Memory Usage Verification for OO Programs*

Wei-Ngan Chin-2, Huu Hai Nguyeh, Shengchao Qih and Martin Rinard

L Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University og@jpore
3 Department of Computer Science, University of Durham
4 Laboratory for Computer Science, Massachusetts Insufiifechnology
{chi nwn, nguyenh2}@onp. nus. edu. sg
shengchao. gi n@ur ham ac. uk, rinard@cs.nt.edu

Abstract. We present a new type system for an object-oriented (OO ke
that characterizes the sizes of data structures and therdrobbeap memory
required to successfully execute methods that operate ese ttata structures.
Key components of this type system include type assertioasuse symbolic
Presburger arithmetic expressions to capture data steustmes, the effect of
methods on the data structures that they manipulate, arehtbent of memory
that methods allocate and deallocate. For each method, neec@tively capture
the amount of memory required to execute the method as adanaf the sizes
of the method’s inputs. The safety guarantee is that theadetlil never attempt
to use more memory than its type expressions specify. We ingpemented a
type checker to verify memory usages of OO programs. Ourrexpee is that
the type system can precisely and effectively capture mgimaunds for a wide
range of programs.

1 Introduction

Memory management is a key concern for many applicationgr @he years re-
searchers have developed a range of memory managemenaelpgspexamples in-
clude explicit allocation and deallocation, copying g@daollection, and region-based
memory allocation. However, an important aspect that has legely ignored in past
work is the safe estimation of memory space required for iammgexecution. Overal-
location of memory may cause inefficiency, while underaltan may cause software
failure. In this paper, we attempt to make memory usage muedigtable by static
verification on the memory usage of each program.

We present a new type system, based on dependent type[2ti¢hizwracterizes the
amount of memory required to execute each program compoheakey components
of this type system include:

— Data Structure Sizes and Size ConstraintsThe type of each data structure in-
cludes index parameters to characterize its size propewtigich are expressed in
terms of the sizes of data structures that it contains. Inymages the sizes of these
data structures are correlated; our approach uses siz&aotsexpressed using
symbolic Presburger arithmetic terms to precisely captugse correlations.

— Heap Recovery:Our type system captures the distinction between sharedmand
aliased objects and supports explicit deallocation ofiasat objects.

* slightly revised from SAS’05 version

— Preconditions and PostconditionsEach method comes with a precondition that
captures both the expected sizes of the data structuresich iwbperates and any
correlations between these sizes. The method’s postiomaikpresses the new
size and correlations of these data structures after thieadetxecutes as a function
of the original sizes when the method was invoked.

— Heap Usage EffectsEach method comes with two memory effects. These effects
use symbolic values (present in method precondition) tdurep(i) memory re-
guirementwhich specify the maximum heap space that the methagconsume,
(i) memory releasavhich specify the minimum heap space that the methild
recover. Heap effects are expressed at the granularityasées and can capture
the net change in the number of instances of each class.

Our paper makes several new technical contributions.lfimse design a formal
verification system in the form of a type system, that fmamally andstaticallycapture
memory usage for the object-oriented (OO) paradigm. Wesbelihat ours is the first
such formal type system for OO paradigm. Secondly, we adedoaexplicit heap re-
coveryto provide more timely reclamation of dead objects in suppbtighter bounds
on memory usage. We show how such recovery commands may dmaidally in-
serted. Thirdly, we have proven the soundness of our typekatng rules. Each well-
typed program is guaranteed to meet its memory usage spicificand willnever fail
due to insufficient memoryhenever its memory precondition is met. Lastly, we have
implemented a type checker and have shown that it is faidgipe and can handle a
reasonably large class of programs. Runtsteck spaceto hold methods’ parame-
ters and local variables is another aspect of memory neédedimplicity, we omit its
consideration in this paper.

2 Overview

Memory usage occurs primarily in the heap to hold dynamyaakated objects. In our
model, heap space is consumed viadke operation for newly created objects, while
unused objects may be recovered via an explicit deallatationitive, calleddispose.
Memory usage (based on consumption and recovery) shouldlbelated over the
entire computation of each program. This calculation isediona safe manner to help
identify the high watermark on memory space needed. We aetis through the use
of a conservative upper bound on memory consumed, and arvatige lower bound
on memory recovered for each expression (and method).

