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The shift in focus towards searches for physics beyond the Standard Model employing model-
independent effective field theory methods necessitates a rigorous approach to matching to guarantee the
validity of the obtained results and constraints. The limits on the leading dimension-six effective field
theory effects can be rather inaccurate for LHC searches that suffer from large uncertainties while exploring
an extensive energy range. Similarly, precise measurements can, in principle, test the subleading effects of
the operator expansion. In this work, we present an algorithmic approach to automatize matching
computations for dimension-eight operators for generic scalar extensions with proper implementation of
equations of motion. We devise a step-by-step procedure to obtain the dimension-eight Wilson coefficients
in a nonredundant basis to arrive at complete matching results. We apply this formalism to a range of scalar
extensions of the Standard Model and provide tree-level and loop-suppressed results. Finally, we discuss
the relevance of the dimension-eight operators for a range of phenomenological analyses, particularly
focusing on Higgs and electroweak physics.
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I. INTRODUCTION

Searches for physics beyond the Standard Model (BSM)
chiefly performed at the Large Hadron Collider (LHC)
have, so far, not revealed any significant deviation from the
Standard Model (SM) predictions. This is puzzling, on the
one hand, given the SM’s plethora of known flaws and
shortcomings. On the other hand, these findings have
motivated the application of model-independent techniques
employing effective field theory (EFT) [1] to LHC data.
The EFT approach breaks away from the assumption of
concrete model-dependent correlations, thus opening up
the possibility of revealing new (and perhaps noncanonical)
BSM interactions through a holistic approach to data
correlation interpretation. The inherent assumption of such

an approach is that there is a significant mass gap between
the BSM spectrum and the (process-dependent) character-
istic energy scale at which the LHC operates to “integrate
out” BSM states to obtain a low energy effective descrip-
tion that is determined by the SM’s particle and symmetry
content.
Efforts to apply EFT to the multiscale processes of the

LHC environment have received considerable interest
recently, reaching from theory-led proof-of-principle fits
to LHC data [2–7] (with a history of almost a decade)
over the adoption of these techniques by the LHC experi-
ments (e.g., [8,9] for recent examples), to perturbative
improvements of the formalism [10–21]. In doing so, most
attention has been devoted to SMEFT at dimension-six
level [22]

L ¼ LSM þ
X
i

ci
Λ2

Oi: ð1:1Þ

While EFT is a formidable tool to put correlations at the
forefront of BSM searches, the significant energy coverage
of the LHC can lead to blurred sensitivity estimates even in
instances when Eq. (1.1) is a sufficiently accurate expan-
sion. When pushing the cutoff scale Λ to large values, the
experimental sensitivity to deviations from the SM can be
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too small to yield perturbatively meaningful or relevant
constraints when matched to concrete UV scenarios
(see, e.g., [23]). In contrast, dimension-eight contributions
can be sizeable when the new physics cutoff Λ is compa-
rably low in the case of more significant BSM signals
at the LHC. To understand the ramifications for concrete
UV models, it is then important to (i) have a flexible
approach to mapping out the dimension-eight interactions
and (ii) gauge the importance of dimension-eight contri-
butions relative to those of dimension-six to quantita-
tively assess the error of the (potential) dimension-eight
truncation.
A common bottleneck in constructing EFT interactions

is removing redundancies. This is historically evidenced
by the emergence of the so-called Warsaw basis [22].
Equations of motion are typically considered in eliminating
redundant operators. Still, they are not identical to
general (nonlinear) field redefinitions, which are the actual
redundant parameters of the field theory [24–28]. When
truncating a given operator dimension, this can be viewed
as a scheme dependence not too unfamiliar from renorma-
lizable theories, however, with less controlled side
effects when the new physics scale is comparably low.
Additional operator structures need to be included to
elevate classical equations of motion to field redefinitions
[28,29] to achieve a consistent classification at the
dimension-eight level.
In this work, we devise a generic approach to this issue

that enables us to provide a complete framework to match
any dimension-eight structure that emerges in the process
of integrating-out a heavy non-SM scalar and obtaining the
form of the Wilson coefficients (WCs). Along the way of
systematically reorganizing the operators into a nonredun-
dant basis, resembling the one discussed in Refs. [30,31],
we show that removing the higher-derivative operators
produced at the dimension-six level itself can induce a non-
negligible effect on dimension-eight matching coefficients
along with the direct contribution to the same which can be
computed following the familiar methodologies of the
covariant derivative expansion [32,33] of the path integral
[34–36] or the diagrammatic approach [37,38]. Finally, it is
worth mentioning that, even though the one-loop effective
action at dimension eight is yet to be formulated, it is
possible to receive equally suppressed, loop-induced cor-
rections from the dimension-six coefficients computed
precisely at one loop. These can present themselves as
the leading order contributions for the WCs, which gen-
erally appear at one-loop.
This paper is organized as follows: in Sec. II, we discuss

the implementation of the Higgs field equation of motion
and study its equivalence with field redefinitions. This
gives rise to the desired dimension-eight operator structures
after removing redundancies (Sec. II C). Our approach is
tested and validated against available results for the real
triplet scalar extension in Sec. III. In Sec. IV, the matching

coefficients are presented explicitly considering a range of
scalar extensions of the SM. Finally, the significance
of the dimension-eight operators is analyzed based on
observables in a model-dependent manner in Sec. V. We
conclude in Sec. VI.

II. COMPLETE MATCHING
AT DIMENSION EIGHT

We start by studying the structures of the higher-
dimensional operators that can arise from heavy scalar
extensions of the SM generically once the heavy field (Φ) is
integrated out. The most generalized structure of the
renormalized Lagrangian involving heavy scalars can be
written as [32,39]

L½Φ� ⊃ Φ†ðP2 −m2 −UðxÞÞΦþ ðΦ†BðxÞ þ H:c:Þ

þ 1

4
λΦðΦ†ΦÞ2: ð2:1Þ

Here, UðxÞ and BðxÞ contain the interactions that are
quadratic and linear in Φ, respectively, and only involve
the lighter degrees of freedom. OnceΦ is integrated out, we
obtain a tower of operators that can be arranged according
to their canonical dimension. It is important to note that the
operators generated in this process might not be indepen-
dent. Depending on phenomenological considerations,
several sets of operators are defined in the literature. A
set of dimension-six operators was prescribed in Ref. [40].
It was improved by systematically removing the redundant
structures and promoting it to form a complete nonredun-
dant basis in Ref. [22],1 popularly known as the Warsaw
basis. There is another set of operators known as the
Green’s set [42–44], which is overcomplete. The operators
here are independent under the Fierz identities and inte-
gration by parts but otherwise redundant on account of
equations of motion.2 This source of redundancy contrib-
utes to higher dimensional operators. In this paper, we use
the Mathematica package CODEX [45] to generate WCs of
the operators in the SILH set [46,47] up to one loop,
including the relevant redundant terms. Since we are
interested in the corrections to the dimension-eight coef-
ficients resulting from the dimension-six redundant struc-
tures, we recast the SILH operators into Green’s setlike
structures3 to single out redundant and nonredundant
operators using the following equations:

1A minimal set of four-fermionic operators is also constructed
in Ref. [41].

2Here we are being ambiguous about the use of the equation of
motion or field redefinition in removing the redundancies, see
Refs. [24,29] for more details.

3We call it “Green’s setlike structures” because we differ in
some redundant operator structures as defined in Ref. [42], see
Appendix A for more details.
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QH ≡ 1

2
∂μðH†HÞ∂μðH†HÞ ¼ −

1

2
ðH†HÞ□ðH†HÞ;

QT ≡ 1

2
½H†D

↔
μH�½H†D

↔
μH� ¼ −2ðDμH†HÞðH†DμHÞ − 1

2
ðH†HÞ□ðH†HÞ;

QR ≡ ðH†HÞðDμH†DμHÞ ¼ 1

2
½ðH†HÞ□ðH†HÞ − ðH†HÞðD2H†H þH†D2HÞ�;

QD ≡D2H†D2H ¼ −
1
2
ðYpqðψ̄pψqÞD2H þH:c:Þ − λ0ðH†HÞðD2H†H þH†D2HÞ;

Q2W ≡ −
1

2
ðDμWI

μνÞ2

¼ −
g2W
32

Y−1
pq ððψ̄pψqÞD2H þH:c:Þ − ig2W

4
ðψ̄pγ

μτIψpÞðH†iDI
μ

↔

HÞ þ g2W
4
λ02Y−1

pqY−1
qpðH†HÞ3

þ g2W
8
ðDμH†HÞðH†DμHÞ − g2W

16
QR þ g2W

32
ð1þ 2λ0Y−1

pq Y−1
qp ÞðH†HÞðD2H†H þH†D2HÞ;

Q2B ≡ −
1

2
ð∂μBμνÞ2

¼ −
g2Y
4
Y−1
pq ððψ̄pψqÞD2H þH:c:Þ − ig2Yðψ̄pγ

μψpÞðH†iDμ

↔
HÞ þ g2YQR þ 2g2Yλ

02Y−1
pqY−1

qpðH†HÞ3

þ g2Y
2
ð1þ λ0Y−1

pq Y−1
qp ÞðH†HÞðD2H†H þH†D2HÞ;

Q2G ≡ −
1

2
ðDμGa

μνÞ2

¼ −
g2G
3
Y−1
pq ððψ̄pψqÞD2H þH:c:Þ þ 4g2G

3
λ02Y−1

pqY−1
qpðH†HÞ3þ 2g2G

3
λ0Y−1

pq Y−1
qp ðH†HÞðD2H†H þH†D2HÞ;

QW ≡ igWðH†τID
↔

μHÞDνWI
μν

¼ ig2W
2

ðH†iDI
μ

↔

HÞðψ̄γμτIψÞ − g2W
8
ðDμH†HÞðH†DμHÞ þ g2W

16
QR −

g2W
32

ðH†HÞðD2H†H þH†D2HÞ;

QB ≡ igYðH†D
↔

μHÞ∂νBμν ¼ ig2YðH†D
↔

μHÞðψ̄γμψÞ − 2g2YQR − g2YðH†HÞðD2H†H þH†D2HÞ;
QWW ≡ g2WðH†HÞWI

μνWI;μν;

QBB ≡ g2YðH†HÞBμνBμν;

QWB ≡ 2gWgYðH†τIHÞWI
μνBμν;

