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Abstract

We propose two semiparametric methods for estimating the random utility model using rank-ordered

choice data. The framework is “semiparametric” in that the utility index includes finite dimensional

preference parameters but the error term follows an unspecified distribution. Our methods allow for a

flexible form of heteroskedasticity across individuals. With complete preference rankings, our methods

also allow for heteroskedastic and correlated errors across alternatives, as well as a variety of random

coefficients distributions. The baseline method we develop is the generalized maximum score (GMS)

estimator, which is strongly consistent but follows a non-standard asymptotic distribution. To facilitate

statistical inferences, we make extra regularity assumptions and develop the smoothed GMS estimator,

which is asymptotically normal. Monte Carlo experiments show that our estimators perform favorably

against popular parametric estimators under a variety of stochastic specifications.
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1 Introduction

Rank-ordered choices can be elicited using the same type of survey as multinomial choices, specifically one

that presents an individual with a finite set of mutually exclusive alternatives. The two elicitation formats may

be distinguished by the amount of information that is available to the econometrician. A multinomial choice

reports the individual’s “choice” or most preferred alternative from the set, whereas a rank-ordered choice

reports further about the individual’s preference ordering such as her second and third preferences: see for

example Hausman and Ruud (1987), Calfee et al. (2001), and Train and Winston (2007). One rank-ordered

choice observation provides a similar amount of information as several multinomial choice observations, in the

sense that it allows inferring what the individual’s choices would have been if her more preferred alternatives

were not available. This allows fewer individuals to be interviewed to achieve a given level of statistical

precision and, as Scarpa et al. (2011) point out, the resulting logistic advantages could be substantial for

many non-market valuation studies which involve a narrowly defined population of interest.

We develop semiparametric methods for the estimation of random utility models using rank-ordered choice

data. Despite the wide availability of parametric counterparts, such semiparametric methods remain almost

undeveloped to date. The random utility function of interest has a typical structure: it comprises a systematic

component or utility index varying with finite-dimensional explanatory variables, and an additive stochastic

component or error term. The objective is to estimate preference parameters, referring to the coefficients on

the explanatory variables. The methods are semiparametric in that they maintain the usual parametric form

of the systematic component but place only non-parametric restrictions on the stochastic component.

The parametric methods are equally well-established for multinomial choice and rank-ordered choice data.

In most cases, an analysis of multinomial choice data involves the maximum (simulated) likelihood estimation

of one of four models: multinomial logit (MNL), nested MNL, multinomial probit (MNP), and random

coefficients (or “mixed”) MNL. Each model assumes a different parametric distribution of the stochastic

component, and has its own rank-ordered choice counterpart which shares the same assumption: rank-

ordered logit (ROL) of Beggs et al. (1981), nested ROL of Dagsvik and Liu (2009), rank-ordered probit

(ROP) of Layton and Levine (2003), and mixed ROL of Layton (2000) and Calfee et al. (2001). Building

on Falmagne (1978) and Barberá and Pattanaik (1986), McFadden (1986) provides a technique that can be
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applied to translate any parametric multinomial choice model into the corresponding rank-ordered choice

model.

The literature on the semiparametric methods is more lopsided. For multinomial choice data, several

alternative methods exist including Manski (1975), Ruud (1986), Lee (1995), Lewbel (2000) and Fox (2007).

The special case of binomial choice data has attracted even greater attention, and the respectable menagerie

includes Ruud (1983), Manski (1985), Han (1987), Horowitz (1992), Klein and Spady (1993) and Sherman

(1993) to name a few. When it comes to rank-ordered choice data, we are aware of only one study that aimed

at semiparametric estimation of the preference parameters, namely Hausman and Ruud (1987). In that study,

the weighted M-estimator (WME) of Ruud (1983, 1986) is generalized for use with rank-ordered choice data,

whereas the original WME was intended for use with binomial and multinomial choice data. The generalized

WME allows consistent estimation of the ratios of the preference parameters despite stochastic misspecifi-

cation, but there are two drawbacks affecting its empirical applicability. As the authors acknowledge, the

estimator’s consistency is confined to the ratios of the coefficients on continuous explanatory variables, and

its asymptotic distribution is unknown outside a special case of Newey (1986).

In this paper, we propose a pair of new semiparametric methods for rank-ordered choice data. We

call them the generalized maximum score (GMS) estimator and the smoothed generalized maximum score

(SGMS) estimator respectively. Both estimators are consistent under more general assumptions concerning

explanatory variables than the generalized WME of Hausman and Ruud (1987). Roughly speaking, if one

of q explanatory variables is continuous, each estimator allows consistent estimation of all coefficients up

to scale regardless of whether the other q − 1 variables are continuous or discrete. Moreover, the SGMS

estimator is asymptotically normal, meaning that it is amenable to the application of usual Wald-type tests.

The GMS estimator follows a non-standard asymptotic distribution, but it does not require extra smoothness

assumptions.

The GMS estimator generalizes the pairwise maximum score (MS) estimator of Fox (2007), which has

been developed for use with multinomial choice data and is a modern extension of the classic MS estimator

due to Manski (1975). Suppose that the individual faces J alternatives. A multinomial choice observation

allows one to infer the outcomes of J − 1 pairwise comparisons where each pair comprises her actual choice

and an unchosen alternative. A rank-ordered choice observation allows one to infer the outcomes of more
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pairwise comparisons. For example, in case the individual ranks all J alternatives from best to worst, her

rank-ordered choice would allow one to learn the outcomes of all possible J(J − 1)/2 pairwise comparisons.

The GMS estimator extends the MS estimator by incorporating such extra information. The key identification

condition comprises an intuitively plausible set of inequalities: in a pairwise comparison, if one alternative’s

systematic utility exceeds the other’s, its chance of being ranked better also exceeds the other’s.

The GMS estimator inherits all attractive properties of the MS estimator, two of which are particularly

relevant to empirical applications. First, the GMS estimator allows the econometrician to be agnostic about

the form of interpersonal heteroskedasticity or “scale heterogeneity” (Hensher et al., 1999; Fiebig et al.,

2010), referring to variations in the overall scale of utility across individuals.1 This property is desirable

because in most studies, the exact form of interpersonal heteroskedasticity matters only to the extent that

its misspecification leads to inconsistent estimation of the core preference parameters. Second, the GMS

estimator is consistent when the data generating process (DGP) comprises an arbitrary mixture of different

models, provided that it is consistent for each component model. The empirical evidence from behavioral

economics (Harrison and Rutström, 2009; Conte et al., 2011) supports the notion that characterizing observed

choices requires more than one model, but the parametric estimation of a mixture model demands the exact

knowledge of the number and composition of component models.

In addition, when each individual ranks all alternatives from best to worst, the GMS estimator is substan-

tively more flexible than the MS estimator. As we discuss in details later, the GMS estimator is consistent

for all popular parametric models exhibiting flexible substitution patterns, whereas the MS estimator is not.2

The GMS estimator therefore delivers what empiricists may expect from the use of a semiparametric method,

namely the ability to estimate all popular parametric models consistently on top of other types of models.

This is an interesting finding because in the parametric framework, the advantage of using rank-ordered

choice data instead of multinomial choice data is limited to efficiency gains (Hausman and Ruud, 1987), and

a multinomial choice model may be more robust to stochastic misspecification than its rank-ordered choice
1This property explains a major difference between the GMS estimator and the maximum rank correlation (MRC) estimator

of Han (1987) and Sherman (1993). The GMS method utilizes the observed ranking information and does pairwise comparisons
of alternatives within each individual, allowing the conditional joint distribution of the error terms to vary across individuals. In
comparison, the MCR estimator does pairwise comparisons between individuals and requires the error terms to be independent
of the explanatory variables, ruling out the possibility of heteroskedasticity across individuals.

2The difference arises because the complete ranking information allows us to replace the “exchangeability” assumption (Goeree
et al., 2005; Fox, 2007) with a much weaker assumption of zero conditional median.
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counterpart (Yan and Yoo, 2014). The efficiency-bias tradeoff does not apply in the semiparametric frame-

work, where the advantage of using rank-ordered choice data also includes robustness to a wider variety of

DGPs. We note that in most studies on rank-ordered choices, the complete preference rankings are elicited

as required for this result (Hausman and Ruud, 1987; Calfee et al., 2001; Caparrós et al., 2008; Scarpa et al.,

2011; Yoo and Doiron, 2013; Oviedo and Yoo, 2016).

The SGMS estimator offers the same types of practical benefits as the GMS estimator, and addresses

the latter’s major drawbacks in return for requiring extra smoothness assumptions. The GMS estimator’s

rate of convergence is N−1/3, which is slower than the usual rate of N−1/2, and it follows a non-standard

asymptotic distribution of Kim and Pollard (1990) which is inconvenient for use with conventional hypothesis

tests. These properties are inherited from the MS estimator, and arise because the objective function is a

sum of step functions. Horowitz (1992) develops the smoothed maximum score (SMS) estimator for binomial

choice data which replaces the step functions with smooth functions, and Yan (2012) extends the method

to multinomial choice data. Our smoothing technique follows this tradition. We show that the SGMS

estimator’s convergence rate can be made arbitrarily close to N−1/2 under extra smoothness conditions and

that its asymptotic distribution is normal, with a covariance matrix which can be consistently estimated.

The remainder of this paper is organized as follows. Section 2 develops the GMS estimator and compares

it with popular parametric methods. Section 3 develops the SGMS estimator. Section 4 presents the Monte

Carlo evidence on the finite sample properties of the proposed estimators. Section 5 concludes.

2 The Model and the Generalized Maximum Score Estimator

2.1 A Random Utility Framework and Rank-Ordered Choice Data

Consider the standard random utility model. An individual in the population of interest faces a finite

collection of alternatives. Let J = {1, . . . , J} denote the set of alternatives and let J ≥ 2 be the number of

alternatives contained in J. The utility from choosing alternative j, uj , is assumed as follows:

uj = x′jβ + εj ∀ j ∈ J, (1)
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where xj ≡ (xj,1, . . . , xj,q)
′ ∈ Rq is an observed q-vector containing the attributes of alternative j and their

interactions with the individual’s characteristics, β ≡ (β1, . . . , βq)
′ ∈ Rq is the preference parameter vector

of interest, and εj is the unobserved component of utility to the econometrician. The utility index x′jβ is

often called systematic (or deterministic) utility, as opposed to the error term εj which is called unsystematic

(or stochastic) utility. Let X ≡ (x1, . . . ,xJ)′ ∈ RJ×q be the matrix of the explanatory variables and

ε ≡ (ε1, . . . , εJ)′ ∈ RJ be the vector of the error terms.

Let r(j,u) denote the latent or potentially unobserved ranking of alternative j, based on the vector of

underlying alternative-specific utilities u ≡ (u1, u2, . . . , uJ)′ ∈ RJ . We shall follow the notational convention

that r(j,u) = q when j is the qth best alternative in the choice set J, meaning that a smaller ranking value

indicates a more preferred alternative. For instance, suppose that J = 4 and u3 > u4 > u1 > u2. Then,

r(1,u) = 3, r(2,u) = 4, r(3,u) = 1, and r(4,u) = 2. Purely for technical convenience, our notation handles

any utility tie by assigning a better ranking to the alternative that happens to have a smaller numeric label.

For instance, suppose instead that u3 > u4 = u1 > u2. Then, r(1,u) = 2 and r(4,u) = 3 since numeric label

“1” is smaller than “4”.

A more formal definition of the latent ranking that incorporates our notational convention is as follows.

Let T(j,u) be the set of alternatives with the same utility as alternative j. A(k, T(j,u)) maps element

k ∈ T(j,u) one-to-one onto the integers {0, . . . , |T(j,u)| − 1}, where |T| is the number of alternatives in T.

For any two alternatives k, l ∈ T(j,u), A(k,T(j,u)) < A(l,T(j,u)) if and only if k < l. For any j ∈ J, denote

its latent ranking as

r(j,u) ≡ L(j,u) + 1 +A(j,T(j,u)), (2)

where L(j,u) denotes the number of alternatives that yield strictly larger utility than alternative j for the

individual. Notice that in the absence of utility ties, the last term on the right-hand side of (2) is irrelevant

to the latent ranking value since A(j, T(j,u)) = 0. By definition (2), there is a one-to-one mapping between

the set {r(j,u) : j = 1, . . . , J} and the set {1, . . . , J}.

Next, let rj denote the reported or actually observed ranking of alternative j, and r ≡ (r1, . . . , rJ)′ ∈ NJ

be the vector of the reported rankings of all J alternatives in J. We shall maintain that the reported
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ranking rj coincides with the latent ranking r(j,u) in case the individual reports the complete ranking

of alternatives, and is a censored version of the latent ranking in case she reports a partial ranking. To

facilitate further discussion, suppose that the individual reports the ranking of her bestM alternatives where

1 ≤M ≤ J − 1, and leaves that of the other J −M alternatives unspecified. As before, suppose that J = 4

and u3 > u4 > u1 > u2. In case M = 3, the complete ranking is observed since the individual reports her

best, second-best, and third-best alternatives, allowing the econometrician to infer that the only remaining

alternative is her worst one, r = (r1, r2, r3, r4) = (3, 4, 1, 2), and that each alternative’s reported ranking is

identical to its latent ranking. In case M = 2, only a partial ranking is observed since the individual reports

her best and second best alternatives, and the econometrician cannot tell whether alternative 1 is preferable

to alternative 2, r = (3, 3, 1, 2), so the reported ranking r2 is no longer the same as the latent ranking

r(2,u). Finally, in case M = 1, the resulting partial ranking observation is identical to a multinomial choice

observation since the individual reports only her best alternative, r = (2, 2, 1, 2).

A more formal definition of the reported ranking that incorporates the above discussion is as follows. Let

the random set M (M ⊂ J) denote the set of the best M alternatives for the individual, that is, M ≡ {j :

r(j,u) ≤M}. The reported ranking of alternative j, then, follows the observation rule

rj =


r(j,u) if r(j,u) ≤M, or equivalently, j ∈M,

M + 1 if r(j,u) > M, or equivalently, j ∈ J \M.

(3)

When M = J − 1, the complete ranking is observed. When M = 1, the resulting partial ranking is obser-

vationally equivalent to a multinomial choice. The intermediate cases of partial rankings, which occur when

2 ≤M < J − 1 and J > 3, are much less common in empirical studies though not unprecedented.3

2.2 The Generalized Maximum Score Estimator

This section establishes strong consistency of the Generalized Maximum Score (GMS) estimator, the first of

two semiparametric methods that we propose. The GMS estimator is semiparametric in the sense that it

allows the econometrician to estimate the preference parameter vector β consistently, without commiting to
3See for example Layton (2000) and Train and Winston (2007), both of which analyze data on the best and second-best

alternatives; their data structures are M = 2 and J > 3 according to our notations.
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a specific parametric form of the conditional distribution of the error vector given observed attributes ε|X.

Our first assumption pertains to sampling.

