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ABSTRACT 

Background: Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory diseases 

caused by demyelination and axonal damage in the central nervous system. Structural retinal 

imaging via optical coherence tomography (OCT) shows promise as a noninvasive biomarker for 

monitoring of MS. There are successful reports regarding the application of Artificial 

Intelligence (AI) in the analysis of cross-sectional OCTs in ophthalmologic diseases. However, 

the alteration of sub-retinal thicknesses in MS is noticeably subtle compared to other 

ophthalmologic diseases. Therefore, raw cross-sectional OCTs are replaced with multilayer 

segmented OCTs for discrimination of MS and healthy controls (HCs). 

Methods: To conform to the principles of trustworthy AI, interpretability is provided by 

visualizing the regional layer contribution to classification performance with the proposed 

occlusion sensitivity approach. The robustness of the classification is also guaranteed by 

showing the effectiveness of the algorithm while being tested on the new independent dataset. 

The most discriminative features from different topologies of the multilayer segmented OCTs are 

selected by the dimension reduction method. Support vector machine (SVM), random forest 

(RF), and artificial neural network (ANN) are used for classification. Patient-wise cross-

validation (CV) is utilized to evaluate the performance of the algorithm, where the training and 

test folds contain records from different subjects. 

Results: The most discriminative topology is determined to square with a size of 40 pixels and 

the most influential sub-retinal layers are the ganglion cell and inner plexiform layer (GCIPL) 

and inner nuclear layer (INL). Linear SVM resulted in 88% Accuracy (with standard deviation 

(std) = 0.49 in 10 times of execution to indicate the repeatability), 78% precision (std=1.48), and 

63% recall (std=1.35) in the discrimination of MS and HCs using macular multilayer segmented 

OCTs. 

Conclusion: The proposed classification algorithm is expected to help neurologists in the early 

diagnosis of MS. This paper distinguishes itself from other studies by employing two distinct 

datasets, which enhances the robustness of its findings in comparison with previous studies with 

                  



lack of external validation. This study aims to circumvent the utilization of deep learning 

methods due to the limited quantity of the available data and convincingly demonstrates that 

favorable outcomes can be achieved without relying on deep learning techniques. 

Keywords: multiple sclerosis, optical coherence tomography, interpretable Artificial Intelligence, 

generalizable, patient-wise cross-validation 

1. Introduction 

      Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the 

central nervous system (CNS) that causes progressive neurological disability over time. MS is 

determined by demyelination and neuro-axonal damage that results in tissue loss and progressive 

neurologic deficits [1]. While the most established method to monitor the degree of CNS damage 

in MS is magnetic resonance imaging (MRI) [2], MS leads to widespread changes in the retina 

and optic nerve, which may be assessed with optical coherence tomography (OCT) to obtain 

useful disease biomarkers [3,4]. OCT-derived imaging markers like peripapillary retinal nerve 

fiber layer thickness (pRNFL) and composite thickness of macular ganglion cell layer (GCL) and 

Inner plexiform layer (IPL) (named GCIPL) have been proposed as promising biomarkers for 

neurodegeneration [5,6]. Inflammatory disease activity may also lead to changes in inner nuclear 

layer thickness (INL) [6]. Layer thinning can be measured by aligning and subtracting retinal 

layer thicknesses from a normal healthy population [7,8]. 

      Artificial intelligence (AI) is a promising area of health innovation[9,10]. Its application in 

ophthalmology is also evident in analysis of different ocular images[11,12], with purpose of 

segmenting the retinal boundaries[13], discriminating different diseases [14,15] or interpretation 

of neurological diseases using quality control (QC) criteria[16]. Cross-sectional OCTs are 

successfully employed in AI for detection of ophthalmologic diseases. However, the alteration of 

sub-retinal thicknesses in MS are noticeably subtle to be diagnosed with raw cross-sectional 

OCTs. The other limitation of AI in medical applications is its black box nature which 

contradicts with interpretability in trustworthy AI. Furthermore, limiting the training and testing 

datasets to single clinical centers leads to less generalizable algorithms.  Finally, cross-validation 

(CV) in most of medical AI works is performed instance-wise, which overestimates algorithm 

prediction accuracy[17]. 

