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Abstract

For Traveler�s Dilemma and Minimal E¤ort Coordination games, the unconditional

regret matching (URM) procedure predicts outcomes close to the experimental ones.

This supports a claim that the URM procedure can be well suited to predict the

behavior of experimental subjects in repeated games.
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1 Introduction

We argue that the behavior of experimental subjects in a repeated game can be viewed as a

consequence of following the URM procedure proposed in Hart and Mas-Colell (2000, 2001),

hereafter HM1.

We implement URM in a repeated Traveler�s Dilemma game (TDG) originating in Basu

(1994) and a Minimum E¤ort Coordination game (MECG) introduced in Van Huyck et al.

(1990) to match the experimental outcomes in Capra et al. (1999) (CGGH) and Goeree

and Holt (2005) (GH). Both games belong to the �little treasures of game theory�(Goeree

and Holt, 2001) and they have been extensively studied in the literature; see Anderson et

al. (2001), Rubinstein (2006) and Eichberger and Kelsey (2011) among others. In Goeree

and Holt (2001), experiments show that outcomes can be highly sensitive to the change in

payo¤ structure which can produce outcomes at odds with the prediction of the Nash equi-

librium. Standard explanations of deviations from the Nash equilibrium are the Quantal

�vladislav.damjanovic@durham.ac.uk
1See also Young (2007).
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Response Equilibrium (McKelvey and Palfrey,1995) and k-level bounded rationality (Stahl
and Wilson, 1995) among others. Eichberger and Kelsey (2011) show that the experimen-
tal outcomes of treasure games may be a consequence of experimental subjects perceiving

opponents�behavior as ambiguous.

We show that in the short run, the URM procedure predicts outcomes close to the

experimental ones evidenced in CGGH and GH. In case of TDG, the game departure from

a Nash equilibrium is temporary since in the long run, and irrespective of cost, the joint
play converges to the unique Nash equilibrium. In the case of the MECG, the joint play

converges to Nash equilibria that are inversely related to the cost parameter. We also discuss

dynamics of joint play towards equilibrium induced by URM with bounded memory (see

Saran and Serrano, 2013).

2 Regret Matching

Following HM (2001), consider a particular player i from a group of players N = f1; 2; ::ng
engaged in a game against her opponent(s), playing an action sit 2 S at time t. Let

uit =
1
t

P
t0�t u

i
t0(s

i
t0 ; s

�i
t0 ) be the realized average payo¤ she received up to time t given the

history hit :=
��
sit0 ; s

�i
t0

�
; t0 = 1; 2; ::; t

�
which is a collection of her own actions and the actions

of her opponents denoted by s�it0 : Let u
i
t(s) =

1
t

P
t0�t u

i
t0(s; s

�i
t0 ) be the average payo¤ she

would receive had she played constant action s in all periods t0 � t and all other players

played as they did. Then

rt(s) = ut(s)� ut (1)

is her unconditional regret of not playing action s: URM prescribes playing each action s

in the next period with a probability proportional to the positive part of its unconditional

regret:

pt+1(s) = [rt(s)]+ =
X
s0

[rt(s)]+ : (2)

In the long run, URM leads to no-regret for all players, and their joint actions converge to the

set of coarse-correlated equilibria CCE (Moulin and Vial, 1978; Hart and Mas-Colell, 2000;

Young, 2004). For a two-player game, CCE is a joint probability distribution P = (ps;s0)

over S1 � S2 if

X
(s1;s2)2S1�S2

u1(s
1; s2)ps1s2 �

X
(s1;s2)2S1�S2

u1(x
1; s2)ps1s2 ; for all x

1 2 S1 (3)

X
(s1;s2)2S1�S2

u1(s
1; s2)ps1s2 �

X
(s1;s2)2S1�S2

u2(s
1; y2)ps1s2 ; for all y

2 2 S2:
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3 TD Game

Similar to CGGH, the actions are integers from 80 to 200; i.e. si 2 S := f80; 81; :::199; 200g
and N = f1; 2; ::; 10g: The ith player�s payo¤ function is:

ui(si; sj) = min(si; sj) + C � sign(sj � si); (4)

with i; j 2 N; i 6= j. For any value of punishment/reward parameter C > 1 claiming

the minimal amount, s� = 80 is a unique Nash equilibrium. The experimental outcomes

(CGGH) presented in Figure 1 show an inverse relationship between average claim and

parameter C:

The sequences of players�claims in period t; fs1t ; s2t ; ::; s10t g are generated by URM and

the average claim is st = (1=n)
Pn

i=1 s
i
t; to which we refer as the claim in period t. Initially,

si0; i = 1; 2::; 10 are uniformly drawn from S: In each subsequent round, t = 1; 2; ::; T players
are randomly (uniformly) matched and their payo¤s are calculated by (4). Then, given a

history hit; action s
i
t+1 2 S is played with a probability prescribed by (2). The expected

claims averaged over N = 1000 simulations for 10 rounds exhibit an inverse relationship

with C as shown in Figure 1.