To safely predict the memory usage of each program, we pexgmise-polymorphic
type systerfor object-oriented programs with support for interprased size analysis.
In this type system, size properties of both user-definedsygnd primitive types are
captured. In the case of primitive integer typg (v), the size variable capturesiits in-
teger value, while for boolean typeol1(b), the size variable is eithero or 1 denoting
false Of true, respectively. (Note that size variables capture somgéntbased prop-
erties of the data structure. For simple types, the valuediagctly captured.) For user-
defined class types, we us@ui,...,n,) where ¢ ; ¢; with size variables, ..., n, to
denote size properties that are defined in size relatj@md invariant constraint;. As

an example, consider a user-defined stack class, that ismngpited with a linked list,
and a binary tree class as shown below.

class List(n) where n=m+1; n>0{ Object()@ val; List(m)@ next;---}

class Stack(n) where n=m ; n>0 { List(m)@ head; -}

class BTree(s, d) where s=1+4s;+sAd=1+maxdi, dz) ; S>0Ad>0 {

Object ()@ val; BTree(Si,d:)@ left; BTree(s;,d:)@ right;---}

List(n) denotes a linked-list data structure of sizeand similarly forstack(n). The
size relationsi=m+1 andn=m define some size properties of the objects in terms of
the sizes of their components, while the constraind signifies an invariant associated
with the class type. Clagsree(s, d) represents a binary tree with size variabesd
d denoting the total number of nodes and the depth of the tespectively. Due to
the need to track the states of mutable objects, our typemysquires the support of
alias controls of the formd=u | s |r | L. We useu ands to mark each reference that
is (definitely) unaliasedand (possiblyshared respectively. We use to mark read-
only fields which must never be updated after object ini&tion. We use. to mark
unique references that are temporarily borrowed by a pamnfier the duration of
its method’s execution. Our alias annotation mechanisnadapted from [5, 8, 1] and
reported in [9]. Briefly, they allow us to track unique obgftom mutable fields, as
well as shareable objects from read-only fields.

To specify memory usage, we decorate each method with tlesviog declaration:

tmn(tiv1,...,tnUn) where @pr; Gpo; €c; €r {€}

whereg, andg¢p, denote the precondition and postcondition of the methogressed

in terms of constraints/formulae on the size variables efrttethod’s parameters and
result. Preconditior,: denotes an applicability condition of the method in terms of
the sizes of its parameters. Postconditigncan provide a precise size relation for the
parameters and result of the declared method. The memamst éffcaptured by. and

¢-. Note thate. denotesmemory requirement.e., the maximum memory space that
may be consumeavhile ¢, denoteset releasei.e., the minimum memory space that
will be recoveredat the end of method invocation. Memory effects (consunmpdiod
recovery) are expressed using a bag notation of the {oema;) }i2, , wherec; denotes

a class type, while;; denotes its symbolic count.

class Stack(n) where n=m ; n>0 { List(m)@ head;
L | void()@ push(Object ()@ o) where true;n'=n+1;{(List,1)};{}
{ List()@ tmp=this.head; this.head=new List(o, tmp)}
L | void()@ pop() where n>0; n'=n—1; {};{(List,1)}
{List()@ t1 = this.head; List()@ t2 = tl.next; tl.dispose(); this.head = t2}
L | bool(b)@ isEmpty() where n>0; n'=n A (n=0Ab=1V n>0Ab=0);{};{}
{List()@ t = this.head; bool({)@ v = isNull(t); this.head = t;v}
L | void()@ emptyStack() where n>0Ad=n; n'=0; {}; {(List,d)}
{ bool()@ v = this.isEmpty(); if v then () else {this.pop(); this.emptyStack()}}
L | void()@ push3pop2(0bject ()@ o) where true;n'=n+1; {(List,2)}; {(List, 1)}
{ this.push(o); this.push(o); this.pop(); this.push(o); this.pop()}}

Fig. 1. Methods for thestack Class

Examples of method declarations for thewck class are given in Fig 1. The nota-
tion (A |) prior to each method captures the alias annotation of thewtrhis para-
meter. Note our use of the primed notation, advocated in1[@3to capture imperative
changes on size properties. For theh method’'=n-+1 captures the fact that the size
of the stack object has increased by 1; similarly, the pastitmn for thepop method,
n’=n—1, denotes that the size of the stack is decreased by 1 aftepération. The
memory requirement for theush method,e,={(List, 1)}, captures the fact that one
List node will be consumed. For thep method,c,={(List, 1)} indicates that one
List node will be recovered.

