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Abstract

This paper addresses conflicting results regarding the optimal taxation of capital income. Judd (1985)

proves that in steady state there should be no taxation of capital income. Lansing (1999) studies a logarithmic

example of one of Judd’s models and finds that the optimal steady state tax on capital income is not always

zero – it is positive in some specifications, negative in some others. There appears to be a contradiction.

However, I show that Lansing derives his result by relaxing the hypotheses of Judd’s theorem – with less

restrictive hypotheses, a wider range of outcomes is possible. This raises the question of whether yet more

outcomes are possible with yet weaker hypotheses. I find that the answer is no: the only possible interior

steady states for the model are essentially Judd’s zero capital tax and Lansing’s unitary elasticity of marginal

utility.

JEL Classification: H2

Keywords: dynamic optimal taxation
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1 Introduction

Chamley (1986) and Judd (1985) prove that capital income should not be taxed in a steady state. Lans-

ing (1999) provides a counterexample to this result. The example is particularly intriguing since it is a

special case of one of Judd’s models. There appears to be a contradiction. Lansing offers explanations to

reconcile the differences. He also considers extensions of the model that revive the zero tax result. However,

one is still left wondering what goes wrong in the counterexample. Lansing states on page 449, “Future

research should be directed at developing a solution method that gives the right answer in all cases.” Judd’s

solution method is optimal control theory (as is Lansing’s). It would be very troubling indeed if optimal

control theory failed to give the right answer. Fortunately, the contradiction can be resolved: Judd and

Lansing have proved two different theorems with two different sets of hypotheses. For the special case with

logarithmic utility that Lansing considers, his theorem’s hypotheses are less restrictive than Judd’s so the

range of possible outcomes is wider. In particular, Judd’s zero capital tax result is one possible outcome,

but not the only one.

The hypotheses in question deal with the convergence properties of various co-state variables (Lagrange

multipliers). Kemp, Long, and Shimomura (1993) have also observed that the convergence hypotheses of

Judd’s theorem might not be satisfied. Among the possibilities is that the steady state of the economy could

be completely unstable in which case the zero capital tax result may not apply. In Lansing’s example it

turns out that there is a somewhat different reason why Judd’s result does not apply. The issue is not the

local dynamics about the steady state, but rather the dynamical system might not even have a steady state.

Further work regarding the convergence properties has been done by Straub and Werning (2015). They state,

“Reinhorn . . . correctly clarified that in the logarithmic case the Lagrange multipliers explode, explaining

the difference in results”between Judd (1985) and Lansing (1999). Straub and Werning (2015) also state,

“[W]e believe the issue can be framed exactly as Reinhorn . . . did, emphasizing the non convergence of

multipliers.”

Since the co-state variables/multipliers are shadow prices that are not observable, one would rather

not make assumptions about their behavior. On the other hand, it is quite reasonable to assume that

observable macroeconomic variables have stable long run behavior since this is consistent with most developed

economies. (E.g., page 304 of Lucas 1990 for the US.) In the case of Judd’s model, which abstracts from

demographics and technological change, stability boils down to convergence to an interior steady state. Thus,

I study the behavior of the optimal tax on capital income, assuming only that the observable macro variables

converge to positive limits, with no assumptions about co-states.1 I find that there are only two possible

1Throughout the paper, the theorems’hypotheses will be stated in terms of the convergence of endogenous variables. The
theorems do not characterize the primitives (utility functions, production function, parameters, initial condition) that satisfy
convergence. Some primitives will satisfy Judd’s hypotheses, some will satisfy Lansing’s, and some neither. However, as
discussed above, it seems reasonable to focus on those primitives that lead to stable long run behavior.
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outcomes: either the modified golden rule holds in the limit or else savings are insensitive to the after-tax

interest rate in the limit. In the former case we get Judd’s zero tax result. In the latter case, the income

and substitution effects of an interest rate change just cancel, and this is what occurs in Lansing’s example

with logarithmic utility. If interest does not affect savings, this undermines the benefit from a zero tax on

interest/capital income and we can see why Judd’s result does not necessarily hold in this case.

