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Abstract

The empirical evidence on nominal exchange rate dynamics shows a long-run re-

lationship of this variable with the fundamentals of the economy, although such re-

lationship disappears at shorter horizons (“exchange rate disconnect” puzzle). This

apparently contrasting behaviour of the nominal exchange rate can be explained in an

overlapping-generations model where the two currencies are not perfect substitutes. In

this framework, we show that the nominal exchange rate is pinned down by the fun-

damentals of the economy at the monetary steady state. However, fluctuations of the

nominal exchange rate around its long-run value, which are not driven by shocks to

fundamentals, can emerge. Firstly, we prove the existence of endogenous (determinis-

tic) business cycles in the nominal exchange rate. Secondly, we construct stationary

sunspot equilibria where random fluctuations of the nominal exchange rate arise as a

result of self-fulfilling beliefs.
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1 Introduction

Friedman (1953) famously argued that “a flexible exchange rate need not be

an unstable exchange rate. If it is, it is primarily because there is underly-

ing instability in the economic conditions governing international trade.” In

other words, Friedman’s view was that the exchange rate volatility that we

observe between any two currencies is just a symptom of the volatility of the

fundamentals of the underlying economies. However, the notion that there is a

strong correlation between exchange rates and fundamentals has been widely

questioned over the years.

The main lesson that can be drawn from the empirical literature is that

while there is evidence that the long-run value of the exchange rate is somewhat

tied to fundamentals, it is very difficult to understand and predict its behaviour

at shorter horizons.

Obstfeld and Rogoff (2001) coined the term “exchange rate disconnect” to

describe the “exceedingly weak relationship (except, perhaps, in the long run)

between the exchange rate and virtually any macroeconomic aggregates”. One

of the manifestations of this puzzle is that economic models are no more useful

than a simple random walk model in forecasting the nominal exchange rate,

as seen in the seminal paper of Meese et al. (1983).1 On the other hand,

Mark (1995) has shown that econometricians have more success in forecast-

ing the nominal exchange rate at longer horizons. Moreover, Groen (2000),

Mark et al. (2001), Rapach et al. (2002) and Cerra et al. (2010) have all

documented the existence of a long-run relationship between exchange rates

and monetary fundamentals, such as money supplies and output differentials,

using cointegration analysis.

Any macroeconomic model that wishes to capture this puzzling dynamics of

the nominal exchange rate should therefore have two main properties: on the

one hand, the nominal exchange rate should be a function of the fundamentals

at the steady state of the economy; at the same time, there should also exist

equilibria where the nominal exchange rate fluctuates around its long-run value

but not as a result of randomness in the fundamentals of the economy. The

aim of this paper is to propose a model which possesses these two features.

In fact, in the main workhorse monetary open economy models under flexible

(Lucas, 1982) and sticky prices (Obstfeld et al., 1995), the nominal exchange

rate is a function of the fundamentals both in the short and in the long-run.

The most popular framework to study fundamentals-unrelated fluctuations

in monetary, closed economies is the overlapping-generations model. The ex-

istence of sunspot equilibria and endogenous business cycles has been studied

1Meese et al.’s paper has inspired dozens of empirical studies on the topic. In a recent review of the

literature, Rossi (2013) pointed out that the puzzle is still very much alive.
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in two-period overlapping-generations economies with one currency and one

good in the well-known seminal contributions of respectively Azariadis (1981)

and Grandmont (1985), where Azariadis et al. (1986) explored the connections

between sunspots and cycles.2 However, the investigation of endogenous fluc-

tuations and sunspot equilibria in monetary, open economies has proved elusive

so far due to Kareken and Wallace (1981)’s result on the indeterminacy of the

nominal exchange rate. In their paper, one good is available for consumption

purposes and overlapping generations of agents can store two currencies to buy

the good when old. However, as the currencies are perfectly substitutable, the

nominal exchange rate is indeterminate as well as constant over time.3 For

this reason, the model cannot replicate the previously mentioned stylized facts

on exchange rate dynamics.

In this paper, we study a two-country, two-goods and two-currencies over-

lapping generations economy where agents live for two periods. The timing

of trading is structured as follows. The first period of life of each cohort is

rather standard. The young are endowed with a country-specific good and af-

ter having chosen the optimal consumption bundle for the current period, they

choose a portfolio of currencies to fund consumption next period4. The main

novelties of our model lie in the way the old can use their portfolio of curren-

cies and their access to currency markets. Firstly, we depart from Kareken et

al. (1981)’s assumption that the domestic and the foreign currency are perfect

substitutes. We assume instead that each currency can only buy the country-

specific good as in Lucas (1982). However, we show that this feature alone is

not enough to bypass the issue of a constant and indeterminate exchange rate

in our model, as the two currencies would still be perfect substitutes as stores

of value.5 Then, we also require that the old have no access to the currency

markets, in the sense that they cannot re-trade their portfolio of currencies

purchased when young once they are old. In other words, they have to commit

to the money holdings acquired in the previous period.

We show that these two features imply that agents’ portfolios can be pinned

down as a result of agents’ future demand for the two goods. As a consequence,

the dynamics of the nominal exchange rate is tightly linked to the dynamics of

the prices of the two goods. For instance, if the domestic good is expected to

2The literature has also shown that the existence of endogenous cycles is not an exclusive feature of two-

period overlapping-generations models. Bhattacharya et al. (2003) has shown the existence of two-period

cycles in a model where agents live for three periods, while Reichlin (1992) has proved the existence of

periodic cycles in a model with longer but uncertain lifetime spans.
3Sargent (1987) has pointed out that Kareken and Wallace’s indeterminacy result is related to the presence

of an extra asset in the model, and not specifically due to the demographic structure.
4The assumption that agents are only endowed with a country-specific good is only made to simplify

the notation. Allowing partial instead of complete specialization would not change our main results. We

also restrict our attention to “Samuelsonian economies”, where the value of the endowment when old is

sufficiently small to generate a positive demand for money (Gale, 1973).
5The interested reader will find further details on this issue in the Supplementary Material.
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be more expensive in the following period, the domestic currency has a lower

purchasing power. If the elasticity of substitution is sufficiently high, then this

implies a lower global demand for the domestic currency and an exchange rate

depreciation.

One of the difficulties of our framework is that its dynamical system is much

more complex than in the case of a one-good, one-currency economy. Stan-

dard geometric tools which have been extensively used to study the properties

of monetary economies with overlapping-generations, such as the offer curve,

cannot be easily adapted to a two-goods, two-currencies framework6. However,

we show that for a CES utility function which is additively separable across

the two goods (as well as intertemporally separable), the dynamics of the two

goods’ prices can be studied independently. As a result, the dynamic behaviour

of the world economy can be fully characterized by i) two separate difference

equations in the two prices; ii) an equation for the nominal exchange rate,

which is pinned down by the expected prices of the two goods, and finally iii)

two dynamic inequality constraints in the price of both goods and the nominal

exchange rate, which guarantee positive demand of the two currencies.

In this context, we prove that the nominal exchange rate is determined by

the fundamentals of the economy at the monetary steady state. Two among

the determinants of the exchange rate, relative money supplies and aggregate

endowments, are common to other monetary models of exchange rate determi-

nacy (e.g. Frankel, 1979; Lucas, 1982). In our setting, the nominal exchange

rate also depends on how much of each good is saved by the young, as cur-

rencies serve the function of stores of value. In particular, higher savings of a

particular good are associated with an appreciation of the domestic currency.

As the supply of a good by the young increases, its price falls and hence the

purchasing power of the domestic currency in units of the domestic good in-

creases. As the domestic currency is worth more, then its demand increases

hence the appreciation in equilibrium. We also show that Lucas’ exchange

rate equation can be retrieved by imposing that the endowment of the old is

zero. Crucially, this equivalence only holds in the long-run, as exchange rate

and fundamentals are disconnected outside the monetary steady state in our

framework.

We then demonstrate that our model is able to explain why econometricians

struggle to find a strong correlation between the exchange rate and the funda-

mentals of the economy at shorter horizons. We prove that randomness in the

fundamentals is not required to generate exchange rate fluctuations around

the steady state. Persistent endogenous fluctuations in the exchange rate can

indeed emerge either as a consequence of periodic deterministic cycles or as a

result of sunspot equilibria once extrinsic uncertainty is added to the model.
6See Woodford (1984) for a literature review of one-good, one-currency OLG economies.
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Under conditions on preferences which are alike to the one-good one-currency

case, periodic deterministic cycles may exist for an open set of the endowments.

We show that one can construct many possible scenarios each of which can give

rise to a cyclical behaviour of the nominal exchange rate around its long-run

value. In particular, we provide an example where the endowment of one of

the two countries is such that the domestic price is determinate while the other

one is such that a two-period cycle emerge. This results in a two-period cycle

of the nominal exchange rate. Alternatively, one could suppose that one of the

two prices has cyclical behaviour while the other price is indeterminate. In

this case, the path of the nominal exchange rate is indeterminate but would

always converge to a two-period cycle. Another example would be one where

both prices exhibit cyclical behaviour. Depending on the initial prices selected,

the two values that the exchange rate can assume in the cycle will be differ-

ent. Only under very special circumstances, the nominal exchange rate can

be constant over time: this is only possible when the fundamentals of the two

economies, as well as the initial price levels, are identical.

Nominal exchange rate fluctuations can also emerge as a result of station-

ary sunspot equilibria. In fact, we prove that, under some conditions, the

randomness of the nominal exchange rate that we observe in the data can be

generated by self-fulfilling beliefs that prices are stochastic.

As Azariadis et al. (1986) argued, focusing on stationarity sunspot equi-

libria is important for two reasons: firstly, because stable beliefs can be the

asymptotic outcome of learning processes; secondly, this is a first step towards

understanding dynamical sunspot behaviour. In a one-currency one-good econ-

omy, Azariadis (1981) showed that sufficient conditions for the existence of sta-

tionary sunspot equilibria are the complementarity between consumption and

leisure and the local stability (indeterminacy) of the monetary steady state.

In our framework, we prove that if similar conditions hold, then stationary

sunspot equilibria exist. It is enough that agents believe that the price of one

of the two goods fluctuates over time. If agents believe that the real inter-

est rate in one country (measured as the change over time in the purchasing

power of the domestic currency in units of the domestic good) is subject to

some degree of volatility, then the nominal exchange rate follows a stochastic

process merely dictated by such beliefs. In particular, an increase in the real

interest rate is associated with the appreciation of the domestic currency and

viceversa.

Interestingly, we do not need any heterogeneity across agents to generate

these fundamentals-unrelated fluctuations, as sunspot equilibria are supported

by agents’ sharing the same beliefs. On the contrary, recent contributions in

the literature have attempted to explain the exchange rate disconnect puz-

zle assuming that private investors possess heterogeneous information about
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the fundamentals of the economy7. In such setting, a common information

framework would not be able to explain the puzzle.

This paper shows that it is then possible to construct equilibria which repli-

cate the two main features of the dynamics of the nominal exchange rates:

while our model can easily rationalise the “exchange rate disconnect” puzzle,

empirical evidence which points at the higher predictability of the nominal

exchange rate in the long-run can also be reconciled within this framework.

The paper is structured as follows. In section 2, we describe the model and

show how the dynamic equilibrium system can be simplified. We characterise

the monetary steady state in section 3 and the dynamics around the monetary

steady state in section 4. In section 5, we investigate the existence of non-

fundamentals related persistent fluctuations: endogenous deterministic cycles

and stationary sunspot equilibria. Section 6 concludes. All the proofs can be

found in Appendix B.