Assumption 1. {(rn,Xn, εn) : n = 1, . . . , N} is a random sample of (r,X, ε), where rn ≡ (rn1, . . . , rnJ)′ ∈

NJ , Xn ≡ (xn1, . . . ,xnJ)′ ∈ RJ×q, and εn ≡ (εn1, . . . , εnJ)′ ∈ RJ . For each individual n = 1, . . . , N,

(rn,Xn) is observed.

Assumption 1 states that we have N observations of (r,X), indexed by n, and individuals are indepen-

dently and identically distributed (i.i.d.). For the latter reason, we drop subscript n to avoid notational

clutter except when it is needed for clarification.4

As usual in discrete choice modeling, identification of the preference vector β requires scale normalization

since they are unique only up to scale.5 When a parametric form of the conditional distribution of ε|X is

specified, identification is almost always achieved by normalizing a scale parameter of that distribution.6 But

when no parametric form is specified, no scale parameter is available for normalization. In a semiparametric

framework, identification is therefore achieved by normalizing β instead.

Subject to the prior knowledge that some element of β is non-zero, we can normalize the magnitude of

that element.7 Without loss of generality, we assume that |β1| = 1. Let β̃ ≡ (β2, . . . , βq)
′ ∈ Rq−1 be the

vector containing the other elements of β. The following assumption imposes a requirement on the space of

the preference parameters.

Assumption 2. The preference parameter vector β ∈ B, where B ≡ {−1, 1} × B̃, B̃ is a compact subset of

Rq−1, and q ≥ 2.

Next, we state Assumption 3 which presents a key identification condition pertaining to strong consistency

of the GMS estimator. This assumption implicitly places a restriction on the conditional distribution of ε|X,

albeit it is a non-parametric restriction that is satisfied by a range of parametric functional forms, some of

which we will discuss in the subsequent section. Denote the systematic utility of alternative j as vj ≡ x′jβ

for any alternative j ∈ J.
4Throughout this paper, we use n to denote an individual, and j, k, l to denote alternatives.
5Multiplying both β and ε by any positive constant leads to the same rank-ordered choice data.
6For instance, in the binomial probit model, the variance of the conditional distribution is assumed to be one.
7For example, economists may agree that the coefficient on the own price variable is negative.
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Assumption 3. For any pair of alternatives j, k ∈ J and for almost every X,

vj > vk if and only if

P (rj < rk|X) > P (rk < rj |X), (4)

i.e., alternative j generates more systematic utility than alternative k if and only if there is a higher chance

that j is preferable to k (rj < rk) than the reverse (rk < rj), conditional on almost all explanatory vectors.

Assumption 3 immediately implies that vj = vk if and only if P (rj < rk|X) = P (rj > rk|X), i.e.,

alternatives j and k have the same systematic utility if and only if the probability that alternative j is

preferable to alternative k is the same as the probability that alternative k is preferable to alternative j.

Two special types of rank-ordered choice data are worth highlighting. First, when M = 1, the individual

reports only her best alternative and we have multinomial choice data. In this case, alternative j is ranked

above alternative k (rj < rk) if and only if j is ranked as the best alternative (rj = 1), so we have

P (rj < rk|X) = P (rj = 1|X). (5)

If we replace P (rj < rk|X) with P (rj = 1|X) and replace P (rk < rj |X) with P (rk = 1|X) in (4), then

Assumption 3 becomes the monotonicity property of choice probabilities (Manski, 1975), i.e., the ranking of

the choice probability of an alternative is the same as the ranking of the systematic utility of the alternative

for any given individual.8

Second, when M = J − 1, the individual ranks all alternatives from best to worst, and we have fully

rank-ordered choice data. With this complete ranking information, we can compare the utilities between

any two alternatives. Without loss of generality, let’s focus on a pair of alternatives (j, k) such that j < k.

Alternative j is ranked above alternative k if and only if the utility from choosing alternative j is larger than
8See Fox (2007) for a detailed discussion of sufficient conditions for the monotonicity property of choice probabilities.
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the utility from choosing alternative k, so we have9

P (rj < rk|X) = P (uj ≥ uk|X)

= P (εk − εj ≤ vj − vk|X).
(6)

The “only if” part holds under the definition of ranking r, and the “if” part is a direct result of complete

ranking. The first equality of (6) may not hold if we only observe a partial ranking, i.e., M < J − 1. This is

because rj < rk naturally implies uj ≥ uk, but uj ≥ uk may not imply rj < rk. When neither alternative j

nor k belongs to the set M, both of them are observed with the same ranking, M + 1, even if uj > uk.

For any pair of alternatives, assume that the conditional distribution of εk − εj is a strictly increasing

function. Then the well-known (pairwise) zero conditional median (ZCM) restriction, median(εk−εj |X) = 0,

is a necessary and sufficient condition for Assumption 3 when a complete ranking of J alternatives is available.

The proof is straightforward.10 Notice that P (rj < rk|X) + P (rk < rj |X) = 1 when the choice set is fully

rank-ordered. For “necessity”, Assumption 3 implies that vj − vk = 0 if and only if P (rj < rk|X) = 1/2,

or equivalently, P (εk − εj ≤ vj − vk|X) = 1/2 by (6). For “sufficiency”, the ZCM assumption implies that

vj > vk if and only if P (rj < rk|X) > 1/2 by (6), or equivalently, P (rj < rk|X) > P (rk < rj |X).

Next, we describe the intuition of applying Assumption 3 to construct the GMS estimator for β. Let

1(·) be an indicator function that equals one if the event in the parenthesis is true and zero otherwise, and

let b ≡ (b1, b̃
′
)′ be any vector in the parameters space B. Under Assumption 3, if x′jβ > x′kβ, then event

rj < rk is more likely to occur than event rk < rj ; if x′kβ > x
′
jβ, then event rk < rj is more likely to be true

than event rj < rk; and if x′jβ = x′kβ, then event rj < rk has the same chance to be true as event rk < rj .

Therefore, the expected value of the following match

mjk(b) = 1(rj < rk) · 1(x′jb > x
′
kb) + 1(rk < rj) · 1(x′kb > x

′
jb) + 1(rj < rk) · 1(x′jb = x′kb)

= 1(rj < rk) · 1(x′jb ≥ x′kb) + 1(rk < rj) · 1(x′kb > x
′
jb)

(7)

should be maximized at the true preference parameter vector β over b ∈ B. Define x′njb as the b-utility index

9If j > k, then P (rj < rk|X) = P (uj > uk|X). This is because we break ties using function A(·, T(j)), and rank alternative
k above alternative j if k < j when k ∈ T(j).

10This proof does not apply to partially rank-ordered choice data, e.g., multinomial choice data, because the first equality in
(6) does not hold. Goeree et al. (2005) give an example showing that the ZCM assumption is not sufficient for the monotonicity
property of the choice probabilities.
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of alternative j for individual n. Applying the analogy principle, we propose a semiparametric estimator,

bN ≡ (bN,1, b̃
′
N )′ ∈ B, for β as follows:

bN ∈ argmaxb∈BQN (b), (8)

where

QN (b) = N−1
N∑
n=1

∑
1≤j<k≤J

[
1(rnj < rnk) · 1(x′njb ≥ x′nkb) + 1(rnk < rnj) · 1(x′nkb > x

′
njb)

]
. (9)

In the special case of M = 1, i.e., when we have multinomial choice data, the estimator bN defined by (8)

becomes the pairwise maximum score (MS) estimator of Fox (2007). When J = 2 or we have binomial choice

data, the estimator bN becomes the MS estimator of Manski (1985). For this reason, the estimator bN will

be called the generalized maximum score (GMS) estimator.

When all the explanatory variables are discrete, we can always find another vector in the neighborhood

of β that generates the same ranking of utility indexes as β. To achieve point identification, we need to

impose an extra assumption on the explanatory variables, namely, we need a continuous explanatory variable

conditional on other explanatory variables. Next, we define a few notations and state the restrictions on

explanatory variables formally in Assumption 4.

Since only differences in utilities matter to the observed outcome of random utility maximization, we

shall assume xJ = 0 without any loss of generality.11 Next, let xjk ≡ (xjk,1, . . . , xjk,q)
′ ∈ Rq denote the

difference between the explanatory vectors of alternatives j and k, i.e., xjk ≡ xj − xk. In Assumption 2,

we assumed that the first preference parameter has non-zero value. For each alternative j ∈ J, partition the

vector xj into (xj,1, x̃
′
j)
′, where xj,1 is the first element of xj and x̃j ≡ (xjk,2, . . . , xjk,q)

′ ∈ Rq−1 refers to the

remainder. So the first element of xjk is xjk,1 = xj,1−xk,1 and its remaining elements are included in vector

x̃jk = x̃j − x̃k. Define X̃ = (x̃1, . . . , x̃J)′ ∈ RJ×(q−1). Vectors xnj , xnjk, and x̃njk are the nth observation

of vectors xj , xjk, and x̃jk, respectively. Matrices Xn and X̃n are the nth observation of matrices X and

X̃, respectively.
11If xJ 6= 0 initially, one can recode xj as xj − xJ for all j ∈ J including j = J .



12

Assumption 4. The following statements are true.

(a) For any pair of alternatives j, k ∈ J, the density function of xjk,1 conditional on x̃jk, gjk(xjk,1|x̃jk), is

positive everywhere on R for almost every x̃jk.

(b) For any constant vector c ≡ (c1, . . . , cq)
′ ∈ Rq, P (Xc = 0) = 1 if and only if c = 0.

Assumption 4 is sufficient to show that other vectors b ∈ B would yield different values for the probability

limit of the objective function QN (b) from the true parameter vector β. Assumption 4(a) avoids the local

failure of identification, which is important for semiparametric setting. Assumption 4(b) is analogous to the

full-rank condition for the binomial choice model, which prevents the global failure of identification. The

following theorem establishes strong consistency of the GMS estimator. Appendix provides the proofs of all

theorems stated in the main text.

Theorem 1. Let Assumptions 1-4 hold. The GMS estimator bN defined in (8) converges almost surely to

β, the true preference parameter vector in the data generating process.

2.3 Comparisons with Parametric Methods

From empiricists’ perspectives, the question of paramount interest would be how flexible the semiparametric

model is in comparision with parameteric models that one may consider. Modern desktop computing power

makes this question especially relevant. Standard computing resources of today can handle the estimation of

models that feature fairly flexible, albeit parametric, error structures.

When applied to data on complete rankings, i.e., M = J − 1, the GMS estimator postulates a semi-

parametric model that nests all popular parametric models and any finite mixture of those models, provided

that the explanatory vectors satisfy regularity conditions such as Assumption 4. In most studies on rank-

ordered choices, the complete rankings are elicited as required for this result.12 Such a degree of flexibility

is not something to be taken for granted. For instance, the MS estimator (Manski, 1975; Fox, 2007) using

multinomial choice data is consistent for a family of parametric models featuring exchangeable errors (e.g.,

multinomial logit and multinomial probit with equicorrelated errors), but not for those parametric models
12See for example, Hausman and Ruud (1987), Calfee et al. (2001), Caparrós et al. (2008), Scarpa et al. (2011), Yoo and

Doiron (2013), and Oviedo and Yoo (2016).
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that feature more flexible error structures (e.g., nested multinomial logit, multinomial probit with a general

error covariance matrix, and mixed logit).

This section elaborates on the semiparametric model that the GMS estimator postulates, and its com-

parisons with popular parametric models. To clarify the notion of interpersonal heteroskedasticity here (and

later, unobserved interpersonal heterogeneity), we reinstate individual subscript n. With a slight abuse of

notations, an observationally equivalent form of equation (1) may be specified to express the utility that

individual n derives from alternative j as

unj = σn × (x′njβ) + εnj for n = 1, 2, ..., N and j ∈ J, (10)

where the new parameter σn ∈ R1
+ captures that portion of the overall scale of utility which varies across

individuals.13 Equivalently, σn may be also described as a parameter that is inversely proportional to that

portion of error variance which varies across individuals. Consistent estimation of a parametric model requires

the correct specification of both the joint density of errors εn|Xn and the functional form of σn. The GMS

estimator allows both requirements to be relaxed substantially.

Regardless of the depth of rankings observed (i.e., for every M such that 1 ≤ M ≤ J − 1), the GMS

estimator is consistent for the semiparametric model that accommodates any form of interpersonal het-

eroskedasticity via σn. For verification, note that when vnj ≡ x′njβ and vnk ≡ x′nkβ satisfy the inequality

stated in Assumption 3, so does any positive multiple of this pair, σn×vnj and σn×vnk. The GMS estimator,

therefore, allows the empiricists to be agnostic about the exact functional form of σn. This is a desirable

property because in most studies, σn demands attention only to the extent that it must be correctly specified

for consistent estimation of the preference parameter vector β.

The remainder of this section assumes the use of complete rankings (M = J − 1). This allows the

semiparametric model to accommodate any model that satisfies the pairwise zero conditional median (ZCM)
13Since an affine transformation of utilities does not alter observed behavior, the random utility specification (10) is obser-

vationally equivalent to unj = x′njβ + εnj/σn. The slight abuse of notations refers to that εj in equation (1) corresponds to
εnj/σn, rather than εnj alone. Note that the presence of a parameter like σn does not affect any of our earlier results because
they do not rely on εnj having a standardized scale.
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restriction, i.e.,

median(εnk − εnj |Xn) = 0 for any j, k ∈ J, where j 6= k, (11)

which is then a necessary and sufficient condition for Assumption 3 as long as the distribution of (εnk−εnj)|Xn

is a strictly increasing function: see Section 2.2. In comparison, any parametric model involves a much

stronger set of restrictions affecting other moments too, since the density of εn|Xn is specified in full detail.

The semiparametric model based on (11) offers considerable flexibility not only over possible distributions

of idiosyncratic errors, but also over possible distributions of random coefficients. To see this latter aspect,

note that one may view εn as composite errors comprising individual-specific coefficients heterogeneity ηn

(that has the same dimension as β) and purely idiosyncratic errors εn (that has the same dimension as εn)

such that a typical entry in εn ≡Xnηn + εn is

εnj ≡ x
′

njηn + εnj . (12)

Suppose now that idiosyncratic errors εn satisfy the pairwise ZCM restriction, median(εnk − εnj |Xn) = 0

for any j, k ∈ J, and the usual random coefficients modeling assumption, (ηn⊥εn)|Xn, holds. Then, as

long as individual heterogeneity has ZCM, i.e., median(ηn|Xn) = 0, the composite errors εn satisfy the

pairwise ZCM restriction in (11) too: differencing two composite errors results in a linear combination of

conditionally independent random variables, (xnk−xnj)′ηn and (εnk−εnj), each of which has the conditional

median of zero.14 In comparison, a parametric random coefficients model places more rigid restrictions on

the distribution of individual heterogeneity ηn, because the density of ηn|Xn needs be specified in full detail

much as that of εn|Xn.