For intermediary values of the punishment parameter C, the last period claims reported

in CGGH are inside 95% con�dence intervals. As C increases, the con�dence intervals move

downward, indicating an inverse relationship between the average claim and C: To produce

a better match with experimental outcomes, one can use generalized regrets (Hart and
Mas-Colell, 2001) to transform positive regrets di¤erently across players and actions.

The convergence to equilibrium is illustrated by averaging over N simulated claims2 at

period T for each C = 5 : 5 : 80. As shown by simulations (left-hand panel in Figure 2), the

expected claims are not only decreasing in costs but they also decline with T and converge

to the unique Nash equilibrium s� = 80. Moreover, for each value of C, the claim per period

rests at the Nash equilibrium in a �nite time T inversely related to C:

Evolutions of expected claims (averaged over 200 simulated paths) for di¤erent C (Figure

2) show that: (i) for all t, there is a strict ordering of average paths preserving the inverse

relationship between the expected claims and punishment C and (ii) there is a critical C�

so that all paths corresponding to C < C� are non-monotonic, and all paths with C � C�

are monotonically decreasing.

4 Minimum-E¤ort Coordination Game

In MECG, N = f1; 2; ::; 10g and actions (e¤orts) of player i; si 2 S := f110; 111; :::169; 170g
are chosen as in GH. The payo¤ function is:

2Initially, N is chosen to be larger to obtain a smoother distribution of claims.
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Figure 1: Expected claims (bold line) for di¤erent costs C with 95% (grey area) and 99% (between
dashed lines) con�dence intervals. Data from CGGH are presented by circles.
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Figure 2: Average claims in period T and their evolutions in time.

ui(si; sj) = min
�
si; sj

�
� csi; (5)

with i; j 2 N; and the cost per unit of e¤ort c < 1: In this game, any common e¤ort s is a
Nash equilibrium.

We focus on the dynamics of e¤ort in round t; de�ned as st = (1=N)
PN

i=1 s
i
t . The initial

e¤orts are uniformly drawn from S: In round t+ 1; given histories hit, actions s
i
t+1 2 S are

played with probabilities proportional to their unconditional regrets calculated by (1) and

(5).

In Figure 3, the expected e¤orts for low and high values of c are presented together with
experimental ones (GH) averaged across three di¤erent laboratory sessions. In line with the

risk-dominance criterion,3 there is an inverse relationship between equilibrium e¤orts and

costs. In equilibrium, all players coordinate on the same action after some rounds as shown

in the left-hand panel of Figure 4.

To learn more about convergence to equilibrium and equilibrium selection, we calculate

an average e¤ort for N = 100 simulations for di¤erent c at periods T = 10; 500; 1000 (right-

hand panel of Figure 4). Convergence to the limiting average e¤ort is clearly established

as the di¤erence between average e¤orts in T = 500 (red line) and T = 1000 is negligible.

The equilibrium e¤ort is a strictly decreasing function of the cost parameter in some range

of intermediary values of c. The highest e¤ort is selected for some range of the lowest

3A unilateral increase for e = 1 will lead to a decrease in the payo¤ for the amount c while a
unilateral decrease for e = 1 will lead to a decrease in the payo¤ for the amount 1� c: Like in a 2x2
game when c < (>)1=2; choosing a higher (lower) e¤ort is a risk dominant action (see HG, 2005).
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Figure 3: Expected e¤orts (averaged over 1000 simulations) during the �rst ten periods with 95%
(grey area) and 99% (dashed lines) con�dence intervals. Experimental data from GH are presented
by dots.

Figure 4: Evolutions of e¤orts and convergence to equilibria.
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values of c, while the lowest e¤ort is selected for some range of highest cost values, which

partly conforms with the equilibrium prediction based on maximization of potential4 which

is supported in an experiment by Van Hyick et al. (1990).

5 URM with Finite Memory

As in Saran and Serrano (2012), we introduce bounded memory in the player�s strategy
assuming that she remembers the last m � 1 rounds, so that (1) becomes

rmt (s) =
1

m

tX
t0=t�m+1

�
uit0(s; s

�i
t0 )� uit0(sit0 ; s�it0 )

�
for all t � m (6)

with the initial history being generated by URM

rmt (s) =
1

t

tX
t0=1

�
uit0(s; s

�i
t0 )� uit0(sit0 ; s�it0 )

�
for all t < m: (7)

Evolutions of expected actions (averaged over N = 200) for both games with di¤erent

initial conditions, costs, and memories are shown in Figure 5. To check for the robustness of

our results with respect to the initial conditions, we choose the initial distribution of claims
f3; [80; ::; 194]; 7; [195; ::; 200]g by uniformly drawing 3 claims from [80,..,194] and 7 claims

from [195; ::; 200]5. The bold black line in the left-hand panel provides a simulation for TDG

with C = 5.