2 The model

We study the following two-country pure exchange overlapping-generations

economy. Time is discrete and a generic date is indicated with t. At each t, an

agent is born in each country with a two-period lifetime, where a = 1, 2 refers

to age. We indicate with h = 1, 2 the agent living in country h while ` = 1, 2

refers to the good or the currency. For instance, c`ah,t is the consumption of

good ` of the agent born in country h in period of life a at time t. Agents

are endowed with a country-specific good in both periods of life: agents born

in country 1 (2) are endowed with good 1 (2). Since our objective is to show

that there can exist fluctuations in the nominal exchange rate not related to

fluctuations in the fundamentals, we assume that endowments are stationary.

Hence, (y1
a1, y

2
a1) = (y1

a, 0) and (y1
a2, y

2
a2) = (0, y2

a) for every a.

There also exists a generation that lives only in period 0. These agents

are “the old” at time 0 and are endowed with some units of the domestic

currency and the domestic good. The total endowment of the two currencies

is indicated with M1 and M2 and the monetary authorities are inactive in the

following periods. As in standard overlapping-generations economies, money

is demanded by the young to transfer wealth across periods as long as there

is a motive for saving. We indicate with m`
h,t the demand of currency ` of the

(young) agent born in country h at time t.

An agent born in country h chooses consumption allocations c1h,t := (c1
1h,t, c

2
1h,t),

c2h,t+1 := (c1
2h,t+1, c

2
2h,t+1) and a portfolio allocation mh,t := (m1

h,t,m
2
h,t) to

7We refer to the “microstructure” literature by Evans et al. (2002), Bacchetta et al. (2006) and Evans

(2010).

5



maximise her intertemporal utility function:

maxc1h,t,c2h,t+1,mh,t

c11h,t
1− 1

σ

1− 1
σ

+
c21h,t

1− 1
σ

1− 1
σ

+ β

[
c12h,t+1

1− 1
σ

1− 1
σ

+
c22h,t+1

1− 1
σ

1− 1
σ

]
(1)

s.t. p1
t c

1
1h,t + p2

t etc
2
1h,t +m1

h,t + etm
2
h,t = w1h,t, (2)

p1
t+1(c1

2h,t+1 − y1
2h) = m1

h,t, (3)

p2
t+1(c2

2h,t+1 − y2
2h) = m2

h,t, (4)

where σ > 0 is the elasticity of substitution and β ∈ (0, 1] is the discount

factor8. We indicate with p`t the price of good ` in units of the domestic

currency and with et the nominal exchange rate or the price of currency 2 in

units of currency 1, where the latter is the numéraire currency. Since agents

are only endowed with a country-specific good, the wealth of the two agents

when young is respectively w11,t := p1
ty

1
1 and w12,t := p2

t ety
2
1.

The budget constraint of the young is rather standard: each agent uses

her wealth to buy the two consumption goods and a portfolio of currencies.

The novelty of our model with respect to Kareken et al. (1981) is that the

two currencies are not perfect substitutes, in the sense that each of them

cannot be used to buy any good. Firstly, we assume that currency 1 (2)

can only buy good 1 (2). In addition, the old are not allowed to re-adjust

their portfolio composition before spending the currencies in the respective

goods’ markets. These two features jointly ensure that the two currencies

are not perfect substitutes as stores of value, in contrast with Kareken et al.

(1981)9. As the old face two separate budget constraints, the two currencies

have different rates of return which depend on the expected purchasing power

of the two currencies. As a result, both the nominal exchange rate as well as

the agents’ portfolios can be pinned down in equilibrium.

Let λ1h,t be the Lagrange multiplier associated to (2) while λ1
2h,t+1 and

λ2
2h,t+1 are the multipliers associated to the budget constraint of the old (3)

and (4). The Lagrangian function of agent h born at time t is:10

L =
c1

1h,t
1− 1

σ

1− 1
σ

+
c2

1h,t
1− 1

σ

1− 1
σ

+ β

[
c1

2h,t+1
1− 1

σ

1− 1
σ

+
c2

2h,t+1
1− 1

σ

1− 1
σ

]
+

+ λ1h,t

[
w1h,t − p1

t c
1
1h,t − p2

t etc
2
1h,t −m1

h,t − etm2
h,t

]
+

+
∑
`

λ`2h,t+1

[
m`
h,t − p`t+1(c`2h,t+1 − y`2h)

]
(5)

8This utility function implies that preferences across the two goods are separable. We adopt this speci-

fication for tractability reasons, since we can study analytically the dynamics around the monetary steady

state (see section 3). We also assume that agents assign the same weight to the domestic and the foreign

good to make notation less cumbersome, but our main results hold if home bias is allowed.
9See the Supplementary material for more details on the point that both ingredients are necessary.

10Since we are interested in studying fluctuations of the nominal exchange rate around the monetary

steady state, we only study equilibria where money holdings are strictly positive.
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The first-order conditions are necessary and sufficient for a maximum and can

be found in Appendix A. Rearranging the first-order conditions, it can be

shown that the optimal demand for the two currencies is:11

m1
1,t =

βσp1t+1
1−σ

p1ty
1
1 − p1t+1y

1
2 [p1t

1−σ
+ (p2t et)

1−σ + βσ(p2t+1et)
1−σ]

At
(6)

m2
1,t =

βσ(p2t+1et)
1−σ[p1ty

1
1 + p1t+1y

1
2 ]

etAt
(7)

m1
2,t =

βσp1t+1
1−σ

[p2t ety
2
1 + p2t+1ety

2
2 ]

At
(8)

m2
2,t =

βσ(p2t+1et)
1−σp2t ety

2
1 − p2t+1ety

2
2 [p1t

1−σ
+ (p2t et)

1−σ + βσp1t+1
1−σ

]

etAt
(9)

where At ≡ p1
t

1−σ
+ (p2

t et)
1−σ + βσp1

t+1
1−σ

+ βσ(etp
2
t+1)1−σ.

It can be noticed that agents’ demand for the foreign currency is always

positive, since they are not endowed with the foreign good. The holdings of

the domestic currency are instead positive as long as the numerators of (6)

and (9) are strictly positive. In particular, we have that

m1
1,t > 0 ⇔ βσp1

t
σ
y1

1

p1
t+1

σ
y1

2

> 1 +

(
p2
t et
p1
t

)1−σ

+ βσ
(
p2
t+1et
p1
t

)1−σ

(10)

m2
2,t > 0 ⇔ βσp2

t
σ
y2

1

p2
t+1

σ
y2

2

> 1 +

(
p1
t

p2
t et

)1−σ

+ βσ
(
p1
t+1

p2
t et

)1−σ

(11)

Since the right hand side of both equations is greater than one, it follows

that a necessary (but not sufficient) condition for money holdings of the do-

mestic currency to be positive in each country, is:

βσp`t
σ
y`1 > p`t+1

σ
y`2 ` = 1, 2 (12)

The value of the endowment when old must be sufficiently small as compared

to the value of the endowment when young, i.e. the economy must be Samuel-

sonian (Gale, 1973). However, equations (10) and (11) are more stringent than

the standard Samuelsonian condition. In fact, the demand for the domestic

currency will also depend on the demand for the foreign good in the two peri-

ods. In particular, a higher price of the foreign good leads to a higher (lower)

demand for the domestic good (and hence for the domestic currency) if the

elasticity of substitution is higher (lower) than one.

Next, we plug (6), (7), (8) and (9) into the budget constraints and derive

11We show the main steps in the Supplementary Material.

7



the optimal demands for the goods:

c1
1h,t =

p1
t
−σ

At
wh,t, c2

1h,t =
(etp

2
t )
−σ

At
wh,t, (13)

c1
2h,t+1 =

βσp1
t+1
−σ

At
wh,t, c2

2h,t+1 =
βσ(etp

2
t+1)

−σ

At
wh,t (14)

where w1,t ≡ p1
ty

1
1 + p1

t+1y
1
2 and w2,t = p2

t ety
2
1 + p2

t+1ety
2
2.

Finally, we introduce the maximization problem of the initial old. The

initial old is endowed with some units of the domestic currency and of the

domestic good. To simplify the problem, we assume that the initial old gain

utility only from the domestic good.12 In country 1:

max
c121,0

c1
21,0

1− 1
σ

1− 1
σ

(15)

subject to:

p1
0(c1

21,0 − y1
21) = M1 (16)

The solution is straightforward:

c1
21,0 =

M1

p1
0

+ y1
21 (17)

(18)

The maximisation problem of the initial old in country 2 is similar. Its solution

requires that the old agent in country 2 consumes its domestic endowment plus

the real money balances:

c2
22,0 =

M2

p2
0

+ y2
22 (19)

2.1 Equilibrium

We are now ready to give a definition of monetary equilibrium.

Definition 1 A monetary equilibrium is any sequence of strictly positive nom-

inal prices and exchange rates, {p1
t , p

2
t , et}∞t=0, a strictly positive consumption

allocation, {c1
ah,t, c

2
ah,t}∞t=0 for every a, h, and a strictly positive portfolio allo-

cation, {m1
h,t,m

2
h,t}∞t=0 for every h, such that:

(i) Each agent h maximises her utility subject to her constraints at any t.

(ii) Goods’ markets clear, i.e.,
∑

h c
`
1h,t +

∑
h c

`
2h,t = y`1 + y`2 ∀ `, t.

(iii) Money markets clear, i.e.,
∑

hm
`
h,t = M ` ∀ `, t.

12If we assumed that the initial old gained utility from both goods, we would need to assume that he is

endowed with some units of the foreign good (given our utility function). We avoid this to ensure consistency

with the pattern of endowments of future generations. Assuming that every generation is endowed with some

units of the foreign good would considerably complicate the notation but not change our results.
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In the next Proposition, we derive the key equations that any monetary

equilibrium must satisfy.

Proposition 1 The dynamics of the world economy is fully described by the

system:

βσp1
t+1

1−σ
[p1
ty

1
1 −M1] = p1

t
1−σ

[M1 + p1
t+1y

1
2] (20)

βσp2
t+1

1−σ
[p2
ty

2
1 −M2] = p2

t
1−σ

[M2 + p2
t+1y

2
2] (21)

et =

(
M1 + p1

t+1y
1
2

M2 + p2
t+1y

2
2

) 1
σ
(
p2
t+1

p1
t+1

) 1−σ
σ

(22)

where p1
t > 0, p2

t > 0 for any t ≥ 0, plus the inequality constraints (10) and

(11), which guarantee strictly positive money demands.

The first observation is that the dynamics of the prices of the two goods

can be studied independently from each other13. However, the system does not

dichotomizes completely. The dynamic inequality constraints (10) and (11),

which have to be respected, link the prices of the two goods together.

In the analysis of the dynamics of the economy, we will proceed by studying

first the price sequences emerging from the system (20)-(21) and then verify

numerically that the inequality constraints hold for any t.

Equation (22) shows that the behaviour of the nominal exchange rate is

driven by two different channels. Firstly, it depends on the endowment when

old of the agents. Suppose that agents born in country 1 have a higher en-

dowment when old. Everything else equal, they would need to acquire less

domestic currency when young to achieve their desired level of consumption.

A lower demand for currency 1 implies a depreciation (et increases).

The nominal exchange rate also responds to movements in future price

levels. The next result summarizes the effects of changes in future price levels

on the nominal exchange rate.

Corollary 1 If σ > 1, then an increase (decrease) in the expected price of the

domestic good leads to a currency depreciation (appreciation). If σ < 1, then

the impact of a price change on the exchange rate is ambiguous.

In Appendix B, we show that price changes can have an effect on the nom-

inal exchange rate through two separate components. Suppose that the price

of good 2 goes up. Firstly, this generates a wealth effect: as the value of

the endowment of good 2 when old increases, agents need to accumulate less

currency 2 and a lower demand for the currency 2 leads to a depreciation (et
13This result depends on the fact that preferences across the two goods are separable. If we changed the

utility function to a CES aggregator of the kind cah,t =

[
c1ah,t

σ−1
σ + c2ah,t

σ−1
σ

] σ
σ−1

, the dynamics of the

two goods would be interdependent and the system cannot be solved in blocks.
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falls). But there is also a price effect: when σ > 1, goods are substitutes

which means that an increase in the price of good 2 in the future implies that

agents demand less good 2 in favour of good 1. Agents would then demand

less currency 2, which also adds to the depreciation of currency 2. Therefore,

when σ > 1, the price channel always reinforces the wealth channel. When

σ < 1, then the price channel works in the opposite direction as goods are

complements. Hence, the overall effect of an increase in the price of good 2 is

ambiguous when σ < 114.