QGG ≡ g2GðH†HÞGa
μνGaμν; ð2:2Þ

where Ypq denotes the SM Yukawa coupling matrix, fp; qg ∈ ð1; 2; 3Þ are the flavor indices. We denote the Wilson
coefficients of the SILH operators as Ci with i labeling the operators in Eqs. (2.2). Taking into account all the H-involved
structures that can appear from a scalar extension of the SM, one can write the following:

L ¼ Lð4Þ
SM þ λ̃ðH†HÞ2 þ ζð6Þ1 ðH†HÞ3 þ ζð6Þ2 ðH†HÞ□ðH†HÞ þ ζð6Þ3 ðDμH†HÞðH†DμHÞ

þ ζð6Þ4 ðH†HÞðBμνBμνÞ þ ζð6Þ5 ðH†HÞðWI
μνWIμνÞ þ ζð6Þ6 ðH†τIHÞðBμνWIμνÞ

þ ζð6Þ7 ðH†HÞðGa
μνGaμνÞ þ ζð6Þ8;1ðH†iD

↔

μHÞðψ̄γμψÞ þ ζð6Þ8;2ðH†iDI
μ

↔

HÞðψ̄τIγμψÞ
þ ξð6Þ1 ðH†HÞðD2H†H þH†D2HÞ þ ξð6Þ2 ½ðψ̄ψÞD2H þH:c:�: ð2:3Þ

We highlight the redundant terms in Eq. (2.3) in bold font; they need to be removed. The coefficients of the Green’s
setlike structures in Eq. (2.3) can be expressed in terms of SILH coefficients through the relations given in Table I.
We now discuss our approach to properly implement the Higgs equation of motion (EOM) to compute the corrections to

dimension-eight coefficients.
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A. Removing redundancies: Field redefinition
and Higgs field EOM

In quantum field theory (QFT), the experimentally
observable quantities are related to the S-matrix elements,
which remain invariant under field redefinition. Naively, this
can be inferred from the fact that when calculating corre-
lation functions using the path integral formalism, the field is
just an integration variable. The correlation functions and
S-matrix elements can be connected by the Lehmann-
Symanzik-Zimmermann (LSZ)-reduction formula [48,49].
In the case of a renormalizable Lagrangian, we exploit this
freedomand rewrite theLagrangian in the canonical form. In
an effective theory, we can perform nonlinear field redefi-
nitions due to the presence of higher dimensional operators.
This invariance gives rise to a rule to remove redundant

terms from the effective Lagrangian and leads to the
construction of “on-shell” effective theory [24].
One way of removing the redundancies with higher

derivatives of operators involving the Higgs field H is to
redefine the field in a perturbative manner [24,28,29,50].

For example, to remove the term ξð6Þ1 ðH†HÞðD2H†H þ
H†D2HÞ in Eq. (2.3), we can use the redefinition

H → H þ ξð6Þ1 ðH†HÞH, in which case the redundancy at

the level of Oðξð6Þ1 Þ will be removed. Subsequently, it will

give rise to higher-dimensional operator at Oððξð6Þ1 Þ2Þ.
Now the same outcome can be achieved by employing

the EOM judiciously. We compute the classical EOM
for the Higgs considering all possible structures up to
dimension-six from Eq. (2.3)

D2H ¼ −2λ0ðH†HÞH − Y þ 3ζð6Þ1 ðH†HÞ2H þ ζð6Þ3 ðDμH†HÞDμH

þ ξð6Þ1 ðD2H†H þH†D2HÞH þ ξð6Þ1 ðH†HÞD2H − ζð6Þ3 Dμ½ðH†DμHÞH�
þ 2ζð6Þ2 H□ðH†HÞ þ ξð6Þ1 D2½ðH†HÞH� þ ζð6Þ4 HðBμνBμνÞ
þ ζð6Þ5 HðWI

μνWI;μνÞ þ ζð6Þ6 ðτIHÞðBμνWI;μνÞ þ ζð6Þ7 HðGa
μνGaμνÞ

þ iζð6Þ8;1Dμ½Hðψ̄γμψÞ� þ iζð6Þ8;1ðDμHÞðψ̄γμψÞ þ iζð6Þ8;2D
I
μ½Hðψ̄γμτIψÞ�

þ iζð6Þ8;2ðDI
μHÞðψ̄γμτIψÞ þ ξð6Þ2 D2ðψ̄ψÞ : ð2:4Þ

Here, λ0 ¼ λ − λ̃ with λ being the SM Higgs quartic
coupling in the renormalizable Lagrangian. λ̃ is the direct
contribution to the former, obtained from integrating out
the heavy field as shown in Eq. (2.3). The underlined
part on the right-hand side of the Eq. (2.4) denotes the

contribution from the renormalizable part of the Lagrangian

ðLð4Þ
SMÞ, which is considered as the first-order term in the

EOM. The remainder arises from the effective operators at
dimension-six and is considered second-order terms [49].
We can think of Eq. (2.4) as some special field redefinition

TABLE I. Translation of SILH coefficients into the Green’s setlike form. Here, Ypq denotes the SM Yuakawa coupling, fp; qg ∈
ð1; 2; 3Þ are the flavor indices.

Coefficients of Green’s
setlike operators Relation in terms of SILH coefficients

ζð6Þ1 ½C6 þ g2W
4
λ02Y−1

pqY−1
qpC2W þ 2g2Yλ

02Y−1
pqY−1

qpC2B þ 4g2G
3
λ02Y−1

pqY−1
qpC2G�

ζð6Þ2 ½− 1
2
CH − 1

2
CT þ 1

2
CR − g2W

32
C2W þ g2Y

2
C2B þ g2W

32
CW − g2YCB�

ζð6Þ3 ½−2CT þ g2W
8
C2W − g2W

8
CW �

ζð6Þ4
g2YCBB

ζð6Þ5
g2WCWW

ζð6Þ6
2gWgYCWB

ζð6Þ7
gG2CGG

ζð6Þ8;1
½−ig2YC2B þ ig2YCB�

ζð6Þ8;2 ½− ig2W
4
C2W þ ig2W

2
CW �

ξð6Þ1 ½− 1
2
CR þ g2W

32
ð1þ 2λ0Y−1

pqY−1
qpÞC2W þ g2Y

2
ð1þ λ0Y−1

pqY−1
qpÞC2B þ 2g2G

3
λ0Y−1

pqY−1
qpC2G − g2W

16
CW � − λ0CD

ξð6Þ2 −Y−1
pq½g

2
W
32
C2W þ g2Y

4
C2B þ g2G

3
C2G� − 1

2
YpqCD
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and directly employ the first-order terms to remove the
redundancies in Eq. (2.3), but this will not generate
any higher-dimensional structures. This is the common
practice to obtain the complete basis at dimension six.
Working with the second-order terms is a nontrivial
task, substituting it directly into Eq. (2.3) to obtain a
contribution to higher dimension operators could lead
to incompleteness as pointed out in [29]: The missing
contributions can be encapsulated by including a term,

ð1=2Þðξð6Þ1 ðH†HÞÞ2δ2L=δH†δH. Calculating this term from
Eq. (2.3) we obtain the following contribution:

L0 ¼ ðξð6Þ1 Þ2Dμ½ðH†HÞH†�Dμ½ðH†HÞH�−6ðξð6Þ1 Þ2λ0ðH†HÞ4

¼−2ðξð6Þ1 Þ2λ0ðH†HÞ4þðξð6Þ1 Þ2ðH†HÞ2ðH†YþY†HÞ
− ðξð6Þ1 Þ2ðH†HÞ2ðDμH†DμHÞ: ð2:5Þ

Since our primary concern is the redundant operators
involving the Higgs field, the boxed structures in the
Eq. (2.4) containing the derivative of fermion fields can
be reduced to other structures by applying the first-order
fermionic EOM.
We are now ready to implement the methodology

discussed above to compute the dimension-eight coeffi-
cients from dimension-six operators.

B. Impact of dimension-six structures
on dimension-eight coefficients

It is a common practice to employ the first-order EOM, i.e.,
the classical equation of motion obtained from the renorma-
lizable Lagrangian, to transform the operators from one basis
to another at a given mass dimension. Here we extend this
strategy to generate higher-order terms in the effective
Lagrangian. The contribution to the WCs arising from the
EOM substitution considering second-order terms will be
important. In Table II we provide the contribution to dimen-
sion-eight operators coming from the dimension-six
Lagrangian.Theoperator structures are shown inAppendixA.
As the process of integrating out heavy fields becomes

more complicated at higher operator dimensions, our
method of generating WCs from lower-dimensional ones
becomes economical. Following the expressions shown in
Table II, one can quickly work out the dimension-eight
contribution without explicitly performing the matching at
that order. In the following subsection, we compute the
complete basis at dimension eight.

C. Removing redundancies at dimension eight

We consider all (redundant and nonredundant) structures
that only involve H and its derivatives at dimension-eight
that can arise directly after integrating out at tree level.

Lð8Þ
eff ¼ ζð8Þ1 ðH†HÞ4 þ ζð8Þ2 ðH†HÞðH†DμHDμH†HÞ þ ζð8Þ3 ðH†HÞ2ðDμH†DμHÞ þ ζð8Þ4 ðDμH†DνHÞðDνH†DμHÞ

þ ζð8Þ5 ðDμH†DνHÞðDμH†DνHÞ þ ζð8Þ6 ðDμH†DμHÞðDνH†DνHÞ þ ξð8Þ1 ðH†HÞ2ðD2H†H þH†D2HÞ
þ ξð8Þ2 ðDμH†DμHÞðD2H†H þH†D2HÞ þ ξð8Þ3 ½ðDμH†HÞðD2H†DμHÞ þH:c:�
þ ξð8Þ4 ½ðD2H†HÞðD2H†HÞ þH:c:� þ ξð8Þ5 ½ðDμH†HÞðDμH†D2HÞ þH:c:�
þ ξð8Þ6 ðD2H†D2HÞðH†HÞ þ ξð8Þ7 ðH†D2HÞðD2H†HÞ: ð2:6Þ

TABLE II. Contributions to the dimension-eight operators from the dimension-six structures after implementing the EOM. Here YSM
denotes the SM Yukawa coupling. We have suppressed the flavor indices without any loss of generality.

Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H6D2;1

ðξð6Þ1 Þ2 þ 8ζð6Þ2 ξð6Þ1 − ζð6Þ3 ξð6Þ1 Oð8Þ
H6D2;2

4ζð6Þ3 ξð6Þ1

Oð8Þ
ψ2H4D;1

iζð6Þ8;1ξ
ð6Þ
1 Oð8Þ

ψ2H4D;2
iζð6Þ8;2ξ

ð6Þ
1

Oð8Þ
ψ4DH;1

iζð6Þ8;1ξ
ð6Þ
2 Oð8Þ

ψ4DH;2
iζð6Þ8;2ξ

ð6Þ
2

Oð8Þ
H4B2 2ζð6Þ4 ξð6Þ1 Oð8Þ

H4W2 2ζð6Þ5 ξð6Þ1

Oð8Þ
H4WB

2ζð6Þ6 ξð6Þ1 Oð8Þ
H4G2 2ζð6Þ7 ξð6Þ1

Oð8Þ
ψ2B2H

ζð6Þ4 ξð6Þ2 Oð8Þ
ψ2W2H

ζð6Þ5 ξð6Þ2

Oð8Þ
ψ2WBH ζð6Þ6 ξð6Þ2 Oð8Þ

ψ2G2H ζð6Þ7 ξð6Þ2

Oð8Þ
ψ2H5 ð−4ðξð6Þ1 Þ2 − 4ζð6Þ2 ξð6Þ1 þ 1

2
ζð6Þ3 ξð6Þ1 ÞYSM þ 3ζð6Þ1 ξð6Þ2

−12λ0ξð6Þ1 ξð6Þ2 þ 2λ0ξð6Þ2 ζð6Þ3 − 8λ0ξð6Þ2 ζð6Þ2

Oð8Þ
H 6ζð6Þ1 ξð6Þ1 − 6ðξð6Þ1 Þ2λ0 − 4λ0ð4ðξð6Þ1 Þ2

þ4ζð6Þ2 ξð6Þ1 − 1
2
ζð6Þ3 ξð6Þ1 Þ

Oð8Þ
ψ2H3D2;1

þ4ξð6Þ2 ζð6Þ2 þ 2ξð6Þ1 ξð6Þ2 Oð8Þ
ψ2H3D2;2

−ξð6Þ2 ζð6Þ3

Oð8Þ
ψ4H2;1

ð−4ξð6Þ1 ξð6Þ2 − 4ζð6Þ2 ξð6Þ2 þ 2ζð6Þ3 ξð6Þ2 ÞYSM Oð8Þ
ψ4H2;2

ð−3ξð6Þ1 ξð6Þ2 − 2ξð6Þ2 ζð6Þ2 ÞYSM

INTEGRATING OUT HEAVY SCALARS WITH MODIFIED … PHYS. REV. D 107, 055007 (2023)

055007-5



The redundant structures, written in bold in Eq. (2.6), can be expressed in terms of the nonredundant basis structures in the
following manner4:

ξð8Þ1 ðH†HÞ2ðD2H†H þH†D2HÞ ¼ −4λ0ξð8Þ1 ðH†HÞ4 − ξð8Þ1 ½ðH†HÞ2ðY†HÞ þ H:c:�;
ξð8Þ2 ðDμH†DμHÞðD2H†H þH†D2HÞ ¼ −4λ0ξð8Þ2 ðH†HÞ2ðDμH†DμHÞ − ξð8Þ2 ½ðH†YÞðDμH†DμHÞ þ H:c:�;
ξð8Þ3 ½ðDμH†HÞðD2H†DμHÞ þ H:c:� ¼ −4λ0ξð8Þ3 ðH†HÞðH†DμHÞðDμH†HÞ − ξð8Þ3 ½ðH†YÞðDμH†DμHÞ þ H:c:�;

ξð8Þ4 ½ðD2H†HÞðD2H†HÞ þ H:c:� ¼ 8λ02ξð8Þ4 ðH†HÞ4 þ 4λ0ξð8Þ4 ½ðH†HÞ2ðY†HÞ þ H:c:� þ ξð8Þ4 ½ðY†HÞðY†HÞ þ H:c:�;
ξð8Þ5 ½ðDμH†HÞðDμH†D2HÞ þ H:c:� ¼ −4λ0ξð8Þ5 ðH†HÞðH†DμHÞðDμH†HÞ − ξð8Þ5 ½ðDμH†HÞðDμH†YÞ þ H:c:�;

ξð8Þ6 ðD2H†D2HÞðH†HÞ ¼ 4λ02ξð8Þ6 ðH†HÞ4 þ 2λ0ξð8Þ6 ½ðH†HÞ2ðY†HÞ þ H:c:� þ ξð8Þ6 ðH†HÞðY†YÞ;
ξð8Þ7 ðH†D2HÞðD2H†HÞ ¼ 4λ02ξð8Þ7 ðH†HÞ4 þ 2λ0ξð8Þ7 ½ðH†HÞ2ðY†HÞ þ H:c:� þ ξð8Þ7 ðH†HÞðY†YÞ: ð2:7Þ

In Table III, we present the coefficients in the nonredun-
dant basis.
Before cross-checking the proposed method in the next

section, we summarize our framework in the flowchart
depicted in Fig. 1. This work considers SM extensions of
only a single heavy scalar. CODEX [45] has been used to
generate the operators and the WCs in the SILH set up to
one loop at dimension six. We compute the EOM (only for
the Higgs field), including contributions from dimension-
six operators; we substitute the EOM in the redundant
structures. The first-order terms transform the redundant
structure of dimension six to nonredundant structures,
while the second-order terms generate dimension-eight
operators. To compensate for the missing contribution that
renders the EOM equivalent to a field redefinition, we need
to add a term proportional to the second-order derivative of
the effective action. Furthermore, we calculate dimension-
eight operators by integrating out the heavy field at the tree
level, which gives rise to the leading effects at dimension
eight. We then substitute the first-order terms in the EOM to
convert them into a complete basis and combine all these
contributions to obtain the complete matching result.

The following section applies this to reproduce the
known results for the real triplet extension of the SM to
validate our methodology.

III. CROSS-VALIDATION OF THE METHOD

To cross-check our approach, we first turn to the example
case of a real triplet scalar (Φ) SM extension. The BSM part
of the Lagrangian reads

LΦ ¼ 1

2
ðDμΦaÞðDμΦaÞ − 1

2
m2

ΦΦaΦa þ 2kH†τaHΦa

− ηðH†HÞΦaΦa −
1

4
λΦðΦaΦaÞ2: ð3:1Þ

Integrating out the heavy scalar leads to some correction to
the renormalizable term ðH†HÞ2 as discussed in Eq. (2.3),
the coefficient λ̃ for this case is λ̃ ¼ k2=ð2m2

ΦÞ.
The SILH dimension-six coefficients have been tabu-

lated in Table IV. The one-loop contribution to the match-
ing can be categorized into two different classes: the
contribution arising from integrating out scalars from
purely heavy loops has been highlighted in blue, and terms
from heavy-light mixed loops are shown in red.
We compute theGreen’s setlike coefficients first following

the relations provided in Table I and derive the corrections to

TABLE III. Matching contributions to the nonredundant dimension-eight operators from the dimension-eight structures after
implementing the EOM. Here YSM denotes the SM Yukawa coupling. We have suppressed the flavor indices without any loss of
generality and continued throughout the rest of the paper.

Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H ζð8Þ1 − 4λ0ξð8Þ1 þ 8λ02ξð8Þ4 þ 4λ02ξð8Þ6 þ 4λ02ξð8Þ7 Oð8Þ

ψ2H5 ð−ξð8Þ1 þ 4λ0ξð8Þ4 þ 2λ0ξð8Þ6 þ 2λ0ξð8Þ7 ÞYSM

Oð8Þ
H6D2;1

ζð8Þ3 − 4λ0ξð8Þ2 Oð8Þ
H6D2;2

ζð8Þ2 − 4λ0ξð8Þ3 − 4λ0ξð8Þ5

Oð8Þ
ψ2H3D2;1

ð−ξð8Þ2 − ξð8Þ3 ÞYSM Oð8Þ
ψ2H3D2;2

ð−ξð8Þ5 ÞYSM

Oð8Þ
ψ4H2;1

ðξð8Þ6 þ ξð8Þ7 ÞY2
SM Oð8Þ

ψ4H2;2
ðξð8Þ4 ÞY2

SM

4These operators can be related to the structures shown in
Ref. [44].
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dimension-eight from dimension-six structures as shown in
Table II. These contributions are computed considering only
the tree-level part of the SILH coefficients. Thus, they are on
the same footing as the direct dimension-eight contributions;

they are tabulated separately in Table V. The direct con-
tributions at dimension eight after “integrating out” can be
captured by a total of seven coefficients as specified in
Eq. (2.6). The values for the coefficients are

TABLE IV. Dimension-six SILH Wilson coefficients relevant for integrating out the real-triplet scalar of Eq. (3.1) at one loop. The
terms within braces ðfgÞ denote the contribution from pure heavy loops, whereas the brackets ð½�Þ mark the contribution from light-
heavy mixed loops.

SILH
operator Wilson coefficients

SILH
operator Wilson coefficients

O6 −ηk2

m4
Φ
−f η3

8m2
Φπ

2−5ηk2λΦ
8m4

Φπ
2gþ½13η2k2

8m4
Φπ

2þ 47ηk4

16m6
Φπ

2þ 19k6

16m8
Φπ

2−2ηk2λ
m4

Φπ
2− 2k4λ

m6
Φπ

2þ 11k2λ2

16m4
Φπ

2− 5k4λΦ
16m6

Φπ
2� OH f η2

16m2
Φπ

2g − ½ 3ηk2

8m4
Φπ

2 − 9k4

32m6
Φπ

2 þ 5k2λ
16m4

Φπ
2�

OR 2k2

m4
Φ
þ f 5k2λΦ

4m4
Φπ

2g − ½ 21ηk2

16m4
Φπ

2 − 21k4

32m6
Φπ

2 þ 25k2λ
32m4

Φπ
� OT k2

m4
Φ
þf 5k2λΦ

8m4
Φπ

2g−½ ηk2

2m4
Φπ

2þ k4

32m6
Φπ

2þ 3k2λ
32m4

Φπ
2�

OWW f η
96m2

Φπ
2g þ ½ 25k2

768m4
Φπ

2� O2W f g2W
480m2

Φπ
2g

OWB ½− k2

128m4
Φπ

2� OBB ½ 3k2

256m4
Φπ

2�
OW ½− k2

288m4
Φπ

2� OB ½− 7k2

96m4
Φπ

2�

FIG. 1. Flow chart depicting the algorithmic approach considered to compute matching coefficients for both dimension-six and
dimension-eight operators. Here, “First order EOM” and “Second order EOM” are formulated from the renormalizable and the
dimension-six parts of the SM Lagrangian, respectively.