Straub and Werning (2015) raise serious concerns about Judd’s convergence hypotheses in the case where

the capitalist in the model has CES utility. In particular, when the capitalist’s intertemporal elasticity of

substitution is less than one, the solution to the optimal tax problem cannot converge to an interior steady

state. If, in addition, the social welfare function places zero weight on the capitalist and all weight on the

worker, then the solution to the optimal tax problem does converge, but to a non-interior steady state with

a positive tax rate on capital income. Straub and Werning conclude that Judd’s model cannot be used to

unequivocally justify a zero long run tax on capital income. I agree with Straub and Werning. But since the

CES case with elasticity less than one leads to a non-interior steady state, and since this is inconsistent with

stable long run behavior, I prefer to exclude these utility functions from consideration and instead focus on

utility functions (and other primitives) that do lead to stable long run behavior.

Section 2 presents the model. Section 3 presents the theorems of Judd and Lansing, explains the rela-

tionship between these two theorems, and also provides the general result described above. Section 4 offers

a concluding comment.

2 Model

The model has four economic actors: capitalist, worker, firm, government. The capitalist has access to the

capital market but does no work. The worker supplies labor inelastically but does not have access to the

capital market. The firm is a price taking profit maximizer that uses capital and labor to produce output.

The government chooses a time path for the tax rate on capital income and uses the proceeds to provide

lump sum transfers to the worker. There is no government debt. Hence the transfers must equal the taxes

at each point in time. We now proceed to describe the model in detail.

The capitalist has an infinite horizon and maximizes discounted utility,
∫∞

0
e−ρtu(cct)dt, where ρ > 0

is the subjective discount rate and cct ≥ 0 is instantaneous consumption. The superscript identifies the

capitalist; cwt will be the worker’s consumption. The instantaneous utility function u is smooth, strictly

increasing, strictly concave, and satisfies Inada conditions. At the beginning of time the capitalist’s wealth

consists of the economy’s entire stock of capital, k0 > 0. This stock of wealth/capital evolves through time

according to the capital accumulation equation: k̇t = (1 − τkt)(rt − δ)kt − cct where τkt is the tax rate on

net capital income (subsidy rate if negative), rt is the pre-tax interest rate gross of depreciation, and δ is the

depreciation rate. Note the lack of wage income which reflects the assumption that the capitalist supplies no
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labor. For ease of notation, let r̄t := (1− τkt)(rt − δ) denote the after tax, net of depreciation, interest rate.

Then the capital accumulation equation is k̇t = r̄tkt−cct . Let R̄t :=
∫ t

0
r̄sds be the cumulative interest factor.

With this definition we can integrate the capital accumulation equation to get e−R̄T kT −k0 = −
∫ T

0
e−R̄tcctdt.

When T →∞ this equation gives the capitalist’s lifetime budget. In order to prevent Ponzi schemes we will

require that the present value of wealth be non-negative in the limit: limT→∞ e−R̄T kT ≥ 0. Then the lifetime

present value budget constraint is
∫∞

0
e−R̄tcctdt ≤ k0. The capitalist maximizes lifetime utility subject to

this budget. At the solution, the intertemporal marginal rate of substitution must equal the ratio of present

value prices, and the budget must hold with equality:

e−ρtu′(cct)/u
′(cc0) = e−R̄t for almost all t ≥ 0 and

∫ ∞
0

e−R̄tcctdt = k0. (1)

Equivalently, the first of these conditions can be log differentiated to give the consumption Euler equation

ċctu
′′(cct)/u

′(cct) = ρ−r̄t. The second equation in (1) can be expressed in its no-Ponzi form as limt→∞ e−R̄tkt =

0, or, by the first equation in (1), limt→∞ e−ρtu′(cct)kt = 0.