For the isEmpty method,
n'=n captures the fact that
Net . .

} releasethe size of the receiver ob-
{ | | | | | | ject (this) is not changed by

tme the method. Furthermore, its

output of typebool(b)@ is
related to the object’'s size
through a disjunctive con-
straint n=0Ab=1vn>0Ab=0.
Primitive types are annotated with alsbecause their values are immutable and can be
freely shared and yet remain trackable. BhgtyStack method releases alist nodes
of the Stack object. Forpush3pop2 method, the memory consumed (or required) from
the heap i (List, 2)}, while the net release igList, 1)}, as illustrated in Fig. 2.

Size variables and their constraints are specified at métboddary, and need not
be specified for local variables. Hence, we may wsa ()@ instead ofbool (v)@ for
the type of a local variable.

Mem
Req.

push push pop push pop

Fig. 2. push3pop2: Heap Consumption and Recovery.

3 Language and Annotations

We focus on a core object-oriented language, called¥, with size, alias, and mem-
ory annotations in Fig 3. ®MMJ is designed to be an intermediate language for Java
with either supplied or inferred annotations. A suffix natat,* denotes a list of zero

or more distinct syntactic terms that are suitably sepdrdter example(t v)* denotes

(t1 v1,...,tn vo) Wheren>0. Local variable declarations are supported by block struc-
ture of the form:(t v = e1; e2) With e> denoting the result. We assume a call-by-value
semantics for MmJ, where values (primitives or references) are passed asargs

to parameters of methods. For simplicity, we do not allowghemeters to be updated
(or re-assigned) with different values. There is no lossesfagality, as we can always
copy such parameters to local variables for updating.

The MemJ language is deliberately kept simple to facilitate thefiolation of static
and dynamic semantics. Typical language constructs, ssichudti-declaration block,
sequence, calls with complex argumersts,. can be automatically translated to con-
structs in MEMJ. Also, loops can be viewed as syntactic abbreviationgfbreécursive
methods, and are supported by our analysis. Several othgudge features, includ-
ing downcast and a field-binding construct are also supganteur implementation.
For simplicity, we omit them in this paper, as they play supipg roles and are not

P ::= def meth
def::= class ci (N1 p) [extends c2 (N1 q) | where ¢ ; 7 { fd" (A | meth™ }
meth::= ¢ mn((t v)") where dpr; Ppo; €c; €r {€}
fdu=1¢ f tu=71(n")@A A:=U|L|S|R
Tu=c | pr wu=wv | v.f pr:=int | bool | void
ex=()null | k| w | w=e| tv=e1;e2 | newc(v")
| v.mn(*) | mn(v*) | if v then e else ez | v.dispose()
e={(c,a)"} (Memory Space Abstraction)
¢e F (Presburger Size Constraint)

s=b|l i Ag2 | P V2| g |In-d|Vn- ¢
b € BExp (Boolean Expression)
= true | false |ai=a2 |an<az | a1 <az
a € AExp (Arithmetic Expression)
s=E" 0 | K™ s o | artas | —a | maxar,az) | min(ar,az)
wherek™ € Z is an integer constantn, € SV is a size variable
f € Fd is afield name v € Var is an object variable

Fig. 3. Syntax for the MemJ Language

core to the main ideas proposed here. The interested reayeerfier to our companion
technical report[10] for more information.