It is easy to verify that the semiparametric model accommodates the classic troika of parametric random

utility models, logit (or ROL), nested logit (or nested ROL), and probit (or ROP). All three models assume

away interprsonal heteroskedasticity by setting σn = 1 ∀ n = 1, 2, ..., N , and assume an idiosyncratic error

density εn|Xn that implies the pairwise ZCM condition. In case of logit, the idiosyncractic errors are i.i.d.
14Each element in β may be interpreted as the median of a certain random preference coefficient whereas the corresponding

element in ηn measures the individual-specific deviation around this median.
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extreme value type 1 over alternatives and, as the celebrated result of McFadden (1974) shows, differencing

two errors results in a standard logistic random variable that is symmetric around 0. The nested logit directly

generalizes the logit model by specifying the joint density of εn|Xn as a generalized extreme value (GEV)

distribution. This distribution allows for a positive correlation between εnj and εnk in case alternatives j

and k belong to the same “nest” or pre-specified subset of J. Differencing two GEV errors still results in a

logistic random variable that is symmetric around 0, though it may not have the unit scale. Finally, in its

unrestricted form, the probit model generalizes the nested logit model by specifying the multivariate normal

density εn|Xn ∼ N(0,V ε) that allows for heteroskedasticity of εnj over alternatives j, and also for any sign

of correlation between εnj and εnk. Differencing two zero-mean multivariate normal variables results in a

zero-mean normal variable which is symmetric around its mean.

Random coefficients or “mixed ”logit (or mixed ROL) models have become the workhorse of empirical

modeling in the recent decade. The semiparametric model accommodates the most popular variant of mixed

logit models, as well as their extensions. In the context of error decomposition (12), a mixed logit model

has idiosyncratic errors εn|Xn as i.i.d. extreme value type 1 over alternatives and incorporates a non-

degenerate “mixing” distribution of random heterogeneity ηn|Xn. While the mixing distribution may take

any parametric form, specifying ηn|Xn ∼ N(0,V η) is by far the most popular choice, so much so that the

generic name “mixed logit” is often associated with this normal-mixture logit model. Differencing the normal-

mixture logit model’s composite errors results in a linear combination of conditionally independent zero-mean

normal and standard logistic random variables, that has the conditional median of zero. Fiebig et al. (2010)

augment the normal-mixture logit model with a log-normally distributed interpersonal heteroskedasticity

parameter σn, and find that the resulting Generalized Multinomial Logit model is capable of capturing

the multimodality of preferences. Because the semiparametric model allows for any form of σn, it nests

the Generalized Multinomial Logit model too. Greene et al. (2006) extend the normal-mixture model in

another direction, by allowing the variance-covariance of random coefficients, V ar(ηn|Xn) to vary with Xn.

The semiparametric model nests their heteroskedastic normal-mixture logit model too, since this type of

generalization does not affect the conditional median of ηn.

The semiparametric model also accommodates any finite mixture of the aforementioned parametric mod-

els, and more generally that of all parametric models satisfying the pairwise ZCM restriction. In other words,
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it allows for that the data generating process may comprise different parametric models for different individ-

uals.15 This flexibility comes from the fact that the GMS estimator does not require the density of εn|Xn

to be identical across all individuals n = 1, 2, ..., N , as long as each individual’s density of the error vector

satisfies the pairwise ZCM restriction. While the finite mixture of parametric models approach has not been

applied to the analysis of multinomial choice or rank-ordered choice data, it has motivated influential studies

in the binomial choice analysis of decision making under risk (Harrison and Rutström, 2009; Conte et al.,

2011). The findings from that literature unambiguously suggest that postulating only one parametric model

for all individuals may be an unduly restrictive assumption.

3 The Smoothed GMS Estimator

The maximum score (MS) type estimator is N1/3-consistent, and its asymptotic distribution is studied in

Cavanagh (1987) and Kim and Pollard (1990). Kim and Pollard have shown that N1/3 times the centered

MS estimator converges in distribution to the random variable that maximizes a certain Gaussian process for

the binomial choice data. Their general theorem can be applied to multinomial choice data and rank-ordered

choice data too. However, the resulting asymptotic distribution is too complicated to be used for inference

in empirical applications. Abrevaya and Huang (2005) prove that the standard bootstrap is not consistent

for the MS estimator. Delgado et al. (2001) show that subsampling consistently estimates the asymptotic

distribution of the test statistic of the MS estimator for the binomial choice data. But subsampling has

efficiency loss, and its computational cost is very high for the MS or GMS estimator because a global search

method is needed to solve the maximization problem for each subsample.

In this section, we propose an estimator that complements the GMS estimator by addressing these practi-

cal limitations, in return for making some additional assumptions. In the context of Manski’s (1985) binomial

choice MS estimator, Horowitz (1992) develops a smoothed maximum score (SMS) estimator that replaces

the step functions with smooth functions. Yan (2012) applies this technique to derive a smoothed version

of Fox’s (2007) multinomial choice MS estimator. We use the same approach to derive a smoothed GMS

(SGMS) estimator, which offers similar benefits as its SMS predecessors. Specifically, we show that the SGMS
15For example, the nested logit model may generate 1/3 of the sample while the mixed logit may generate the rest.
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estimator has a convergence rate which is faster than N−1/3 under extra smoothness conditions, and also

that it is asymptotically normal.

3.1 The Smoothed GMS Estimator and its Asymptotic Properties

The objective function in (9) can be rewritten as

QN (b) = N−1
N∑
n=1

∑
1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)] · 1(x′njkb ≥ 0) + 1(rnk < rnj)

}
(13)

by replacing 1(x′nkjb > 0) with [1− 1(x′njkb ≥ 0)].

The indicator function of b in (13) can be replaced by a sufficiently smooth function K(·), where K(·)

is analogous to a cumulative distribution function. Application of the smoothing idea in Horowitz (1992) to

the right-hand side of (13) yields a smoothed version of GMS (SGMS) estimator

bSN ∈ argmax
b∈B

QSN (b, hN ), (14)

where

QSN (b, hN ) = N−1
N∑
n=1

∑
1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)] ·K

(
x′njkb/hN

)
+ 1(rnk < rnj)

}
(15)

and {hN : N = 1, 2, . . .} is a sequence of strictly positive real numbers satisfying limN→∞hN = 0.

The next condition states the requirements that the smooth function K(·) should satisfy for the SGMS

estimator bSN to be consistent.

Condition 1. Let K(·) be a function on R such that:

(a) |K(v)| < C for some finite C and all v ∈ (−∞, ∞); and

(b) limv→−∞K(v) = 0 and limv→∞K(v) = 1.

Theorem 2. Let Assumptions 1-4 and Condition 1 hold. The SGMS estimator bSN ∈ B defined in (14)

converges almost surely to the true preference parameter vector β.



18

By Theorem 2, the consistency of the SGMS estimator holds under the same set of assumptions as

the GMS estimator, as long as the smooth function is properly chosen. Since any cumulative distribution

function (e.g., the standard normal distribution function) satisfies Condition 1, the SGMS does not require

more assumptions to achieve strong consistency than the GMS estimator does.

Extra assumptions, however, are required in order to derive the asymptotic distribution of the SGMS

estimator. Assume that function K(·) is twice differentiable. Thus the objective function (15) of the SGMS

estimator is a smooth function of b. Let b1 denote the first element of b, and b̃ denote the vector of its

remaining elements. Next, define the first- and second-order derivatives of QSN (b, hN ) with respect to b̃ as

tN (b, hN ) and HN (b, hN ), respectively, where the vector

tN (b, hN ) = (NhN )−1
N∑
n=1

∑
1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)] ·K ′

(
x′njkb/hN

)
x̃njk

}
(16)

and the matrix

HN (b, hN ) = (Nh2
N )−1

N∑
n=1

∑
1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)] ·K ′′

(
x′njkb/hN

)
x̃njkx̃

′
njk

}
. (17)

To derive the first order condition, we make the following assumption:

Assumption 5. β̃ is an interior point of B̃.

Let bSN,1 denote the first element of the SGMS estimator bSN ∈ B, and b̃
S

N denote the vector of the remaining

elements. By Theorem 2 and Assumption 5, bSN,1 = β1, b̃
S

N is an interior point of B̃, and tN (bSN , hN ) = 0 with

probability approaching one as N approaches ∞. A Taylor series expansion of tN (bSN , hN ) around bSN = β

yields

tN (bSN , hN ) = tN (β, hN ) +HN (b∗N , hN )(b̃
S

N − β̃), (18)

where b∗N ≡ {b∗N,1, b̃
∗
N}, b∗N,1 = bSN,1 = β1, and b̃

∗
N is a vector between b̃

S

N and β̃. Suppose there is a function

ρ(N) such that ρ(N)tN (β, hN ) converges in distribution to a random vector and also that HN (b∗N , hN )
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converges in probability to a nonsingular, nonstochastic matrix H. Then,

ρ(N)(b̃
S

N − β̃) = −H−1ρ(N)tN (β, hN ) + op(1). (19)

By (18) and (19), it is essential to derive the limiting distribution of ρ(N)tN (β, hN ) and the probability

limit of HN (b∗N , hN ) to obtain the asymptotic distribution of the SGMS estimator. Later, we will show that

ρ(N)tN (β, hN ) is asymptotically normal if bandwidth hN is properly chosen according to the smoothness

conditions imposed on the distribution of the continuous explanatory variable and error terms. Roughly put,

the fastest convergence rate of b̃
S

N − β̃ to zero is ρ(N)−1 � N−d/(2d+1) when the conditional probability

of ranking comparison in (4) is dth (d ≥ 2) order differentiable with respect to the systematic utility and

the conditional density of the continuous explanatory variable is (d− 1)th order differentiable. Therefore, a

higher convergence rate (corresponding to larger d), is achieved at the cost of making stronger smoothness

assumptions on the distributions of the continuous explanatory variable and the error terms. By properly

choosing the bandwidth hN � N−1/(2d+1) and smooth function K(·) (according to Condition 2 given below),

we can conclude that ρ(N)tN (β, hN ) is asymptotically normal. We require the integer d to be no less than

2. If d = 1, the random matrix HN (b∗N , hN ) does not converge to a non-stochastic matrix H, and has

an unknown limiting distribution instead; it follows that the limiting distribution of ρ(N)(b̃
S

N − β̃) is also

unknown by (19).

In the binomial choice setting, the SMS estimator is derived from a single latent variable equation, where

the conditional choice probability of alternative 1,

P (r1 = 1|x) = P (−ε̄ ≤ x′β|x), (20)

can be expressed as the conditional distribution of the error term ε̄ given a single vector x.16 This conditional

distribution function plays an important role in expressing the limiting distribution of the SMS estimator.

The SGMS estimator is derived from a model with multiple latent utility equations. Outside the special case

of complete rankings, calculating the probability of a ranking comparison, e.g., P (r1 < r2|X), is even more
16Equation (20) uses the common notation adopted in binomial choice analysis. To connect with our notation, x should be

interpreted as x1 − x2 and ε̄ should be interpreted as ε1 − ε2.
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complicated than calculating a choice probability. Consider an example where the individual only reports

her best and second best alternatives from a set with four alternatives. By the definition of ranking r in (3),

we have

P (r1 < r2|X) = P (u1 ≥ u2 ≥ max{u3, u4}|X)

+P (u1 ≥ u3 > max{u2, u4}|X) + P (u1 ≥ u4 > max{u2, u3}|X)

+P (u3 > u1 ≥ max{u2, u4}|X) + P (u4 > u1 ≥ max{u2, u3}|X).

(21)

Calculating P (r1 < r2|X) by (21) using the joint distribution (or density) function of the error vector ε is

not an easy task. Fortunately, it is not needed for deriving the asymptotic distribution of ρ(N)tN (β, hN )

either. By (16), the convergence rate of tN (β, hN ) to zero depends on the product of the kernel function

K ′(·) and the pairwise differences between ranking comparisons. For each pair of alternatives (j, k), the

difference, P (rj < rk|X) − P (rk < rj |X), is zero if x′jkβ is zero implied by Assumption 3. The kernel

function K ′(x′jkβ/hN ) approaches zero as N goes to ∞ as long as x′jkβ is non-zero. If the difference,

P (rj < rk|X)−P (rk < rj |X), is dth order differentiable with respect to x′jkβ, we choose a dth order kernel

K ′(·) and an appropriate bandwidth hN . Analogous to the results on the kernel density estimation, the

SGMS estimator’s bias is O(hdN ), variance is O[(NhN )−1], and fastest convergence rate is N−d/(2d+1).

To facilitate a formal derivation of the asymptotic distribution of the SGMS estimator, we introduce a

series of extra notations first. Recall that vj ≡ x′jβ represents the systematic utility of choosing alternative

j ∈ J. Denote v ≡ (v1, . . . , vJ−1, vJ)′. vJ is zero since xJ is normalized to be a zero vector. There is a one-

to-one correspondence between X and (v, X̃) for fixed β. Define ιJ ≡ (1, . . . , 1) ∈ RJ . For any alternative

j ∈ J, let vector v−j be the difference: v − ιJvj . For example, when 1 < j < J ,

v−j = (v1 − vj , . . . , vj−1 − vj , 0, vj+1 − vj , . . . , vJ − vj)′.

In words, v−j is computed by subtracting the systematic utility of alternative j from the raw vector of

systematic utilities. For any pair of alternatives j, k ∈ J, define v−j,k = vk − vj and ṽ−j,k as the vector that
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consists of all elements of v−j excluding v−j,k. For example, when 1 < j < k < J ,

ṽ−j,k ≡ (v1 − vj , . . . , vk−1 − vj , vk+1 − vj , . . . , vJ − vj)′.

If J > 2, for any three different alternatives j, k, l ∈ J, define ṽ−j,kl as the vector that consists of all of the

elements of v−j excluding v−j,k and v−j,l. For example, when 1 < j < k < l < J ,

ṽ−j,kl ≡ (v1 − vj , . . . , vk−1 − vj , vk+1 − vj , . . . , vl−1 − vj , vl+1 − vj , . . . , vJ − vj)′.

If J > 3, for any four different alternatives j, k, l,m ∈ J, define ṽ−{k,m} as the vector that consists of all of the

elements of v excluding {vk, vm}. There is a one-to-one correspondence between v and (vjk, vlm, ṽ−{k,m}).

Let pjk(v−j,k|ṽ−j,k, X̃) denote the conditional density of v−j,k given (ṽ−j,k, X̃). Define the derivatives

p
(i)
jk (v−j,k|ṽ−j,k, X̃) = ∂ipjk(v−j,k|ṽ−j,k, X̃)/∂(v−j,k)i

and

p
(0)
jk (v−j,k|ṽ−j,k, X̃) ≡ pjk(v−j,k|ṽ−j,k, X̃).

Let pjkl(v−j,k, v−j,l|ṽ−j,kl, X̃) denote the joint density of (v−j,k, v−j,l) conditional on (ṽ−j,kl, X̃) and let

pjklm(vjk, vlm|ṽ−{k,m}, X̃) denote the joint density of (vjk, vlm) conditional on (ṽ−{k,m}, X̃).