      Here we propose an AI method that aims to capture ultra-fine changes in retinal sub-layers 

by using multilayer segmented OCT. The method is interpretable using a novel proposed 

approach, which means regional layer contribution to classification performance is visualized 

using the proposed occlusion sensitivity approach. We test the trained model on an independent 

second dataset to show robustness. The patient-wise CV is used where the training and test folds 

contain eyes from different subjects; therefore, in testing stage, the performance is measured on a 

new subject whose data from the fellow eye has not been used for training. 

      By considering the mentioned concepts, feature selection from different topologies of 

multilayer segmented OCTs is done. We compare the performances of support vector machine 

(SVM), random forest (RF), and artificial neural network (ANN), and identify the most 

discriminative topology and the most influential sub-retinal layers. This study aims to obtain a 

classification algorithm using AI method based on changes in sub-retinal layers of OCT in the 

neurodegeneration process to help neurologists in the early diagnosis of MS disease. 
 

                  



2. Materials and Methods 

 2.1. Structure of the datasets 

 

Generalizable algorithms are of interest in medical AI, but when both training and testing 
datasets come from single clinical centers, attaining this goal cannot be evaluated. We therefore 
concentrate on two independent datasets with different devices in different countries to be used 
as separate training and testing datasets in measuring the robustness of the algorithm. 

 

 2.1.1. Charité dataset 
 

 The first OCT dataset is from the NeuroCure Clinical Research Center (NCRC) at Charité – 
Universitätsmedizin Berlin, Berlin, Germany. It consists of 422 HC and 106 MS OCTs from two 
multimodal register studies to evaluate quantitative measurements of neuro-axonal damage in 
MS. The OCT data in this dataset includes 40 to 51 B-scans with a size of 496 × (479 to 555) 
pixels for each B-scan. All OCT measurements were carried out with an Spectralis SD-OCT and 
Heidelberg Eye Explorer (HEYEX) version 5.7.5.0 by eight individual operators and an 
automatic real-time function for image averaging and an activated eye tracker in a dimly lit 
room. All scans were quality controlled according to the OSCAR-IB criteria [18,19]. 
Retrospective inclusion criteria for the study were participants in a healthy condition, aged 
between 18 and 70 years, Caucasian ethnicity, and high-quality macular OCT scans. Collecting 
this dataset was approved by the ethics committee of Charité - Universitätsmedizin Berlin and 
was conducted according to the Declaration of Helsinki in the applicable version. The macular 
OCT scans were produced from the device and stored in HEYEX vol file format and then a 
segmentation approach was carried out using a segmentation pipeline. All segmentation results 
were quality controlled and manually corrected [20]. Demographic features of the subjects in this 
dataset are summarized in Table 1. 

 

2.1.2. Isfahan dataset 
 

    The second OCT dataset is from the Kashani Comprehensive MS center in Isfahan, Iran, 
between April 2017 and March 2019 [21]. The images were obtained using Spectralis SD-OCT 
and Heidelberg HEYEX version 5.1 by one trained technician with an automatic real-time (ART) 
of 9 frames function for image averaging. All scans were checked for sufficient quality using 
OSCAR-IB criteria[18]  The dataset consists of 45 HC and 45 MS eyes. The automated 
segmentation was carried out using a graph-based method [22,23]. All segmentation results were 
quality controlled and manually corrected in case of errors by an experienced grader using 
custom-developed software [21,24]. However, because of using high-quality OCT images, the 
segmentation errors are not significant and in average, don’t have significant effect on 
classification results. Demographic and clinical features of the subjects in this dataset are 
summarized in Table 2.  

  

 2.1.3. Standardized quality control criteria 
 

OSCAR-IB criteria is a standard for quality assessment of OCT images based on manual 
evaluation by expert grader. Several indicators are considered as quality indicator, forming the 
abbreviation OSCAR-IB: (O) obvious problems, (S) poor signal strength, (C) centration of scan, 
(A) algorithm failure, (R) unrelated retinal pathology, (I) illumination and (B) beam placement 
[18]. This criteria has been validated for MS[19].  