To support sized typing, our programs are augmented with\griables and con-
straints. For size constraints, we restrict to Presbuiyen fas decidable (and practical)
constraint solvers exist, e.g. [19]. We are primarily ietged in tracking size properties
of objects. We therefore restrict the relatigiin each class declaration ef(n1, .., n,)
which extendsg: (n1, .., ng) to the formA?__ | ni=c; wherebW(a:) N {n1,..,n,} = 0.
Note thatv(«;) returns the set of size variables that appeared .inThis restricts size
properties to depend solely on the components of their thjec

Note that each class declaration has a set of instance nsatftaase main purpose
is to manipulate objects of the declared class. For conuerieve also provide a set
of static methods with the same syntax as instance methedspEfor its access to the
this object. One important feature of J is that memory recovery is done safely
(without creating dangling references) throughdispose() primitive.

4 Heap Usage Specification

To allow memory usage to be precisely specified, we propossgaabstraction of
the form{(c;, ;) }i=, Wherec; denotes its classification, white is its cardinality. In
this paper, we shall use € CN whereCN denotes all class types. For instante =
{(c1,2), (c2,4), (c3,x + 3)} denotes a bag with;, occurring twice,c, four times and
c3 x+ 3 times. We provide the following two basic operations for ladugtraction to
capture both the domain and the count of its element, asifsilo

if (en) €T
dom(Y) = {c | (e.n) € T} T(O) =0 ([orermio

We define union, difference, exclusion over bags as:

T =df {(C7 11 (C)+T2 (C)) | c e dOfT(Tl) U dOI’T'(Tz)}
To—Ts =g {(e,T1(0)=T(c)) | ¢ € dom(71) U domT>)}
T\X =4 {(¢,T(c)) | c € domT) — X}

To check for adequacy of memory, we provide a bag comparatnation under a
size constrainty, as follows:

AT O =df (A = (VC cZ- Tl(c) > TQ(C))) where Z = dOfT(T1) U dOI’T"(TQ)

The bag abstraction notation for memory is quite generalcamdbe made more pre-
cise by refining its operations. For example, some classstgpe of the same size and
could replace each other to increase memory reuse. To acthisvwe can use a bag
abstraction that is grouped Bizdc;) instead of class type.

4.1 Heap Consumption

Heap space is consumed when objects are created letherimitive, and also by
method calls, except that the latter is aggregated to ieatadovery prior to consump-
tion. Our aggregation (of recovery prior to consumptionjésigned to identify a high
watermark of maximum memory needed for safe program exatutior each expres-
sion, we predict a conservative upper bound on the memotythieaexpressiomay
consume, and also a conservative lower bound on the mematryhid expressiowill
release. If the expression releases some memory beforaroptisn, we will use the
released memory to obtain a lower memory requirement. Sgigtegated calculations
on both consumption and recovery can help capture both ahaeige in the level of
memory, as well as the high watermark of memory needed feresefcution.

For example, consider a recursive function which dpg®ps from one stack
object, followed by the same number of pushes on anothék.stac
void ()@ moverec(Stack(a)@. s, Stack(b)@ t, int(p)@ i)

where a>p>0; a'=a—pAb'=b+p; {};{}
{if i<1 then ()

else {Object()@S o = s.top(); s.pop(); moverec(s, t,i—1); t.push(o)} }

Due to aggregation (involving recovery before consumptitime heap space that
may be consumed is zero. For each recursive call, the spaaefet node is released
by s.pop() before it is reused by.push(o). Aggregated over the recursive calls, we will
havep number ofList nodes that have been released before the same number of nodes
are consumed. Hence, no new heap space is needed. Suchadiggrégsensitive to
the order of the operations.

Consider now a different function which performpushes ort, followed by the
same number of pops from

void ()@ moverec2(Stack(a)@ s, Stack(b)@. t, int(p)@ i)
where a>p>0; o'=a—pAb'=b+p; {(List,p)}; {(List,p)}
{if i<1 then ()

else {Object()@S o = s.top(); t.push(o); moverec2(s,t,i—1); s.pop()} }

Though the net change in memory usage is also zero, the mesifent for this
function is different as we requirg number ofL.ist nodes to be consumed on entry,

beforethe same number afist nodes are recovered. This new memory effect has the
potential to push up the high watermark of memory needegdiigt nodes.