Given any pair of alternatives j, k ∈ J, there is a one-to-one correspondence betweenX and (v−j,k, ṽ−j,k, X̃)

for fixed β ∈ B. The probability for each individual to rank alternative j over alternative k depends on her

explanatory matrix X, or equivalently, (v−j,k, ṽ−j,k, X̃). Define

Fjk(v−j,k, ṽ−j,k, X̃) = P (rj < rk|v−j,k, ṽ−j,k, X̃) (22)

and

F̄jk(v−j,k, ṽ−j,k, X̃) = P (rj < rk|v−j,k, ṽ−j,k, X̃)− P (rk < rj |v−j,k, ṽ−j,k, X̃). (23)



22

Next, for any integer i > 0, define the following derivatives:

F̄
(i)
jk (v−j,k, ṽ−j,k, X̃) = ∂iF̄jk(v−j,k, ṽ−j,k, X̃)/∂(v−j,k)i,

whenever the derivatives exist. Likewise, define the scalar constants kd and kΩ by

kd =
´∞
−∞ xdK ′(x)dx

and

kΩ =

ˆ ∞
−∞

[K ′(x)]2dx,

whenever these quantities exist. Finally, define the q − 1 vector a, and the (q − 1)× (q − 1) matrices Ω and

H as follows:

a =
∑

1≤j<k≤J

kd

d∑
i=1

1

i!(d− i)!
E
[
F̄

(i)
jk (0, ṽ−j,k, X̃) p

(d−i)
jk (0|ṽ−j,k, X̃)x̃jk

]
, (24)

Ω =
∑

1≤j<k≤J

2kΩE
[
Fjk(0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

]
, (25)

and

H =
∑

1≤j<k≤J

E
[
F̄

(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

]
, (26)

whenever these quantities exist.

Now, we turn to the derivation of the asymptotic distribution of the SGMS estimator bSN . We start off

by making the following requirements on the smooth function K(·), in addition to Condition 1.17

Condition 2. The following statements are true.

(a) K(v) is twice differentiable for v ∈ R, |K ′(v)| and |K ′′(v)| are uniformly bounded, and the integrals
17These extra requirements, stated in Condition 2, on the smooth function K(·) are similar to those in Assumption 7 of

Horowitz (1992).
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´∞
−∞[K ′(v)]2dv,

´∞
−∞[K ′(v)]4dv,

´∞
−∞ v2|K ′′(v)|dv, and

´∞
−∞[K ′′(v)]2dv are finite.

(b) For some integer d ≥ 2,
´∞
−∞ |v

dK ′(v)|dv <∞ and kd ∈ (0,∞). For any integer i (1 ≤ i < d), integrals
´∞
−∞ |v

iK ′(v)|dv <∞ and
´∞
−∞ viK ′(v)dv = 0.

(c) For any integer i (0 ≤ i ≤ d), any η > 0, and any positive sequence {hN} converging to 0,

lim
N→∞

hi−dN

´
|hNv|>η |v

iK ′(v)|dv = 0

and

lim
N→∞

h−1
N

´
|hNv|>η |K

′′(v)|dv = 0.

Next, we state extra assumptions needed for deriving the asymptotic distribution of the SGMS estimator,

with brief comments on the implications of each assumption.

Assumption 6. For any pair of alternatives j < k and for v−j,k in a neighborhood of 0, F̄ (i)
jk (v−j,k, ṽ−j,k, X̃)

exists and is a continuous function of v−j,k. Function |F̄ (i)
jk (v−j,k, ṽ−j,k, X̃)| is bounded by a constant C for

almost every (ṽ−j,k, X̃), where C is a finite real number and i is an integer (1 ≤ i ≤ d).

By definition (23), function F̄jk(·) can be derived from the conditional distribution of the error terms.

Assumption 6 in essence imposes the differentiability requirement on the conditional distribution function of

the error vector ε with respect to systematic utilities.

Assumption 7. The following statements on the explanatory variables are true.

(a) For any pair of different alternatives j, k ∈ J, p(i)
jk (v−j,k|ṽ−j,k, X̃) exists and is a continuous function

of v−j,k satisfying |p(i)
jk (v−j,k|ṽ−j,k, X̃)| < C for v−j,k in a neighborhood of 0, almost every (ṽ−j,k, X̃),

some finite constant C, and any integer i (1 ≤ i ≤ d − 1). In addition, |pjk(v−j,k|ṽ−j,k, X̃)| < C for

all v−j,k and almost every (ṽ−j,k, X̃).

(b) For any three different alternatives j, k, l ∈ J, pjkl(v−j,k, v−j,l|ṽ−j,kl, X̃) < C for all (v−j,k, v−j,l),

almost every (ṽ−j,kl, X̃), and some finite constant C.
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(c) For any four different alternatives j, k, l,m ∈ J, pjklm(vjk, vlm|ṽ−{k,m}, X̃) < C for all (vjk, vlm),

almost every (ṽ−{k,m}, X̃), and some finite constant C.

(d) The components of matrices X̃, vec(X̃)vec(X̃)′, and vec(X̃)vec(X̃)′vec(X̃)vec(X̃)′ have finite first

absolute moments.

Assumption 7 imposes regularity conditions on the explanatory variables. In addition to the continu-

ity requirement imposed by Assumption 4, Assumption 7 further requires that the conditional probability

density function of the first explanatory variable, xjk,1, given other explanatory variables is (d− 1)th order

differentiable.

Assumption 8. (logN)/(Nh4
N )→ 0 as N →∞, where {hN} is a strictly positive sequence converging to 0.

Assumptions 6-8, together with Condition 2, are analogous to typical assumptions made in the kernel

density estimation. A higher convergence rate of the SGMS estimator can be achieved using a higher order

kernel K ′(·) when the required derivatives of F̄ (·) and p(·) exist.

Assumption 9. The matrix H, defined by (26), is negative definite.

Note that the matrix H is analogous to the Hessian information matrix in the quasi-MLE. The following

theorem presents the main results concerning the asymptotic distribution of the SGMS estimator.

Theorem 3. Let Assumptions 1-9 and Conditions 1-2 hold for some integer d ≥ 2 and let {bSN} be a sequence

of solutions to problem (14).

(a) If Nh2d+1
N →∞ as N →∞, then h−dN (b̃

S

N − β̃) converges in probability to −H−1a.

(b) If Nh2d+1
N has a finite limit λ as N →∞, then (NhN )1/2(b̃

S

N − β̃) converges in distribution to

MVN
(
−λ1/2H−1a, H−1ΩH−1

)
.

(c) Define hN = (λ/N)1/(2d+1), where λ ∈ (0,∞). LetW be any nonstochastic, positive semidefinite matrix

such that a′H−1WH−1a 6= 0. Denote EA as the expectation with respect to the asymptotic distribution
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of Nd/(2d+1)(b̃
S

N − β̃) and define MSE as EA[(b̃
S

N − β̃)′W (b̃
S

N − β̃)]. The MSE is then minimized by

setting λ to be

λ∗ ≡
[
trace

(
ΩH−1WH−1

)]
/
(
2da′H−1WH−1a

)
, (27)

in that case Nd/(2d+1)(b̃
S

N − β̃) converges in distribution to

MVN
(
−(λ∗)d/(2d+1)H−1a, (λ∗)−1/(2d+1)H−1ΩH−1

)
.

By Theorem 3, if Nh2d+1
N →∞ as N →∞, then h−dN /Nd/(2d+1) = (Nh2d+1

N )−d/(2d+1) → 0; if Nh2d+1
N → 0

as N → ∞, then (NhN )1/2/Nd/(2d+1) = (Nh2d+1
N )1/(4d+2) → 0. Therefore, Theorem 3 implies that the

fastest rate of convergence of the SGMS estimator is N−d/(2d+1). Choosing bandwidth hN = (λ/N)1/(2d+1)

where λ ∈ (0,∞) can achieve the fastest rate of convergence. Theorem 3(c) shows that λ∗, defined by (27),

minimizes the MSE of the SGMS estimator.

To make the results of Theorem 3 useful in applications, it is necessary to be able to estimate the

parameters in the limiting distribution, a, Ω, and H, consistently from observations of (r,X). The next

theorem shows how this can be done.

Theorem 4. Let Assumptions 1-9 and Conditions 1-2 hold for some integer d ≥ 2 and vector bSN be a

consistent estimator based on hN ∝ N−1/(2d+1). Let h∗N ∝ N−δ/(2d+1), where δ ∈ (0, 1). Then

(a) âN ≡ (h∗N )−dtN (bSN , h
∗
N ) converges in probability to a;

(b) for b ∈ B and n = 1, . . . , N, define

tNn(b, hN ) =
∑

1≤j<k≤J

[1(rnj < rnk)− 1(rnk < rnj)]K
′ (x′njkb/hN) x̃njkh−1

N ,

the matrix

Ω̂N ≡ (hN/N)

N∑
n=1

tNn(bSN , hN )tNn(bSN , hN )′
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converges in probability to Ω;

(c) the matrix HN (bSN , hN ) converges in probability to H.

By Theorem 3(c), the asymptotic bias of Nd/(2d+1)(b̃
S

N − β̃) is −λd/(2d+1)H−1a when the bandwidth

hN = (λ/N)1/(2d+1). It follows from Theorem 4 that the bias term −λd/(2d+1)H−1a can be estimated

consistently by −λd/(2d+1)HN (bSN , hN )−1âN . Therefore, define

b̃
u

N = b̃
S

N + (λ/N)d/(2d+1)HN (bSN , hN )−1âN (28)

as the bias-corrected SGMS estimator.

3.2 A Small-Sample Correction

In this subsection, we apply a method proposed by Horowitz (1992) to remove part of the finite sample bias

of âN . By Theorem 2, bSN,1 = β1 with probability approaching one as N goes to ∞. A Taylor expansion of

âN around β̃ yields

âN − a =
[
(h∗N )−dtN (β, h∗N )− a

]
+ (h∗N )−dHN (b∗N , h

∗
N )(b̃

S

N − β̃) (29)

with probability approaching one as N goes to ∞, where b∗N is a vector between bSN and β. The right-

hand side of (29) shows that the finite sample bias of âN has two components. The first component,

(h∗N )−dtN (β, h∗N )− a, has a non-zero mean due to the use of a non-zero bandwidth h∗N to estimate a. The

second component, (h∗N )−dHN (b∗N , h
∗
N )(b̃

S

N − β̃), has a non-zero mean due to the use of an estimate of the

true parameter vector β in estimating a.

The bias correction method described here is aimed at removing the second component of bias by order

N−(1−δ)d/(2d+1). Note that the second component of the right-hand side of (29) can be written as

(h∗N )−dHN (b∗N , h
∗
N )(b̃

S

N − β̃) =
[
NhN (h∗N )2d

]−1/2
HN (b∗N , h

∗
N )(NhN )1/2(b̃

S

N − β̃).

The probability limit of HN (b∗N , h
∗
N ) is H by Lemmas 8-9 in Appendix B, and (NhN )1/2(b̃

S

N − β̃) converges
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in distribution to MVN(−λ1/2H−1a, H−1ΩH−1) by Theorem 3. Therefore,

[
NhN (h∗N )2d

]1/2
(h∗N )−dHN (b∗N , h

∗
N )(b̃

S

N − β̃)

converges in distribution to MVN(−λ1/2a, Ω). By this result, we treat âN as an estimator of

a−
[
NhN (h∗N )2d

]−1/2
λ1/2a

rather than that of a. Thus, the bias corrected estimator of a is

âcN = âN/
{

1−
[
λ−1NhN (h∗N )2d

]−1/2
}
. (30)

3.3 Bandwidth Selection

Theorem 3(c) provides a way to choose the bandwidth for the SGMS estimator. To achieve the minimum

MSE, an optimal λ∗ can be consistently estimated by the conclusion of Theorem 4. Therefore, one possible

way of choosing bandwidth is to set hN = (λ̂/N)1/(2d+1) given the integer d, where λ̂ is a consistent estimator

for λ∗.

Specifically, the choice of bandwidth can be implemented by taking the following steps.

Step 1. Given d, choose a hN ∝ N−1/(2d+1) and h∗N ∝ N−δ/(2d+1) for δ ∈ (0, 1).

Step 2. Compute the SGMS estimator bSN using hN . Use bSN and h∗N to compute âcN . Use bSN and hN to

compute Ω̂N and HN (bSN , hN ).

Step 3. Estimate λ∗ by

λ̂N =
{
trace

[
Ω̂NHN (bSN , hN )−1HN (bSN , hN )−1

]}
·
[
2d(âcN )′HN (bSN , hN )−1HN (bSN , hN )−1âcN

]−1

.
(31)

Step 4. Calculate the estimated bandwidth heN = (λ̂N/N)1/(2d+1).

Step 5. Compute the SGMS estimator using heN .

Note that this approach is analogous to the plug-in method of kernel density estimation. As usual in the
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application of the plug-in method, the choice of the initial bandwidth hN and parameter δ would require

some exploration, because the estimated bandwidth heN may be sensitive to that choice. In our Monte Carlo

experiments in the next section, the bandwidth has been initialized by setting hN = N−1/5 and δ = 0.1.

4 Monte Carlo Experiments

In this section, we provide Monte Carlo simulation results to explore finite-sample properties of the GMS

estimator bN and the SGMS estimator bSN . We consider six data generating processes (DGPs). In each DGP,

individual n’s utility from alternative j, unj , is specified as

unj = xnj,1β1 + xnj,2βn2 + εnj for n = 1, 2, ..., N and j = 1, 2, ..., 5. (32)

Each DGP is used to simulate two sets of 1000 random samples of N individuals, where N = 100 in the first

set and 500 in the second set.

In all DGPs, the first preference parameter β1 is a deterministic coefficient and takes the value of one for

all individuals: β1 = 1. In DGPs 1-4, the second preference parameter βn2 is also a deterministic coefficient

and takes the value of one for all individuals: βn2 = β2 = 1 for all n. In DGPs 5-6, however, βn2 is a

random coefficient that varies across individuals, and each individual’s coefficient value is a random draw

from distribution N(1, 1): βn2 = β2 + ηn, where β2 = 1 and ηn is distributed as N(0, 1).18 Each DGP

specifies its own distribution of error terms εnj : we provide more details below.19

The econometrician observes a utility-based ranking rn of J = 5 alternatives in J, as well as attributes

xnj,1 and xnj,2 for j = 1, 2, ..., 5 and all n.20 As usual, the depth of observed rankings would influence

the finite sample precision of an estimator; and in the context of our semparametric estimators, it also

influences the degree of flexibility that semiparametric models offer. Recall that when the complete rankings
18In random coefficients models, we are often interested in discovering a certain central tendency of the random preference

parameter, such as its mean or its median. The mixed logit estimator will consistently estimate E(βn2) under correct parametric
specifications and the proposed semiparametric estimators can consistently estimate median(βn2) under Assumptions 1-4. For
the simplicity of demonstration, we choose βn2 ∼ N(1, 1) such that E(βn2) = median(βn2) = 1.