 

                  



  
                          

                           

Table 1. Demographic and clinical characteristics in participants of Charité dataset 

 HC MS 

Current age, y, mean ±SD 36.5±12.3 41.42±10.11 

Sex, F, n (%) 280 (66%) 70(66%) 
                             

Table 2. Demographic and clinical characteristics in participants of Iran dataset 

 HC MS 

Current age, y,mean ±SD 26.3±3.06 34.5±8.03 

Sex, F, n (%) 12 (66%) 30 (85%) 

Disease duration, y, mean ±SD NA 7.67±1.37 

AQP4-Ab: aquaporin 4 antibody, y: year, SD: standard deviation  

 
 

Figure 1. Retinal parameters acquired by OCT. (a) location of sectors and ring scan on SLO image. (b) A-
scan, B-scan, and thickness map of OCT data. (c) quadrants in ETDRS:  central fovea (CF), inner superior 
(IS), inner nasal (IN), inner inferior (II), inner temporal (IT), outer superior (OS), outer superior (OS), 
outer nasal (ON), outer inferior (OI) and outer temporal (OT). (d) quadrants in the peripapillary circle: 
superior (S), inferior (I), temporal (T), and nasal(N) [21].  

 

2.2. Preprocessing and feature extraction  
 

    Intra-retinal thickness changes in MS are often noticeably subtle compared to primary eye 
disorders [25]. Multilayer segmented OCTs are therefore used and the distances between pairs of 
retinal layers, called retinal thickness maps, are calculated (Figure 1). The area covered by B-
scans around the macula may be oriented. As one possible hypothesis, the effect of compensating 
the orientation angle is studied in this work. For this purpose, the thickness maps are rotated to 
have a unique format as input to the next processing steps. The angle between a horizontal line 

                  



through the disc center and the disc–foveal line (                     ) (Figure 2(a)); and 
the relative direction of each B-scan to a horizontal line through the disc center (            ) 
(Figure 2(b)) are calculated. The left eyes are also flipped.  The value of correcting rotation 
(                            ) is calculated by:         

                                                                          
                                                                       
                                                                           

 
(1) 

                                                       
    The rotated thickness maps are cropped to a unique size of 450×450 pixels (Figure 2(d)). The 
thickness maps (with/without rotation) from different retinal layers including mRNFL, GCIP, 
sum of GCIP and INL layers (GCIP+INL), parallel use of GCIP and INL (GCIP/INL), parallel 
use of mRNFL, GCIP, INL, ONL, and the total macular thickness are considered as input to the 
classification stage. 

 
 
 

 
Figure 2. (a) SLO image in clockwise and counterclockwise rotations. (b) B-scans in different directions. (c) 

Example of finding the rotation angle), (d) Process of rotating a thickness map. 
 

To extract different topological information from each thickness map, the regions of interest 

typically follow those defined by the Early Treatment Diabetic Retinopathy Study (ETDRS) 

[21]. ETDRS concentric circles are calculated with diameters of 1 mm, 3mm, and 6 mm around 

the fovea, divided into quadrants and forming nine macular areas demonstrated in Figure 1. As 

alternative topologies, we also used different resolutions of the thickness maps in squares 

ranging between 20×20, 30×30, and 40×40 pixels. A combination of retinal layers, classifiers, 

evaluation, and dimension reduction approaches are used and summarized in Figure 3.    

                  



 
Figure 3. (a) Retinal layers investigated by the proposed method. (b) Classification model: SVM, RF, and ANN on 
four groups of extracted features: square 20×20, square 30×30, square 40×40, and 9 ETDRS sectors. (c) Different 
evaluation and dimension reduction methods in the study.  

 

 2.3. Dimension reduction  
 

To decrease the model complexity and avoid overfitting, we used principal component 

analysis (PCA) [26] that deduces information from the feature set to make a new feature 

subspace. Recursive feature elimination (RFE) [27] is also used to select subsets of the main 

features.   
                           