3 The monetary steady state: long-run determinants of

the nominal exchange rate

Firstly, let us define the growth rates of the nominal price levels and the terms

of trade of the economy respectively as: π`t ≡
p`t+1

p`t
− 1 and εt ≡ p2t et

p1t
.

From now onwards, we star steady state variables. At the steady state, the

nominal price levels must grow at a constant rate: π1
t = π1∗ and π2

t = π2∗.

Combining the first-order conditions (37) and (38) and imposing stationarity

in consumption, it can also be observed that εt = ε∗. It then follows that

the nominal exchange rate grows at a constant rate at the steady state of the

economy:
et+1

et
=

1 + π1∗

1 + π2∗ (23)

Definition 2 A monetary steady state is any monetary equilibrium with strictly

positive prices (p1∗
t , p

2∗
t , e

∗
t ), inflation rates (π1∗, π2∗), and strictly positive and

constant consumption allocations (c1∗
ah, c

2∗
ah) for every a, h.

The next Proposition shows that, at a stationary monetary equilibrium,

inflation rates are equal to zero in both countries. This also implies that

the nominal exchange rate is constant. Moreover, it shows that a stationary

monetary equilibrium exists and is unique.

Proposition 2 At a stationary monetary equilibrium, we have that:

(p1∗
t , p

2∗
t , e

∗
t ) =

(
M1(1 + βσ)

βσy1
1 − y1

2

,
M2(1 + βσ)

βσy2
1 − y2

2

,
M1

M2

βσy2
1 − y2

2

βσy1
1 − y1

2

(
y1

1 + y1
2

y2
1 + y2

2

) 1
σ

)
(24)

and the two inequality constraints (10) and (11) become

βσy1
1

y2
1

> 1 + (1 + βσ)ε∗1−σ, and
βσy2

1

y2
2

> 1 + (1 + βσ)ε∗σ−1 (25)

14Notice that when σ = 1 (log utility), the nominal exchange rate responds to movements of price levels

only through the wealth channel. On the other hand, when the endowments of the old are equal to zero,

only the price channel matters.
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At the steady state of the economy, the nominal exchange rate is deter-

minate and a function of the fundamentals of the economy. In particular, it

depends on three different sets of parameters: (1) relative money supplies; (2)

relative savings; (3) relative aggregate endowments or the terms of trade of

the economy:

e∗ =
M1

M2︸︷︷︸
relative money supply

· β
σy2

1 − y2
2

βσy1
1 − y1

2︸ ︷︷ ︸
relative savings

·
(
y1

1 + y1
2

y2
1 + y2

2

) 1
σ

︸ ︷︷ ︸
terms of trade

For instance, currency 1 depreciates (e increases) under the following circum-

stances: (1) an increase in the domestic money supply; (2) a fall in savings in

good 1; (3) an increase in the domestic aggregate endowment. The first chan-

nel does not probably need an explanation. The second channel involves the

relative savings by the young in the two goods. In fact, aggregating the budget

constraint of the old across agents, we obtain an equation for the savings of

good 1:

p1∗(c1
2−y1

2) = M1 ⇒ p1∗(y1
1−c1

1) = M1 ⇒ y1
1−c1

1 =
βσy1

1 − y1
2

1 + βσ

where p1∗ is known from Proposition 2. It can be observed that a fall in the

supply of savings of good 1 implies a higher price for the good. Since currency

1 in units of the domestic good is worth less in terms of purchasing power,

then it depreciates15. Finally, an increase in the aggregate endowment of good

1 implies a depreciation of the domestic currency as the relative price of good

1 falls (i.e. the terms of trade worsens):

ε∗ =

(
y1

1 + y1
2

y2
1 + y2

2

) 1
σ

(26)

It is worth observing that the second channel is specific to our OLG model.

In cash-in-advance infinite horizon models à la Lucas (1982), the equilibrium

exchange rate is instead equal to:

e∗ =
M1

y1

y2

M2︸ ︷︷ ︸
quantity theory equations

·
(
y1

y2

) 1
σ

︸ ︷︷ ︸
terms of trade

=
M1

M2

(
y1

y2

) 1−σ
σ

which can be seen as a specific case of our equation when y`2 = 0. In this case,

the young hold all the aggregate output of the economy. As in Lucas (1982),

an increase in the endowment leads to a currency appreciation (depreciation)

whenever the elasticity of substitution is higher (lower) than 1.

15Notice that savings can fall due to the following reasons: a fall in the endowment when young, an

increase in the endowment when old or a fall in the discount factor.
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More generally, the nominal exchange rate depends on the distribution of

the aggregate endowment across cohorts. Let us calculate the partial deriva-

tives of e∗ with respect to y2
1 and y2

2 to gain some more intuition about the

effect of an increase in endowments on the exchange rate:

∂e∗

∂y2
1

=
M1

M2

1

βσy1
1 − y1

2

(
y1

1 + y1
2

y2
1 + y2

2

) 1
σ
[
βσ − βσy2

1 − y2
2

σ(y1
1 + y2

2)

]
∂e∗

∂y2
2

= −M
1

M2

1

βσy1
1 − y1

2

(
y1

1 + y1
2

y2
1 + y2

2

) 1
σ
[
y2

2 +
βσy2

1 − y2
2

σ(y2
1 + y2

2)

]
which implies that

∂e∗

∂y2
1

> 0 if βσy2
1(σ − 1) + y2

2(1 + βσ) > 0

∂e∗

∂y2
1

< 0

Firstly, let us comment on the effect of an increase in the endowment of the

young on the exchange rate. It can be seen that there are two effects at play

here. On the one hand, an increase in the endowment of the young increases

savings. Hence, a higher demand for the domestic currency leads to a currency

appreciation. On the other hand, an increase in the endowment of the young

causes a deterioration of the terms of trade, which instead leads the currency to

depreciate. It can be seen that the first effect always dominates whenever the

domestic and the foreign good are substitutes (σ > 1). However, differently

from Lucas (1982), there might be instances in which the sign of the derivative

is still positive when the goods are complements (and it is always positive when

σ = 1).

On the other hand, an increase in the endowment of the old unambiguously

causes a currency depreciation. In fact, this leads to lower savings (hence to

a lower demand for the domestic currency) as well as to a deterioration of the

terms of trade.

4 Local dynamics

To start with, we study the dynamics of the economy around the monetary

steady state. Proposition 1 shows that the nominal exchange rate is pinned

down by next period’s price levels (equation (22)). Hence, it suffices to study

the dynamics of the two prices in order to pin down the equilibrium path of

the nominal exchange rate and the quantity variables.

As it emerged clearly from Proposition 1, this means to study the scalar

difference equation:

F (pt, pt+1) ≡ p1−σ
t (M + pt+1y2)− βσp1−σ

t+1 (pty1 −M) = 0, (27)

12



and more specifically the local stability of its unique steady state:

p∗ =
M(1 + βσ)

βσy1 − y2

(28)

with p∗ > 0 as long as y1 > β−σy2 ≡ ȳ. The superscripts have been dropped

to make the notation less cumbersome.16

Before proceeding, we observe that the price level is a no-predetermined

variable and therefore if p∗ is unstable, then it is locally determinate, while if

it is locally stable, then it is locally indeterminate.

Proposition 3 p∗ is locally determinate if one of the following conditions is

satisfied:

i) y1 ∈ (ȳ,∞) and σ ∈ [1,∞)

ii) y1 ∈ (ȳ, ỹ) and σ ∈ (0, 1);

iii) y1 ∈ (ỹ,∞) and σ ∈ [1
2
, 1);

iv) y1 ∈ (ỹ,∞), σ ∈ (0, 1
2
) and βσ ∈ [1− 2σ, 1] or

v) y1 ∈ (ỹ, y◦), σ ∈ (0, 1
2
) and βσ ∈ (0, 1− 2σ).

On the other hand, p∗ is locally indeterminate if the following conditions hold:

y1 ∈ (y◦,∞), σ ∈
(

0,
1

2

)
and βσ ∈ (0, 1− 2σ),

while p∗ is nonhyperbolic when y1 = y◦.17 The thresholds of y1 are equal to

ȳ ≡ β−σy2, ỹ ≡ (1 + σβσ)y2

(1− σ)βσ
and y◦ ≡ βσ(1− 2σ)− 1

(βσ + 2σ − 1)
y2β

−σ.

Proposition 3 shows the conditions under which the steady state price of

each good is either determinate or determinate, since the dynamics of the two

prices are independent. However, the determinacy or indeterminacy of the sta-

tionary monetary equilibrium will be the consequence of the behavior of both

price levels. Following Proposition 3, it is straightforward to identify situations

in which the stationary monetary equilibrium is locally indeterminate.

Result 1 The monetary steady state is locally indeterminate if the following

conditions hold: σ ∈
(
0, 1

2

)
, βσ ∈ (0, 1− 2σ) and y1 ∈ (y◦,∞) for at least one

of the two countries.
16More precisely, we should notice that F (pt, pt+1) = 0 is an (implicit) function when σ > 1 and a

correspondence when σ < 1 (See the Supplementary Material). This finding is well know in the literature

(see Grandmont (1985, p. 1007)). In studying the local dynamics when σ < 1, we will characterise a subset

of the existing equilibria.
17A steady state x∗ of a scalar difference equation xt+1 = F (xt) is non-hyperbolic if |F ′(x∗)| = 1. If a

steady state is non-hyperbolic then the local stable manifold theorem (e.g. Kuznetsov [14], Theorem 2.3

page 50) does not hold, i.e. the local dynamics around x∗ is no more a “good approximation” of the global

dynamics.
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First of all, the indeterminacy of the monetary steady state depends on a

sufficiently low elasticity of substitution and discount factor. The importance

of a strong income effect for indeterminacy to occur is well known in the

overlapping-generations literature.18

p2
tp1

tp1
0
=p1

ss

F(p1
t
,p1

t+1
;y

1
1)=0

F(p2
t
,p2

t+1
;y

1
2)=0

m2
2,t

<0

p1
t+1

p2
t+1

p2
ss

p2
0

m1
1,t

<0

p2
t+1

=p2
t

p1
t+1

=p1
t

Figure 1: An example of a locally indeterminate monetary steady state

The novelty of this paper is that the indeterminacy of the monetary steady

state is also tied to the relative endowments of the two countries. In fact, this

is the main source of heterogeneity in the model, as preferences are identical

across countries. For indeterminacy to emerge, the endowment of the young

must be higher than the bifurcation point y◦ for at least one country.

For instance, let us consider the following example where the two agents

have the same endowment when old. This implies that the two countries have

the same y◦ as a threshold. Suppose that country 1 has an endowment when

young below the threshold and country 2 above the threshold. We can then

construct an equilibrium around the monetary steady state where p1
0 = p1∗

(see left side of Figure 1) while any arbitrary p2
0 sufficiently close to p2∗ will

converge to p2∗ according to Proposition 3 (see right side of Figure 1). To

draw the picture, we have chosen parameter values as follows: σ = 0.25,

βσ = 0.4729, M1 = M2 = 1, y1
2 = y2

2 = 1, which implies that y◦ = 14.