4.2 Heap Recovery

Explicit heap space recovery vidspose has several advantages. It facilitates the
timely recovery of dead objects, which allows memory usagéd predicted more
accurately (with tighter bounds). It also permits the usenofe efficient custom allo-
cators[4], where desired. Moreover, we shall provide anmatic technique to insert
dispose primitives with the help of alias annotation. With such ahteique, we only
need to ensure that objects that are being disposed areutioihis non-nullness prop-
erty can be captured by a non-nullness analyser, such asTh¥ property is required
as we always recover memory space for ediclpose primitive.

Memory recovery viaiispose should occur when unique references that are still
alive (not in dead-set) are being discarded. This could oattour places: (i) end
of local block, (ii) end of method block, (iii) prior to assient operation, and (iv)
at conditional expression. We would like to recover the mgnspace for each non-
null reference that is about to become dead. For examplejdenthepop method’s
definition:

L|void()@ pop() where --- {List()@ t1 = this.head; head = t1l.next}

The object pointed to byead is about to become dead prior to the operation,
head = t1.next. TO recover this dead object, we inserdizpose command to obtain
head = (tl.next <;head.dispose()) Wheree;<;e2=(t v = e1;e2;v). Consider the defin-
ition of thedestroy method which callemptyStack with anL-mode parameter.

void()@ destroy(Stack(n)@ s) where --- {emptyStack(s)}

A uniques object is about to become dead at the end ofddwroy method. To
recover this space, we can insedispose() prior to the method’s exit.

Let us formalise an automatic technique for the expliciokery of dead objects
that are known at compile-time. Given an expressiowe utilize the alias annotation
to obtain a new expressienwhere suitable explicit heajispose operations have been
safely inserted. This is achieved by a translation below wito denote a type environ-
ment mapping program variables to their annotated typekoé@,) to denote the set
of dead references (of the forsmor v. f) before (after) the evaluation of expression

IOk e—pe i t,6,

Most rules are structure-preserving (or identity) rewgs, except for four rules given
in Fig 4. A sequence of disposals can be effected thraligglos¢D), with D containing
a set of variable/field references that are about to be dethe and of expression

For the assignment rule:assien], we addw to the disposal set if it is unique and
is not yet in dead-set using = {w | ann(t)=U}—©,. The functionisParam(w) returns
true if wis a parameter variable, otherwise it retufasse (for fields and local vari-
ables). The functiomnn extracts the alias of an annotated typen(r(v*)@\) = A. A

! Note that unique reference cannot escape thraugin e;; e» as we require:; to be of the
void type.

[H:ASSIGN] [H:1F]
—isParamw) I'(w)=t I'(v) = bool(b)@®
D:{w|ann(t):U}—@1 F;@Fei‘—méiilth@i 1 =1,2
I'OkFe—per :it1,61 t = msstt1,t2) O3 =601 U0O,
it <:t D;, = ©3—-6; i:172
e2 = (e1 < D=0 > e1<; dispos¢D)) FE; = (é; < D;=01>é,<;disposé€D)) i =1,2
[0k w=e<—y ;0 F if v then e; else ex “—n
w = ez :: void(@, O1\w if v then F; else F> :: t,03
[E:METH] [mLOCAL|
=T+ {vi:t1,.,0p i tp} 50k e —pes:ity,601
I';0Fe—pner=t,O Ft <t
Ft<:to ann(ty) #L ann(t) ¢ {L,R}
Viel..p(ann(ti) :L):>(vazf€9) F—F{U I t}; O1Fex —Heq:ty,On
D=A{w|(w:t)en,annt)=U}-6O D={v]|ann(t) =U} — O,
ez = (e1 e1<; disposéD)) es = (e4 << D=0 > e4<; disposéD))
I' Fmethto mn((ts vi)i1.p){e} IOk (tv=-e1;e2) —n
—n to mn((ti Ui)i;y_p) {62} (t v =e3, 65) i, @2\1]