19In all DGPs, we generate εnj with variance equal to π2/6, subject to rounding errors.
20Here we use a relative small choice set mainly because the probit and the mixed logit specifications yield objective functions

that require multivariate integration, and consequently a lot of computation time. The computation time of the GMS and SGMS
estimators per se is affordable even if the choice set is very large.
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(M = J − 1 = 4) are observed, the semiparametric model nests all popular parametric models as special

cases; when only partial rankings (M < 4) are available, this is not the case because the semiparametric

model cannot accommodate alternative-specific heteroekedasticity and flexible correlation patterns. We will

therefore explore the finite sample behavior of the estimators at three depth levels: M = 1 when only the

best alternative is observed,M = 2 when the best and second alternatives are observed, andM = 4 when the

complete ranking is observed. In all DGPs, observed attribute xnj,1 is a random draw from N(0, 2) and xnj ,2

is generated as a ratio of two different uniform draws: specifically, xnj,2 ≡ qnj/zn where qnj is drawn from

U(0, 3) and zn is drawn from U( 1
5 , 5).21 Note that xnj,1 and qnj vary across both individuals and alternatives,

whereas zn varies only across individuals. All three distributions that generate the observed attributes are

independent of one another, and i.i.d. across the subscripted dimension(s).

For comparison with our GMS and SGMS estimates, we also compute maximum likelihood estimates using

three popular parametric models summarized in Section 2.3, namely rank-ordered logit (ROL), rank-ordered

probit (ROP), and mixed ROL (MROL). We do not estimate the nested ROL model, primarily because our

analysis already includes the ROP model which is a more flexible parametric method to incorporate correlated

errors. In case of ROP and MROL, we opt to place no constraint on the variance-covariance parameters of

the underlying multivariate normal densities.22 This allows us to compare our semiparametric methods with

both restrictive (ROL) and very flexible (ROP and MROL) parametric methods.

Our discussion focuses on the ratio of the preference parameters, β2/β1, which is identified in both

parametric and semiparametric models. In the discrete choice analysis of individual preferences, the main

parameter of interest often takes the form of a ratio between coefficients on non-price and price attributes;

this type of ratio is known as, inter alia, equivalent prices (Hausman and Ruud, 1987), implicit prices (Calfee

et al., 2001), and willingness-to-pay (Small et al., 2005). In parametric models, we normalize the scale of

the error terms in the usual manner and estimate (β1, β2), then we derive the ratio of the relevant coefficient

estimates. In semiparametric models, we normalize |β1| = 1 and estimate β2 together with the sign of β1,
21This pair of uniform distributions ensures that the second observed attribute has approximately the same variance as the

first attribute, i.e., V ar(qnj/zn) ' 2.
22Our ROP specification requires estimating two slope coefficients (β1 and β2) and eight identified variance-covariance pa-

rameters of pairwise error differences. Our MROL specification assumes that both slope coefficients are random and bivariate
normal: we estimate two mean (β1 and β2) and three variance-covariance parameters of the bivariate normal density. The ROP
(MROL) model has been estimated in Stata using command -asroprobit- (-mixlogit-); the likelihood function has been simulated
by taking 250 pseudo-random draws from Hammersley (Halton) sequences.
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then we compute the estimate of the ratio of interest β2/β1 = β2/sign(β1).23 Since the GMS estimator entails

maximizing a sum of step functions, we use a global search method to compute the GMS estimates: specifically

the differential evolution algorithm of Storn and Price (1995), which was also Fox’s (2007) preferred method

for computing his multinomial MS estimates. In this Monte Carlo study, we implement a particular version of

the SGMS estimator which uses the standard normal distribution function as the smooth functionl K(·). The

resulting objective function is differentiable, and can be maximized by starting any of usual gradient-based

algorithms from a set of initial search points. For the SGMS estimator, the bandwidth has been initalized

by setting hN = N−1/5 and δ = 0.1, and optimized subsequently by applying the method in Section 3.3.24

Table 1 summarizes the true distribution of the error terms in each DGP and whether particular methods

can estimate β2/β1 consistently. The summary presents a strong case for the importance of considering

semiparametric methods for rank-ordered choice data: the GMS/SGMS estimator using complete rankings

is the only method that remains consistent throughout all DGPs. The GMS/SGMS estimator using partial

rankings is consistent when the error terms are i.i.d. (DGP 1-2) or heteroskedastic across individuals (DGP

3), but becomes inconsistent in the presence of alternative-specific heteroskedasticity (DGP 4) and/or random

coefficients (DGP 5-6). As usual, a parametric method is consistent only when the DGP happens to coincide

with the postulated parametric model itself or its special cases.

Tables 2-7 report each method’s bias and RMSE across 1,000 samples of size N simulated from each

DGP. In each table, the top and bottom panels summarize the results for sample sizes N = 100 and N = 500

respectively. Efficiency gains from the use of deeper rankings, alongside the usual play of asymptotics, are

apparent from the tables. When a method is consistent for a particular DGP, increasing the depth of rankings

M holding the sample size N fixed reduces its bias and RMSE. Increasing the sample size holding the depth

of rankings fixed also has the same effects qualitatively.

The GMS estimator using complete rankings is consistent under all DGPs, and displays negligible finite

sample bias in most cases. The associated bias is approximately 6% of the true parameter value in DGPs

1 and 2 when N = 100, and 2% or less in all other DGPs and/or sample size configurations. These results
23The estimator of the sign will converge at a much faster rate than the estimator for β2 such that there is no need to analyze

the finite-sample property of the sign estimator.
24When the sample size is small, the parameter λ∗ may be estimated with a large standard error due to the slow convergence

rate of the bias estimator âN , sometimes resulting in a very large estimate of the bandwidth. We apply a trimming procedure
to avoid this situation. The estimated λ∗ is trimmed at a large constant (1000) for all DGPs.
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Table 1: Consistency of estimators by Monte Carlo DGPs
DGP Distribution of εnj ROL ROP MROL (S)GMS

1 εnj is i.i.d. EV (0, 1, 0) Yes No Yes Yes

2 εnj is i.i.d. N(0.577, π2/6) No Yes No Yes

3 εnj = 0.0055(z4
n + 2z2

n)εnj No No No Yes
where εnj is i.i.d. N(0, 1)

4 εnj = 0.75xnj,2εnj No No No No when M < 4;
where εnj is i.i.d. N(0, 1) Yes when M = 4

5 εnj is i.i.d. EV (0, 1, 0) No No Yes No when M < 4;
Yes when M = 4

6 εnj = 0.75xnj,2εnj No No No No when M < 4;
where εnj is i.i.d. N(0, 1) Yes when M = 4

Note: EV (0, 1, 0) stands for the extreme value type 1 distribution, assumed by the ROL model, with a
mean of 0.577 and a variance of π2/6. Where relevant, the error component is i.i.d. for n = 1, . . . , N and
j = 1, . . . , J . M = 4 (M < 4) refers to an estimator that incorporates the complete (partial) rankings. Yes
(No) means the estimator of β2/β1 is (not) consistent given the DGP.
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illustrate a considerable benefit that the use of deeper rankings offers for semiparametric estimation: the

partial rankings GMS estimator is consistent for only first three DGPs (DGP 1-3), and even under those

DGPs, the estimator exhibits larger bias which sometimes exceeds 10% of the true value when the sample size

N = 100 (though bias stays below 4% when N = 500). Across all depth levels and sample size configurations,

the SGMS estimator behaves similarly as its GMS counterpart but tends to display a small increase in bias

and a reduction in RMSE, the expected trade-offs from using a smoothing kernel to construct a surrogate

objective function. For DGPs 1, 2 and 4, at least one parametric method allows consistent maximum

likelihood estimation. The results suggest that the efficiency gains (as measured by the reduction in RMSE)

that a consistent SGMS estimator offers over a consistent GMS estimator are comparable to what a consistent

parametric estimator offers over the SGMS estimator itself.

The results pertaining to DGPs 3, 4 and 6 present a particularly strong case for the considering the

use of the semiparametric methods in empirical practice. While none of the popular parametric methods

is consistent under these DGPs, at least one parametric method arguably comes close to getting each DGP

approximately right; yet, even in the larger sample configuration (N = 500), an approximately correct

parametric method may still exhibit a substantial amount of bias. In the context of DGP 3, for instance,

the ROP model is a correct specification apart from its failure to capture interpersonal heteroskedasticity;

yet, the ROP method’s bias stays around 20% of the true parameter value. In DGP 4 and DGP 6, there

is alternative-specific heteroskedasticity induced via a normal error component which multiplies the second

attribute xnj,2; this error component can be absorbed into the normal random coefficient on xnj,2, and the

MROL model is therefore a correct specification apart from that it postulates the presence of a redundant

extreme value error component. While the MROL method’s bias is indeed negligible when only information

on the most preferred alternative is used (M = 1), it becomes amplified as deeper ranking information is

used and may reach 28% with complete rankings (M = 4).

While our experiments were designed to illustrate the properties of the semiparametric methods, the

results also add some cautionary notes to the debate over the reliability of rank-ordered choice data. Based

on the intuitively convincing premise that ranking is a more cognitively demanding task than making a

choice, some researchers contend that in case a parametric method using the first preference (M = 1) and

complete rankings (M = J − 1) yield systematically different estimates, the econometrician should not make
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use of complete rankings: see Chapman and Staelin (1982) and Ben-Akiva et al. (1992) for the influential

and earliest proponents of this view. The results pertaining to DGPs 3-6, however, caution against basing

data and model selection on the comparisons of the first preference estimates and the complete rankings

estimates. Inconsistent parametric methods may or may not be equally biased at all depth levels, and it is

not always the case that the first preference estimates are subject to smaller misspecification bias than the

complete rankings estimates.

5 Conclusions

To collect more preference information from a given sample of individuals, multinomial choice surveys can

be readily modified to elicit rank-ordered choices. All parametric methods for multinomial choices have

their rank-ordered choice counterparts that exploit the extra information to estimate the underlying random

utility model more efficiently. But semiparametric methods for rank-ordered choices remain undeveloped,

apart from the seminal work of Hausman and Ruud (1987) that is only applicable to continuous regressors.

We develop two semiparametric methods for rank-ordered choices: the generalized maximum score (GMS)

estimator and the smoothed generalized maximum score (SGMS) estimator. The GMS estimator builds on

the maximum score (MS) estimator (Manski, 1975; Fox, 2007) for multinomial choices. Like its predecessor,

the GMS estimator allows consistent estimation of coefficients on both continuous and discrete regressors

when there is a suitable continuous regressor for normalizing the scale of utility. We establish conditions for

strong consistency of the GMS estimator, which follows a non-standard asymptotic distribution and displays

a slow convergence rate. The SGMS estimator complements the GMS estimator, much as Horowitz’s (1992)

smoothed MS estimator complements Manski’s (1985) MS estimator in the context of binomial choices. By

adding mild regularity conditions, we show that the SGMS estimator is also strongly consistent, and that

it is asymptotically normal with a convergence rate approaching N−1/2 as the strength of the smoothness

conditions increases. Our results are fairly general and cover data on complete rankings as well as partial

rankings.

Our study finds that rank-ordered choices provide an interesting data environment which can facilitate

and benefit from the development of semiparametric methods. Most interestingly, our results show that
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using the extra information from rank-ordered choices is not just a matter of efficiency gains, to the contrary

of what parametric analyses might lead one to anticipate. For our semiparametric estimators, it is also

a matter of consistency in the sense that using complete rankings instead of partial rankings allows the

semiparametric estimators to become robust to wider classes of stochastic specifications. More specifically,

the MS estimator for multinomial choices and the GMS/SGMS estimators for partial rankings are robust

to any form of interpersonal heteroskedasticity. But they are not robust to any error variance-covariance

structure that varies across alternatives, meaning that they cannot consistently estimate flexible parametric

models including nested logit, unrestricted probit and random coefficients logit. By contrast, the GMS/SGMS

estimators for complete rankings (i.e., fully rank-ordered choices) can accommodate error structures as such,

fulfilling the usual expectations for a semiparametric method to be more flexible than popular parametric

methods. The main intuition behind this contrast is that the use of complete rankings allows one to infer

which alternative is more preferred in every possible pair of alternatives in a choice set. The strong consistency

of the GMS/SGMS estimators for fully rank-ordered choices can therefore be shown under almost the same

assumptions as that of the MS estimator for binomial choices, without invoking stronger assumptions needed

to address more analytically complex cases of multinomial choices or partial rank-ordered choices.

Together with our Monte Carlo evidence on the bias of parametric methods under misspecification, this

finding calls for a reconsideration of the conventional wisdom prevailing in the empirical literature. Since

Chapman and Staelin (1982), several studies have contended that in case the estimates using complete

rankings diverge from the estimates using information on the best alternative alone (or other types of partial

rankings), one should have more faith in the latter set of estimates and question the reliability of data on

deeper preference rankings. But with our semiparametric methods, it is the former set of estimates that is

consistent under a wider variety of true models. And with parametric methods, the discrepancy may arise

even when the reliability of data is beyond any doubt as in our simulated samples, because the amount of

misspecification bias may vary (non-monotonically) in the depth of rankings used. While the premise that an

individual finds it easier to tell her best alternative than, say third- or fourth-best alternative, is intuitively

appealing, testing the validity of the conventional wisdom would require the use of a semiparametric method

which offers the same degree of robustness regardless of the depth of rankings used in estimation. In our

view, the development of a method as such is a promising avenue for future research.
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A Proof of Theorem 1

In Appendix A, we provide the proofs of Theorem 1 and of Lemmas 1-3. Lemma 1 establishes that the true

preference parameter vector is the unique maximizer of the probability limit of QN (b). Lemma 2 verifies the

continuity property of the probability limit of QN (b). Lemma 3 shows the uniform convergence of QN (b) to

its probability limit.

Throughout, for b ∈ Rq, let

Q∗(b) ≡ E

 ∑
1≤j<k≤J

[
1(rj < rk) · 1(x′jkb ≥ 0) + 1(rk < rj) · 1(x′kjb > 0)

] (A1)

denote the probability limit of QN (b) in (9).

Lemma 1. Under Assumptions 3-4, the true preference parameter vector β uniquely maximizes Q∗(b) for

b ∈ B.

Proof. Applying the law of iterated expectations to the right-hand side of (A1) yields

Q∗(b) = E

 ∑
1≤j<k≤J

[
P (rj < rk|X) · 1(x′jkb ≥ 0) + P (rk < rj |X) · 1(x′kjb > 0)

]
=

∑
1≤j<k≤J

E
{

[P (rj < rk|X)− P (rk < rj |X)] · 1(x′jkb ≥ 0) + P (rk < rj |X)
}
.