2.4. Machine learning algorithms and evaluation method 
 Machine learning algorithms are used to explain the patterns in the data and to extract 

information from it. The algorithms in this study are SVM, RF, and ANN. 
2.4.1. Support Vector Machine(SVM) 

 Support Vector Machine is driven by a linear function       that predicts the classes 

according to the sign of this function [28]. In two-class problems, SVM looks for a hyper-plane 

to divide two different classes with a maximum margin. When the original data is not separable 

linearly, a nonlinear transformation with a kernel function can be used to transfer the feature 

space to a higher dimension space with good separability [29]. Kernel functions used in this 

study are linear, polynomial, radial basis, and sigmoid. 
 

2.4.2. Random Forest (RF) 
RF includes many decision trees, and each decision tree prepares a classification for input 

data. RF gathers the trees and chooses the most voted prediction as the result. The input of each 

tree is the sampled data from the whole dataset. Moreover, a subset of features is randomly 

chosen from the optimal features to grow the tree at each node[30,31]. We used the grid search 

method [32] to optimize parameters of a random forest like the number of trees, criterion (the 

function to measure the quality of a split) including Gini and entropy, and maximum features 

                  



(the number of features to be considered when looking for the best split) such as sqrt, log2, and 

auto modes. 
 
 2.4.3. Artificial Neural Network (ANN) 

An artificial neural network (ANN) includes an input layer of neurons, one or two hidden 

layers, and an output layer that is the universal function approximator of the interconnection of 

human neurons [33]. To avoid overfitting due to complex networks or getting low accuracy due 

to simple networks with few layers, we used the grid search method to find the model with the 

best performance. In this study, we found a good performance with a sequential model with four 

dense layers. The neurons in each layer are 100, 80, 20, and 1, respectively, by grid search 

method. Rectified linear activation (ReLu) is used as the activation function in the first three 

layers, and the last layer uses the sigmoid activation function. 

 
2.5. Evaluation methods 

Ten-fold patient-wise CV is used with no combination of subjects’ eyes in the training and 

test folds. This approach reduces the overestimation of prediction accuracy [17] in instance-wise 

CV with leakage of information between training and testing phases. Classification performance 

is evaluated according to the confusion matrix and the values of accuracy, precision, recall, and 

f1-score are reported. The reproducibility of the results is checked by removing the constant 

random state in the k-fold CV and executing the model ten times and calculating the standard 

deviation of the results. 

 
2.6. Interpretability  

One of the main limitations of AI in medical applications is black box nature contradicts with 

interpretability of trustworthy AI. Conventional machine learning methods are mostly designed to 

work with vectors as input. Therefore, the images are changed into vectors, and the original image 

structure is ignored. On the other hand, recent methods like Convolutional Neural Networks are 

introduced as powerful competitors, preserving the image structure and providing image-based 

interpretability, expected to be humanly interpretable [34].  

In this study, we propose a novel approach to add interpretability to current machine learning 

approaches. We used occlusion sensitivity [35] and modified it to fit the vector-like inputs. After 

training the model, we created a black mask with the size of 10×10 pixels and moved it to the test 

set with a single step to sweep the whole image. The locations of the pixels covered by the mask 

are transferred to vector-shaped positions (Figure 4). The masked vector is sent as input to the 

model and the accuracy is calculated. It is expected that the occlusion of regions with important 

discriminative information leads to lower accuracy. The interpretability is shown by regenerating 

the occlusion with the original image size, with the value of accuracy in the location of each pixel 

(called the heat map). An interpretability heatmap indicates how important each location is 

concerning the class and visualizes the regional contribution to classification. 