Fig. 4. Automatic Insertion ofli spose operation

517 If b;

£, otherwise Furthermore, we have:
2

conditional is expressed as<1b > & =4 {

O\v =4 O —{v,0.f"} O\v.f=g4 O —{v.f}

For the method declaration rute:meTH], we add to the disposal set those parameters
which are unique but not yetdead using| (w :: t) € I1,ann(t) = U} — ©. For the local
declaration rulén:Locai], we addv to the disposal set if it is unique but not yet dead
using{v | ann(t) = U} — .. For the[m.1r] rule, the uniqueness that are consumed in one
branch may have their heap spaces recovered in the othesthreis is captured by
D; = ©3—06; ,i = 1,2. Notice thatmsstt, t2) returns the minimal supertype of bath
andt, as follows:

T <iT To<:T Yr3-(T1,T2 < T3=T <:T3)
A<oA A <A YA - (A A< A=A A)
mss{ri @\, @) =45 TG
Note thatr <: = denotes the subtype relation for underlying types (withemuto-

tations). Alias subtyping rules (shown below) allow unigaterences to be passed to
shared and lent-once locations (in addition to other unliocations), but not vice-versa.

A<sA U<L U<q.S

In the rest of this paper, we shall present a new static typtesy for verifying
memory heap usage, followed by a set of safety theorems dgpbeules.

5 Rules for Memory Checking

We present type judgements fexpressionsmethod declarationslass declarations
andprogramsto check for adequacy of memory, using relations of the form:

AT Rest, A, 1y I Fmeth meth Fclass def FP

Note thatr" is the type environment as explained earliet(A,) denotes the size
constraint, which holds for the size variables associatéd W (7" andt) for expression
e before (after) its evaluation;is an annotated type. Alsoy’(71) is used to denote the
available memory space in terms of bag abstraction beféter)¢he evaluation.

We present a few key syntax-directed type rules in Fig 5, thighrest of the rules in
the technical report. Before that, let us describe someinataused by the type rules.

[assiGN]|) . [NEwl v ,
AYRent, A0, I'Fwt, oY f(iLISt(c(n)= (& }.ci)]i:“ ¢)
r* =fresh) ¢; = prime(I’(v;))
[1 <:t,p X:V(t1)UV(t) AQZHX(Aloypd)) it < [R — S]iupz zelp
AT Hw=e:void()@, Az, 1N p=[n"—rTull_ pi
[DIsPOSE] AFY J3{(e, 1)} X =", V()
Fv)=cn" Y@ 71 =74 {(c1)} Ay = ANEFX pg") 11 =T—{(c,1)}
I'; A;Y Fov.dispose() : void()@, A, 71 [A4;7 Fnewce(vr..p) @ e{r”)@, A, 11
[1F] [OVERRIDE]
I'(v) = bool(b)@ meth, =t mn((¢; vi)i:1..p) where
DiAANY =1 ey b, AL Gpry,; Doy €kms€rn {7}, K =1,2
F, A A bl = 0, T [€ i t27 A27 TQ ¢pr1:>¢pr2 ¢po2:>¢pol
(t,73, Ag) = unify(ti,t2, 11,72, A1, Az) Qpry - €1mJ€am Ppry - eanJern
I'; A;T + ifvtheneg elsees i t, Az, 13 F OverridesOKmeth , meth)
(1]

H (Al Emn((£; 0:)is1..p) where gpr; dpo; c; er{e})€c(n”)
t=freshit) to=cn")@ I'(vi)=1t; 1€0.p Ft;<:t;, p; i€l.p
pp=Ul_y pi AiLFT3e. p=renaméi,t)Up,Uprime(pp)
Ar>yry V(ec)UV(er)-p dpr - A1 = Aor IY - p(@pr/Adpo)

Ty =T—cWe, X=U" V(i) Y=XUpimeX) L= V(L)
I A Y Fovemn(vr.p) o t, A1, 11

[METH]

Do=TU{vr sty o0ty A=noX(I)AgeAINV(IL) Abe.J0
IN;Asecbent, AT ¢ppeANALEYY Jep Abe,J0 HE<: t,p
(o,-,Ny) = Vfie|d(£i)7 iel.p Y=L, Ni (3prime(Y)-A1)=p(Ppo)