By Assumption 3, β globally maximizes Q∗(b) for b ∈ B because the sign of [P (rj < rk|X)− P (rk < rj |X)]

is the same as the sign of x′jkβ. Next, we show that β is a unique global maximizer of Q∗(b). Consider a

different parameter vector β− ∈ B. If, for values of X with positive probability, β and β− yield different

rankings of systematic utilities, then β− will not maximize Q∗(b). In other words, for any X with positive

probability, if we observe that x′jkβ and x′jkβ
− have opposite signs for some pair of alternatives j, k ∈ J,

then we can conclude Q∗(β) > Q∗(β−). We will show this argument for β1 = 1; the argument for β1 = −1

is similar. If the first element of β−, β−1 , is also 1, then the set of points where β and β− yield different
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rankings of systematic utilities is 25

D(β,β−) = {X|x′jkβ < 0 < x′jkβ
− for some j, k ∈ J, where j 6= k}

= {X|x̃′jkβ̃ < −xjk,1 < x̃′jkβ̃
−
for some j, k ∈ J, where j 6= k}.

By Assumption 4(a), the set D(β,β−) has probability zero if and only if x̃′jkβ̃ = x̃′jkβ̃
−
with probability one

for any pair of alternatives j, k ∈ J, that is, Xβ = Xβ− with probability one. This contradicts Assumption

4(b). If β−1 = −1, the set of points where β and β− give different predictions is

D(β,β−) = {X|xjk,1 < min(x̃′jkβ̃
−
,−x̃′jkβ̃) for some j, k ∈ J where j 6= k}.

The probability of D(β,β−) is positive by Assumption 4(a). Thus, we have proved that the true preference

parameter vector β uniquely maximizes Q∗(b) for b ∈ B.

Lemma 2. Under Assumption 4, Q∗(b) is continuous in b ∈ B.

Proof. For any pair of alternatives j < k, define

Q∗jk(b) = E
{

[1(rj < rk)− 1(rk < rj)] · 1(x′jkb ≥ 0) + 1(rk < rj)
}
. (A2)

Consider the case b1 = 1. The argument for b1 = −1 is symmetric. By the law of iterated expectations,

Q∗jk(b) = E
{

[P (rj < rk|xjk)− P (rk < rj |xjk)] · 1(x′jkb ≥ 0) + P (rk < rj |xjk)
}

=
´ {´∞

−x̃′jkb̃
[P (rj < rk|xjk)− P (rk < rj |xjk)] gjk(xjk,1|x̃jk)dxjk,1

}
dP (x̃jk) + P (rk < rj),

(A3)

where P (x̃jk) denotes the cumulative distribution function of x̃jk. The curly brackets inner integral of the

25Recall that xjk = xj − xk for any j, k ∈ J, so we have xjk = −xkj . The set {X|x′jkβ
− < 0 < x′jkβ for some j, k ∈ J} is

the same as the set {X|x′kjβ < 0 < x′kjβ
− for some k, j ∈ J}.
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right-hand side of (A3) is a function of x̃jk and b̃ that is continuous in b̃ ∈ B̃. Therefore, by (A1) and (A2),

Q∗(b) =
∑

1≤j<k≤J

Q∗jk(b)

is also continuous in b ∈ B.

Lemma 3. Under Assumption 1, QN (b) converges almost surely to Q∗(b) uniformly over b ∈ B.

Proof. For any pair of alternatives j, k ∈ J, define

QNjk(b) = N−1
N∑
n=1

{
[1(rnj < rnk)− 1(rnk < rnj)] · 1(x′njkb ≥ 0) + 1(rnk < rnj)

}
.

By Assumption 1 and (A2), we have Q∗jk(b) = E[QNjk(b)]. By definition (9),

QN (b) =
∑

1≤j<k≤J

QNjk(b).

Recall that Q∗(b) =
∑

1≤j<k≤J

Q∗jk(b). Lemma 4 of Manski (1985) implies that with probability one

limN→∞supb∈Rq

∣∣QNjk(b)−Q∗jk(b)
∣∣ = 0

by replacing “x” in Manski (1985)’s proof with xjk and “y” in that proof with [1(rj < rk) − 1(rk < rj)],

respectively, for any pair of alternatives j, k ∈ J. Because QN (b) is the sum of a finite number of term

QNjk(b), QN (b) converges almost surely to Q∗(b) uniformly over b ∈ B.

Proof. (Theorem 1) The proof of strong consistency involves verifying the conditions of Theorem 2.1 in Newey

and McFadden (1994):

(1) Q∗(b) is uniquely maximized at β;

(2) The parameter space B is compact;

(3) Q∗(b) is continuous in b; and

(4) QN (b) converges almost surely to its probability limit, Q∗(b), uniformly over b ∈ B.
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Conditions (1), (3), and (4) are verified by Lemmas 1, 2, and 3, respectively. Condition (2) is guaranteed

by Assumption 2. Therefore, the GMS estimator that maximizes QN (b) converges to β almost surely under

Assumptions 1-4.

B Proofs of Theorems 2-4

In Appendix B, we provide the proofs of Theorems 2-4 and of Lemmas 4-9. Lemma 4 shows the uniform

convergence of the SGMS objective function to its probability limit. Lemmas 5-6 establish the asymptotic

distribution of the normalized form of tN (β, hN ). Lemmas 7-9 justify that HN (b∗N , hN ) converges to a

nonstochastic matrix in probability. By applying a Taylor series expansion, Lemmas 5-9 can be used to

derive the asymptotic distribution of the centered, properly normalized SGMS estimator for the random

utility model.

Lemma 4. Under Assumptions 1, 4, and Condition 1, QSN (b, hN ) converges almost surely to Q∗(b) uniformly

over b ∈ B.

Proof. First, we show that QSN (b, hN ) converges almost surely to QN (b) uniformly over b ∈ B following the

method in Lemma 4 of Horowitz (1992). By (9) and (15), we calculate

∣∣QSN (b, hN )−QN (b)
∣∣ ≤ 1

N

N∑
n=1

∑
1≤j<k≤J

∣∣1 (x′njkb > 0
)
−K

(
x′njkb/hN

)∣∣ . (B1)

The right-hand side of (B1) is the sum of cN1(η) and cN2(η), where

cN1(η) ≡ 1

N

N∑
n=1

∑
1≤j<k≤J

∣∣1 (x′njkb > 0
)
−K

(
x′njkb/hN

)∣∣ · 1 (∣∣x′njkb∣∣ ≥ η) ,

cN2(η) ≡ 1

N

N∑
n=1

∑
1≤j<k≤J

∣∣1 (x′njkb > 0
)
−K

(
x′njkb/hN

)∣∣ · 1 (∣∣x′njkb∣∣ < η
)
,

and η ∈ R is a positive number. Condition 1(b) implies that for any δ > 0, there exists c > 0 such that

|K(v)−1| < δ ·J−2 and |K(−v)| < δ ·J−2 for any v > c. As hN → 0, there exists N0 ∈ N such that η/hN > c

for any N > N0. Therefore, cN1(η) < δ for any N > N0. We have shown that for each η > 0, cN1(η) goes
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to zero uniformly over b ∈ B as N goes to ∞. Next consider cN2(η). By Condition 1(a), there is a finite C

such that

cN2(η) ≤
∑

1≤j<k≤J

[
C
N

N∑
n=1

1
(∣∣∣x′njkb∣∣∣ < η

)]
. (B2)

Lemma 4 of Horowitz (1992) implies that the inner-bracket part of the right-hand side of (B2) converges

almost surely to CP (|x′jkb| < η) uniformly over b ∈ B as N approaches ∞ under Assumption 1 and that

P (|x′jkb| < η) converges to zero uniformly over b ∈ B as η goes to zero under Assumption 4 by replacing “x”

in Horowitz’s proof with xjk for any pair of alternatives 1 ≤ j < k ≤ J . Because J is finite, the right-hand

side of (B2) also converges almost surely to zero uniformly over b ∈ B as N goes to ∞ and η goes to 0. Since

the right-hand side of (B1) is the sum of cN1(η) and cN2(η) for any η > 0,
∣∣QSN (b, hN )−QN (b)

∣∣ converges
almost surely to zero uniformly over b ∈ B as N → ∞. The absolute difference between QSN (b, hN ) and

Q∗(b) converges almost surely to zero uniformly over b ∈ B because

sup
b∈B

∣∣QSN (b, hN )−Q∗(b)
∣∣ ≤ sup

b∈B

{∣∣QSN (b, hN )−QN (b)
∣∣+ |QN (b)−Q∗(b)|

}
≤ sup

b∈B

∣∣QSN (b, hN )−QN (b)
∣∣+ sup

b∈B
|QN (b)−Q∗(b)| ,

(B3)

and we have proved that the right-hand side of (B3) converges to zero almost surely.26

Proof. (Theorem 2) The proof of strong consistency involves verifying the conditions of Theorem 2.1 in Newey

and McFadden (1994):

(1) Q∗(b) is uniquely maximized at β;

(2) The parameter space B is compact;

(3) Q∗(b) is continuous in b; and

(4) QSN (b, hN ) converges almost surely to its probability limit, Q∗(b), uniformly over b ∈ B.

Conditions (1), (3), and (4) are verified by Lemmas 1, 2, and 4, respectively. Condition (2) is guaranteed

by Assumption 2. Therefore, the SGMS estimator that maximizes QSN (b, hN ) converges to β almost surely

under Assumptions 1-4 and Condition 1.
26The second term on the right-hand side of (B3) converges almost surely to zero by Lemma 3.
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Lemma 5. Let Assumptions 1, 3, 6-7 and Condition 2 hold. Then

(a) limN→∞E
[
h−dN tN (β, hN )

]
= a;

(b) limN→∞V ar
[
(NhN )1/2tN (β, hN )

]
= Ω.

Proof. First, under Assumption 1 we calculate that

E
[
h−dN tN (β, hN )

]
=

∑
1≤j<k≤J

E
{

[1(rj < rk)− 1(rk < rj)]K
′(x′jkβ/hN )x̃jkh

−d−1
N

}
=

∑
1≤j<k≤J

djk,
(B4)

where

djk ≡ E
{

[1(rj < rk)− 1(rk < rj)]K
′(x′jkβ/hN )x̃jkh

−d−1
N

}
. (B5)

By the law of iterated expectations,

djk = E
{[
P (rj < rk|v−j,k, ṽ−j,k, X̃)− P (rk < rj |v−j,k, ṽ−j,k, X̃)

]
·K ′(−v−j,k/hN )x̃jkh

−d−1
N

}
= E

[
F̄jk(v−j,k, ṽ−j,k, X̃) ·K ′(−v−j,k/hN )x̃jkh

−d−1
N

]
.

(B6)

By Assumption 3, F̄jk(0, ṽ−j,k, X̃) = 0 for almost every (ṽ−j,k, X̃). Under Assumption 6, applying a Taylor

series expansion of F̄jk(v−j,k, ṽ−j,k, X̃) around v−j,k = 0 yields

F̄jk(v−j,k, ṽ−j,k, X̃) =

d−1∑
i=1

1

i!
F̄

(i)
jk (0, ṽ−j,k, X̃)(v−j,k)i +

1

d!
F̄

(d)
jk (ξ, ṽ−j,k, X̃)(v−j,k)d, (B7)

where ξ is between 0 and v−j,k. Under Assumption 7(a), applying a Taylor series expansion of the density

function pjk(v−j,k|ṽ−j,k, X̃) around v−j,k = 0 yields

pjk(v−j,k|ṽ−j,k, X̃) =

d−i−1∑
c=0

1

c!
p

(c)
jk (0|ṽ−j,k, X̃)(v−j,k)c +

1

(d− i)!
p

(d−i)
jk (ξi|ṽ−j,k, X̃)(v−j,k)d−i, (B8)

where ξi is between 0 and v−j,k, and 1 ≤ i ≤ d− 1. Combining (B7) and (B8) yields
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F̄jk(v−j,k,−ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃) =

d−1∑
i=1

1

i!(d− i)!
F̄

(i)
jk (0, ṽ−j,k, X̃) p

(d−i)
jk (ξi|ṽ−j,k, X̃)(v−j,k)d

+ 1
d! F̄

(d)
jk (ξ, ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃)(v−j,k)d

+

d−1∑
i=1

d−i−1∑
c=0

1

i!c!
F̄

(i)
jk (0, ṽ−j,k, X̃) p

(c)
jk (0|ṽ−j,k, X̃)(v−j,k)i+c.

(B9)

Assumptions 6 and 7(a) imply that all of the derivatives on the right-hand side of (B9) are uniformly bounded

for almost every (ṽ−j,k, X̃) if |v−j,k| ≤ η for some η > 0. Let ζjk ≡ −v−j,k/hN . Decompose djk into two

parts, djk = djk1 + djk2, where

djk1 ≡ h−dN
ˆ
|hNζjk|>η

F̄jk(−ζjkhN , ṽ−j,k, X̃) pj,k(−ζjkhN |ṽ−j,k, X̃)x̃jkK
′(ζjk)dζjkdP (ṽ−j,k, X̃) (B10)

and

djk2 ≡ h−dN
ˆ
|hNζjk|≤η

F̄jk(−ζjkhN , ṽ−j,k, X̃) pj,k(−ζjkhN |ṽ−j,k, X̃)x̃jkK
′(ζjk)dζjkdP (ṽ−j,k, X̃). (B11)

Under Assumptions 7(a), 7(d), and Condition 2(c),

|djk1| ≤ Ch−dN
ˆ
|hNζjk|>η

|x̃jk| · |K ′(ζjk)| dζjkdP (ṽ−j,k, X̃)→ 0 asN →∞,

where |djk1| denotes the vector of the absolute value of each element in djk1. Plugging (B9) into (B11) and

use of Condition 2(b) yield the result that

djk2 → kd

d∑
i=1

1

i!(d− i)!
E
[
F̄

(i)
jk (0, ṽ−j,k, X̃) p

(d−i)
jk (0|ṽ−j,k, X̃)x̃jk

]
(B12)

as N goes to ∞ by Lebesgue’s dominated convergence theorem. Part (a) is established by (B4), (B12), and

(24).
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Next consider V ar[(NhN )1/2tN (β, hN )]. By Assumption 1,

V ar[(NhN )1/2tN (β, hN )] = hNV ar

 ∑
1≤j<k≤J

[1(rj < rk)− 1(rk < rj)]K
′(x′jkβ/hN )x̃jkh

−1
N

 .