The worker inelastically supplies a flow of one unit of labor and immediately consumes all wages and

transfers due to the lack of access to the capital market. So the worker is a passive actor who makes

no decisions. The instantaneous utility function is v(cwt ). The worker’s consumption (and income) is cwt =

wt+TRt where wt is the wage and TRt is the transfer. The assumptions that were imposed on the capitalist’s

utility function u are also imposed on v.

The firm is a price taking profit maximizer with constant returns to scale in labor and capital. The

production function in intensive form is f(kt). The capital to labor ratio coincides with the capital stock

since the labor supply is always one unit. We assume that f(0) = 0 and that f satisfies the same conditions

as the utility functions u and v. At the firm’s optimum, f ′(kt) = rt and f(kt)− ktf ′(kt) = wt.

Given the restriction against government debt, tax revenue must equal the transfer at each instant:

τkt(rt − δ)kt = TRt. Hence, from the definition of r̄t and the firm’s profit maximization condition, TRt =

−r̄tkt + [f ′(kt)− δ]kt. Then the worker’s consumption is

cwt = wt + TRt = [f(kt)− ktf ′(kt)]− r̄tkt + [f ′(kt)− δ]kt = f(kt)− δkt − r̄tkt. (2)

In equilibrium, consumption plus investment must equal output: cct + cwt + δkt + k̇t = f(kt). Substitute

for cwt to get k̇t = r̄tkt − cct , which is satisfied by the capitalist’s flow budget constraint (Walras’Law).

3 Optimal taxation

The government maximizes social welfare
∫∞

0
e−ρt[γv(cwt ) + u(cct)]dt subject to the equilibrium conditions:

the capitalist maximizes lifetime utility, the worker consumes all available income, firms maximize profits,

the government’s budget is in balance at every instant so the worker’s income is as described in (2), and
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markets clear. Note that the government applies the capitalist’s discount factor to both consumers, and the

welfare weight γ is time invariant. There is one further constraint: r̄t ≥ 0. This is a policy restriction that

prevents the government from imposing a tax rate in excess of 100 percent. Substitute for cwt from (2) to

get the following problem:

maximize
∫ ∞

0

e−ρt[γv(f(kt)− δkt − r̄tkt) + u(cct)]dt

subject to k̇t = r̄tkt − cct

ċct = (ρ− r̄t)u′(cct)/u′′(cct)

r̄t ≥ 0

with k0 > 0 given and limt→∞ e−ρtu′(cct)kt = 0. The optimal time path for the tax rate can be recovered

from the definition of r̄t. The current value Hamiltonian is

H(k, cc, r̄, q1, q2, η) = γv
(
f(k)− δk − r̄k

)
+ u(cc) + q1(r̄k − cc) + q2(ρ− r̄)u′(cc)/u′′(cc) + ηr̄ .

The state variables are kt (with co-state q1t) and cct (with co-state q2t), r̄t is the control, and ηt is the

Lagrange multiplier for the constraint r̄t ≥ 0. The optimality conditions are

∂H/∂k = γv′(cwt )[f ′(kt)− δ − r̄t] + q1tr̄t = ρq1t − q̇1t (3a)

∂H/∂cc = u′(cct)− q1t + q2t(ρ− r̄t)
{

1− [u′′(cct)]
−2u′(cct)u

′′′(cct)
}

= ρq2t − q̇2t (3b)

∂H/∂r̄ = −γv′(cwt )kt + q1tkt − q2tu
′(cct)/u

′′(cct) + ηt = 0 (3c)

∂H/∂q1 = r̄tkt − cct = k̇t (3d)

∂H/∂q2 = (ρ− r̄t)u′(cct)/u′′(cct) = ċct (3e)

ηtr̄t = 0, lim
t→∞

e−ρtq1tkt = 0, lim
t→∞

e−ρtq2tc
c
t = 0 (3f)

together with the problem’s two boundary conditions. The last line includes the complementary slackness

and transversality conditions.