I Fment MN((£; v:)i1..p) where Gor; dpo; €c; € {€}

Fig. 5. Some Type Rules for Memory Checking

5.1 Notations

We use functioiv to return size variables of a formula, eMjz’=z+1Ay=2)={z', y, z}.
We extend it to annotated type, type environment, and merapegification, e.g.,

V(r{n*)y@)={n"}, V({(c,4xd+8)})={d}. The functionprime takes a set of size vari-
ables and returns their primed version, @gme({s1,...,s.})={s1,..., s, }. Note that
prime operation is idempotent, namély)’'=v’. We extend this to (annotated) type, type
environment, and even substitution. For exampieye(r(n1,...,ng)) = 7(nl,...,nL),
andprime([z—a, y—b]) = [v'—d’,y'—b']. Often, we need to express a no-change con-
dition on a set of size variables. We defina@ operation as follows which returns a
formula for which the original and primed variables are madeal.

noY({}) =g true no¥({z}UX) =4 (z'=z)Ano¥(X)

We extend this function to annotated types (and type enmisnts), as followsno¥ (¢)
=4 NOY (V(¢)). Also, we usex* = fresh) to generate new size variable’s We extend it
to annotated type, so that= fresh(t) will return a new typé with the same underlying
type ast but with fresh size variables instead. Functienamét,, t>) returns an
equality substitution, e.genaméInt(r), Int(s’))=[r—s’]. The operatow combines two
domain disjoint substitutions into one.

The functionfdListis used to retrieve a full list of fields for a given class, tibhge
with its size relation. The functioinv is used to retrieve the size invariant that is asso-
ciated with each type. This function shall also be extendedge environment and list
of types. The functioWseq classifies size variables from each field into three groups :
(i) immutable, (ii) mutable but unique, (iii) otherwise (marackable).

To effect a change to an existing poststatd, we provide an operatosy, with
Y = {s*} to denote the set of size variables that is to be updated|lag/fo

Aoy ¢ =g Ar1-Tn - p2(A) A p1(0)
whereY = {s1,...,8n}; {r1,...,mn} =fresh); p1 = [s; — ri]ie1 5 p2 = [si — 7iliey

5.2 Assignment

The [ass1aN] rule captures imperative updates (to object fields andbées) by mod-
ifying the current size constraint to a new updated statk @lianges to the imperative
size variables from the LHS. From the rule, note that w :: ¢, ¢, Y is to identifyY as a
set of imperative size variables and also to gather a cansgréor this set. The subtype
relationt ¢, <: t, p will return a substitution that maps the size variables qiestype
to that of the subtype. This mapping ignores all non-tratkalze variables that may
be globally aliased, but immutable and unique mutable siz&bles are captured.

5.3 Memory Operations

The heap space is directly changed by tlke anddispose primitives. Their corre-
sponding type rulesNEw] and [pisposg], would ensure that sufficient memory is
available for consumption hyew and will credit back space relinquished &ispose.
The memory effect is accumulated according to the flow of aatiaijion. Consider:

A}‘TQ{(LiSt, 1)} A1:AO{I}1‘IZ$+1
I'; A; T F x = new List(o, x) :: void()@, A1,V —{(List,1)}
Ti=(r—{(List, 1)})w{(List, 1)}
I'; Ay; Y—{(List, 1)} I y.dispose() :: void()@, A1, 11
I'; A; Y+ x = new List(o, x); y.dispose() :: void()@, A1,T

The new operation consumes laist node, while thedispose operation releases
back aList node. The net effect is that available mematrys unchanged. However,
due to the order of the two operations, we requirer 3{(List, 1)} which affects the
maximum memory required.

Another rule which has a direct effect on memory is the metinedcation rule
[1m1]. Sufficient memory must be available for consumption pi@ogach call (as spec-
ified by A; - T'Ze.), with the net memory release added back in the end (as sggkcifi
by T = T—e.we,). Each method precondition must be met by the pre-state oélter.
This is checked byA ~>y(r) IV(e.)UV(e,)-p ¢pr Which uses a relatios> x, defined as:

Ar>x ¢ =4 (A= pp), Wwherep = [s1 — s1,..,80 — sn] A Vu(@)NX = {s1,.., 50}

Note thatv, returns size variables in unprimed form, &/g(z'=2+1Ay=2) = {z,y, z}.