                  



 
 

Figure 4.  The proposed process for creating a black mask, moving it to the test set, and transferring the locations to 
vector-shaped positions  

3. Results 

For classification purposes, different topologies of the thickness maps around the macula in 
squares with resolutions of 20×20, 30×30, 40×40 pixels, and mean thicknesses in 9 sectors of 
ETDRS are considered. The effect of compensating rotation on thickness maps is examined. The 
classification models are first trained and tested on Charité (first) dataset. To show the 
generalizability of the method, the trained classifier with the best performance (on the first 
dataset) is tested on the Isfahan (second) dataset. The proposed occlusion sensitivity is also 
shown for interpretability. 

Different combinations of features, two different dimension-reduction methods and different 
machine learning methods are used with 10-fold patient-wise CV on Charité (first) dataset. The 
comparison of metrics on each parameter is presented by keeping the other parameters fixed on 
the best-performing set. Table 3 compares the effectiveness of different retinal layers and the 
effect of rotation in the correct classification. In this comparison, other parameters are fixed on 
the best performing set including square size of 40×40 pixels, linear SVM as classifier, 10-fold 
cross-validation, and PCA for dimension reduction. The results are compared in both situations 
(with and without rotation in the preprocessing step). As can be seen, GCIP&INL (GCIP/INL) 
without rotation is the most informative combination of the retinal layers. The selection of the 
best topology is performed based on Table 4. When the best set of parameters are fixed 
(GCIP/INL without rotation as input feature, Linear SVM as a classifier with 10-fold cross-
validation, and PCA for dimension reduction), the best topology is related to the square size of 
40×40 pixels.  Accuracy of different classification methods with different topologies is presented 
in Table 5. As can be seen, linear SVM has better results than RF and ANN in terms of accuracy. 
For SVM method in classification, Table 6 compares the performance of the different kernels. 
Moreover, the dimension reduction methods are compared in Table 7. Ten-fold cross validation 

                  



with PCA for dimension reduction has the best results when other parameters are fixed on the 
best-performing set of information (GCIP/INL with square size of 40×40 without rotation as 
input feature, Linear SVM as a classifier). 
                       

                         Table 3. Comparison of input features in the classification of MS and HC. The other parameters are fixed on the 
best-performing set of information (square size of 40×40, Linear SVM as classifier with 10-fold 
cross-validation, PCA for dimension reduction). The effect of rotation is shown in the upper and 
lower part of the table, respectively. 

 

Square 40×40 – (10-fold with PCA) - without rotation 

 Accuracy Precision Recall F1-score 

mRNFL 79% 47% 41% 43% 

GCIP 87% 72% 60% 64% 

GCIP&INL(GCIP/INL) 88% 78% 63% 68% 

GCIP+INL 82% 56% 51% 52% 

mRNFL&GCIP&INL&ONL 84% 64% 58% 59% 

Whole macular volume 80% 52% 45% 47% 

GCIP & whole macular volume 80% 51% 49% 49% 

GCIP & INL & macular volume 81% 54% 52% 52% 

Square 40×40 - (10-fold with PCA) - with rotation 

 Accuracy Precision Recall F1-score 

mRNFL 74% 33% 33% 33% 

GCIP 82% 56% 56% 55% 

GCIP&INL(GCIP/INL) 82% 56% 51% 52% 

GCIP+INL 83% 63% 50% 54% 

mRNFL&GCIP&INL&ONL 82% 58% 47% 50% 

Whole macular volume 80% 53% 44% 45% 

GCIP & whole macular volume 80% 51% 47% 48% 

GCIP & INL & macular volume 79% 47% 51% 48% 
 

         Table 4.  Comparison of square size in the classification of MS and HC. The other parameters are fixed on the best-
performing set of information (GCIP/INL without rotation as input feature, Linear SVM 
as a classifier with 10-fold cross-validation, and PCA for dimension reduction)  

 

 
Accuracy (SVM-

linear) 

Precision 

(SVM-linear) 

Recall 

(SVM-linear) 

F1-score 

(SVM-linear) 

Square 20×20 84% 64% 57% 57% 

Square 30×30 86% 74% 57% 61% 

Square 40×40 88% 78% 63% 68% 

9 sectors 84% 75% 33% 44% 
 

                            Table 5. Comparison of machine learning methods in classification of MS and HC. The other parameters are fixed 
on the best-performing set of information (GCIP/INL for a square size of 40×40 without rotation as 
an input feature, and PCA for dimension reduction) 