3.1 Theorem (Judd)2 Suppose a solution to (3) has the property that kt, cct , r̄t, and q1t converge as t tends

to infinity, with strictly positive limits for kt, cct , and c
w
t . Then limt→∞ τkt = 0.

Proof Drop the time subscripts to denote limiting values. From (3e),3 r̄ = ρ. Therefore (3a) yields

f ′(k)− δ − r̄ = 0. The theorem now follows from the definition r̄t = (1− τkt)[f ′(kt)− δ].
2See theorem 2 and equations (24) on page 72 of Judd (1985).
3The assumption that limt→∞ ξt exists does not always imply limt→∞ ξ̇t = 0 (e.g., t−1 sin t2). However, this is not a

problem here. Equations (3a, d, e) are of the form ξ̇t = G(kt, cct , r̄t, q1t) with G continuous, where ξ̇t represents q̇1t, k̇t, or ċ
c
t .

Therefore, under stated assumptions, ξ̇t has a limit as t tends to infinity. That limit must be zero; otherwise ξt (no dot) would
fail to converge as t tends to infinity. A similar argument can be applied to Lansing’s theorem, and to parts of theorem 3.6,
below.
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In Lansing’s example, u = log. Then (1) simplifies to cct = cc0e
R̄t−ρt and cc0 = ρk0. From (3d),

d[e−R̄tkt]/dt = −e−R̄tcct , so with c
c
t = ρk0e

R̄t−ρt this yields d[e−R̄tkt]/dt = d[k0e
−ρt]/dt. Integrate, and

use R̄0 = 0 to identify the constant of integration. The result is kt = k0e
R̄t−ρt. Hence cct = ρkt. Substitute

this and u = log into (3) to get:

∂H/∂k = γv′(cwt )[f ′(kt)− δ − r̄t] + q1tr̄t = ρq1t − q̇1t (4a)

∂H/∂cc = 1/ρkt − q1t − q2t(ρ− r̄t) = ρq2t − q̇2t (4b)

∂H/∂r̄ = −γv′(cwt )kt + q1tkt + q2tρkt + ηt = 0 (4c)

∂H/∂q1 = r̄tkt − ρkt = k̇t (4d)

∂H/∂q2 = −(ρ− r̄t)ρkt = ρk̇t (4e)

ηtr̄t = 0, lim
t→∞

e−ρtq1tkt = 0, lim
t→∞

e−ρtq2tρkt = 0. (4f)

This system characterizes the solution to the optimal tax problem when u = log. One of the properties

of (4) is that generically limt→∞(kt, c
c
t , r̄t, q1t) does not exist. I.e., it may be that some of these variables

converge, but in general they cannot all converge. Thus, for this special utility function the hypotheses

of Judd’s theorem generically cannot be satisfied. The reason is as follows. If all these variables were to

converge, the proof of Judd’s theorem would apply so in the limit r̄ = ρ (hence η = 0) and f ′(k) = δ+ρ. The

latter condition would uniquely determine k (modified golden rule). Then, from (4c), q2t would converge

and its limit would satisfy γv′(cw) = q1 + ρq2. Also, in the limit, (4b) would yield 1/ρk = q1 + ρq2. Hence

1/ρk = γv′(cw) = γv′
(
f(k) − δk − ρk

)
, where the last equality uses (2). This would impose a second

condition on k, in addition to f ′(k) = δ + ρ. Only in exceptional cases will the same value of k satisfy both

these conditions. Generically there will be no k that satisfies both. Nonetheless, (4) is still valid – it still

characterizes the solution to the optimal tax problem when u = log. The fact that (generically) its variables

do not all converge is neither here nor there.

Given the simplifications associated with u = log, Lansing states directly the optimal tax problem for

this special case:

maximize
∫ ∞

0

e−ρt[γv
(
f(kt)− δkt − r̄tkt

)
+ log(ρkt)]dt

subject to k̇t = (r̄t − ρ)kt

r̄t ≥ 0

with k0 > 0 given. The ċct equation is dropped because it is redundant. Thus the k̇t equation has a dual role.