Consistently with what described before, the young of country 1 is endowed

with y1
1 = 19 > y◦, while the young of country 2 with y2

1 = 13 < y◦. Since

there is local indeterminacy in the price p2
t , we have also arbitrarily chosen

the initial price level so that it is 1% higher than the steady state value. We

need also to check that money demands are strictly positive, i.e. the inequality

constraints (10)-(11) hold. Observe that these two inequality constraints can

be represented as regions in the space (p2
t , p

2
t+1) given the path of the other price

18See e.g. Woodford (1984).
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(p1
t = p1∗ for every t) and the path of the nominal exchange rate which can be

derived from (22) once the paths for the two prices are known. Therefore, we

check numerically that the price sequence {p2
t}Tt=0 lies within the region where

both money demands are positive, i.e. not in the grey regions of Figure 1.

We can now comment on the dynamics of the exchange rate. As explained

before, equation (22) pins down the path of the nominal exchange rate once

the paths of the two prices are known:

et =

(
M1 + p1∗y1

2

M2 + p2
t+1y

2
2

) 1
σ
(
p2
t+1

p1∗

) 1−σ
σ

(29)

For any given p2
0, equation (27) will pin down a value for p2

1, which will then

determine the nominal exchange rate at time 0 through equation (29). Any

given p2
0 will give rise to a different path for the price of good 2 and hence a

different path for the nominal exchange rate. Once p2
t converges to p2∗, so will

the nominal exchange converge to its long-run value.

The exchange rate is constant only under very special circumstances.

Result 2 In the neighbourhood of the monetary steady state, the nominal ex-

change rate is constant only when the following conditions hold simultaneously:

p1
0 = p2

0, y1
a = y2

a for every a and M1 = M2.

Equation (22) shows that even if agents coordinate on an equilibrium where

p1
0 = p2

0, the exchange rate is not necessarily constant. In fact, equation (27)

shows that, given the same p0, p1 will not be identical across countries if some

of the fundamentals of the two economies are different. Only if all dimensions

of heterogeneity across countries are completely shut down, the exchange rate

is constant and equal to the steady state value (which, in this case, would be

equal to 1).

5 The “exchange rate disconnect”

The aim of this section is to show that, although the nominal exchange rate is

pinned down by the fundamentals of the economy at the monetary steady state,

persistent fluctuations of the nominal exchange rate around its long-run value

can arise in the absence of shocks to the fundamentals of the economy. Hence,

our model can help to explain why there seems to be a disconnect between the

exchange rate and the fundamentals, especially at shorter horizons.

In particular, we will examine the existence of endogenous periodic cycles

in the nominal exchange rate in section 5.1 , while we will provide conditions

for the existence of stationary sunspot equilibria in section 5.2.
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5.1 Endogenous periodic cycles

In this section, we investigate the dynamics of the economy when the steady

state p∗ is nonhyperbolic, i.e. when

y1 = y◦, σ ∈
(

0,
1

2

)
and βσ ∈ (0, 1− 2σ)

and therefore dpt+1

dpt

∣∣∣
pt=p∗

= −1 as shown in Proposition 3. The bifurcation

under investigation is a flip bifurcation which may induce two-period cycles in

the price level. In addition, we have chosen y1 as the bifurcation parameter.

For this reason we refer, from now on, to the scalar difference equation (27) as

F (pt, pt+1; y1) = 0.

A preliminary step of our analysis consists in using the Implicit Function

Theorem and observe that, under the assumption Fpt+1(p
∗; y1) 6= 0, i.e. y1 6= ỹ,

there exist two positive constants, a and b, and a function f : I → I with

I ≡ (p∗ − a, p∗ + b) such that

F (pt, pt+1; y1) = 0 in I × I ⇔ pt+1 = f(pt; y1)

The strategy to prove that a period-two cycle emerges through a flip bi-

furcation consists in showing that the dynamics of the difference equation

pt+1 = f(pt; y1) is topologically equivalent near pt = p∗ to the dynamics of

one of the scalar difference equations xt+1 = −(1 + α)xt ± x3
t near the steady

state x∗ = 0. In fact, both these difference equations have a dynamic behavior

characterized by a flip bifurcation and, therefore, a period-two cycle in a left

or right neighbourhood of α = 0. If topologically equivalent to one of these

two difference equations, pt+1 = f(pt; y1) will have the same dynamic behavior

in a left or right neighbourhood of y1 = y◦.

In the following, we will adapt Theorem 4.3 and 4.4 in Kuznetsov [14] to

our framework in order to provide conditions under which the two dynamics

are topologically equivalent near their respective steady state.

Proposition 4 Consider the one-dimensional dynamical system pt+1 = f(pt; y1)

having a nonhyperbolic steady state pt = p∗ at y1 = y0. Then the following two

conditions are generically satisfied

i) 1
2
(fptpt(p

∗; y◦))2 + 1
3
fptptpt(p

∗; y◦) 6= 0;

ii) fpty1(p
∗; y◦) 6= 0.

For this reason, pt+1 = f(pt; y1) and one of the difference equations xt+1 =

−(1 +α)xt± x3
t are locally topologically equivalent near their respective steady

states.
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Theorem 1 The one-dimensional dynamical system pt+1 = f(pt; y1) has a

flip bifurcation if y1 = y◦ and two-period cycles emerge for y1 in a right or left

neighborhood of y◦.

Theorem 1 shows that each price can exhibit cyclical behaviour for an open

set of the endowment. Hence, we can conclude that the conditions for the

existence of endogenous business cycles in our framework are the following.

Result 3 Two-period cycles around the monetary steady state exist if the fol-

lowing conditions hold: σ ∈
(
0, 1

2

)
, βσ ∈ (0, 1− 2σ) and y1 belongs to the open

set around y◦ as specified by Theorem 1 for at least one of the two countries.
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Figure 2: An example of a periodic cycle

Figure 2 shows an example where while p1∗ is locally determinate and the

initial price level is exactly the steady state, y2
1 is such that the price of the

good produced in country 2 exhibits cyclical behaviour. Crucially, the initial

price level in country 2 is not determinate as in country 1 and it could be either

of the two values which arise in the cycle. We consider the same parameter

values as in the indeterminacy example, except for the value of the endowment

of good 2. We check numerically that the money demands remain positive,

doing the same procedure described previously for Figure 1. As it can be

appreciated by looking at Figure 2, the dynamics of the price of good 2 lies

outside the grey regions where the money demands are negative.

Since p2
0 > p2∗, then we can define p2

H = p2
t for t = 0, 2, 4.. and p2

L = p2
t for

t = 1, 3, 5... The nominal exchange rate also exhibit cyclical behaviour, since
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its dynamics is driven by the cycle in the price of good 2. More specifically:

eL =

(
M1 + p1∗y1

2

M2 + p2
Ly

2
2

) 1
σ
(
p2
L

p1∗

) 1−σ
σ

t = 0, 2, 4, ...

eH =

(
M1 + p1∗y1

2

M2 + p2
Hy

2
2

) 1
σ
(
p2
H

p1∗

) 1−σ
σ

t = 1, 3, 5, ...

It can be observed that e is high when the expected price of good 2 is high,

which implies that an appreciation of currency 2 is associated with an expected

inflation in the domestic good (which means that in the current period there

is deflation). However, it is important to stress that this is just an example.

As we have observed in Corollary 1, the effect of price changes on the nominal

exchange rate is generally ambiguous when σ < 1. In fact, our paper can

capture the fact that the exchange rate tends also to be disconnected from

other macroeconomic variables such as inflation rates, as well as from the

fundamentals of the underlying economies.

When p1∗ is locally indeterminate, we can construct instead an equilibrium

where p1
0 6= p1∗. In this case, the dynamics of the nominal exchange rate is

more complex as it depends on whether p1
0 and p2

0 start above or below the

steady state, as well as on the strength of the wealth channel relatively to

the price channel. The interesting thing is that the economy (including the

nominal exchange rate) converges to a two-period cycle as p2 converges to p2∗.

Finally, in the case where both prices can exhibit cyclical behaviour, there

also exist periodic equilibria around the monetary steady state.

5.2 Stationary sunspot equilibria

In the previous section, we have shown that there exist deterministic fluc-

tuations of the nominal exchange rate around its long-run value which are

completely unrelated to fluctuations of the fundamentals of the economy.

In this section, we investigate whether fluctuations of the nominal exchange

rate around the monetary steady state can be generated by agents’ beliefs that

prices are stochastic. In a one-currency one-good OLG economy, Azariadis

(1981) has explored the existence of stationary sunspot equilibria, where beliefs

(and, since they are self-fulfilling, equilibrium prices) follow a simple two-state

Markov process. In particular, he showed that gross complementarity between

consumption and leisure and the local indeterminacy of the monetary steady

state are sufficient conditions. Our next aim is to explore the existence of

stationary sunspot equilibria in this framework.

Let us assume that agents believe that the world economy can be in two

states of nature: S = {a, b}. Since we have two agents born in each period,

beliefs can potentially be different between them. Let Πh be a stationary
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transition probability matrix, where the element πh(ij) is the probability that

agent h assigns to state j tomorrow when today’s state is i:

Πh =

(
πh(aa) πh(ab)

πh(ba) πh(bb)

)
(30)

where
∑

s′ πh(ss
′) = 1.

The maximisation problem that each agent faces is:

max
c1h(s),c2h(ss′),mh(s)

c1
1h(s)

1− 1
σ

1− 1
σ

+
c2

1h(s)
1− 1

σ

1− 1
σ

+β
∑
s′

πh(ss
′)

[
c1

2h(ss
′)

1− 1
σ

1− 1
σ

+
c2

2h(ss
′)

1− 1
σ

1− 1
σ

]
(31)

subject to the following constraints19:

p1(s)c1
1h(s) + p2(s)e(s)c2

1h(s) +m1
h(s) + e(s)m2

h(s) = wh(s)

p1(s′)c1
2h(ss

′) = m1
h(s)

p2(s′)c2
2h(ss

′) = m2
h(s)

Let us define m̃`
h(s) ≡

m`h(s)

p`(s)
and use the definition of the terms of trade of the

economy (ε(s) ≡ p2(s)e(s)
p1(s)

) to rewrite the above budget constraints as follows:

c1
1h(s) + ε(s)c2

1h(s) + m̃1
h(s) + ε(s)m̃2

h(s) = w̃h(s) (32)

c1
2h(ss

′) = m̃1
h(s)

p1(s)
p1(s′)

(33)

c2
2h(ss

′) = m̃2
h(s)

p2(s)
p2(s′)

(34)

where w̃1(s) = y1
1 and w̃2(s) = ε(s)y2

1.

In the Appendix, we derive the first-order conditions of the maximisation

problem and show that it involves agent h choosing m̃1
h(s) and m̃2

h(s) which

solve the following two equations:

(
w̃h(s)− m̃1

h(s)− ε(s)m̃2
h(s)

1 + ε(s)1−σ

)− 1
σ

= β
∑
s′

πh(ss′)

(
m̃1
h(s)

p1(s)

p1(s′)

)− 1
σ p1(s)

p1(s′)
(35)

(
w̃h(s)− m̃1

h(s)− ε(s)m̃2
h(s)

1 + ε(s)1−σ

)− 1
σ

=
β

ε(s)

∑
s′

πh(ss′)

(
m̃2
h(s)

p2(s)

p2(s′)

)− 1
σ p2(s)

p2(s′)
(36)

We now introduce a definition of stationary sunspot equilibrium.

Definition 3 Given Πh, a stationary sunspot equilibrium is a system of prices

ε(s) ∈ R++ and p(s) ∈ R2
++, consumption allocations c1h(s) ∈ R++, c2h(ss

′) ∈
R++ and portfolio allocations m̃h(s) ∈ R++ such that:

(i) Agent h maximizes his utility function (31) subject to the budget con-

straints (32), (33) and (34) in every s

19For simplicity, we assume that the endowment of the old is zero.
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(ii)
∑

h(c
`
1h(s) + c`2h(s

′s)) = y`1 ∀ s, s′ and ∀ `

(iii)
∑

h m̃
`
h(s) = m̃`(s) ∀ s, `

(iv) at least one of the following holds: p1(a) 6= p1(b), p2(a) 6= p2(b), ε(a) 6=
ε(b).