 

 
Accuracy (SVM-

liner) 
Accuracy (RF) Accuracy (ANN) 

Square 20×20 84% 84% 82% 

Square 30×30 86% 85% 84% 

Square 40×40 88% 85% 85% 

9 sectors 84% 85% 82% 
 

                            Table 6. Comparison of kernels for SVM method in the classification of MS and HC. The other parameters are fixed 
on the best-performing set of information (GCIP/INL for a square size of 40×40 without rotation as 
an input feature, SVM as a classifier with 10-fold cross-validation, and PCA for dimension 
reduction 

                  



 Accuracy Precision Recall F1-score 

Linear 88% 78% 63% 68% 

Polynomial 85% 87% 28% 41% 

Radial basis (RBF) 86% 91% 33% 47% 

Sigmoid 83% 67% 38% 47% 

 

                            Table 7. Comparison of different dimension reduction methods in the classification of MS and HC. The other 
parameters are fixed on the best-performing set of information (GCIP/INL for a square size of 
40×40 without rotation as input feature, Linear SVM as a classifier with 10-fold cross-validation) 

 Accuracy Precision Recall F1-score 

10-fold cross validation without dimension 

reduction 
88% 79% 59% 65% 

10-fold cross validation with PCA for dimension 

reduction 
88% 78% 63% 68% 

10-fold cross validation with RFE for dimension 

reduction 
86% 76% 50% 57% 

 

     To explore the application of RFE in cross-validation, the importance of each feature is 

obtained through a coefficient attribute and features with a correlation coefficient above a 

threshold of 0.8 are removed. The diagram of accuracy against the number of features is shown 

in Figure 5.  

 
 

Figure 5.  RFE with cross-validation diagram that shows accuracy with the number of features. 
 

     To show the generalizability of the method, the trained classifier with the best performance on 

the Charité dataset (GCIP/INL with square size of 40×40 without rotation as input feature, 

Linear SVM as a classifier, and PCA for dimension reduction) is tested on Isfahan dataset and 

the performance is shown in Table 8.  

Table 8. Classification of MS and HC on Isfahan (second) dataset using a best-performing classifier trained on 

Charité (first) dataset. 

 Accuracy Precision Recall F1-score 

SVM(linear) with PCA for dimension reduction and 88% 89% 88% 84% 
 

                  



3.1. Visual Interpretability 

    The proposed method for visual interpretability is demonstrated by plotting the heatmap of the 

occlusion sensitivity. The results in the previous section showed that GCIP/INL (parallel use of 

GCIP and INL) are the most effective layers in distinguishing MS patients from HCs; therefore, 

these two layers of the best-performing set of hyperparameters are used for analyzing the 

interpretability in Figure 6.  

 

Figure 6.  Visual interpretability on thickness maps of GCIP and INL. (a) Thickness map of GCIP in one sample 

from MS dataset (x and y axis in mm), (b) heatmap of occlusion sensitivity in the classification of MS and HC, 

(c) overlap of the heatmap and the GCIP layer, (d) Thickness map of INL in one sample from MS dataset, (e) 

heatmap of occlusion sensitivity in the classification of MS and HC, (f) overlap of the heatmap and the INL 

layer. As can be seen, the temporal region in the thickness map of GCIP have more important information in 

classification of MS disease 

4. Discussion 

    The model with the highest accuracy based on our optimization approach is able to 

discriminate MS and HCs with an accuracy of 88% and F1-score of 68% with standard deviation 

of 0.48 and 0.94 in 10 times of execution to indicate repeatability, using GCIPL and INL 

information.  Indistinct changes in retinal sublayers are captured with multilayer segmented 

OCT. An interpretable result is acquired to indicate the regional layer contribution to 

classification performance using occlusion sensitivity. The generalizability is evaluated by 

training on a first dataset and then testing on a second independent dataset with a new device 

from another country. The performance is similar (accuracy of 88% and F1-score of 84%) when 

testing on data, which proves the generalization ability of the proposed method (more detail is 

presented in Table 8). To avoid overestimation, patient-wise CV is used to a separate set of 

patients in the training and test datasets. Different combinations of the retinal layers as input 

features, two different dimension reduction methods and different machine learning methods are 

compared.  