Let

eN ≡
∑

1≤j<k≤J

[1(rj < rk)− 1(rk < rj)]K
′(x′jkβ/hN )x̃jkh

−1
N , (B13)

then

V ar[(NhN )1/2tN (β, hN )] = hNE(eNe
′
N )− hNE(eN )E(e′N ). (B14)

In part (a), we show that E[h−dN eN ], which equals E[h−dN tN (β, hN )], converges to a, implying that hNE(eN )E(e′N )

converges to zero as N goes to ∞. Since the binomial choice setting where J = 2 has been discussed in

Horowitz (1992), the following discussion focuses on the case where J ≥ 3. Define

hNE(eNe
′
N ) = LN1 +LN2 +LN3, where (B15)

LN1 ≡
∑

1≤j<k≤J

h−1
N E

{
[1(rj < rk)− 1(rk < rj)]

2 [
K ′(x′jkβ/hN )

]2
x̃jkx̃

′
jk

}
, (B16)

LN2 ≡
∑

1≤j<k<l≤J

2h−1
N E {

[1(rj < rk)− 1(rk < rj)] [1(rj < rl)− 1(rl < rj)]K
′(x′jkβ/hN )K ′(x′jlβ/hN )x̃jkx̃

′
jl

+ [1(rj < rk)− 1(rk < rj)] [1(rk < rl)− 1(rl < rk)]K ′(x′jkβ/hN )K ′(x′klβ/hN )x̃jkx̃
′
kl

+ [1(rj < rl)− 1(rl < rj)] [1(rk < rl)− 1(rl < rk)]K ′(x′jlβ/hN )K ′(x′klβ/hN )x̃jlx̃
′
kl

}
,

(B17)

LN3 ≡
j,k,l,m∈J∑

j<k,l<m,j<l,k 6=l,k 6=m

2h−1
N E {[1(rj < rk)− 1(rk < rj)] [1(rl < rm)− 1(rm < rl)]

·K ′(x′jkβ/hN )K ′(x′lmβ/hN )x̃jkx̃
′
lm}

(B18)

when J > 3, and LN3 ≡ 0 when J = 3. Define ζjk = −v−j,k/hN for any pair of alternatives j, k ∈ J. By the
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law of iterated expectations,

LN1 =
∑

1≤j<k≤J

´
[2Fjk(−hNζjk, ṽ−j,k, X̃)− F̄jk(−hNζjk, ṽ−j,k, X̃)]

·pjk(−hNζjk|ṽ−j,k, X̃)x̃jkx̃
′
jk[K ′(ζjk)]2dζjkdP (ṽ−j,k, X̃).

(B19)

By Assumptions 3, 6, 7, Condition 2(a), and Lebesgue’s dominated convergence theorem, the right-hand side

of (B19) converges to Ω when N goes to ∞. By Assumption 7(b),

|LN2| ≤
∑

1≤j<k<l≤J

2ChN [
´
|K ′(ζjk)K ′(ζjl)x̃jkx̃

′
jl|dζjkdζjldP (ṽ−j,kl, X̃)

+
´
|K ′(ζjk)K ′(ζkl)x̃jkx̃

′
kl|dζkjdζkldP (ṽ−k,jl, X̃)

+
´
|K ′(ζjl)K ′(ζkl)x̃jlx̃′kl| dζljdζlkdP (ṽ−l,jk, X̃)].

(B20)

Therefore, the right-hand side of (B20) converges to zero under Assumption 7(d) and Condition 2(a). If

J > 3 and by Assumption 7(c),

|LN3| ≤
j,k,l,m∈J∑

j<k,l<m,j<l,k 6=l,k 6=m

2ChN

ˆ
|K ′(ζjk)K ′(ζlm)x̃jkx̃

′
lm|dζjkdζlmdP (ṽ−{k,m}, X̃). (B21)

By Assumption 7(d) and Condition 2(a), the right-hand side of (B21) converges to zero as N goes to ∞. We

have proved part (b) by (B14) and (B15).

Lemma 6. Let Assumptions 1, 3, 6-7 and Condition 2 hold. Then

(a) If Nh2d+1
N →∞ as N →∞, then h−dN tN (β, hN )

p→ a.

(b) If Nh2d+1
N → λ, where λ ∈ (0,∞), as N →∞, then (NhN )1/2tN (β, hN )

d→MVN(λ1/2a,Ω).

Proof. If Nh2d+1
N →∞ as N →∞, then

V ar[h−dN tN (β, hN )] =
1

Nh2d+1
N

V ar[(NhN )1/2tN (β, hN )]

converges to zero by Lemma 5(b). Therefore, Lemma 5 and Chebyshev’s Theorem imply Lemma 6(a). Next
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consider part (b). Define wN = (NhN )
1/2 {tN (β, hN )− E[tN (β, hN )]} . Lemma 5(a) implies that

(NhN )1/2E[tN (β, hN )] = (Nh2d+1
N )1/2E[h−dN tN (β, hN )]→ λ1/2a,

so it suffices to prove that γ′wN is asymptotically distributed as MVN(0,γ′Ωγ) for any nonstochastic q− 1

dimensional vector γ such that γ′γ = 1. Let

tN (β, hN ) = N−1
N∑
n=1

tNn(β, hN ),

where

tNn(β, hN ) ≡
∑

1≤j<k≤J

[1(rnj < rnk)− 1(rnk < rnj)]K
′(x′njkβ/hN )x̃njkh

−1
N .

By definition, we have

γ′wN = (hN/N)1/2γ′
N∑
n=1

{tNn(β, hN )− E[tNn(β, hN )]}.

Let CFN (τ) denote the characteristic function of γ′wN . Applying the proof of Lemma 6 in Horowitz (1992)

yields the result that

lim
N→∞

CFN (τ) = exp(−γ′Ωγτ2/2),

which is the same as the characteristic function of MVN(0,γ′Ωγ).

Lemma 7. Let Assumptions 1, 3-4, 6-8 and Conditions 1-2 hold. For any pair of alternatives j, k ∈ J,

assume that ||x̃jk|| ≤ c for some c > 0. Let η be some positive real number such that p(1)
jk (v−j,k|ṽ−j,k, X̃),

F̄
(1)
jk (v−j,k, ṽ−j,k, X̃), and F̄ (2)

jk (v−j,k, ṽ−j,k, X̃) exist and are uniformly bounded for almost every (ṽ−j,k, X̃)
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if |v−j,k| ≤ η. For θ ∈ Rq−1, define

t∗N (θ) = (Nh2
N )−1

N∑
n=1

∑
1≤j<k≤J

[1(rnj < rnk)− 1(rnk < rnj)]K
′(x′njkβ/hN + x̃′njkθ)x̃njk.

Define the sets ΘN , where N = 1, 2, . . . , by ΘN =
{
θ : θ ∈ Rq−1, hN ‖θ‖ ≤ η/2c

}
.

(a) Then

plim
N→∞

sup
θ∈ΘN

‖t∗N (θ)− E [t∗N (θ)]‖ = 0. (B22)

(b) There are finite numbers α1 and α2 such that for all θ ∈ ΘN

‖E[t∗N (θ)]−Hθ‖ ≤ o(1) + α1hN ‖θ‖+ α2hN ‖θ‖2 (B23)

uniformly over θ ∈ ΘN .

Proof. Define

gNn(θ) =
∑

1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)]K

′(x′njkβ/hN + x̃′njkθ)x̃njk

−E
[
[1(rnj < rnk)− 1(rnk < rnj)]K

′(x′njkβ/hN + x̃′njkθ)x̃njk

]}
.

(B24)

The remaining part of the proof of (B22) follows the proof of (A15) in Lemma 7 of Horowitz (1992). Next,

we prove (B23). Define

E [t∗N (θ)] =
∑

1≤j<k≤J

t∗Njk(θ),

where

t∗Njk(θ) ≡ h−2
N E

{
[1(rj < rk)− 1(rk < rj)]K

′(x′jkβ/hN + x̃′jkθ)x̃jk

}
= h−2

N E
[
F̄jk(v−j,k, ṽ−j,k, X̃)K ′(−v−j,k/hN + x̃′jkθ)x̃jk

] (B25)

and the second equality in (B25) is implied by the law of iterated expectations.
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Decompose the right-hand side of (B25) into two parts: t∗Njk(θ) = t∗Njk1 + t∗Njk2, where

t∗Njk1 ≡ h
−2
N

´
|v−j,k|>η F̄jk(v−j,k, ṽ−j,k, X̃)K ′(−v−j,k/hN + x̃′jkθ)

·x̃jkpjk(v−j,k|ṽ−j,k, X̃)dv−j,kdP (ṽ−j,k, X̃)

and

t∗Njk2 ≡ h
−2
N

´
|v−j,k|≤η F̄jk(v−j,k, ṽ−j,k, X̃)K ′(−v−j,k/hN + x̃′jkθ)

·x̃jkpjk(v−j,k|ṽ−j,k, X̃)dv−j,kdP (ṽ−j,k, X̃).

For some finite constant C > 0, by Assumption 7(a) and ||x̃jk|| ≤ c,

∥∥t∗Njk1

∥∥ ≤ Cch−2
N

ˆ
|v−j,k|>η

∣∣K ′(−v−j,k/hN + x̃′jkθ)
∣∣ dv−j,kdP (ṽ−j,k, X̃).

Let ζjk ≡ −v−j,k/hN + x̃′jkθ. Since hN ||θ|| ≤ η/2c and ||x̃jk|| ≤ c, |v−j,k| > η implies that

|ζjk| > | − v−j,k/hN | − |x̃′jkθ| > η/2hN

and

∥∥t∗Njk1

∥∥ ≤ Cch−1
N

ˆ
|ζjk|>η/2hN

|K ′(ζjk)| dζjk. (B26)

We conclude

lim
N→∞

sup
θ∈ΘN

∥∥t∗Njk1

∥∥ = 0 (B27)

because the term on the right-hand side of (B26) converges to zero by Condition 2(c). Next, we consider
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t∗Njk2. If |v−j,k| ≤ η, substitution of d = 2 into the right-hand side of (B9) yields

F̄jk(v−j,k,−ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃) = F̄
(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)v−j,k

+F̄
(1)
jk (0, ṽ−j,k, X̃) p

(1)
jk (ξ1|ξ1, ṽ−j,k, X̃)(v−j,k)2

+(1/2)F̄
(2)
jk (ξ, ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃)(v−j,k)2,

(B28)

where ξ and ξ1 are between zero and v−j,k.

Decompose t∗Njk2 into two parts, t∗Njk2 = sNjk1 + sNjk2, where

sNjk1 ≡ h−2
N

´
|v−j,k|≤η F̄

(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)

·x̃jkv−j,kK ′(−v−j,k/hN + x̃′jkθ)dv−j,kdP (ṽ−j,k, X̃)

and

sNjk2 ≡ h−2
N

´
|v−j,k|≤η

[
F̄

(1)
jk (0, ṽ−j,k, X̃) p

(1)
jk (ξ1|ξ1, ṽ−j,k, X̃)

+(1/2)F̄
(2)
jk (ξ, ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃)

]
·x̃jk(v−j,k)2K ′(−v−j,k/hN + x̃′jkθ)dv−j,kdP (ṽ−j,k, X̃).

Define ζjk = −v−j,k/hN + x̃′jkθ, then

sNjk1 =
´
|ζjk−x̃′jkθ|≤η/hN

F̄
(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)

·x̃jk(ζjk − x̃′jkθ)K ′(ζjk)dζjkdP (ṽ−j,k, X̃).

Because
´∞
−∞ ζK ′(ζ)dζ = 0 and |x̃′jkθhN | ≤ η/2,

∣∣∣´|ζjk−x̃′jkθ|≤η/hN
ζjkK

′(ζjk)dζjk

∣∣∣ =
∣∣∣´|ζjk−x̃′jkθ|>η/hN

ζjkK
′(ζjk)dζjk

∣∣∣
≤
´
|ζjk|>η/2hN

|ζjkK ′(ζjk)|dζjk.

(B29)

By Condition 2(c), the right-hand term of (B29) is bounded uniformly over θ ∈ ΘN and it converges to zero.
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Therefore, by Lebesgue’s dominated convergence theorem,

lim
N→∞

sup
θ∈ΘN

∣∣∣´|ζjk−x̃′jkθ|≤η/hN
F̄

(1)
jk (0, ṽ−j,k, X̃)pjk(0|ṽ−j,k, X̃)

·x̃jkζjkK ′(ζjk)dζjkdP (ṽ−j,k, X̃)
∣∣∣ = 0.

(B30)

In addition,

||x̃′jkθ
´
|ζjk−x̃′jkθ|≤η/hN

K ′(ζjk)dζjk − x̃′jkθ||

≤ |x̃′jkθhN |h−1
N

´
|ζjk−x̃′jkθ|>η/hN

|K ′(ζjk)|dζjk ≤ (η/2)h−1
N

´
|ζjk−x̃′jkθ|>η/hN

|K ′(ζjk)|dζjk.

(B31)

By Condition 2(c), the right-hand side of (B31) is bounded uniformly over θ ∈ ΘN and it converges to zero.

Next, by Lebesgue’s dominated convergence theorem, Condition 1, and the definition of H,

lim
N→∞

|| sup
θ∈ΘN

∑
1≤j<k≤J

´
|ζjk−x̃′jkθ|≤η/hN

F̄
(1)
jk (0, ṽ−j,k, X̃)pjk(0|ṽ−j,k, X̃)

·x̃jkx̃′jkθK ′(ζjk)dζjkdP (ṽ−j,k, X̃)−Hθ|| = 0.

(B32)

For some finite C > 0,

||sNjk2|| ≤ ChN
´
|ζjk−x̃′jkθ|≤η/hN

(ζjk − x̃′jkθ)2|K ′(ζjk)|dζjkdP (ṽ−j,k, X̃)

≤ o(1) + αjk1hN ||θ||+ αjk2hN ||θ||2

(B33)

for some finite αjk1 and αjk2. Since J is finite, part (b) is established by combining (B27), (B30), (B32), and

(B33).

Lemma 8. Let Assumptions 1-9 and Conditions 1-2 hold and define θN = (b̃
S

N − β̃)/hN , where bSN is a

SGMS estimator. Then the probability limit of θN is 0.

Proof. Pick γ to be a finite number such that P (||x̃jk|| ≤ γ, ∀ 1 ≤ j < k ≤ J) ≥ 1−δ for any δ > 0. Let Pδ be

the probability distribution of X conditional on the event Cγ ≡ {X : ||x̃jk|| ≤ γ, ∀ 1 ≤ j < k ≤ J}. Define

C ′γ as the complement of Cγ . The remaining part of the proof follows the proof of Lemma 8 of Horowitz

(1992).
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Lemma 9. Let Assumptions 1-8 and Conditions 1-2 hold. Let {βN ≡ (βN1, β̃
′
N )′} be any sequence in B

such that (βN − β)/hN → 0 as N →∞. Then the probability limit of HN (βN , hN ) is H.

Proof. Assume that βN1 = β1 ∈ {−1, 1} because this is true for sufficiently large N if (βN1 − β1) converges

to zero as N goes to ∞. Let θN ≡ (β̃N − β̃)/hN . Let {aN} be a positive sequence such that aN goes to ∞

and aNθN goes to 0. Define XN = {X : ||x̃jk|| ≤ aN , ∀ 1 ≤ j < k ≤ J}. Given any ε > 0,

lim
N→∞

P [|HN (βN , hN )−H| > ε] = lim
N→∞

P [|HN (βN , hN )−H| > ε|XN ] .