(v) 0 < πh(aa), πh(bb) < 1

As it is standard in the literature, our definition excludes the degenerate

cases where the economy either ends up in one state of nature (πh(aa) = 1 or

πh(bb) = 1) or in a two-period cycle (when πh(ab) = 1 and πh(ba) = 1)20. In our

two-country world, three prices can potentially fluctuate: the nominal prices of

the two goods p1(s) and p2(s) and the terms of trade ε(s). Since e(s) ≡ ε(s)p1(s)
p2(s)

,

then the nominal exchange rate can also fluctuate as a consequence.

Since the general case is quite cumbersome to deal with, we make the fol-

lowing assumptions on agents’ beliefs:

Assumption 1 Agents’ beliefs are specified as follows:

m̃1(a) = m̃1∗ + zn

m̃1(b) = m̃1∗ + zx ⇒ p1(a) 6= p1(b)

m̃2(s) = m̃2∗ ⇒ p2(s) = p2∗

ε(s) = ε∗

πh(ss
′) = π(ss′) ∀ s, s′

where z, n and x are non-zero numbers.

In other words, agents believe that only the price of good 1 is subject to random

fluctuations while the other prices are those prevailing at the monetary steady

state. In fact, Assumption 1 implies that the price of good 1 fluctuates as

follows:

p1(a) =
M1

m̃1(a)
=

M1

m̃1∗ + zn
p1(b) =

M1

m̃1(b)
=

M2

m̃1∗ + zn

It is also easy to see that fluctuations in the price of one good is sufficient to

generate fluctuations of the nominal exchange rate:

e(a) =
ε∗

p2∗(m̃1∗ + zn)

e(b) =
ε∗

p2∗(m̃1∗ + zx)

Finally, we assume that agents share the same beliefs about the uncertainty

affecting the world economy.
20See Azariadis et al. (1986) for a discussion and for an investigation of the connections between stationary

sunspot equilibria and two-period cycles.
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Proposition 5 Under Assumption 1, stationary sunspot equilibria exist as

long as p1∗ is locally indeterminate.

Proposition 5 shows that, in our open economy setting, it it possible to

construct stationary sunspot equilibria in the neighborhood of the monetary

steady state. If agents believe that the price of one good follows a first-order

Markov process, then the nominal exchange rate would also fluctuate accord-

ingly as beliefs are self-fulfilling. When the price of good 1 goes up (down),

currency 1’s purchasing power falls (increases) hence it depreciates (appreci-

ates). Fluctuations of the nominal exchange rate are purely driven by agents’

beliefs that the real interest rate in one country changes over time with no

relationship to changes in the fundamentals of the economy21.

As in Azariadis (1981), a sufficient condition for stationary sunspot equi-

libria to arise is that the steady state price of the good under consideration is

locally stable or indeterminate. However, the literature has pointed out that

neither the indeterminacy of the steady state nor the complementarity between

the goods are necessary conditions for the existence of stationary sunspot equi-

libria22. While the objective of this paper is to show that fluctuations of the

nominal exchange rate purely driven by agents’ beliefs exist, there is no reason

to believe that our example is somewhat unique or driven by our assumptions

e.g. on preferences.

Let us conclude this section with some welfare considerations. Manuelli

et al. (1990) have also looked at the issue of exchange rate volatility in an

OLG setting. In a one-good two-currencies model with random shocks to the

endowments, they show that for each equilibrium allocation it is possible to

construct arbitrary paths of the nominal exchange rate. Hence, the exchange

rate volatility generated by their model has no welfare implications. In this

paper, there are no shocks to fundamentals and yet the exchange rate can

exhibit some degree of volatility as a result of self-fulfilling beliefs. Sunspot

equilibria are known to be Pareto inefficient from the point of view of ex-

ante expected utility (Peck, 1988). Hence, we can make the argument that

the fluctuations of the nominal exchange rate which arise in this setting are

inefficient.

6 Conclusion

We have provided a theory of exchange rate determination where the value of

the nominal exchange rate at any given period is pinned down by the expected

purchasing power of the two currencies in units of the respective domestic

21We have constructed sunspot equilibria in the case where the price of good 1 fluctuates, but the same

could be done for good 2.
22See e.g. Azariadis (1981) and Woodford (1984).
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goods. At the monetary steady state, the prices of the two goods are a function

of the fundamentals of the respective economies, hence the nominal exchange

rate is itself a function of the fundamentals. Empirical evidence indeed suggests

that the link between exchange rates and fundamentals is stronger at longer

horizons.

Under some conditions on agents’ preferences and endowments, the two

prices can be locally indeterminate around the monetary steady state. It is

enough that one of the two prices is indeterminate for the existence of a con-

tinuum of equilibrium paths of the nominal exchange rate which all converge

to the monetary steady state. The path that will prevail will depend on the

initial prices of the two goods and this gives rise to a different equilibrium al-

location. On the other hand, the fundamentals of the economy are assumed to

be constant. Our framework can then explain why the econometrician strug-

gles to find a correlation between exchange rates and fundamentals at shorter

horizons.

We also show that different types of fluctuations of the nominal exchange

rate around its long-run value can emerge. Firstly, we show the existence

of deterministic cycles in the nominal exchange rates for an open set of the

endowments of the economy. Secondly, we construct stationary sunspot equi-

libria where random fluctuations of the nominal exchange rate arise as a result

of self-fulfilling beliefs. For instance, if we observe that a currency appreciates

but the fundamentals of the underlying economy have not changed, it could

be because agents believe that the purchasing power of the currency goes up.

Therefore, “the exchange rate disconnect” puzzle can be a simple consequence

of people’s “animal spirits”.

Finally, it is worth to spend some words on the conditions under which

these types of fluctuations take place. Our paper has established that some

of the sufficient conditions for sunspots and cycles in the nominal exchange

rate to occur are the same as in one-good, one-currency economies: strong

income effects and low values of the discount factor. However, the literature

has also shown that these are not necessary conditions for either deterministic

cycles or sunspot equilibria to arise in overlapping generations models. Hence,

there is reason to believe that other examples of economies displaying cycles

or sunspot behaviour in the nominal exchange rate can be constructed. We

leave such attempts to future research.
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7 Appendix

7.1 Appendix A: First-order conditions

7.1.1 Deterministic economy

The first-order conditions are:

c1
1h,t : c1

1h,t
− 1
σ = λ1h,tp

1
t (37)

c2
1h,t : c2

1h,t
− 1
σ = λ1h,tp

2
t et (38)

c1
2h,t+1 : βc1

2h,t+1
− 1
σ = λ1

2h,t+1p
1
t+1 (39)

c2
2h,t+1 : βc2

2h,t+1
− 1
σ = λ2

2h,t+1p
2
t+1 (40)

m1
h,t : −λ1h,t + λ1

2h,t+1 = 0 (41)

m2
h,t : −etλ1h,t + λ2

2h,t+1 = 0 (42)

λ1h,t : w1h,t −m1
h,t − etm2

h,t − p1
t c

1
1h,t − p2

t etc
2
1h,t = 0 (43)

λ1
2h,t+1 : m1

h,t − p1
t+1(c1

2h,t+1 − y1
2h) = 0 (44)

λ2
2h,t+1 : m2

h,t − p2
t+1(c2

2h,t+1 − y2
2h) = 0 (45)

7.1.2 Stochastic economy

In the sunspot economy, the first-order conditions of the maximisation problem

are:

c1
1h(s) : c1

1h(s)
− 1
σ = λ1h(s) (46)

c2
1h(s) : c2

1h(s)
− 1
σ = λ1h(s)ε(s) (47)

c1
2h(ss

′) : βπh(ss
′)c1

2h(ss
′)
− 1
σ = λ1

2h(ss
′) (48)

c2
2h(ss

′) : βπh(ss
′)c2

2h(ss
′)
− 1
σ = λ2

2h(ss
′) (49)

m̃1
h(s) : −λ1h(s) +

∑
s′

λ1
2h(ss

′)
p1(s)

p1(s′)
= 0 (50)

m̃2
h(s) : −ε(s)λ1h(s) +

∑
s′

λ2
2h(ss

′)
p2(s)

p2(s′)
= 0 (51)

λ1h(s) : w̃1h(s)− m̃1
h(s)− ε(s)m̃2

h(s)− c1
1h(s)− ε(s)c2

1h(s) = 0 (52)

λ1
2h(ss

′) : m̃1
h(s)

p1(s)

p1(s′)
− c1

2h(ss
′) = 0 (53)

λ2
2h(ss

′) : m̃2
h(s)

p2(s)

p2(s′)
− c2

2h(ss
′) = 0 (54)

Combine (46) and (47) to obtain:

c2
1h(s) =

c1
1h(s)

ε(s)σ
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Plugging the last equation into (52):

c1
1h(s) =

w̃1h(s)− m̃1
h(s)− ε(s)m̃2

h(s)

1 + ε(s)1−σ (55)

which also implies that:

c2
1h(s) =

w̃1h(s)− m̃1
h(s)− ε(s)m̃2

h(s)

ε(s)σ(1 + ε(s)1−σ)
(56)

Using (46)-(49), (53), (54), (55) and (56), the two first-order conditions for the

real money balances can be rewritten as:

m̃1
h(s) :

(
w̃1h(s)− m̃1

h(s)− ε(s)m̃2
h(s)

1 + ε(s)1−σ

)− 1
σ

= β
∑
s′

πh(ss′)

(
m̃1
h(s)

p1(s)

p1(s′)

)− 1
σ p1(s)

p1(s′)

m̃2
h(s) :

(
w̃1h(s)− m̃1

h(s)− ε(s)m̃2
h(s)

1 + ε(s)1−σ

)− 1
σ

=
β

ε(s)

∑
s′

πh(ss′)

(
m̃2
h(s)

p2(s)

p2(s′)

)− 1
σ p2(s)

p2(s′)

7.2 Appendix B: Proofs

Proof of Proposition 1. Using the demand functions (13) and (14), we can

write the market clearing equations for good 1 at time t as follows:

1

p1
t
σ

∑
h

wh,t
Ah,t

+
βσ

p1
t
σ

∑
h

wh,t−1

Ah,t−1

= y1
1 + y1

2 (57)

Using (3) and (14), the demand for currency 1 at time t and t − 1 can be

written as:

m1
h,t = βσp1

t+1
1−σwh,t

Ah,t
− p1

t+1y
1
2h (58)

m1
h,t−1 = βσp1

t
1−σwh,t−1

Ah,t−1

− p1
ty

1
2h (59)

Summing across h and assuming that the market for currency 1 clear at any

t, we get upon rearranging:∑
h

wh,t
Ah,t

=
M1 + p1

t+1y
1
2

βσp1
t+1

1−σ (60)

∑
h

wh,t−1

Ah,t−1

=
M1 + p1

ty
1
2

βσp1
t

1−σ (61)

Finally, plug equations (60) and (61) into (57) and rearrange to obtain (20).

Notice that p1
ty

1
1 > M1 holds since the aggregate consumption of the young of

good 1 is positive.

Since the maximization problem of the initial old is different, we need to

check that this difference equation also holds at t = 0. The market clearing
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condition for good 1 at t = 0 is:

1

p1
0
σ

∑
h

wh,0
Ah,0

+
M1

p1
0

+ y1
2 = y1

1 + y1
2

Substituting equation (58) at t = 0, we get:

1

p1
0
σ

M1 + p1
1y

1
2

βσp1
1

1−σ +
M1

p1
0

= y1
1

which, upon rearranging, satisfies equation (20) at t = 0.

In a similar way, we can derive the equation describing the dynamics of

good 2. Following the same steps as for good 1, the money market clearing

equation for currency 2 at t can be written as:∑
h

wh,t
Ah,t

=
M2 + p2

t+1y
2
2

βσp2
t+1

1−σ
et−σ

(62)

Plugging the latter equation at t and t− 1 into the market clearing equations

for good 2, we can derive equation (21).

