bidders is su¢ ciently large.

The paper also introduces what might prove to be a useful methodological tool: in

the proof of the existence theorem, we adopt the Intermediate Value Theorem de�ned on

partially ordered sets (Guillerme, 1995), rather than a �xed point theorem.
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