    Simultaneous data from GCIP and INL (GCIP/INL) were found to be the most informative 

combination of the retinal layers (Table 3). This finding is in accordance with clinical studies 

[25] [6]. The rotation of the thickness maps did not improve the performance. One possible 

                  



reason for this finding is using the traditional machine learning methods which change the image 

format to vectorized data. This vectorization process may be responsible for reducing the effect 

of the rotation.  

    The best topology is a square size of 40×40 (Table 4). It seems that this resolution is relevant 

to the number of B-scans in each OCT data (40 to 51 B-scans). Namely, 40×40 square extracts 

the most possible information without suppressing the data between the B-scans.   

    The interpretability heatmap of classification with this novel proposed algorithm is a new 

strategy in conventional machine learning methods and makes them comparable to their main 

competitors like CNN. As demonstrated in Figure 6, the temporal region in the thickness map of 

GCIP is found to have more effect on the classification of MS disease. It is related to occurring 

the most degree of loss in the temporal preponderance of RNFL in MS eyes[36]. 

    Among the machine learning methods, SVM achieved the best results (Table 5) with linear 

kernel (Table 6). This finding seems reasonable since linear kernels are proven to be more 

effective when the number of features is large in comparison to the training samples [37]. 

Dimension reduction improved the results and PCA method was found more appropriate (Table 

6). The selected model with the highest accuracy based on our optimization approach 

discriminates MS and HCs with an accuracy of 88% and F1-score of 68%, using GCIPL and INL 

information. Table 9 shows a summary of previous similar methods in comparison with the 

proposed algorithm. Direct comparison of the results with these works is not possible since the 

codes and datasets are not released in any of those works. Furthermore, none of the previous 

works considered the patient-wise CV and accordingly higher performance is reported with 

leakage of information between train and test data in instance-wise approaches. It should also be 

noted that in this work, the state of being affected by optic neuritis (ON) was not considered and 

accordingly, MS patients with/ without ON are combined for classification. Therefore, compared 

to work considering MS with ON, a lower performance is convincing since the eyes without ON 

show less thinning and are less discriminable from the HCs [6,25,38]. Finally, some previous 

works include the pRNFL data as the input of the classification and a correspondingly higher 

performance is achieved compared to the limited focus of macular region. 

Table 9. Summary of previous similar methods 

Previous 

works 

Number 

of 

datasets 

Input retinal 

layers 

Being affected by 

ON 

patient-

wise/ 

instance-

wise cross 

validation 

Performance 

metrics 

The most 

discriminant 

retinal layer 

Classification 

method 

Garcia-

Martin et 

al. [39] 

2013 

106 MS, 

115 HC 

Peripapillary 

area 

29% (31) with 
ON, 71% (75) 

without ON 

instance-

wise 
AUC=0.945 pRNFL ANN 

Garcia-

Martin et 

al. [40] 

2015 

112 MS, 
105 HC 

Peripapillary 
area 

36.6%(41) with 

ON, 63.4% (71) 

without ON 

instance-
wise 

Recall=89.3% 

Specificity=87.6% 

Precision=88.5% 

pRNFL ANN 

Palomar et 

al. [41] 

2019 

80 MS, 

180 HC 

Peripapillary, 

macular 
and extended 

(between 

macula and 
papilla) areas 

with ON 
instance-

wise 

Decision tree in 

macular area: 
Accuracy=97.24% 

AUC=0.959 

In extended area: 
Accuracy=95.3% 

pRNFL 
Decision tree, 

ANN, SVM 

                  



 AUC=0.998 

Cavaliere 

et al. [29] 