Not only is it the capital accumulation equation; it is also the consumption Euler equation for the capitalist.

The current value Hamiltonian for this problem isH(k, r̄, q3, η) = γv
(
f(k)−δk−r̄k

)
+log(ρk)+q3(r̄−ρ)k+ηr̄.
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The optimality conditions are

∂H/∂k = γv′(cwt )[f ′(kt)− δ − r̄t] + 1/kt + q3t(r̄t − ρ) = ρq3t − q̇3t (5a)

∂H/∂r̄ = −γv′(cwt )kt + q3tkt + ηt = 0 (5b)

∂H/∂q3 = (r̄t − ρ)kt = k̇t (5c)

ηtr̄t = 0, lim
t→∞

e−ρtq3tkt = 0 (5d)

with k0 given. In Lansing (1999), this appears as (21) on page 435. Note the new notation q3t for the co-state

here in (5). Since the k̇t equation has a dual role here so does its co-state.4 Indeed q3t is distinct from both

of the co-states in (4), q1t (for capital) and q2t (for the capitalist’s consumption). However, they are related

to one another.

3.2 Lemma Equations (4) and (5) are equivalent, with

q3t = q1t + ρq2t (6)

ktq1t − k0q10 = t+ ktq3t − k0q30 − ρ
∫ t

0

ksq3sds (7)

ktq2t − k0q20 = −t/ρ+

∫ t

0

ksq3sds (8)

where the initial conditions in (7) and (8) satisfy q10 + ρq20 = q30.

Proof First, given a solution to (4), verify that (5) is satisfied when q3t is defined by (6). Clearly (5b)

follows from (4c), (5c) follows from (4d), and (5d) follows from (4f). Given (4a), (5a) will be satisfied if

1/kt + q̇3t + q3t(r̄t − ρ)− ρq3t = q̇1t + q1t(r̄t − ρ). (9)

Use (6) to substitute for q3t and q̇3t:

1/kt + q̇1t + ρq̇2t + (q1t + ρq2t)(r̄t − 2ρ) = q̇1t + q1t(r̄t − ρ).

This is satisfied by (4b).

Next, given a solution to (5), verify that (4) is satisfied when q1t and q2t are defined by (7) and (8) with

q10 +ρq20 = q30. Take (7) and add to it (8) multiplied by ρ to get (6). Hence (4c) follows from (5b). Clearly,

(4d) and (4e) follow from (5c), while (4a) will follow from (5a) if (9) holds. To verify (9), first take the time

derivative of (7):

k̇tq1t + ktq̇1t = 1 + k̇tq3t + ktq̇3t − ρktq3t.

4Cf Lansing (1999) where the same notation q1t is used for the dual role co-state in (21) on page 435 and also for capital’s
co-state in (17) on page 432 where utility is not restricted to be logarithmic.
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Substitute for k̇t from (5c):

(r̄t − ρ)ktq1t + ktq̇1t = 1 + (r̄t − ρ)ktq3t + ktq̇3t − ρktq3t.

Now divide through by kt to get (9). To verify (4b), first take the time derivative of (8):

k̇tq2t + ktq̇2t = −1/ρ+ ktq3t.

Substitute for k̇t from (5c), and, since (7) and (8) yield (6), also substitute for q3t from (6). The result

is (4b) multiplied through by kt. Finally, (4f) follows from (7), (8), (5d), and, if necessary, application of

l’Hopital’s rule to limt→∞
∫ t

0
ksq3sds/e

ρt.

3.3 Theorem (Lansing)5 Suppose a solution to (5) has the property that kt, r̄t, and q3t converge as t tends

to infinity, with strictly positive limits for kt, cwt , and f
′(kt) − δ. Then, dropping the time subscripts to

denote limiting values, sgn(τk) = sgn
(
ργv′(cw)k − 1

)
.