Finally, the expression for the nominal exchange rate (22) can be found by

combining (60) and (62). Once the paths of the nominal price levels are known,

equation (22) will pin down the path of nominal exchange rate. Hence, the

consumption and the portfolio allocations can be calculated using (93)-(??)

and (6)-(9).

Proof of Corollary 1. Let us calculate the derivative of et with respect to

p2
t+1. After a few steps, it can be shown that:

∂et
∂p2

t+1

=
1

σ

(
M1 + p1

t+1y
1
2

M2 + p2
t+1y

2
2

) 1
σ

 −y2
2

M2 + p2
t+1y

2
2︸ ︷︷ ︸

wealth channel

− σ − 1

p2
t+1︸ ︷︷ ︸

price channel


It can be immediately observed that ∂et

∂p2t+1
< 0 is always negative for σ > 1.

This means that currency 2 depreciates when the expected price of good 2

increases. When σ < 1, it is easy to see that the overall effect is ambiguous:

∂et
∂p2

t+1

> 0

(
∂et
∂p2

t+1

< 0

)
price effect > (<) wealth effect

Proof of Proposition 2.

From (3), stationarity in consumption implies that

p1
t+1(c∗12h − y1

2h) = m1
h,t

Aggregating and using the market clearing conditions, we have that

p1
t+1

∑
h

(c∗12h − y1
2h) =

∑
h

m1
h,t = M1
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Therefore, p1 must be constant and therefore π1 = 0. Looking at (4), we can

similarly show that p2 must be constant and therefore π2 = 0. At constant

prices, the system plus the two inequality constraints in Proposition 1 rewrite

as (24) and the two inequality constraints in Proposition 2.

Proof of Proposition 3. We investigate the local dynamics around p∗ by

looking at the slope of F (pt, pt+1) at the steady state p∗:

m ≡ dpt+1

dpt

∣∣∣∣
pt=p∗

= −(1− σ)βσy2 − (σ + βσ)βσy1

(1 + σβσ)y2 − (1− σ)βσy1

(63)

Under the restriction y1 > ȳ it is easy to show that the numerator is always

negative. On the other hand, the denominator is positive if one of the following

conditions is satisfied: σ ≥ 1 or σ < 1 and y1 < ỹ. On the other hand, if σ < 1

and y1 > ỹ the denominator is positive. Observe also that ỹ > ȳ when σ < 1.

Taking into account this information we are now ready to investigate whether

|m| is lower, equal or greater than one.

We need to distinguish two cases:

Case 1: σ ≥ 1 OR σ < 1 and y1 ∈ (ỹ, ȳ): in this case the steady state is

locally unstable because m > 1 always. In fact

m > 1 ⇔ y1 > ȳ

which is always satisfied from what said above.

Case 2: σ < 1 and y2 ∈ (ỹ,∞): in this case m < 0 since both the

denominator and numerator of (63) are negative. Therefore, to establish the

local determinacy of p∗, we need to check whether m < −1. Doing that leads

to the following:

m < −1 ⇔ (βσ − 2σβσ − 1)︸ ︷︷ ︸
≡Γ1

y2 < (2σ + βσ − 1)︸ ︷︷ ︸
≡Γ2

βσy1. (64)

Now, Γ1 is always negative. It is straightforward to see that it is so when

1 − 2σ < 0. It continues to be the case when 1 − 2σ > 0 because a positive

sign would require βσ > 1
1−2σ

> 1.

Looking now at Γ2, it is clear that Γ2 > 0 always if 2σ−1 ≥ 0. In addition,

Γ2 > 0 if 2σ−1 < 0 and βσ > 1−2σ while Γ2 < 0 if 2σ−1 < 0 and βσ < 1−2σ.

Summing up the sign conditions just found, we have that:

a) Γ1 < 0 and Γ2 > 0 if σ ≥ 1
2

or if σ < 1
2

and βσ ∈ (1− 2σ, 1];

b) Γ1 < 0 and Γ2 < 0 if σ < 1
2

and βσ ∈ (0, 1− 2σ)

Clearly, under condition a) and looking at (64) we conclude that p∗ is locally

determinate. On the other hand, condition b) joint with (64) lead to conclude

that p∗ is locally determinate if

y1 <
Γ1

Γ2

β−σy2 ≡ y◦
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and indeterminate otherwise. Finally, we need to verify whether y◦ is greater

or lower than ỹ. After some computations, it emerges that y◦ > ỹ because

otherwise β2σ + 2 + 2βσ < 0. Therefore, we conclude that under condition b)

p∗ is locally determinate when y1 ∈ (ỹ, y◦) while indeterminate if y2 ∈ (y◦,∞).

Proof of Proposition 4. Conditions i) and ii) are the conditions to check

for the two difference equations to be topologically equivalent according to

Theorem 4.3 in Kuznetsov [14]. More precisely, the conditions in Kuznetsov

[14] are adapted to our framework to take into account that y◦ is generically

different from zero and that the nonhyperbolic steady state of pt+1 = f(pt; y
◦)

is not zero but rather p∗.23

To check these two conditions we need to compute the derivatives fpty1(p
∗; y◦),

fptpt(p
∗; y◦) and fptptpt(p

∗; y◦). This can be done by applying several times the

implicit function theorem to F (pt, pt+1; y1) = 0 in I × I.

We start with:

fpt(pt, y1) = − Fpt
Fpt+1

= −
(1− σ)p−σt (M + pt+1y2)− βσp1−σt+1 y1

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)
(65)

from which we have that fpt(p
∗, y◦) = −1 as shown in Proposition 3.

To verify condition ii) we need to differentiate again with respect to y1

remembering that pt+1 is also a function of y1, i.e. pt+1 = f(pt; y1). Observe

that the last term of (65) can be seen as a function G(pt, pt+1; y1) and then

differentiating both sides of (65) with respect to y1 leads to

fpty1(pt, y1) = Gy1(pt, pt+1; y1) +Gpt+1(pt, pt+1; y1)fy1(pt, y1) (66)

where the last component has been obtained using the chain rule. In particular,

we find that:

fy1(pt, y1) = − Fy1
Fpt+1

=
βσp1−σt+1 pt

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

Gy1(pt, pt+1; y1) =
βσp1−σt+1 +G(pt, pt+1; y1)βσ(1− σ)p−σt+1pt

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

Gpt+1(pt, pt+1; y1) =
(1− σ)[p−σt+1β

σy1 − p−σt y2 −G(pt, pt+1; y1)σβσp−1−σ
t+1 (pty1 −M)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

substituting these expressions into (100) and evaluating the result at (p∗, y◦)

leads to

fpty1(p
∗, y◦) =

βσp∗2(1−σ)[(2σ − 1)y2 + (1− σ)βσy◦]

[p∗1−σy2 − βσ(1− σ)p∗−σ(p∗y◦ −M)]2
. (67)

23The same kind of modification of the conditions in Theorem 4.3 has been implicitly done in Example

4.1 at page 123 by Kuznetsov [14].
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Details of this derivation can be found in the Supplementary material. Now we

need to show that this cross derivative is generically different from zero. We

observe that this is equivalent to show that generically (2σ−1)y2+(1−σ)βσy◦ 6=
0. To show that, we use the definition of y◦ ≡ βσ(1−2σ)−1

[βσ+2σ−1]βσ
y2 and notice that

(2σ − 1)y2 + (1− σ)βσy◦ 6= 0 ⇔ y2

{
(2σ − 1)(σβσ + 2σ − 1)− (1− σ)

[βσ + 2σ − 1]

}
6= 0

which is equal to zero only for a zero measure subset of {(σ, β) : σ ∈
(0, 1

2
) and βσ ∈ (0, 1− 2σ)}. Therefore condition ii) is proven.

We need now to verify condition i). Apply again the chain rule of differ-

entiation on (65) we find that

fptpt(pt, y1) = Gpt(pt, pt+1; y1) +Gpt+1(pt, pt+1; y1)fpt(pt, y1) (68)

where Gpt+1(pt, pt+1; y1) and fpt(pt, y1) were previously found and

Gpt(pt, pt+1; y1) =
(1− σ)[σp−1−σ

t (M + pt+1y2)−G(pt, pt+1; y1)(p−σt y2 − βσp−σt+1y1)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)
. (69)

Therefore:

fptpt(pt, y1) = −(1−σ)G(pt, pt+1; y1)·
2[p−σt y2 − βσp−σt+1y1] + σ[βσp−1−σ

t+1 (pty1 −M) + p−σ−1
t (M + pt+1y2)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)
(70)

Let us call the last term on the right hand side Γ(pt, pt+1; y1). Then

fptptpt(pt, y1) = −(1− σ)
[(
Gpt +Gpt+1fpt

)
Γ +

(
Γpt + Γpt+1fpt

)
G
]

(71)

Observe that (71) can be rewritten as

fptptpt(pt, y1) = (1− σ)2GΓ2 − (1− σ)
(
Γpt + Γpt+1fpt

)
G (72)

since
(
Gpt +Gpt+1fpt

)
= fptpt = −(1 − σ)GΓ. Therefore condition i) is

equivalent to check that:

1

6
(1− σ)2Γ∗2 + (1− σ)(Γ∗pt − Γ∗pt+1

) 6= 0 (73)

where Γ∗ ≡ Γ(p∗; y0). To show that this relation generically hold, we need to

find Γ∗ and Γ∗pt − Γ∗pt+1
. Substituting pt = p∗ = 1+βσ

βσy◦−y2M and y1 = y◦ into Γ

leads to:

Γ∗ =
c0 + c1M

2

p∗y2 − βσ(1− σ)(p∗y◦ −M)
(74)

where c0 = 2(y2− βσy◦) 6= 0 and c1 = 2β
σ(1+βσ)(y◦+y2)

(βσy◦−y2)2
6= 0. On the other hand

it an be shown after long derivations reported in the Supplementary material,
that:

Γ∗pt−Γ∗pt+1
=

p∗

p∗y2 − βσ(1− σ)(p∗y◦ −M)

{
2σ(1− 2σ2 − βσ)

βσ + 2σ − 1
+ Γ∗(1− σ)

[
1 + βσ − βσσM

(
y0 + y2

βσy◦ − y2

)]}
(75)
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Substituting (74) and (75) into (73) allows us to rewrite condition i) as it

follows:

(1− σ)2(c0 + c1M2)2

6
+

(1− σ)(1 + βσ)M

βσy◦ − y2

{
2σ(1− 2σ2 − βσ)

βσ + 2σ − 1

[
1 + βσ

βσy◦ − y2
y2 − βσ(1− σ)

(
y◦ + y2

βσy◦ − y2

)]
M

+(c0 + c1M
2)

[
1 + βσ − βσσM

(
y◦ + y2

βσy◦ − y2

)]}
6= 0

A quick inspection reveals that the left hand side is a 4th degree polynomial

in M and therefore it may have, at most, 4 distinctive zeros unless all the

coefficients of the polynomial are zero. But this is not true since at least the

coefficient of M3 is different from zero. In particular it is equal to σ(1 −
σ)βσ (1+βσ)3(y◦+y2)

(βσy◦−y2)3
which is generically different from zero. Therefore condition

i) holds.

Proof of Theorem 1. The result is a direct consequence of Proposition 4.

See also Theorem 4.3 and 4.4 in Kuznetsov [14].

Proof of Proposition 5.

We proceed in a number of steps, but the main idea is to adapt the strategy

followed by Woodford (1984) to analyse a one-currency, one-good and one-

agent economy to our framework.

Step 1 - Firstly, we explore the implications of Assumption 1.

To start with, consider that preferences are homothetic (see equation (31)).