2019 

48 MS, 

48 HC 

Peripapillary 
and macular 

areas 

Without ON 
instance-

wise 

Accuracy=91% 

Recall=89% 

Specificity=92% 
AUC=0.97 

GCL++ 
(between 

inner limiting 

membrane to 
INL) and 

nasal quadrant 

of outer and 
inner ring in 

pRNFL 

SVM 

Garcia-

Martin et 

al. [42] 

2020 

48 MS, 

48 HC 
Macular area Without ON 

instance-

wise 
 

Recall=98% 

Specificity=98% 
AUC=0.83 

GCL++ 
SVM, 

ANN 

Zhang et 

al. [43] 

2020 

58 MS, 
63 HC 

Macular area 
33 with ON, 25 

without ON 
instance-

wise 

Recall=64% 

Specificity=94% 

 

GCIPL 
 LR, LR-EN, 

SVM 

Montolio 

et al. [44] 

2021 

108 MS, 

104 HC 

Peripapillary 
and macular 

areas 

34 with ON, 74 

without ON 

instance-

wise 

EC: 

Accuracy=87.7% 

Recall=87% 
Specificity=88.5% 

Precision=88.7% 

AUC=0.8775 
K-NN: 

Accuracy=85.4% 

SVM: 
Accuracy=84.4% 

LSTM: 
Accuracy=81.7% 

Recall=81.1% 

Specificity=82.2% 
Precision=78.9% 

AUC=0.8165 

pRNFL 

 MLR, SVM, 

decision tree, 

k-NN, NB, 
EC, LSTM 

recurrent 
neural 

network 

Proposed 

algorithm 

With 

training 

and testing 

on first 

dataset 

106 MS, 

422 HC 
Macular area 

With and without 

ON 
Patient-wise 

Accuracy = 88% 
Precision = 78% 

Recall =63% 

F1-score = 68% 

GCIPL and 

INL 

Elaborated in 

the text 

Proposed 

algorithm 

With 

training on 

first 

dataset 

and testing 

on second 

dataset 

Train: 

106 MS, 

422 HC 
Test: 

67 MS 

45 HC 

Macular area 
With and without 

ON 
Patient-wise 

Accuracy = 88% 
Precision = 89% 

Recall =88% 

F1-score = 84% 
 

GCIPL and 
INL 

Elaborated in 
the text 

LR: logistic regression, LR-EN: logistic regression regularized with the elastic net penalty, MLR: multiple linear 

regression, k-NN: k-nearest neighbors, NB: Naïve Bayes, EC: ensemble classifier, LSTM: long short-term memory 

 

      This article differentiates itself from prior investigations by utilizing two separate datasets, 

thereby augmenting the reliability and validity of its results. Conversely, a noteworthy constraint 

of previous studies pertains to their absence of external validation. The objective of this study is 

to overcome the use of deep learning methods, given the scarcity of accessible data. The research 

convincingly exhibits that desirable outcomes can be attained without dependence on deep 

learning techniques.     

      There are several limitations to the present study. First, the state of having a history of ON – 

a frequent clinical feature in MS - has not been considered[45,46]. Second, a longitudinal follow-

up data from patients were not taken into consideration. Third, as we didn’t have access to other 

devices, two devices that were used are Heidelberg with different HEYEX versions (5.7.5 and 

                  



5.1). If we had access to other devices like TOPCON or ZEISS, we had to test the trained model 

first. It is possible that the model is not generalizable in this stage. In the next step, it should add 

a limited number of the new data in train set to help the model get involved with this new 

dataset. We expect that would yield to better results that can somehow indicate the 

generalizability. In conclusion, this machine learning approach is designed to fill the gap in 

previous automatic methods for discrimination of MS and HCs. The relatively big sample size 

with manually corrected multilayer segmented OCT is used. Various topologies from sub-retinal 

thicknesses maps are individually analyzed to find the best combination. Interpretability and 

generalizability are guaranteed with the proposed approaches and the overestimated results are 

avoided with patient-wise techniques. Future work should be done on more comprehensive 

datasets to prove the effectiveness of such methods in clinical applications. 
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