Proof From (5c), r̄ = ρ. From (5b), q3 = γv′(cw) since η = 0 (r̄ > 0) and k > 0. Therefore, (5a) yields

γv′(cw)[f ′(k)− δ − r̄] = ργv′(cw)− 1/k. The theorem now follows from r̄t = (1− τkt)[f ′(kt)− δ].

Judd’s hypotheses are more restrictive than Lansing’s. That is, in (4) Judd’s hypotheses are that kt, cct ,

r̄t, and q1t all converge. Recall that generically this does not happen, but when it does, 1/ρk = γv′(cw). So

in this special case Lansing’s theorem yields τk = 0 in the limit, just like Judd’s theorem: When u = log,

Judd’s theorem is a special (and exceptional) case of Lansing’s.

Furthermore, when Judd’s hypotheses are satisfied, q2t also converges by (4c). Hence, by (6), q3t converges

in (5). So Lansing’s hypotheses are satisfied. The converse does not necessarily hold. It is possible for q3t

to converge while q1t and q2t diverge. The following corollary states this formally.

3.4 Corollary Suppose a solution to (5) has the property that kt, r̄t, and q3t converge as t tends to infinity,

with strictly positive limits for kt, cwt , and f
′(kt)− δ. Then, in (4),

lim
t→∞

q1t/t = (1− ρkq3)/k = 1/k − ργv′(cw)

lim
t→∞

q2t/t = (−1/ρ+ kq3)/k = −1/ρk + γv′(cw)

where k = limt→∞ kt, etc. So if ργv′(cw)k 6= 1 then both q1t and q2t fail to converge. Since sgn(τk) =

sgn
(
ργv′(cw)k− 1

)
from theorem 3.3, it follows that if τk 6= 0 then q1t fails to converge so Judd’s hypotheses

are not satisfied.

Proof In (7) and (8), apply l’Hopital’s rule to the integrals divided by t, and use q3 = γv′(cw) from the

proof of theorem 3.3.

5See proposition 2 on page 435 of Lansing (1999).
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The following example rigs the initial conditions and parameter values to illustrate the corollary.

3.5 Example Suppose

γv′(cw0 )[f ′(k0)− δ − 2ρ] + 1/k0 = 0, y0 = f(k0)− δk0 − ρk0 > 0, 0 < f ′(k0)− δ 6= ρ. (10)

Then kt ≡ k0, r̄t ≡ ρ (hence ηt ≡ 0), and q3t ≡ γv′(cw0 ) solves (5). So Lansing’s hypotheses are satisfied.

From (7) and (8), q1t = q10 + [1/k0−γρv′(cw0 )]t and q2t = q20− [1/k0−γρv′(cw0 )]t/ρ, with q10 +ρq20 = q30 =

γv′(cw0 ) by (6). So, from (10), q1t and q2t do not converge; but they do satisfy transversality. The tax rate

on capital income is not zero: τkt[f ′(k0)− δ] = f ′(k0)− δ − ρ 6= 0.

Return now to the general case (3) when the capitalist’s utility is not necessarily u = log. As stated in

the introduction, the focus of attention is time paths for which the observables kt, cct , r̄t converge to positive

limits as t tends to infinity. As a first step, suppose the initial condition k0 is such that these observables

are time invariant: (kt, c
c
t , r̄t) ≡ (k, cc, r̄). The behavior of the capital tax in this case will shed light on the

time varying case.