TABLE V. Contributions to dimension-eight operators from dimension-six structures when integrating out the heavy real triplet scalar
of Eq. (3.1). Here only the tree-level matching of the dimension-six structures have been considered while computing the results.

Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H

5k6

m10
Φ
þ 6k4η

m8
Φ
− 10k4λ

m8
Φ

Oð8Þ
ψ2H5

− k4

m8
Φ
YSM

Oð8Þ
H6D2;1

− 5k4

m8
Φ

Oð8Þ
H6D2;2

8k4

m8
Φ
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ζð8Þ1 ¼
�
2η2k2

m6
Φ

−
k4

4m8
Φ
λΦ

�
; ζð8Þ2 ¼ 8ηk2

m6
Φ
; ζð8Þ3 ¼−

4ηk2

m6
Φ
;

ζð8Þ4 ¼ 4k2

m6
Φ
; ζð8Þ5 ¼ 0; ζð8Þ6 ¼−

2k2

m6
Φ
; ξð8Þ1 ¼ 2ηk2

m6
Φ
;

ξð8Þ2 ¼−
2k2

m6
Φ
; ξð8Þ3 ¼ 4k2

m6
Φ
; ξð8Þ4 ¼ k2

2m6
Φ
; ξð8Þ5 ¼ 0;

ξð8Þ6 ¼ 2k2

m6
Φ
; ξð8Þ7 ¼−

k2

m6
Φ
: ð3:2Þ

In Table VI, we show the direct contributions to dimension-
eight structures removing redundancies at dimension-eight
following the relations given inTable III. Lastly, in TableVII,
we provide the complete tree-level matching results at
dimension eight. Here, for comparison, we focus exclusively
on those operators whose coefficients were previously
derived in Ref. [50] employing the field redefinition of the
Higgs field.We can connect the structure of Õð8Þ

H6D2;2
given in

Ref. [50] withOð8Þ
H6D2;1

andOð8Þ
H6D2;2

(see Appendix A for the
explicit structures of the operators), in the following way:

ðH†HÞðH†σIHÞðDμH†σIDμHÞ
¼ 2ðH†HÞðDμH†HÞðH†DμHÞ
− ðH†HÞ2ðDμH†DμHÞ: ð3:3Þ

These results are in agreement with the expressions pro-
vided for the tree-level matching of the dimension-eight

coefficients inTable 10ofRef. [50]. The remaining structures
that arise after integrating out the heavy triplet scalar at
dimension-eight, mainly at tree-level, including two- and
four-fermionic operators are shown in Table VIII.

IV. EXAMPLE MODELS

This section applies the formalism described above to
several example models to generate dimension-eight oper-
ators. We use CODEX [45] to obtain the operators and
associated WCs in the SILH set at dimension six up to one
loop, which we tabulate for each model. The coefficients
are passed through Eqs. (2.2) to (2.5) that yield the
contribution of dimension-six operators to dimension-eight
operators. For clarity, we only present the leading con-
tribution from the dimension-six tree-level generated oper-
ators and the direct integrated-out contribution at
dimension eight. Subleading (yet non-negligible) correc-
tions to the coefficients that arise from loop-generated
operators can be obtained accordingly,5 and the complete
list of contributions can be obtained from a Mathematica
notebook [53]. The models (apart from the leptoquark one)
we discuss below are chosen as they generate operators at
the tree level (see, e.g., the discussion in Refs. [54,55]). We
can classify the contributions to WCs into the following
two categories:
(1) Tree-level contributions: In this category, we only

consider the contribution from those WCs generated
at the tree level at dimension six. When the EOM is
applied, they contribute on a par with the tree-level
generated dimension-eight operators. Their com-
bined effects are then considered to be the leading
order contributions at dimension eight. We will
mainly focus on this type of contribution and
tabulate results for each model. It should be noted

TABLE VI. Contributions to dimension-eight operators from dimension-eight structures when integrating out the heavy real triplet
scalar of Eq. (3.1).

Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H

2k6

m10
Φ
þ 4ηk4

m8
Φ
− 8λk4

m8
Φ
− k4λΦ

4m8
Φ
þ 2η2k2

m6
Φ
− 8ηλk2

m6
Φ
þ 8λ2k2

m6
Φ

Oð8Þ
ψ2H5 ð− 2k4

m8
Φ
− 2ηk2

m6
Φ
þ 4λk2

m6
Φ
ÞYSM

Oð8Þ
H6D2;1

− 4k4

m8
Φ
− 4ηk2

m6
Φ
þ 8λk2

m6
Φ

Oð8Þ
H6D2;2

8k4

m8
Φ
þ 8ηk2

m6
Φ
− 16λk2

m6
Φ

TABLE VII. Total tree-level matching of the dimension-eight coefficients for the real-triplet scalar extension of SM of Eq. (3.1).

Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H

7k6

m10
Φ
þ 2k2ð2λ−ηÞ2

m6
Φ

þ ð40η−72λ−λΦÞk4
4m8

Φ
Oð8Þ

H6D2;1
− k4

m8
Φ

Õð8Þ
H6D2;2

ð4η−8λÞk2
m6

Φ
þ 8k4

m8
Φ

Oð8Þ
ψ2H5 YSMð−3k

4−2m2k2ðη−2λÞ
m8

Φ
Þ

TABLE VIII. Dimension-eight matching coefficients for the
real-triplet scalar extension of SM, Eq. (3.1).

Oð8Þ
ψ4H2;1

k2

m6
Φ
Y2
SM Oð8Þ

ψ4H2;2
k2

2m6
Φ
Y2
SM

Oð8Þ
ψ2H3D2;1

− 2k2

m6
Φ
YSM Oð8Þ

H4D4;1
4k2

m6
Φ

Oð8Þ
H4D4;3

− 2k2

m6
Φ

5In Refs. [51,52] some of the dimension-eight operators up to
one-loop order for a few models have been computed.
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that these operators also receive subleading loop-
induced contributions. The complete expressions for
the coefficients can be found in the Mathematica
notebook [53].

(2) Loop-induced and/or higher order contributions: If
the redundant dimension-six operators are generated
at one-loop level or the coefficients introduced
through the application of the EOM appear with
loop-level contributions or both, the WCs contain
ð1=16π2Þ or ð1=16π2Þ2 suppressions, depending on
interference between tree and loop parts. We will not
list these types of contributions here, except for the
leptoquark model for demonstration purposes. How-
ever, as mentioned above, the providedMathematica
notebook [53] contains all contributions, and inter-
ested readers are referred to the here documented
results.

A. Complex triplet scalar

The SM can be extended with an electroweak complex
triplet scalar (Δ) to explain the generation of neutrino
masses through type-II seesaw mechanism [56,57]. This
model also offers interesting collider signatures comprising
rare lepton number and flavor violating processes [58]. In
addition to contemplating the phenomenological signifi-
cance of this model, a consistent effort has been made in the
recent past to explore the effective theory of such an
extension, see Refs. [59–61]. The BSM part of the
Lagrangian reads

LΔ ⊃ ðDμΔ†ÞðDμΔÞ−m2
ΔðΔ†ΔÞ− ½λΔH†σIH̃Δ† þH:c:�

− λ1ðΔ†ΔÞ2 − λ2ðΔ†TIΔÞðΔ†TIΔÞ− λ3ðH†HÞðΔ†ΔÞ
− λ4ðH†σIHÞðΔ†TIΔÞ ð4:1Þ

(we neglect the interaction with the fermion fields in the
following). As the Lagrangian contains a linear interaction
for the field Δ, the renormalizable structure ðH†HÞ2 gets an
extra contribution proportional to the coupling λ̃ ¼ 2λ2Δ=m

2
Δ.

Table IX contains the complete matching at one-loop
order for the dimension-six SILH coefficients. After the
tree-level integrating we obtain the following WCs at
dimension-eight:

ζð8Þ1 ¼
�
2ðλ3−λ4Þ2λ2Δ

m6
Δ

−
8ðλ1þλ2Þλ4Δ

m8
Δ

�
; ζð8Þ2 ¼8ðλ3−λ4Þλ2Δ

m6
Δ

;

ζð8Þ3 ¼4ðλ3−λ4Þλ2Δ
m6

Δ
; ζð8Þ4 ¼8λ2Δ

m6
Δ
; ξð8Þ1 ¼−

2ðλ3−λ4Þλ2Δ
m6

Δ
;

ξð8Þ3 ¼8λ2Δ
m6

Δ
; ξð8Þ6 ¼4λ2Δ

m6
Δ
; ξð8Þ7 ¼4λ2Δ

m6
Δ
: ð4:2Þ

As mentioned before, the total contribution to the dimen-
sion-eight operators is categorized into two categories
depending on how they contribute. Below we write down
the operators in their respective categories.
(1) Tree-level contribution: Oð8Þ

H6D2;1
;Oð8Þ

H6D2;2
;Oð8Þ

H ;

Oð8Þ
ψ2H5 ;O

ð8Þ
ψ2H3D2;1;O

ð8Þ
ψ4H2;1. The WCs corresponding

to these operators are listed in Table X.
(2) Loop-induced and/or higher order contribution:

Oð8Þ
ψ2H4D;1

; Oð8Þ
ψ2H4D;2

; Oð8Þ
ψ4DH;1

; Oð8Þ
ψ4DH;2

; Oð8Þ
ψ2H3D2;2

;

Oð8Þ
H4X2 ; O

ð8Þ
ψ2X2H

; Oð8Þ
ψ4H2;2

. The WCs corresponding

to these operators are listed in the Mathematica
notebook [53].

B. General two-Higgs doublet model

One of the simplest and well-motivated extensions of the
SM Higgs sector is the inclusion of an additional SUð2ÞL

TABLE IX. WCs of dimension-six SMEFT operators in the SILH set after integrating out the complex triplet scalar Eq. (4.1). The
terms within braces ðfgÞ denote the contribution from pure heavy loops, whereas the brackets ð½�Þ mark the contribution from light-
heavy mixed loops. We only use the uncolored coefficients for further calculation here. The complete calculation can be found in the
provided Mathematica notebook [53].