This implies that consumption is a constant fraction of wealth. Therefore, we

can write the consumption of the old as follows:

c`2h(ss
′) = f `h(ss

′)w̃h(s)

where f `h(ss
′) is a function of current and future prices. Since preferences, as

specified by the discount factor, the elasticity of substitution and the beliefs

(i.e. the transition probabilities) are the same across individuals, this must

imply that:

f `1(ss′) = f `2(ss′)

Hence, the aggregate consumption of the old can be rewritten as follows:

c`2(ss′) = f `(ss′)
∑
h

w̃h(s)

Let us now define agent h’s share of aggregate consumption as:

θ`h(ss
′) ≡ c`2h(ss

′)

c`2(ss′)

Using the above reasoning, it is easy to show that the share of consumption

only depends on an agent’s share of aggregate wealth:

θ`h(ss
′) =

w̃h(s)∑
h w̃h(s)

⇒ θ`h(ss
′) = θh(s)
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As a consequence, it is independent of the future state and it is also the same

across goods (hence the superscript can be dropped).

We have also assumed that agents believe that the terms of trade are con-

stant. Therefore, agents’ wealth does not fluctuate across states which means

that each agent’s share of aggregate consumption is constant and equal to the

steady state value:

ε(s) = ε∗ ⇒ w̃h(s) = w̃h ⇒ θh(s) = θ∗h

Using the budget constraint of the old, we can rewrite θh as follows:

θ∗h =
c`2h(ss

′)

c`2(ss′)
=
m̃`
h(s)

m̃`(s)
(76)

The additional requirement that p2(a) = p2(b) has another implication:

m̃2(s) = m̃2∗ ⇒ c2
2(ss′) = c2∗

2 ⇒ c2
1(s) = c2∗

1

This is a direct consequence of the aggregated budget constraint of the old for

good 2: constant aggregate money balances imply constant aggregate con-

sumption of the old, hence constant aggregate consumption of the young.

Given that the share of aggregate consumption for each good is also constant,

the individual consumption of good 2 is also constant:

θh(s) = θ∗h ⇒ c2
1h(s) = c2∗

1h & c2
2h(ss

′) = c2∗
2h

Taking into account all of the above plus the assumption of equal beliefs across
agents, the first-order conditions (35) and (36) can be simplified as follows:(

w̃∗1 − m̃1
h(s)− ε∗m̃2∗

h

1 + ε∗1−σ

)− 1
σ

= β
∑
s′

π(ss′)

(
m̃1
h(s)

p1(s)

p1(s′)

)− 1
σ p1(s)

p1(s′)
(77)

(
w̃∗1 − m̃1

h(s)− ε∗m̃2∗
h

1 + ε∗1−σ

)− 1
σ

=
β

ε∗
(
m̃2∗
h

)− 1
σ (78)

where

m̃`
h(s) = θ∗hm̃

`(s) (79)

given equation (76).

Step 2 - Since we have two agents and two states, we have four first-order

conditions for the real money balances of currency 1 (equation (77)), which

can be rewritten as follows:

π(aa)

1− π(aa)
=

β
(
m̃1
h(a) p

1(a)

p1(b)

)− 1
σ p1(a)

p1(b)
−
(
w̃∗h−m̃

1
h(a)−ε

∗m̃2∗
h

1+ε∗1−σ

)− 1
σ

(
w̃∗
h
−m̃1

h
(a)−ε∗m̃2∗

h
1+ε∗1−σ

)− 1
σ − β (m̃1

h(a))−
1
σ

(80)

π(bb)

1− π(bb)
=

β
(
m̃1
h(b) p

1(b)

p1(a)

)− 1
σ p1(b)

p1(a)
−
(
w̃∗h−m̃

1
h(b)−ε

∗m̃2∗
h

1+ε∗1−σ

)− 1
σ

(
w̃∗
h
−m̃1

h
(b)−ε∗m̃2∗

h
1+ε∗1−σ

)− 1
σ − β (m̃1

h(b))−
1
σ

(81)
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Since equation (79) establishes a relationship between individual and ag-

gregate real money balances, and the stochastic process for m̃1 is specified by

Assumption 1, the transition probabilities can then be pinned down by the

following equations:

π(aa)

1− π(aa)
=

β(θ∗hm̃
1(b))−

1
σ m̃1(b)−

(
w̃∗h−θ

∗
hm̃

1(a)−ε∗m̃2∗
h

1+ε∗1−σ

)− 1
σ
m̃1(a)(

w̃∗
h
−θ∗

h
m̃1(a)−ε∗m̃2∗

h
1+ε∗1−σ

)− 1
σ
m̃1(a)− β (θ∗hm̃

1(a))−
1
σ m̃1(a)

(82)

π(bb)

1− π(bb)
=

β(θ∗hm̃
1(a))−

1
σ m̃1(a)−

(
w̃∗h−θ

∗
hm̃

1(b)−ε∗m̃2∗
h

1+ε∗1−σ

)− 1
σ
m̃1(b)(

w̃∗
h
−θ∗

h
m̃1(b)−ε∗m̃2∗

h
1+ε∗1−σ

)− 1
σ
m̃1(b)− β (θ∗hm̃

1(b))−
1
σ m̃1(b)

(83)

where m̃1(a) = m̃1∗ + zw and m̃1(b) = m̃1∗ + zx.

As Woodford (1984), we take the limit for z → 0 of the first-order condi-

tions. If the right-hand sides are positive, then a stationary sunspot equilib-

rium exists as it can supported by positive probabilities. But since both the

numerators and the denominators tends to zero when the economy approaches

the monetary steady state, we apply Hopitâl’s rule.

Let us start with the agents born in state a and define:

π(aa)

1− π(aa)
≡ fh(z)

gh(z)

After a few steps, it can be checked that:

π(aa)

1− π(aa)
→ limz→0 f

′
h(z)

limz→0 g′h(z)
=

x
n
− S∗h

S∗h − 1
(84)

where

S∗h =

(
w̃∗h−m̃

1∗
h −ε

∗m̃2∗
h

1+ε∗1−σ

)− 1
σ

+
θ∗hm̃

1∗

σ(1+ε∗1−σ)

(
w̃∗h−m̃

1∗
h −ε

∗m̃2∗
h

1+ε∗1−σ

)−( 1
σ

+1)

β(θ∗hm̃
1∗)−

1
σ − β

σ
(θ∗hm̃

1∗)−
1
σ

Notice that, at the monetary steady state, the following first-order condition

holds (see equation (77) and (79) for the right-hand side):

w̃∗h − m̃1∗
h − ε∗m̃2∗

h

1 + ε∗1−σ
=
m̃1∗
h

βσ
=
θ∗hm̃

1∗

βσ

We now use some results from section 3, although assuming that y`2 = 0.

Firstly, the aggregate real money balances of good 1 are:

m̃1∗ =
βσy1

1

1 + βσ
(85)

Hence, we can rewrite the above equation as follows:

w̃∗h − m̃1∗
h − ε∗m̃2∗

h

1 + ε∗1−σ
=

θ∗hy
1
1

1 + βσ
= θ∗h(y

1
1 − m̃1∗) (86)

33



which shows that the consumption of good 1 when young of agent h is nothing

but a share of the savings of good 1.

Secondly, the share of consumption of agent 1 can be rewritten as:

θ∗1 =
w∗1

w∗1 + w∗2
=

y1
1

y1
1 + ε∗y2

1

=
y1

1

y1
1 +

(
y11
y21

) 1
σ
y2

1

=
1

1 + ε∗1−σ
(87)

Plugging (86) and (87) into S∗h, we get that:

S∗h = S∗ =
(y1

1 − m̃1∗)−
1
σ +

θ∗1m̃
1∗

σ
(y1

1 − m̃1∗)−( 1
σ

+1)

β(m̃1∗)−
1
σ − β

σ
(m̃1∗)−

1
σ

(88)

This confirms that beliefs across the two agents born in state a must be the

same for stationary sunspot equilibria to exist:

π(aa)

1− π(aa)
→ limz→0 f

′(z)

limz→0 g′(z)
=

x
n
− S∗

S∗ − 1
(89)

Next, substituting (85) into (88) we obtain:

S∗ =
σ + βσθ∗1
σ − 1

(90)

Following the same procedure for the agents born in state b, we obtain:

π(bb)

1− π(bb)
→ limz→0 f

′(z)

limz→0 g′(z)
=

n
x
− S∗

S∗ − 1
(91)

Notice that, when θ → 1, we have that S∗ → m, which is the slope of the

difference equation for good 1 at the monetary steady state24. In fact, when

y2 = 0, m becomes:

m =
σ + βσ

σ − 1

We can now link the existence of sunspot equilibria to the local stability of p1∗

and hence the monetary steady state.

Firstly, we should note that the conditions for the indeterminacy of p1∗ are

slightly different when y2 = 0. To start with, let us check the conditions under

which 0 < m < 1. m > 0 only if σ > 1. However, when σ > 1, m < 1 is

impossible since that would require that 1 + βσ < 0. Let us now consider the

case −1 < m < 0. If σ < 1, then m < 0 always holds. It is easy to check that

m > −1 when βσ < 1 − 2σ. Since β > 0, we would also require that σ < 1
2
.

Therefore, for indeterminacy to occur the conditions on agents’ preferences

remain the same when y2 = 0. However, we do not have any condition on y1.

Finally, it can be verified that for θ1 → 0, then −1 < S∗ < 0 when σ < 1
2
.

Since S∗ is monotonically decreasing in θ∗1, then −1 < S∗ < 0 for any θ∗1. It

24See the proof of Proposition 3 when y2 = 0.
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is then possible to find a continuum of n and x such that the two ratios of

probabilities are positive.

Step 3 - To conclude, note that as z → 0 the first-order condition for

currency 2 (78) becomes:(
w̃∗h − m̃1∗

h − ε∗m̃2∗
h

1 + ε∗1−σ

)− 1
σ

=
β

ε∗
(
m̃2∗
h

)− 1
σ

which is the first-order condition for currency 2 at the monetary steady state.
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Supplementary material

The imperfect substitutability of currencies

In this section, we show that the assumption that the old can use each currency

only to buy the country-specific good is not enough to guarantee that the two

currencies are not perfect substitutes as stores of value. Suppose that the old

were allowed to readjust their portfolio. The budget constraints of the old

would then be written as follows:

m1
2h,t+1 + et+1m

2
2h,t+1 = m1

1h,t + et+1m
2
1h,t

p1
t+1(c1

2h,t+1 − y1
2h) = m1

2h,t+1

p2
t+1(c2

2h,t+1 − y2
2h) = m2

2h,t+1

But then, the latter constraints can be substituted back into the first con-

straint:

p1
t+1(c1

2h,t+1 − y1
2h) + p2

t+1et+1(c2
2h,t+1 − y2

2h) = m1
1h,t + et+1m

2
1h,t

We now show that the consolidated budget constraint of the old implies that

the two currencies are perfect substitutes as stores of value. Let us define

λ1h,t as the Lagrange multiplier associated with the budget constraint of the

young (2) and λ2h,t+1 as the Lagrange multiplier associated with the above

constraint for the old. As we are interested in equilibria where both currencies

are demanded in positive quantities, the first-order conditions for the two

currencies would be:

m1
1h,t : −λ1h,t + λ2h,t+1 = 0

m2
1h,t : −λ1h,tet + λ2h,t+1et+1 = 0

It is easy to see that the first-order conditions for the two currencies are only

compatible with a constant exchange rate (et+1 = et = e) as in Kareken et al.

(1981). As the two first-order conditions for the currencies are identical, the

portfolio composition cannot be pinned down.

Hence, it is not enough to assume that each currency can only buy the

country-specific good to avoid that the currencies are perfect substitutes as

stores of value. The inability of the old to readjust their portfolio is crucial to

ensure that the two currencies have different rates of return as stores of value.