If (kt, c
c
t , r̄t) ≡ (k, cc, r̄) then r̄ = ρ from (3e) and cc = ρk from (3d). Also, cwt ≡ cw = f(k) − δk − ρk

from (2); assume this is positive. From (3a), q1t = q10− γv′(cw)[f ′(k)− δ− ρ]t. Then from (3c) (with ηt ≡ 0

since r̄t ≡ ρ), q2t = ku′′(ρk)[u′(ρk)]−1{q10 − γv′(cw) − γv′(cw)[f ′(k) − δ − ρ]t}. Note that transversality

is satisfied in (3f). All that remains is (3b), which reduces to u′(ρk) − q1t = ρq2t − q̇2t. With the above

solutions for q1t and q2t, this requires that the coeffi cients of t match up:

γv′(cw)[f ′(k)− δ − ρ] = −ρku′′(ρk)[u′(ρk)]−1γv′(cw)[f ′(k)− δ − ρ]

hence

γv′(cw)[f ′(k)− δ − ρ][1 + ρku′′(ρk)/u′(ρk)] = 0. (11a)

It also requires u′(ρk)− q10 = ρq20 − q̇2t:

u′(ρk)− q10 = ku′′(ρk)[u′(ρk)]−1 {ρ[q10 − γv′(cw)] + γv′(cw)[f ′(k)− δ − ρ]}

hence

q10[1 + ρku′′(ρk)/u′(ρk)] = u′(ρk)− ku′′(ρk)[u′(ρk)]−1γv′(cw)[f ′(k)− δ − 2ρ]. (11b)

The solution to (11a) and (11b) requires one of the following alternatives:

(i) f ′(k) = ρ+ δ and ρku′′(ρk)/u′(ρk) 6= −1;

(ii) ρku′′(ρk)/u′(ρk) = −1 and ρu′(ρk) = −γv′(cw)[f ′(k)− δ − 2ρ].
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In each of these, the first condition ensures that (11a) is satisfied, while the second ensures that (11b) is

satisfied. In particular, in (i) the second condition allows us to find a unique value for q10 that satisfies (11b).

In (i), the capital tax is zero whereas in (ii), the capital tax is not restricted to be zero. Lansing’s example

with u = log is an instance of alternative (ii): the first condition in (ii) is satisfied identically and the second

condition determines the value of k. (I.e., it determines the value of k0 that would lead to a time invariant

path.) When u 6= log, alternative (ii) would impose two distinct restrictions on k making it unlikely to have

any solution. Thus, other than u = log, alternative (ii) can be effectively dismissed and this leaves us with

alternative (i) – zero tax on capital income.

These results for the time invariant case suggest the following for the time varying case.

3.6 Theorem Suppose a solution to (3) has the property that kt, cct , and r̄t converge as t tends to infinity,

with strictly positive limits for kt, cct , and c
w
t . Then limt→∞ τkt = 0 or limt→∞[cct + u′(cct)/u

′′(cct)] = 0 or

both.

Proof From (3b) and (3e),

d

dt
[e−ρtq2tu

′(cct)/u
′′(cct)] = e−ρt

[u′(cct)]
2

u′′(cct)
[q1t/u

′(cct)− 1] .

Since u′(cct)/[c
c
tu
′′(cct)] has a finite limit, transversality yields

−e−ρtq2tu
′(cct)/u

′′(cct) =

∫ ∞
t

e−ρs
[u′(ccs)]

2

u′′(ccs)
[q1s/u

′(ccs)− 1]ds. (12)

In preparation for integration by parts, let zt :=
∫∞
t
e−ρs[u′(ccs)]

2[u′′(ccs)]
−1ds. From l’Hopital’s rule,

limt→∞[zt/e
−ρt] = limt→∞[u′(cct)]

2[ρu′′(cct)]
−1. This will be useful later. From (3a) and (3e) respectively,

eR̄t−ρtq1t = q10 − γ
∫ t

0
eR̄s−ρsv′(cws )[f ′(ks) − δ − r̄s]ds and eR̄t−ρt = u′(cc0)/u′(cct). Recall, R̄t :=

∫ t
0
r̄sds is

cumulative interest. Therefore,

d

dt
[q1t/u

′(cct)− 1] = [u′(cc0)]−1 d

dt
[eR̄t−ρtq1t] = −γ[u′(cct)]

−1v′(cwt )[f ′(kt)− δ − r̄t].