SILH
operator Wilson coefficients

SILH
operator Wilson coefficients

O6
λ4λ

2
Δ

2m4
Δ
− 2λ3λ

2
Δ

m4
Δ

− f λ3
3

32π2m2
Δ
− λ3λ

2
4

64π2m2
Δ
− 2λ1λ3λ

2
Δ

π2m4
Δ
− λ2λ3λ

2
Δ

π2m4
Δ
− λ1λ4λ

2
Δ

2π2m4
Δ
− λ2λ4λ

2
Δ

4π2m4
Δ
g

þ½13λ23λ2Δ
8π2m4

Δ
− λ3λ4λ

2
Δ

2π2m4
Δ
− 8λ3λλ

2
Δ

π2m4
Δ
þ 3λ2

4
λ2Δ

64π2m4
Δ
− 5λ1λ

4
Δ

π2m6
Δ
− 5λ2λ

4
Δ

π2m6
Δ
þ 24λ3λ

4
Δ

π2m6
Δ

þ 7λ4λλΔ2

4π2m4
Δ
þ 11λ2λ2Δ

π2m4
Δ
− 41λ4λ4Δ

8π2m6
Δ
− 62λλ4Δ

π2m6
Δ
þ 74λ6Δ

π2m8
Δ
�

OH 2λ2Δ
m4

Δ
þ f λ2

3

32π2m2
Δ
g − ½ 3λ3λ2Δ

4π2m4
Δ
þ λ4λ

2
Δ

8π2m4
Δ
þ 23λλ2Δ

8π2m4
Δ
− 11λ4Δ

2π2m6
Δ
�

OT − 2λ2Δ
m4

Δ
− f2λ1λ2Δ

π2m4
Δ
− λ2λ

2
Δ

π2m4
Δ
þ λ2

4

768π2m2
Δ
g

þ½ λ3λ
2
Δ

2π2m4
Δ
− 11λ4λ

2
Δ

24π2m4
Δ
− 3λλ2Δ

8π2m4
Δ
þ 4λ4Δ

3π2m6
Δ
�

OR 4λ2Δ
m4

Δ
þ f4λ1λ2Δ

π2m4
Δ
þ 2λ2λ

2
Δ

π2m4
Δ
þ λ2

4

384π2m2
Δ
g − ½13λ3λ2Δ

8π2m4
Δ
þ λ4λ

2
Δ

6π2m4
Δ
þ 11λλ2Δ

2π2m4
Δ
− 37λ4Δ

3π2m6
Δ
� OW −½ λ2Δ

72π2m4
Δ
�

OB ½ 11λ2Δ
24π2m4

Δ
�

OD ½ λ2Δ
8π2m4

Δ
� OWW f λ3

96π2m2
Δ
g þ ½ 25λ2Δ

192π2m4
Δ
�

OWB f λ4
384π2m2

Δ
g − ½ 13λ2Δ

96π2m4
Δ
� OBB f λ3

64π2m2
Δ
g þ ½ 11λ2Δ

64π2m4
Δ
�

O2W f g2W
240π2m2

Δ
g O2B f g2Y

160π2m2
Δ
g
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scalar doublet (H) with hypercharge Y ¼ 1=2, the well-
known two-Higgs doublet model [62,63]. Many UV
complete theories contain a two-Higgs doublet model in
their minimal versions. This model has also been well
discussed within SMEFT framework by integrating out the
additional heavy Higgs doublet leading to dimension-six
effective operators at one loop [64–66]. The relevant part of
the BSM Lagrangian reads

LH ⊃ ðDμH†ÞðDμHÞ −m2
HH

†H −
λH
4
ðH†HÞ2

þ ðηHðH̃†H̃Þ þ ηHðH†HÞÞðH̃†HþH†H̃Þ
− λ1ðH̃†H̃ÞðH†HÞ2 − λ2ðH†H̃ÞðH̃†HÞ
− λ3½ðH̃†HÞ2 þ ðH†H̃Þ2�: ð4:3Þ

The Wilson coefficients of dimension-six operators in
the SILH set are presented in Table XI. After integrating

out at tree-level the nonzero dimension-eight coefficients
are given by

ζð8Þ1 ¼ −
η2H
m4

H
ðλ1 þ λ2 þ 2λ3Þ; ζð8Þ3 ¼ −

η2H
m4

H
;

ξð8Þ1 ¼ −
η2H
m4

H
: ð4:4Þ

We split the operators into our categories:
(1) Tree-level contribution: Oð8Þ

H6D2;1
;Oð8Þ

H ;Oð8Þ
ψ2H5 . The

WCs corresponding to these operators are listed in
Table XII.

(2) Loop-induced and/or higher order contribution:

Oð8Þ
H6D2;2

, Oð8Þ
ψ2H4D;1, Oð8Þ

ψ2H4D;2, Oð8Þ
ψ4DH;1, Oð8Þ

ψ4DH;2,

Oð8Þ
ψ2H3D2;1, Oð8Þ

ψ2H3D2;2, Oð8Þ
H4X2 , Oð8Þ

ψ2X2H, Oð8Þ
ψ4H2;1,

Oð8Þ
ψ4H2;2.

TABLE XI. WCs of dimension-six SMEFT operators in the SILH set after integrating out an additional Higgs doublet, Eq. (4.3). The
terms within braces ðfgÞ denote the contribution from pure heavy loops, whereas the brackets ð½�Þ mark the contribution from light-
heavy mixed loops. We only use the uncolored coefficients for further calculation here. The complete calculation can be found in the
Mathematica notebook [53].

SILH operator Wilson coefficients SILH operator Wilson coefficients

O6
η2H
m2

H
þ f 3η2HλH

32m2
Hπ

2 þ 3ηHηHλ2
8m2

Hπ
2 − λ3

1

48m2
Hπ

2 þ 3ηHηHλ2
8m2

Hπ
2

− λ2
1
λ2

32m2
Hπ

2 −
λ3
2

96m2
Hπ

2 −
λ1λ

2
3

8m2
Hπ

2 −
λ2λ

2
3

8m2
Hπ

2g
þ½ 15η2Hλ

8m2
Hπ

2 −
3η2Hλ1
4m2

Hπ
2 −

13η2Hλ2
16H2π2

− 7η2Hλ3
4H2π2

�

OH f− 3ηHηH
8π2m2

H
þ λ2

1

48π2m2
H
þ λ1λ2

48π2m2
H
þ λ2

2

192π2m2
H
þ λ2

3

48π2m2
H
g þ ½ 5η2H

16π2m2
H
�

O2B f g2W
960m2

Hπ
2g

OR −f3ηHηH
8m2

Hπ
2 þ λ2

2

96m2
Hπ

2 þ λ2
3

24m2
Hπ

2g þ ½ η2H
8m2

Hπ
2� OT f λ2

2

192m2
Hπ

2 −
λ2
3

48m2
Hπ

2g
OWW f λ1

384m2
Hπ

2 þ λ2
768m2

Hπ
2g OBB f λ1

384m2
Hπ

2 þ λ2
768m2

Hπ
2g

OWB f λ2
384m2

Hπ
2g O2W f g2W

960m2
Hπ

2g

TABLE X. Total dimension-eight tree-level contribution after integrating out the complex triplet scalar of Eq. (4.1). Complete results
at one loop with additional operators are presented in the Mathematica notebook [53].

Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H6D2;1

8ðλ3−λ4Þλ2Δ
m6

Δ
− 20λ4Δ

m8
Δ

Oð8Þ
H6D2;2 − 8ð4λ−λ3þλ4Þλ2Δ

m6
Δ

þ 32λ4Δ
m8

Δ

Oð8Þ
H

2ð16λ2þ4λðλ3−λ4Þþðλ3−λ4Þ2Þλ2Δ
m6

Δ
− 8ð21λþλ1þλ2−λ3þλ4Þλ4Δ

m8
Δ

þ 208λ6Δ
m10

Δ
Oð8Þ

ψ2H5 ð2ð8λþλ3−λ4Þλ2Δ
m6

Δ
− 36λ4Δ

m8
Δ
ÞYSM

Oð8Þ
H4D4;1

8λ2Δ
m6

Δ

Oð8Þ
ψ2H3D2;1 − 8λ2Δ

m6
Δ
YSM Oð8Þ

ψ4H2;1
8λ2Δ
m6

Δ
Y2
SM

TABLE XII. Total dimension-eight tree-level contribution after integrating out additional an Higgs Doublet, Eq. (4.3). Complete
contributions at one-loop including additional operators are presented in the Mathematica notebook [53].

Operator Wilson coefficients Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H

η2Hð4λ−λ1−λ2−2λ3Þ
m4

H

Oð8Þ
ψ2H5

η2H
m4

H
YSM Oð8Þ

H6D2;1
− η2H

m4
H
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The WCs corresponding to these operators are
provided in the Mathematica notebook [53].

C. Complex quartet scalar (hypercharge Y = 3=2)

To generate neutrino masses through higher dimensional
operators, an SUð2ÞL quartet (Σ) with hypercharge
Y ¼ 3=2 can be added to the SM [67–69]. Focusing on
this part of the BSM Lagrangian,

LΣ ⊃ ðDμΣ†ÞðDμΣÞ −M2
ΣΣ†Σþ ðηΣΣ†

jklH
jHkHl þ H:c:Þ

− kΣ1
ðH†HÞðΣ†ΣÞ − kΣ2

ðH†
mHnÞðΣ†

jknΣjkmÞ
− λΣ1

ðΣ†ΣÞ2 − λΣ2
ðΣ†TaΣÞ2; ð4:5Þ

we can integrate out the heavy scalar and match to the
dimension-six SMEFT operators (see also [30,65,66]).
After matching we obtain the effective operators and
associated WCs in terms of the UV parameters, shown
in Table XIII. Tree-level matching generates the following
dimension-eight operators coefficients:

ζð8Þ1 ¼ −
jηΣj2ðkΣ1

þ kΣ2
Þ

M4
Σ

; ζð8Þ2 ¼ −
6jηΣj2
M4

Σ
;

ζð8Þ3 ¼ −
6jηΣj2
M4

Σ
: ð4:6Þ

Again, we split the operators into the two categories:

(1) Tree-level contribution: Oð8Þ
H6D2;1

;Oð8Þ
H ;Oð8Þ

H6D2;2
. The

WCs corresponding to these operators are listed in
Table XIV.