Derivation of the agents’ portfolios

Combining (37) and (38), we get that:

c2
1h,t = c1

1h,t

(
p1
t

p2
t et

)σ
(92)
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Plugging the latter equation into the budget constraint of the young (43), we

obtain:

c1
1h,t =

1

p1
t
σ

w1h,t −m1
h,t − etm2

h,t

p1
t

1−σ
+ p2

t et
1−σ (93)

Substituting (37) and (39) into (41):

p1
t

1−σ
σ

(p1
t c

1
1h,t)

1
σ

=
βp1

t+1

1−σ
σ

(p1
t+1c

1
2h,t+1)

1
σ

(94)

Plugging (93) and (44) into (94) and rearranging, we obtain:

m1
h,t =

βσp1
t+1

1−σ
[w1h,t − etm2

h,t]− p1
t+1y

1
2(p1

t
1−σ

+ p2
t et

1−σ
)

p1
t

1−σ
+ p2

t et
1−σ

+ βσp1
t+1

1−σ (95)

From (41) and (42), notice that:

etλ
1
2h,t+1 = λ2

2h,t+1

Substituting (44) and (45) into the latter equation and then (39) and (40), we

get:
eσt (m2

h,t + p2
t+1y

2
2)

p2
t+1

1−σ =
m1
h,t + p1

t+1y
1
2

p1
t+1

1−σ (96)

Notice that (95) and (96) is a system of two equations where the two endoge-

nous variables are m1
h,t and m2

h,t. Solving them simultaneously, we obtain agent

h’s demand functions for the two currencies:

m1
h,t =

βσp1t+1
1−σ

[w1h,t + p2t+1ety
2
2 ]− p1t+1y

1
2 [p1t

1−σ
+ p2t et

1−σ
+ βσ(p2t+1et)

1−σ]

p1t
1−σ + (p2t et)

1−σ + βσp1t+1
1−σ + βσ(etp2t+1)1−σ

(97)

m2
h,t =

βσp2t+1
−σ
e−σt [w1h,t + p1t+1y

1
2 ]− p2t+1y

2
2 [p1t

1−σ
+ p2t et

1−σ
+ βσp1t+1

1−σ
]

p1t
1−σ + (p2t et)

1−σ + βσp1t+1
1−σ + βσ(etp2t+1)1−σ

(98)

Conditions under which F (pt, pt+1) = 0 is a function or a correspon-

dence

F (pt, pt+1) = 0 is an (implicit) function when σ > 1 and a correspondence

when σ < 1. To prove this proposition, we begin computing

dpt+1

dpt
= −

(1− σ)p−σt (M + pt+1y2)− βσp1−σ
t+1 y1

p1−σ
t y2 − (1− σ)βσp−σt+1(pty1 −M)

.

Observe that dpt+1

dpt
is strictly positive for σ > 1 since the numerator is negative

and the denominator is positive. Therefore, F (pt, pt+1) = 0 is a monotonically

increasing function.
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On the other hand, F (pt, pt+1) = 0 is a correspondence when σ < 1. To

see this, we prove that pt+1 = p∗ is not the only strictly positive zero of

F (p∗, pt+1) = 0. In particular, we have that

F (p∗, pt+1) ≡ p∗1−σy2pt+1 − βσ
(

y1 + y2

βσy1 − y2

)
Mp1−σ

t+1 + p∗1−σM

with F (p∗, 0) = p∗1−σM > 0 and limpt+1→∞ F (p∗, pt+1) = +∞. In addition,

F (p∗, pt+1) has a unique critical point which is the global minimum. Therefore,

F (p∗, pt+1) = 0 has two zeros, pt+1 = p∗ and another one to the right of it.

We conclude the proof showing that if the steady state respects the necessary

condition for holding money

y2p
σ
t+1 < βσy1p

∗σ ⇔ pt+1 <
βσy1

y2

p∗ ≡ p̃

then such a condition is also respected by the other zero. In fact, the second

zero would not be admissible if F (p∗, p̃) < 0 but boring calculation shows that

F (p∗, p̃) =
βσy1

y2

[
y2

y1

+

(
βσy1

y2

)− 1
σ

]
> 0

Further details on the derivations in Proposition 4

Regarding Condition ii), we show the steps to arrive to

fpty1(p̂, y
◦) =

βσp̂2(1−σ)[y2 − (1− σ)y◦]

[p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)]2
. (99)

from

fpty1(pt, y1) = Gy1(pt, pt+1; y1) +Gpt+1(pt, pt+1; y1)fy1(pt, y1) (100)

where as previously observed fpt ≡ G(pt, pt+1; y1) while the derivatives are

fy1(pt, y1) =
βσp1−σt+1 pt

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

Gy1(pt, pt+1; y1) =
βσp1−σt+1 +G(pt, pt+1; y1)βσ(1− σ)p−σt+1pt

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

Gpt+1(pt, pt+1; y1) =
(1− σ)[p−σt+1β

σy1 − p−σt y2 −G(pt, pt+1; y1)σβσp−1−σ
t+1 (pty1 −M)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

The first step is to evaluate these derivatives at the nonhyperbolic steady

state (p̂, y◦); observe that this means that G(p̂; y◦) = fpt(p̂; y
◦) = −1. Then

we have that
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fy1(p̂, y◦) = − Fy1
Fpt+1

=
βσ p̂2−σ

p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)

Gy1(p̂; y◦) =
βσσp̂1−σ

p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)
= σfy1(p̂, y◦)p̂−1

Gpt+1(p̂; y◦) =
(1− σ)p̂−σ[βσy◦ − y2 + σβσ p̂−1(p̂y◦ −M)]

p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)

and then

fpty1(p̂, y
◦) = fy1(p̂, y

◦)

{
σp̂−1 +

(1− σ)p̂−σ[βσy◦ − y2 + σβσp̂−1(p̂y◦ −M)]

p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)

}
= fy1(p̂, y

◦)

{
p̂−σ[(1− σ)βσy◦ + (2σ − 1)y2]

p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)

}
Regarding Condition i), we begin with

fptpt(pt, y1) = Gpt(pt, pt+1; y1) +Gpt+1(pt, pt+1; y1)fpt(pt, y1) (101)

where Gpt+1(pt, pt+1; y1) and fpt(pt, y1) were previously found and

Gpt(pt, pt+1; y1) =
(1− σ)[σp−1−σ

t (M + pt+1y2)−G(pt, pt+1; y1)(p−σt y2 − βσp−σt+1y1)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)
. (102)

Combining these derivatives lead to

fptpt(pt, y1) =
(1− σ)[σp−1−σ

t (M + pt+1y2)−G(pt, pt+1; y1)(p−σt y2 − βσp−σt+1y1)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)
+

(1− σ)G(pt, pt+1; y1)[p−σt+1β
σy1 − p−σt y2 −G(pt, pt+1; y1)σβσp−1−σ

t+1 (pty1 −M)]

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

=
(1− σ){σp−1−σ

t (M + pt+1y2) +G(pt, pt+1; y1)[2(p−σt+1β
σy1 − p−σt y2)−G(pt, pt+1; y1)σβσp−1−σ

t+1 (pty1 −M)]}
p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

where we observe that fptpt ≡ H(pt, pt+1; y1). We also find that, at the

nonhyperbolic steady state, we have that

fptpt(p̂, y
◦) =

(1− σ){σp̂−1−σ(M + p̂y2)− [2(p̂−σβσy◦ − p̂−σy2) + σβσ p̂−1−σ(p̂y◦ −M)]}
p̂1−σy2 − βσ(1− σ)p̂−σ(p̂y◦ −M)

=
(1− σ){σp̂−1(M + p̂y2)− [2(βσy◦ − ŷ2) + σβσ p̂−1(p̂y◦ −M)]}

p̂y2 − βσ(1− σ)(p̂y◦ −M)

=
(1− σ){(2 + σ)(y2 − y◦βσ) + σp̂−1M(1 + βσ)}

p̂y2 − βσ(1− σ)(p̂y◦ −M)

and considering that the nonhyperbolic steady state is p̂ = (1+βσ)M
βσy◦−y2 the last

expression simplifies to
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fptpt(p̂, y
◦) =

2(1− σ)(y2 − y◦βσ)

p̂y2 − βσ(1− σ)(p̂y◦ −M)
6= 0 (103)

which is always different from zero since y2 − y◦βσ < 0 to guarantee the

existence of a strictly positive steady state.

We now need to compute

fptptpt(pt, y1) = Hpt(pt, pt+1; y1) +Hpt+1(pt, pt+1; y1)fpt(pt, y1). (104)

We find that

Hpt =
(1− σ){−σ(1 + σ)p−2−σ

t (M + pt+1y2) +Gpt [2(p−σt+1β
σy1 − p−σt y2)−Gσβσp−1−σ

t+1 (pty1 −M)]}
p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

+

(1− σ){G[2σp−1−σ
t y2 −Gptσβσp−1−σ

t+1 (pty1 −M)−Gσβσp−1−σ
t+1 y1] +H[p−σt y2 − βσp−σt+1y1]}

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

and

Hpt+1 =
(1− σ){σp−1−σ

t y2 +Gpt+1 [2(p−σt+1β
σy1 − p−σt y2)−Gσβσp−1−σ

t+1 (pty1 −M)]}
p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

+

(1− σ){G[−2σp−1−σ
t+1 βσy1 −Gpt+1σβ

σp−1−σ
t+1 (pty1 −M) +Gσ(1 + σ)βσp−2−σ

t+1 (pty1 −M)] +Hσβσp−σ−1
t+1 (pty1 −M)}

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

=
(1− σ){σp−1−σ

t y2 +Gpt+1 [2(p−σt+1β
σy1 − p−σt y2)−Gσβσp−1−σ

t+1 (pty1 −M)]}
p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

+

(1− σ){G[−2σp−1−σ
t+1 βσy1 + σβσp−1−σ

t+1 (pty1 −M)(−Gpt+1 +G(1 + σ)p−1
t+1 + H

G
)]}

p1−σt y2 − βσ(1− σ)p−σt+1(pty1 −M)

Let us now evaluate this two derivatives at the nonhyperbolic steady state:

Hpt =
(1− σ){−σ(1 + σ)p̂−2(M + p̂y2) +Gpt [2(βσy◦ − y2) + σβσ p̂−1(p̂y◦ −M)]}

p̂y2 − βσ(1− σ)(p̂y◦ −M)
+

(1− σ){−[2σp̂−1y2 −Gptσβσ p̂−1(p̂y◦ −M) + σβσ p̂−1y◦] +H[y2 − βσy◦]}
p̂y2 − βσ(1− σ)(p̂y◦ −M)

=
(1− σ){−σ(1 + σ)p̂−2(M + p̂y2) +Gpt [2(βσy◦ − y2) + 2σβσ p̂−1(p̂y◦ −M)]}

p̂y2 − βσ(1− σ)(p̂y◦ −M)
+

(1− σ){−2σp̂−1y2 − σβσ p̂−1y◦ +H[y2 − βσy◦]}
p̂y2 − βσ(1− σ)(p̂y◦ −M)

and

Hpt+1 =
(1− σ){σp̂−1y2 +Gpt+1 [2(βσy◦ − y2) + σβσ p̂−1(p̂y◦ −M)]}

p̂y2 − βσ(1− σ)(p̂y◦ −M)
+

(1− σ){−[−2σp̂−1βσy◦ + σβσ p̂−1(p̂y◦ −M)(−Gpt+1 − (1 + σ)p̂−1 −H)]}
p̂y2 − βσ(1− σ)(p̂y◦ −M)

=
(1− σ){σp̂−1y2 +Gpt+1 [2(βσy◦ − y2) + 2σβσ p̂−1(p̂y◦ −M)]}

p̂y2 − βσ(1− σ)(p̂y◦ −M)
+

(1− σ){2σp̂−1βσy◦ + σβσ p̂−1(p̂y◦ −M)[(1 + σ)p̂−1 +H]}
p̂y2 − βσ(1− σ)(p̂y◦ −M)
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