Apply integration by parts to (12):

−e−ρtq2tu
′(cct)/u

′′(cct) =
[
−zs[q1s/u

′(ccs)− 1]
]∞
t
− γ

∫ ∞
t

zs[u
′(ccs)]

−1v′(cws )[f ′(ks)− δ − r̄s]ds

= zt[q1t/u
′(cct)− 1]− γ

∫ ∞
t

zs[u
′(ccs)]

−1v′(cws )[f ′(ks)− δ − r̄s]ds.

The second line follows from transversality and the limiting behavior of zt. Use this equation to substitute

for q2tu
′(cct)/u

′′(cct) in (3c):

q1t[kt + eρtzt/u
′(cct)] = γv′(cwt )kt + eρtzt + γeρt

∫ ∞
t

zs[u
′(ccs)]

−1v′(cws )[f ′(ks)− δ − r̄s]ds− ηt. (13)

All terms on the right side of this equation converge as t tends to infinity. In particular, l’Hopital’s rule can

be applied to the integral divided by e−ρt, while limt→∞ ηt = 0 since limt→∞ r̄t = ρ from (3e). Therefore,
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the left side must converge. The convergence of q1t would be suffi cient for this to occur in which case Judd’s

theorem would apply so limt→∞ τkt = 0. But if q1t fails to converge, the required convergence of the left

side of (13) implies

0 = lim
t→∞

[kt + eρtzt/u
′(cct)] = ρ−1 lim

t→∞
[cct + u′(cct)/u

′′(cct)]

where the second equality uses limt→∞ cct = ρ limt→∞ kt from (3d, e), and also the earlier result regarding

the limiting behavior of zt.

3.7 Remark Consider the following cases of the theorem. If u = log, then in the proof zt = −e−ρt/ρ and

cct = ρkt, so, dropping time subscripts to denote limiting values, in the limit (13) yields: 0 = γv′(cw)k[f ′(k)−

δ− 2ρ] + 1 (apply l’Hopital’s rule to the integral divided by e−ρt) with cw = f(k)− δk−ρk. This determines

the steady state value(s) of k, and hence, by Lansing’s theorem, τk. If u is any other CES function,

cc + u′(cc)/u′′(cc) 6= 0, so τk = 0. In this case, (13) determines q1, and k solves f ′(k) = δ + ρ. For general

u, if τkt fails to converge to zero, k must satisfy ρk + u′(ρk)/u′′(ρk) = 0, and (13) determines the limiting

behavior of the indeterminate form limt→∞ q1t[kt + eρtzt/u
′(cct)].

4 Conclusion

This paper has clarified the relationship between the results of Judd (1985) and Lansing (1999). Judd’s

theorem states that in steady state the optimal tax rate on capital income is zero.6 Lansing identifies a loga-

rithmic example of one of Judd’s models in which this tax rate can converge to any number, zero or otherwise

– the value depends on the model’s primitives (the worker’s utility function, the production function, etc).

It seems odd that the same model can generate two different results. The apparent contradiction is resolved

by observing that Lansing has relaxed the hypotheses of Judd’s theorem. With less restrictive hypotheses,

there are more possible outcomes. One would like to know if yet more outcomes are possible with yet less

restrictive hypotheses. Theorem 3.6 addresses this issue and characterizes all possible steady state outcomes

for this particular model. There are two, and only two, possibilities: the zero capital tax result is one, while

in any other steady state the capitalist’s marginal utility must have unitary elasticity. The latter possibility

is satisfied identically with logarithmic utility, which was the case considered by Lansing.

6Judd (1999, 2002) has returned to this issue, but not with the worker-capitalist model. The range of views on capital income
taxation can be exemplified by Atkeson, Chari, and Kehoe (1999) on the one hand, and Conesa, Kitao, and Krueger (2009) on
the other.
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