(2) Loop-induced and/or higher order contribution:

Oð8Þ
ψ2H5 , Oð8Þ

ψ2H4D;1
, Oð8Þ

ψ2H4D;2
, Oð8Þ

ψ4DH;1
, Oð8Þ

ψ4DH;2
,

Oð8Þ
ψ2H3D2;1

, Oð8Þ
ψ2H3D2;2

, Oð8Þ
H4X2 , Oð8Þ

ψ2X2H
, Oð8Þ

ψ4H2;1
,

Oð8Þ
ψ4H2;2

. The WCs corresponding to these operators

are shown in the Mathematica notebook [53].

D. Real singlet scalar model

The addition of a real singlet scalar to the SM is
motivated by a range of SM shortcomings, related to dark
matter, baryogenesis, and the electroweak hierarchy
problem [70–72]. This model has been discussed exten-
sively within the EFT framework through a complete
one-loop matching to the SMEFT up to dimension six
[36,38,59,65,66,73]. Here, we systematically extend these
results. The Lagrangian involving the real singlet scalar
field ðSÞ is given by

LS ⊃
1

2
ð∂μSÞ2 −

1

2
M2

SS
2 − ηSðH†HÞS

− kSðH†HÞS2 −
1

4!
λSS4: ð4:7Þ

After integrating out the heavy field S, we obtain an
additional contribution to the quartic coupling of Higgs:
λ̃ ¼ −η2S=M

2
S, along with the dimension-six SILH set

operators as shown in Table XV. Since no redundant
operator at dimension six is generated at tree level, there
is no tree-level contribution to dimension-eight operators
from dimension six. Thus the dominant contribution arises
solely from removing redundancies at dimension-eight

TABLE XIV. Total dimension-eight tree-level contribution after integrating out the quartet scalar of Eq. (4.5).
Complete one-loop results including additional operators are available from the Mathematica notebook [53].

Operator Wilson coefficients Operator Wilson coefficients Operator Wilson coefficients

Oð8Þ
H6D2;1

− 6η2Σ
m4

Σ
Oð8Þ

H6D2;2
− 6η2Σ

m4
Σ

Oð8Þ
H

− η2ΣkΣ1
m4

Σ
− η2ΣkΣ2

m4
Σ

TABLE XIII. WCs of dimension-six SMEFT operators in the SILH set after integrating out the quartet scalar of
Eq. (4.5). The terms within braces ðfgÞ denote the contribution from pure heavy loops, whereas the brackets ð½�Þ
mark the contribution from light-heavy mixed loops. We only use the uncolored coefficients for further calculation
here. The complete calculation can be found in the Mathematica notebook [53].

SILH operator Wilson coefficients SILH operator Wilson coefficients

O6 η2Σ
M2

Σ
− f k2Σ1

kΣ2
16π2M2

Σ
−

k3Σ1
24π2M2

Σ
−

7kΣ1 k
2
Σ2

144π2M2
Σ
g − ½9η2ΣkΣ1

8π2M2
Σ
�

−f k3Σ2
72π2M2

Σ
þ 5η2ΣλΣ1

8π2M2
Σ
þ 15η2ΣλΣ2

32π2M2
Σ
g − ½19η2ΣkΣ2

16π2M2
Σ
�

OH f k2Σ1
24π2M2

Σ
þ kΣ1kΣ2

24π2M2
Σ
þ k2Σ2

96π2M2
Σ
g þ ½ 3η2Σ

8π2M2
Σ
�

O2B f 3g2Y
160π2M2

Σ
g

OR f 5k2Σ2
432π2M2

Σ
g þ ½ 3η2Σ

4π2M2
Σ
� OT f 5k2Σ2

864π2M2
Σ
g − ½ 3η2Σ

8π2M2
Σ
�

OWW f 5kΣ1
192π2M2

Σ
þ 5kΣ2

384π2M2
Σ
g OBB f 3kΣ1

64π2M2
Σ
þ 3kΣ2

128π2M2
Σ
g

OWB f 5kΣ2
192π2M2

Σ
g O2W f g2W

96π2M2
Σ
g
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level itself. The nonzero coefficients of dimension-eight
operators generated via integrating out are

ζð8Þ1 ¼2η2Sk
2
S

M6
S

−
λSη

4
S

24M8
S

; ζð8Þ3 ¼4η2SkS
M6

S

; ζð8Þ6 ¼2η2S
M6

S

;

ξð8Þ1 ¼2η2SkS
M6

S

; ξð8Þ2 ¼2η2SkS
M6

S

; ξð8Þ4 ¼ η2SkS
2M6

S

; ξð8Þ7 ¼η2SkS
M6

S

:

ð4:8Þ

We use Eq. (2.7) to remove the redundancies from the
above equation and rewrite them in the complete basis
of Table III; the coefficients of nonredundant SMEFT
dimension-eight operators are shown in Table XVI.
Expressed in the categories detailed above we arrive at
(1) Tree-level contribution: Oð8Þ

H6D2;1
, Oð8Þ

H , Oð8Þ
ψ2H3D2;1

,

Oð8Þ
ψ4H2;1

, Oð8Þ
ψ2H5 , O

ð8Þ
ψ4H2;2

. The WCs corresponding

to these operators are listed in Table XIV.
(2) Loop-induced and/or higher order contribution:

There is no redundancy at the dimension-six level,
and no loop induced operators can be generated by
the equation of motion. We can generate dimension-
eight operators at one-loop-level itself by integrating
out the heavy degree of freedom. This is beyond
the scope of this paper, and we will leave this for
future work.

E. Scalar leptoquark

Next, we consider the BSM model where the
SM is extended by a scalar leptoquark, having
quantum numbers ð3; 2; 1=6Þ under the SM gauge group

SUð3ÞC × SUð2ÞL ×Uð1ÞY. This scenario has recently
received lots of attention as it can potentially address
observed anomalies in B-meson decays [74,75]. This
model has also been analyzed within the EFT framework,
see Refs. [59,65]. We focus on the scalar interaction part of
the Lagrangian for our discussion, which reads

LΘ ⊃ ðDμΘ†ÞðDμΘÞ −M2
ΘðΘ†ΘÞ − ηΘ1

ðΘ†ΘÞðH†HÞ
− ηΘ2

ðΘ†τIΘÞðH†τIHÞ − λΘ1
ðΘ†ΘÞ2

− λΘ2
ðΘ†τIΘÞðΘ†τIΘÞ: ð4:9Þ

No linear coupling of the Higgs field is present, and we do
not obtain effective operators at tree level. Note that
although dimension-eight one-loop-level operators are
beyond the scope of this work, we can still capture
contributions to dimension-eight operators using our for-
malism. Table XVII shows the one-loop generated oper-
ators and the corresponding WCs. Table XVIII contains the
WCs contribution coming from the loop induced operators
at dimension six only. The two operators quoted there is not
an exhaustive list but serves the purpose of demonstrating
that we can still obtain nonzero WCs from dimension-six
operators without dimension-eight one-loop-level match-
ing. Categorizing the WCs as above we find
(1) Tree-level contribution: No tree-level contribution.
(2) Loop-induced and/or higher order contribution:

There is only loop induced contribution in this case.
Table XVIII captures only a subset of operators
which gets contribution from the lower dimension

operators. The others are Oð8Þ
H6D2;2

, Oð8Þ
ψ2H5 , O

ð8Þ
ψ2H3D2;1

,

Oð8Þ
ψ2H3D2;2

, Oð8Þ
ψ4H2;1

, Oð8Þ
ψ4H2;2

, Oð8Þ
ψ2H4D;1

, Oð8Þ
ψ2H4D;2

,

TABLE XV. WCs of dimension-six SMEFToperators in the SILH set after integrating out the real singlet scalar of
Eq. (4.7). The terms within braces ðfgÞ denote the contribution from pure heavy loops, whereas the brackets ð½�Þ
mark the contribution from light-heavy mixed loops.

O6 − η2SkS
M4

S
− f η2SkSλS

16π2M4
S
− k3S

24π2M2
S
g

þ½11η2Sk2S
8π2M4

S
þ 37η4SkS

16π2M6
S
− 3η4Sλ

2π2M6
S
þ 43η6S

48π2M8
S

− 3η2SkSλ
2π2M4

S
þ 9η2Sλ

2

16π2M4
S
− η4SλS

32π2M6
S
�

OH η2S
M4

S
þ f η2SλS

16π2M4
S
þ k2S

48π2M2
S
g

−½17ηS2kS
24π2M4

S
þ 9η2Sλ

32π2M4
S
− 5η4S

12π2M6
S
�

OW ½− 7η2S
288π2M4

S
� OB ½− 7η2S

288π2M4
S
�

OD ½ η2S
96π2M4

S
� OWB ½ η2S

128π2M4
S
� OWW ½ η2S

256π2M4
S
� OBB ½ η2S

256π2M4
S
�

TABLE XVI. Nonredundant SMEFT dimension-eight operators and their corresponding coefficients after integrating out the real
singlet scalar of Eq. (4.7).

Oð8Þ
H

2η2Sk
2
S

m6
S

− 8η2SkSλ
m6

S
þ 8η2SkSλ

2

m6
S

þ 16η4SkSλ
m8

S
− η4SλS

24m8
S
þ 8η6SkS

m10
S

Oð8Þ
H6D2;1

4η2SkS
m6

S
− 8λη2SkS

m6
S

Oð8Þ
H4D4;3

2η2S
m6

S

Oð8Þ
ψ2H5 − 2η2SkSYSMð1−2λÞ

m6
S

þ 4η4SkSYSM

m8
S

Oð8Þ
ψ2H3D2;1

− 2η2SkSYSM

m6
S

Oð8Þ
ψ4H2;2

η2SkSY
2
SM

2m6
S

Oð8Þ
ψ4H2;1

η2SkSY
2
SM

m6
S
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Oð8Þ
ψ4DH;1, O

ð8Þ
ψ4DH;2, O

ð8Þ
H4X2 , O

ð8Þ
ψ2X2H. The full contri-

bution can be accessed from the Mathematica
notebook [53].