Expected claims with �nite memories m = 100; 50; 20 converge faster to the Nash as

compared to the unbounded memory case. The shorter the memory, the faster is the
convergence. However, by further decreasing the memory, the memory would, at some

point, be insu¢ cient to learn Nash and the dynamics could exhibit cycle-like behavior as
for m = 9 (red line). The exemption is m = 1; where we have convergence to the Nash6:

Simulations show that for small C initially the learning process goes towards higher

claims until the information content (history) is su¢ cient for URM to learn �right�direction.

Necessary conditions for that to happen are that the initial claims should not be �too close�

in action space and that the memory should not be too short, i.e. m > 1. For example,

for degenerate distributions si0 = 180; i = 1; ::; 10; and distributions with initial claims in

a small vicinity of either boundary, the non-monotonicity disappears. Further simulations

indicate that the non-monotonicity of average claims for small costs is robust with respect

to the wide range of initial conditions.

4Maximization of the potential will select 170 for all c < 1=2; 110 for all c > 1=2, while for c = 1=2,
any equilibrium e¤ort can be selected (Monderer and Shapley, 1996).

5In Rubinstein (2005), aggregated data show that in one-shot TDG, 70% of the claims were in
close vicinity of the maximal claim.

6It can be shown that when m = 1, the average claims decrease: st � st�1.
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Figure 5: Evolutions of expected claims (C = 5) and expected e¤orts (c = 0:01; 0:08)

For MECG, the expected e¤orts are shown in the right-hand panel of Figure 5. Here,

shortening the memory does not accelerate the convergence to the Nash as shown for the

distribution of initial e¤orts f10; [110; 111]g with c = 0:01 and memories m = 1; 10 (black

lines) as compared to the unbounded memory case (black bold line). However, for c = 0:8
and initial distribution of claims f2; [110; ::; 115]; 8; [165; 170]g, shortening the memory m =

5; 15 (red broken lines) accelerates the convergence to the Nash.

Our simulations suggest that URMwith a �nite memory may converge to a CCE di¤erent

from Nash. For related results with �nite memory in conditional regret matching, see Saran
and Serrano (2006). It would be desirable to get a full characterization of CCEs. Below,
we describe one subset of CCE for TDG.

Proposition 1 In a TD game with B � A � C > 1, the following joint probability distrib-
ution represents the CCE equilibrium

pzz = p; pyy = 1� p:

where y � z + C; (1� p)(y � z) � C � 1; p � C�1
2C�1 ;

Proof. Following (3), we need to show that when Player 1 commits to follow the mediator�s

advice before it has been seen, the unconditional expectation of her payo¤ is at least as high

as her expected payo¤s from playing any other strategy provided that her opponent commits.
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Since the game is symmetric, we consider one player with the unconditional expected payo¤
UCC = pz + (1 � p)y: i) Consider any strategy x; such that x < z: The expected pay o¤

is x + C; and to ensure that this strategy is not preferable, it must be pz + (1 � p)y >
z� 1+C � x+C , (1� p)(y� z) > C � 1: ii) For x = z; the payo¤ is pz+(1� p)(z+C),
and the necessary condition is pz + (1 � p)y > pz + (1 � p)(z + C) , y � z + C: iii) if

z < x < y; the necessary condition is pz + (1 � p)y > p(z � C) + (1 � p)(y � 1 + C) ,
p � C�1

2C�1 ; iv) if x � y, the necessary condition is always satis�ed.
The CCE may deliver a higher expected payo¤ for a lower C. The maximum UCC =

B � C + 1 + C�1
2C�1 is achieved when y = B; z = B � 2C + 2, p =

C�1
2C�1 and it declines in C.

6 Conclusion

In our setting, agents learn to play the Nash equilibrium and in contrast to CGGH and
GH, deviations from rationality are temporary. This is expected since TDG is a dominance

solvable and MECG is a potential game and, as pointed out in Hart (2005), there exist
adaptive heuristics that lead to Nash equilibrium. The initial conditions do not a¤ect the

equilibrium outcome, but can a¤ect the dynamics towards equilibrium.
Our simulations do also show that the nature of the equilibrium outcome in games with

�nite memory URM could be di¤erent from the case with in�nite histories. Shortening

memory may lead to Pareto improvement as in TDG. This should be further investigated.
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