Therefore, it suffices to show that E[HN (βN , hN )|XN ] converges toH and V ar[HN (βN , hN )|XN ] converges

to 0 as N goes to ∞ by Chebyshev’s Theorem. Consider E[HN (βN , hN )|XN ] first.

Define EN = E[HN (βN , hN )|XN ], then EN =
∑

1≤j<k≤J ENjk, where

ENjk ≡ h−2
N

´
F̄jk(v−j,k, ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃)x̃jkx̃

′
jk

·K ′′(−v−j,k/hN + x̃′jkθN )dv−j,kdPNjk(ṽ−j,k, X̃),

(B34)

and PNjk denote the distribution of (ṽ−j,k, X̃) conditional on XN . By Assumptions 6 and 7(a), there exists

an η such that F̄ (1)
jk (v−j,k, ṽ−j,k, X̃), F̄ (2)

jk (v−j,k, ṽ−j,k, X̃), and p
(1)
jk (v−j,k|ṽ−j,k, X̃) exist and are almost

surely uniformly bounded if |v−j,k| ≤ η. Therefore, substitution of (B28) into (B34) yields

ENjk = INjk1 + INjk2 + INjk3,

where

INjk1 ≡ h−2
N

´
|v−j,k|≤η F̄

(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

·v−j,kK ′′(−v−j,k/hN + x̃′jkθN )dv−j,kdPNjk(ṽ−j,k, X̃),

INjk2 ≡ h−2
N

´
|v−j,k|≤η

[
F̄

(1)
jk (0, ṽ−j,k, X̃) p

(1)
jk (ξ1|ṽ−j,k, X̃)

+(1/2)F̄
(2)
jk (ξ, ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃)

]
x̃jkx̃

′
jk

·(v−j,k)2K ′′(−v−j,k/hN + x̃′jkθN )dv−j,kdPNjk(ṽ−j,k, X̃),
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and

INjk3 ≡ h−2
N

´
|v−j,k|>η F̄jk(v−j,k, ṽ−j,k, X̃) pjk(v−j,k|ṽ−j,k, X̃)x̃jkx̃

′
jk

·K ′′(−v−j,k/hN + x̃′jkθN )dv−j,kdPNjk(ṽ−j,k, X̃).

(B35)

Define ζjk = −v−j,k/hN + x̃′jkθN . Then

INjk1 = −
´
|ζjk−x̃′jkθN |≤η/hN

F̄
(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

·(ζjk − x̃′jkθN )K ′′(ζjk)dζjkdPNjk(ṽ−j,k, X̃).

Because |x̃′jkθN | ≤ aN ||θN || → 0, by Conditions 1-2,

INjk1 → E
[
F̄

(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

]
. (B36)

For some finite C > 0, by Assumptions 6-7 and Condition 2(a),

|INjk2| ≤ ChN
´
|ζjk−x̃′jkθN |≤η/hN

|x̃jkx̃′jk|

·(ζjk − x̃′jkθN )2|K ′′(ζjk)|dζjkdPNjk(ṽ−j,k, X̃)→ 0 asN →∞.

(B37)

Finally by Assumption 7(a) we calculate (B35):

|INjk3| ≤ Ch−1
N

ˆ
|ζjk−x̃′jkθN |>η/hN

|x̃jkx̃′jk| · |K ′′(ζjk)|dζjkdPNjk(ṽ−j,k, X̃). (B38)

Under Assumption 7(d) and Condition 2(c), the right-hand side of (B38) converges to zero as N goes to ∞.

Since J is finite, combination of (B36), (B37), and (B38) establishes that

EN =
∑

1≤j<k≤J

ENjk =
∑

1≤j<k≤J

(INjk1 + INjk2 + INjk3)→H as N →∞.
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Next, based on EN , calculate V ar[H(βN , hN )|XN ]:

V ar[H(βN , hN )|XN ]

= N−1V ar

 ∑
1≤j<k≤J

[1(rnj < rnk)− 1(rnk < rnj)]K
′′(−v−j,k/hN + x̃′jkθN )x̃jkx̃

′
jkh
−2
N |XN


= N−1E[rN (θN )rN (θN )′|XN ] +O(N−1),

(B39)

where rN (θN ) ≡
∑

1≤j<k≤J

[1(rj < rk)− 1(rk < rj)]K
′′(−v−j,k/hN + x̃′jkθN )vec(x̃jkx̃

′
jk)h−2

N .

Define ζjk = −v−j,k/hN + x̃′jkθN . For some finite constant C, by Assumption 7,

N−1E[rN (θN )rN (θN )′|XN ] ≤ ChN (Nh4
N )−1

∑
1≤j<k≤J

ˆ
vec(x̃jkx̃

′
jk)vec(x̃jkx̃

′
jk)′

·[K ′′(ζjk)]2dζjkdPNjk(ṽ−j,k, X̃)

+Ch2
N (Nh4

N )−1

j,k,l∈J∑
j 6=k,j 6=l,k 6=l

ˆ
vec(x̃jkx̃

′
jk)vec(x̃jlx̃

′
jl)
′

·|K ′′(ζjk)K ′′(ζjl)|dζjkdζjldPNjkl(ṽ−j,kl, X̃)

+2Ch2
N (Nh4

N )−1

j,k,l,m∈J∑
j<k,l<m,j<l,k 6=l,k 6=m

ˆ
vec(x̃jkx̃

′
jk)vec(x̃lmx̃

′
lm)′

·|K ′′(ζjk)K ′′(ζlm)|dζjkdζlmdPNjklm(ṽ−{k,m}, X̃),

(B40)

where PNjkl denotes the distribution of (ṽ−j,kl, X̃) conditional on XN and PNjklm denotes the distribution

of (ṽ−{k,m}, X̃) conditional on XN . Notice that the second term on the right-hand side of (B40) is relevant

only if J > 2, and the third term on the right-hand side of (B40) is relevant only if J > 3. We can show

that each term on the right-hand side of (B40) converges to zero by Assumptions 7-8 and Condition 2(a).

Therefore, it follows from (B39) that V ar[H(βN , hN )|XN ] converges to zero as N goes to ∞.

Proof. (Theorem 3) By Theorem 2 and Assumption 5, bSN,1 = β1 and b̃
S

N is an interior point of B̃ with

probability approaching one as N goes to ∞. Consequently, the first order condition tN (bSN , hN ) = 0 holds
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with probability approaching one. A Taylor series expansion of tN (bSN , hN ) around bSN = β yields

tN (β, hN ) +HN (b∗N , hN )(b̃
S

N − β̃) = 0, (B41)

where b∗N is between β and bSN .

Part (a): By (B41),

h−dN tN (β, hN ) +HN (b∗N , hN )h−dN (b̃
S

N − β̃) = 0

with probability approaching one asN goes to∞. Lemmas 8-9 imply that the probability limit ofHN (b∗N , hN )

is H. Because H is nonsingular by Assumption 9, we have

h−dN (b̃
S

N − β̃) = −H−1h−dN tN (β, hN ) + op(1).

Part (a) is a direct result of Lemma 6(a).

Part (b): By (B41),

(NhN )1/2tN (β, hN ) +HN (b∗N , hN )(NhN )1/2(b̃
S

N − β̃) = 0

with probability approaching one as N goes to ∞. Application of Lemmas 8-9 and Assumption 9 yields

(NhN )1/2(b̃
S

N − β̃) = −H−1(NhN )1/2tN (β, hN ) + op(1).

Part (b) is a direct result of Lemma 6(b).

Part (c): By the cyclic property of trace,

EA[(b̃
S

N − β̃)′W (b̃
S

N − β̃)] = trace{WEA[(b̃
S

N − β̃)(b̃
S

N − β̃)′]}.
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Part (b) implies that

EA[(b̃
S

N − β̃)(b̃
S

N − β̃)′]

= N−2d/(2d+1)
[
λ−1/(2d+1)H−1ΩH−1 + λ2d/(2d+1)H−1aa′H−1

]
.

Therefore, by definition,

MSE = N−2d/(2d+1)Tr
[
WH−1

(
λ−1/(2d+1)Ω + λ2d/(2d+1)aa′

)
H−1

]
. (B42)

To minimize the MSE, take the differentiation of the right-hand side of (B42) with respect to λ. From the

first order condition, we show that MSE is minimized by setting λ to be

λ∗ = [trace(WH−1ΩH−1)]/[trace(2dWH−1aa′H−1)]. (B43)

By the cyclic property of trace, λ∗ = [trace(ΩH−1WH−1)]/(2da′H−1WH−1a). Part (b) implies that

Nd/(2d+1)(b̃
S

N − β̃) has the asymptotic distribution MVN(−(λ∗)d/(2d+1)H−1a, (λ∗)−1/(2d+1)H−1ΩH−1).

Proof. (Theorem 4)

Part (a): Applying a Taylor series expansion to tN (bSN , h
∗
N ) around bSN = β yields

(h∗N )−dtN (bSN , h
∗
N ) = (h∗N )−dtN (β, h∗N ) + [∂tN (b∗N , h

∗
N )/∂b̃

′
] (h∗N )−d(b̃

S

N − β̃) (B44)

with probability approaching one as N goes to ∞, where b∗N is between bSN and β. Lemma 8 implies that

(b̃
S

N − β̃)/hN converges to zero in probability, which indicates that (b̃
S

N − β̃)/h∗N also converges to zero

in probability because h∗N goes to zero at a slower rate than hN . By Lemma 9, the probability limit of

[∂tN (b∗N , h
∗
N )/∂b̃

′
] equals H. Theorem 3 implies that (hN )−d(b̃

S

N − β̃) = Op(1). We have (h∗N )−d(b̃
S

N − β̃) =

op(1) because h∗N goes to zero at a slower rate than hN . Lastly, the probability limit of [(h∗N )−dtN (β, h∗N )]

is a by Lemma 6(a). We can prove part (a) by taking probability limits of each side of (B44).

Part (b): By Chebyshev’s Theorem, it suffices to show that E(Ω̂N ) → Ω and V ar(Ω̂N ) → 0. First
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consider E(Ω̂N ):

E(Ω̂N ) = hNE[tNn(bSN , hN )tNn(bSN , hN )′] = L∗N1 +L∗N2 +L∗N3, (B45)

where

L∗N1 ≡ (NhN )−1

N∑
n=1

∑
1≤j<k≤J

E

{
[1(rnj < rnk) + 1(rnk < rnj)]

[
K ′(x′njkb

S
N/hN )

]2
x̃njkx̃

′
njk

}
,

L∗N2 ≡ (NhN )−1

N∑
n=1

j,k,l∈J∑
j<k<l

2E {[1(rnj < rnk)− 1(rnk < rnj)] [1(rnj < rnl)− 1(rnl < rnj)]

·K ′(x′njkb
S
N/hN )K ′(x′njlb

S
N/hN )x̃njkx̃

′
njl

+ [1(rnj < rnk)− 1(rnk < rnj)] [1(rnk < rnl)− 1(rnl < rnk)]

·K ′(x′njkb
S
N/hN )K ′(x′nklb

S
N/hN )x̃njkx̃

′
nkl

+ [1(rnj < rnl)− 1(rnl < rnj)] [1(rnk < rnl)− 1(rnl < rnk)]

· K ′(x′njlb
S
N/hN )K ′(x′nklb

S
N/hN )x̃njlx̃

′
nkl

}
,

and

L∗N3 ≡ (NhN )−1

N∑
n=1

j,k,l,m∈J∑
j<k,l<m,j<l,k 6=l,k 6=m

2E {[1(rnj < rnk)− 1(rnk < rnj)]

· [1(rnl < rnm)− 1(rnm < rnl)]K
′(x′njkb

S
N/hN )K ′(x′nlmb

S
N/hN )x̃njkx̃

′
nlm

}
.

Let θN ≡ (b̃
S

N−β̃)/hN and ζjk ≡ −v−j,k/hN+x̃′jkθN . By Assumption 1 and the law of iterated expectations,

we have

L∗N1 =
∑

1≤j<k≤J

´ {
2Fjk[hN (−ζjk + x̃′jkθN ), ṽ−j,k, X̃]− F̄jk[hN (−ζjk + x̃′jkθN ), ṽ−j,k, X̃]

}
·pjk[hN (−ζjk + x̃′jkθN )|ṽ−j,k, X̃]x̃jkx̃

′
jk[K ′(ζjk)]2dζjkdP (ṽ−j,k, X̃).

(B46)

By Assumptions 3, 7(a), Condition 2, and Lebesgue’s dominated convergence theorem, the right-hand side
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of (B46) converges to Ω when N →∞. Under Assumption 7(b),

|L∗N2| ≤
j,k,l∈J∑
j<k<l

2ChN

{´
|K ′(ζjk)K ′(ζjl)x̃jkx̃

′
jl|dζjkdζjldP (ṽ−j,kl, X̃)

+
´
|K ′(ζjk)K ′(ζkl)x̃jkx̃

′
kl|dζkjdζkldP (ṽ−k,jl, X̃)

+
´
|K ′(ζjl)K ′(ζkl)x̃jlx̃′kl| dζljdζlkdP (ṽ−l,jk, X̃)

}
.

(B47)

Thus, the right-hand side of (B47) converges to zero when N goes to ∞ by Assumption 7 and Condition 2.

|L∗N3| ≤
j,k,l,m∈J∑

j<k,l<m,j<l,k 6=l,k 6=m

2ChN [
´
|K ′(ζjk)K ′(ζlm)x̃jkx̃

′
lm|dζjkdζlmdP (ṽ−{k,m}, X̃)]

under Assumption 7(c). L∗N3 converges to zero by Assumption 7 and Condition 2. So E(Ω̂N )→ Ω by (B45).

Next consider V ar(Ω̂N ). By Assumption 1, we can calculate

V ar(Ω̂N ) =
(
h2
N/N

)
V ar

[
tNn

(
bSN , hN

)
tNn

(
bSN , hN

)′]
=

(
h2
N/N

)
E

{
vec

[
tNn

(
bSN , hN

)
tNn

(
bSN , hN

)′]
· vec

[
tNn

(
bSN , hN

)
tNn

(
bSN , hN

)′]′}
+ o(1) = (Nh2

N )−1E [cc′] + o(1),

(B48)

where c ≡
j,k,l,m∈J∑
j<k,l<m

cjklm, and

cjklm ≡ [1(rj < rk)− 1(rk < rj)] [1(rl < rm)− 1(rm < rl)]K
′(x′jkb

S
N/hN )K ′(x′lmb

S
N/hN )vec(x̃jkx̃

′
lm).

Following the method of proving E(Ω̂N )→ Ω, the right-hand side of (B48) converges to zero under Assump-

tion 7 and Condition 2. Therefore we have proved that V ar(Ω̂N ) = 0.

Part (c): Lemmas 8 and 9 imply the result of this part.
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