V. IMPACT OF DIMENSION-EIGHT
OPERATORS ON BSM SCENARIOS

Given the plethora of data available after LHC run-II
and run-III, we broadly classify the above UV theories by
investigating their low-energy phenomenology in this
section, emphasizing the relevance of the dimension-eight
operators.
Different observables and precision measurements

provide strong discriminators between UV scenarios
when using matched EFT results. In this sense, the
dimension-eight effects provide quantitatively crucial
additional information. To gain a qualitative understanding
of UV discrimination employing the results above, we
consider three categories of experimental observables for
guidance: (i) electroweak precision observables (EWPOs),
(ii) Higgs signal strength (HSS) measurements, and
(iii) vector boson scattering (VBS) measurements. We
analyze the cases discussed in Sec. IV, reviewing the
interplay of (i)–(iii) as shown in Fig. 2.
The characteristics of different models can be analyzed

by adjudging their responses to the following questions.
First, one needs to note which effective operators emerge
from each model under consideration. As the observables

can be parametrized in terms of the effective operators, the
observable-model correspondence can be set up directly.
Based on that, one can classify different UV models by

TABLE XVII. WCs of dimension-six SMEFToperators in the SILH set for the scalar leptoquark of Eq. (4.9). The terms within braces
ðfgÞ denote the contribution from pure heavy loops.

SILH operator Wilson coef: SILH operator Wilson coef: SILH operator Wilson coef:

O6 f− η3Θ1
16π2M2

Θ
− 3ηΘ1 η

2
Θ2

256π2M2
Θ
g OH f η2Θ1

16π2M2
Θ
g OR f η2Θ2

128π2M2
Θ
g

OT f η2Θ2
256π2M2

Θ
g OWW f ηΘ1

128π2M2
Θ
g OBB f ηΘ1

1152π2M2
Θ
g

OWB f ηΘ2
768π2M2

Θ
g O2W f g2W

320π2M2
Θ
g O2B f g2Y

2880π2M2
Θ
g

TABLE XVIII. Contribution to dimension-eight operators from dimension-six operators. This table does not capture the full
contribution. Full results are available from our Mathematica notebook [53].

Operator Wilson coefficients

Oð8Þ
H6D2;1

g4Wg4Yλ
2

14745600π4m4
ΘY

2
SM
þ g4Wg4Yλ

7372800π4m4
ΘYSM

þ g4Wg4Y
3686400π4m4

Θ
− η2Θ1g

4
W

20480π4m4
Θ1
þ η2Θ2g

4
W

131072π4m4
Θ
− η2Θ1g

4
Wλ

20480π4m4
ΘYSM

þ η2Θ2g
4
Wλ

327680π4m4
ΘYSM

þ g8Wλ2

26214400π4m4
ΘY

2
SM
− g8Wλ

6553600π4m4
ΘYSM

− g8W
5242880π4m4

Θ
− η2Θ2g

4
Y

184320π4m4
Θ
− η2Θ1g

4
Yλ

23040π4m4
ΘYSM

þ η2Θ2g
4
Yλ

368640π4m4
ΘYSM

þ g8Yλ
2

33177600π4m4
ΘY

2
SM
þ g8Yλ

4147200π4m4
ΘYSM

þ η2Θ1η
2
Θ2

1024π4m4
Θ
− 5η4Θ2

65536π4m4
Θ

Oð8Þ
H − g4Wg4Yλ

1843200π4m4
Θ
− g4Wg4Yλ

2

1228800π4m4
ΘYSM

− 11g4Wg4Yλ
3

7372800π4m4
ΘY

2
SM
þ η2Θg

4
Wλ

10240π4m4
Θ
− 3η3Θ1g

4
W

40960π4m4
Θ
− 9ηΘ1η

2
Θ2g

4
W

655360π4m4
Θ
þ η2Θ2g

4
Wλ

65536π4m4
Θ
− g8Wλ

2621440π4m4
Θ
þ η2Θ1g

4
Wλ2

10240π4m4
ΘYSM

− 3η3Θ1g
4
Wλ

40960π4m4
ΘYSM

− 9ηΘ1η
2
Θ2g

4
Wλ

655360π4m4
ΘYSM

þ 7η2Θ2g
4
Wλ2

163840π4m4
ΘYSM

− 7g8Wλ2

3276800π4m4
ΘYSM

− 23g8Wλ3

13107200π4m4
ΘY

2
SM
þ η2Θ2g

4
Yλ

92160π4m4
Θ
þ η2Θ1g

4
Yλ

2

11520π4m4
ΘYSM

− η3Θ1g
4
Yλ

15360π4m4
ΘYSM

− ηΘ1η
2
Θ2g

4
Yλ

81920π4m4
ΘYSM

þ η2Θ2g
4
Yλ

2

184320π4m4
ΘYSM

− g8Yλ
2

2073600π4m4
Θ1YSM

þ g8Yλ
3

16588800π4m4
Θ1Y

2
SM
− η2Θ1η

2
Θ2λ

512π4m4
Θ
þ 3η3Θ1η

2
Θ2

2048π4m4
Θ1
þ 9ηΘ1η

4
Θ2

32768π4m4
Θ
− 5η4Θ2λ

32768π4m4
Θ

FIG. 2. Interplay of different observables for the categorization
of complete models based on their sensitivity towards specific
observable(s). fΦ;Δ;H;Σ;Sg produce any one or both from the

set fOð8Þ
H6D2;1

;Oð8Þ
H6D2;2

g at tree level. They contribute to all
observables and are therefore severely constrained by EWPO.

fOð1Þ
H4D4 ;O

ð2Þ
H4D4 ;O

ð3Þ
H4D4g are mainly constrained with VBS data,

and filter out fH; Σg, which do not produce these operators. We
highlight the operators produced by fΘg that contribute to all
observables with a box, these are loop suppressed.
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carefully scrutinizing the overlapping sets of operators
contributing to a set of observables. The second question
relates to the order of the perturbative expansion at which
the operators are being produced. That will give a hint of
their possible sensitivity towards the observables. Keeping
all these points in mind, we have clubbed those models that
show degenerate sensitivity and prepared the different
classes. Each class contains degenerate models with
respect to their response to that particular observable in
consideration.
The first question points to the need for new measure-

ments with distinct features to correctly classify a wide
range of complete models. The second one emphasizes the
ability of existing measurements to constrain the under-
lying UV parameter spaces determines the measurements’
BSM UV sensitivity.
Such an observable-based categorization has been stud-

ied recently (see, e.g., [76]) for dimension-six operators up
to one loop, mainly in the Warsaw basis. Bringing
dimension-eight operators into the picture helps resolve
model degeneracies at the dimension-six level even without
introducing new measurements. However, since the num-
ber of independent structures increases rapidly beyond
dimension six, we confine our discussion only to the
structures emerging for the six scalar extensions discussed
in Secs. III and IV.

A. Electroweak precision observables

The precise measurements of the electroweak observ-
ables naturally calls for improvements on the theoretical
side. This can be achieved by performing theoretical
computations at next-to-leading order (NLO) and by
extending the effective series expansion. As described in
Refs. [19,50,77], we organize the operators below into lists
based on how they contribute to EWPOs:

Dimension-six LO∶fOHD;OHWB;OHe;OHu;OHd;O
ð1Þ
Hq;

Oð3Þ
Hq;O

ð1Þ
Hl ;O

ð3Þ
Hl ;Ollg; ð5:1Þ

Dimension-six NLO∶fO□;OHB;OHW;OW;OuB;OuW;

Oed;Oee;Oeu;Olu;Old;Ole;O
ð1Þ
lq ;

Oð3Þ
lq ;Oqe;O

ð1Þ
qd ;O

ð3Þ
qq ;O

ð1Þ
qq ;O

ð1Þ
qu ;

Oð1Þ
ud ;Ouu;Oddg; ð5:2Þ

Dimension-eight LO∶fOψ2H5 ;Oð1Þ
HD;2;O

ð2Þ
HD;2;O

ð1Þ
ψ2H4D;

Oð2Þ
ψ2H4D;OH4WB;O

ð1Þ
ψ4H2 ;O

ð2Þ
ψ4H2g:

ð5:3Þ

Contrary to theΦ andΔ extensions, wherein fOHDg and
fOHD;Ollg, respectively, are produced at tree level (see,

e.g., Refs. [66,76]) and therefore provide the dominant
contribution to the observable, other operators in Eq. (5.1)
are generally sourced by heavy one-loop insertions. Their
subleading contributions are comparable to the ones
resulting from the operators produced at the tree-level
and contribute to the observable at NLO [noted in
Eq. (5.2)]. This implies that the BSM parameter space
of such an extension is less sensitive to EWPOs than other
observables when only dimension six is considered, which
includes the models fH;Σ;Sg. The situation can be
remedied by taking dimension-eight operators shown in
Eq. (5.3) into account. In this case, if these operators appear
at the tree level, the constraints can be improved signifi-
cantly. Hence based on sensitivity towards EWPO, we can
divide all the models into two broad categories:

Class A∶fΦ;Δ;H;Σ;Sg;
Class B∶fΘg:

B. Higgs signal strength measurements

HSSs are inherently connected to the interplay of
fundamental mass generation in the SM and electroweak
symmetry breaking. Therefore, the analysis of the HSSs is a
relevant discriminator in the space of Higgs sector exten-
sions. Certain dimension-eight operators imply non-
negligible effects when constraining the BSM parameter
space through HSS measurements, for instance, when the
new physics occurs at a relatively low scale or if new
couplings occur at tree level after BSM states have been
integrated out. According to Refs. [66,78,79], the operators
that affect the HSS measurements are listed below:

Dimension six∶fOH;OH□;OHD;OHB;OHW;OHWB;OeH;

OuH;OdH;OHe;OHu;OHd;O
ð1Þ
Hq;O

ð3Þ
Hq;

Oð1Þ
Hl ;O

ð3Þ
Hlg; ð5:4Þ

Dimension eight∶fOð8Þ
H ;Oð8Þ

H6D2;1
;Oð8Þ

H6D2;2
;Oψ2H5 ;OH4B2 ;

OH4W2 ;OH4WBg: ð5:5Þ

Since the models fΦ;Δ;H;Sg produce subsets of these
operators fOH;OH□;OHD;OuH;OdH;OeHg at tree level,
while for fΣ;Θg they are generated at one loop (see
Ref. [76]), these models are seemingly less sensitive to
HSS measurements at dimension-six. Following a similar
approach as the one described in Sec. VA, we can infer that
the impact of the operators given in Eq. (5.5) should be
considered to properly explore the parameter space of

fΣ;Θg. The fact that Σ generates Oð8Þ
H , Oð8Þ

H6D2;1
, and

Oð8Þ
H6D2;2

at tree level, as shown in Table XIV, leads to
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similar a priori sensitivity of Higgs measurements as for
fΦ;Δ;H;Sg. HSSs therefore discriminate:

Class A∶fΦ;Δ;H;Σ;Sg;
Class B∶fΘg:

C. Vector boson scattering measurements

Vector boson scattering measurements have been very
crucial in the study of the electroweak sector, particularly in
constraining anomalous gauge couplings, which have been
discussed in detail in SMEFT at dimension six [80–83].
Individual bounds on dimension-eight couplings have been
derived from VBS data as well [84–86]. At dimension-six,
a total of nine operators contribute to the modification of
observables through gauge-self couplings (fOWg), gauge-
Higgs couplings (fOHD;OHW;OHB;OHWBg), and fer-

mion-gauge couplings (fOð1Þ
Hl ;O

ð3Þ
Hl ;O

ð1Þ
Hq;O

ð3Þ
Hqg). Among

these, OHD and the two-fermionic operators are mainly
constrained from EWPO observables [87], while the
operators fOW;OHW;OHB;OHWBg remain to be con-
strained by VBS measurements [88]. These are typically
produced at the one-loop level (see Ref. [76]). For a low
enough cutoff scale, these can be comparable to dimension-
eight tree-level contributions:

Dimension six∶ fOW;OHB;OHW;OHWBg; ð5:6Þ

Dimension eight∶ fOð1Þ
HD;2;O

ð2Þ
HD;2;O

ð1Þ
H4D4 ;O

ð2Þ
H4D4 ;O

ð3Þ
H4D4g:
ð5:7Þ

We note that, fOð1Þ
HD;2;O

ð2Þ
HD;2g contribute to the electroweak

sector through the modification of gauge boson masses (see
Appendix D of Ref. [79] for more details). Thus they are
mostly constrained by EWPOs. Models that produce the
full or a subset of the rest of the mentioned dimension-eight
operators (i.e., fΦ;Δ;Sg) can be efficiently constrained by
VBS measurements:

Class-A∶ fΦ;Δ;Sg;
Class-B∶ fH;Σ;Θg: ð5:8Þ

VI. CONCLUSIONS

The indirect search for new physics using EFT, while
providing an ingenious way to uncover the physics that
might lie just beyond our reach, faces several critical
challenges when tracing constraints to possible complete
and renormalizable UV scenarios. Moreover, since one
encounters new signatures at dimension eight that may
unravel the microscopic nature of new interactions, includ-
ing their effects, can become vital when looking for new
physics in a model-independent way. However, performing
a global analysis of the entire parameter space of

dimensions six and eight SMEFT is unrealistic. Broad
model-dependent correlations can then help to hone the
sensitivity to new interactions. This requires a transparent
and effective way to perform matching to new physics
scenarios beyond dimension six. In this work, we have
explored these two issues in detail.
We present an easy-to-implement approach to compute

the dimension-eight matching coefficients, capturing loop
effects consistently. Furthermore, the method employs
EOMs instead of the traditional field-redefinition forma-
lism. The “missing piece” of the EOM that elevates it to a
similar footing with field redefinition is included in a
model-independent manner. It must be stressed that, while
removing the redundant structures at dimension six, we
obtain one-loop or two-loop equivalent contributions to
dimension-eight structures due to the interference among
the pieces generated at the tree and one-loop order.
We have applied this method to six different scalar

extensions of the SM at one-loop order of the dimension-
six coefficients considering both heavy-heavy and heavy-
light loop propagators, validating our approach against
results documented in the literature. Finally, we have
clarified the relevance of dimension-eight operators for
classifying UV-complete models given Higgs and electro-
weak measurements and VBS data.
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APPENDIX A: RELEVANT
OPERATOR STRUCTURES

Here we discuss the operator structure that differs from
the Green’s set as defined in Ref. [42]. At dimension six
there are four structures in the Φ4D2 operator class. The
operators are the following:

OH□ ¼ ðH†HÞ□ðH†HÞ; OHD ¼ jH†DμHj2;
O0

HD ¼ ðH†HÞðDμH†DμHÞ;
O00

HD ¼ ðH†HÞDμðH†iD
↔

μHÞ: ðA1Þ

Among the above structures, the first two ðOH□;OHDÞ are
considered to be the independent and part of the complete
Warsaw basis. We can ignore the last one, O00

HD, which is
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CP violating and does not appear in our analysis.
The redundant operator O0

HD is the important structure
for our analysis. In order to remove this redundancy,
we derive the contribution to higher dimension, i.e.,
dimension eight in our case. Instead of using this exact
structure, we use the following relation to convert it to a
suitable form

ðH†HÞðDμH†DμHÞ

¼ 1

2
½ðH†HÞ□ðH†HÞ − ðH†HÞðD2H†HþH†D2HÞ�:

ðA2Þ

Since we are replacing one redundant structure with another
that is related to the former by the integration by parts, we
term it a Green’s set-like structure. We collect all relevant
dimension-six operators in Table XIX. Dimension eight can
be found in Table XX.

APPENDIX B: RENORMALIZABLE
SM LANGRANGIAN AND EOM

The renormalizable SM Lagrangian is

LSM¼−
1

4
GA

μνGAμν−
1

4
WI

μνWIμν−
1

4
BμνBμν

þðDμH†ÞðDμHÞþ
X

ψ¼q;u;d;l;e

ψ̄ i=Dψ −λðH†HÞ2

− ½YdH†jd̄qjþYuH̃†jūqjþYeH†jēljþH:c:�: ðB1Þ

Here, we have ignored the (negative) mass term for the
Higgs field which is not relevant for our analysis. We can
calculate the EOMs for various fields using Eq. (B1). These
EOMs constitute the first-order approximation of the full
EOM, and they can be used to transform one set to another

TABLE XIX. Dimension-six operator structures in the SILH set.

Operator Operator structure Operator Operator structure

QH
1
2
∂μðH†HÞ∂μðH†HÞ Q6 jHj6

QR ðH†HÞðDμH†DμHÞ QT 1
2
½H†D

↔μ
H�½H†D

↔μ
H�

QD ðD2H†ÞðD2HÞ Q2W − 1
2
ðDμWI

μνÞ2
Q2B − 1

2
ð∂μBμνÞ2 QW igWðH†τaD

↔μ
HÞDνWa

μν

QB igYðH†D
↔μ

HÞ∂νBμν
QWW g2WðH†HÞWa

μνWa;μν

QBB g2YðH†HÞBμνBμν QWB 2gWgYðH†τaHÞWa
μνBμν

TABLE XX. Structures of the dimension-eight operators in the nonredundant basis discussed throughout this work. ψ denotes any SM
fermion ðψ ∈ fq; u; d; l; egÞ.
Operator Operator structure Operator Operator structure

Oð8Þ
H

ðH†HÞ4 Oð8Þ
ψ2H5

ðH†HÞðψ̄ iψ jHÞ
Oð8Þ

H6D2;1
ðH†HÞ2ðDμH†DμHÞ Oð8Þ

H6D2;2
ðH†HÞðH†DμHDμH†HÞ

Oð8Þ
ψ2H4D;1 iðH†HÞðψ iγμψ jÞðH†D

↔

μHÞ Oð8Þ
ψ2H4D;2 iðH†HÞðψ iτ

Iγμψ jÞðH†D
↔I

μHÞ
Oð8Þ

ψ4DH;1
iðψ̄ iγ

μψ jÞ½ðψ̄kψ lÞDμH� Oð8Þ
ψ4DH;2

iðψ̄ iγ
μτIψ jÞ½ðψ̄kψ lÞτIDμH�

Oð8Þ
H4B2

ðH†HÞ2BμνBμν
Oð8Þ

H4W2
ðH†HÞ2WI

μνWμν;I

Oð8Þ
H4WB

ðH†HÞðH†τIHÞWI
μνBμν

Oð8Þ
ψ2WBH

ðψ̄ iψ jÞτIHWI
μνBμν

Oð8Þ
ψ2B2H

ðψ̄ iψ jÞHBμνBμν
Oð8Þ

ψ2W2H
ðψ̄ iψ jÞHWI

μνWμν;I

Oð8Þ
ψ2H3D2;1

ðψ̄ iψ jHÞðDμH†DμHÞ Oð8Þ
ψ2H3D2;2

ðH†DμHÞðψ̄ iψ jDμHÞ
Oð8Þ

ψ4H2;1
ðH†HÞðψ̄ iψ jψ̄kψ lÞ Oð8Þ

ψ4H2;2
ðψ̄ iψ jHÞðH̃†ψ̄kψ lÞ
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at a given mass dimension. The first-order EOM for Higgs
field is [13,28]

D2Hk þ 2λðH†HÞHk þ Yk ¼ 0;

where Yk ¼ Y†
uq̄juϵjk þ Ydd̄qk þ Yeēlk; ðB2Þ

and the EOMs for the fermions are [13,28]

i=Dqj ¼ Y†
uuH̃j þ Y†

ddHj; i=Dd ¼ YdqjH†j;

i=Du ¼ YuqjH̃†j; i=Dlj ¼ Y†
eeHj;

i=De ¼ YeljH†j; ðB3Þ

with Yukawa couplings Yi ≡ YSM;i. The EOMs for the
gauge fields are [13,28]

½Dα; Gαβ�A ¼ gG
X

ψ¼u;d;q

ψ̄ TAγβψ ;

½Dα;Wαβ�I ¼ gW

�
1

2
q̄τIγβqþ 1

2
l̄τIγβlþ

1

2
H†iD

↔I

βH

�
;

½Dα; Bαβ� ¼ gY

� X
ψ¼u;d;q;e;l

ψ̄ yiγβψ þH†iD
↔

βH

�
; ðB4Þ

where yi denotes the Uð1ÞY hypercharges of the fermions.
We have also used the following the notation [13,22]

H†iD
↔

βH ¼ iH†ðDβHÞ − iðDβH†ÞH;

H†iD
↔I

βH ¼ iH†τIðDβHÞ − iðDβH†ÞτIH; ðB5Þ

to write the operators in the well-known compact forms.
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