5.4 Conditional

Our type rule for conditionahF] is able to track both the size-constraints and memory
usages in a path-sensitive manner. Path-sensitivity isdettby adding’=1 andb’=0

to the pre-states of the two branches, respectively. Weeaelpath-sensitivity for mem-
ory usage specification by integrating it with relationalestonstraints derived. Take
note that theinify operation merges the post-state constraints and memoggsi$@m
the two branches via a disjunction, a formal definition anéxample can be found in
our report [10]. Path-sensitivity makes our analysis maeusate and is critical for
analysing the memory requirement of recursive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definiti@moissistent with the mem-
ory usage specification given in its declaration header bytteTH] rule. The initial
memory is e.. The final available memory of the method badig 71 which must not
be less than the declared net memory release (as specifigghay, - 71 Je,.).

Function subtyping for the OO paradigm is used to supporhotkodverriding. This
is captured by thedverRIDE] rule in Fig 5. Each method which overrides another
is expected to beontravarianton its precondition (and memory consumption) and
covarianton its postcondition (and memory releases)

6 Soundness of Type System

We have proposed a small-step operational semantics @hbhpt- transitions) instru-
mented with alias and size notations[10], and have alsodbsed two safety theorems
for our type rules. The first theorem states that each wpkdyexpression preserves
its type under reduction with a runtime environmé&nand a stores that are consistent
with the compile-time counterparts, (type environment) and’ (store typing). Also,
final size constraint is consistent with the value obtaineteomination.

Theorem 1 (Preservation).

() (Expression) If I';X;A;0:TFe:t, A1,01, 11 I 2, A,0;7 E (1, w,0)
(II,w,0) [e] = (II1,@1,01) [e1]
then there exist, 2 X, I',, Aa, Oa, and7,, such that

I — dif‘f(e,el) = Fa — diﬁ(ehe) Fa;Ea;Aa;@a;Y‘a F €1 t7A17917T1
F(X;E(X;Aa;@a;:ra ': <H17w1701> .

(b) (Value)If I'; X, A,0;TF (A,6) :t, A1,01; 11 I 2,A4,0;7 E (I, w,0)
then the following hold:

0 =6, I'+{z:th X201 E T+ {z— (4,0)},w,0)
wherez = fres}“() , Ao = [’U — ’Ul]vev(t)AL

Proof: By induction over the depth of type derivation for expressicDetails are given
in the technical report [10].]

The second safety theorem on progress captures the faetéhielyped programs
cannot go wrong. Specifically, this theorem guaranteesihaiemory adequacy errors
are ever encountered for well-typedeMJ programs, as follows:

Theorem 2 (Progress)lf I'; 3, A; ©; The = t, Ay, 01, iand I'; 3 A, 0,7 = (I, w, o),
then eithere is a value, or{II, @, o) [e] — Err-Null , or there existll, w1, 01,e; such
that (U,w,cr) [6]‘—><H1,W1,0’1>[61].

Proof: By induction over the depth of type derivation for expreasidDetails are given
in the technical report [10].]

7 Implementation

We have constructed a type checker foeMl, and have also built a preprocessor to
allow a more expressive language to be accepted. The enbitetype was built using
a Haskell compiler[18] where we have added a library (basefl8]) for Presburger
arithmetic constraint-solving.

The main objective of our initial experiments is to show tbat memory usage
specification mechanism is expressive and that such an egd@orm of type checking
is viable. We converted to EMJ a set of programs from the Java version of the Olden
benchmark suite [7] and another set of smaller programs ftenRegJava bench-
mark[11], before subjecting them to memory adequacy clmeckOur initial experi-
mental results are encouraging; however this is a proafesicept implementation and
there is scope for optimization and more exhaustive expariation.

Programs| Size (lines)|Checking (in sec})Verified i t.Flgu:)et' 6 Sgr?ma”sis the sta-
SourceAnn.|Alias| Memory |[Method ISUCS obtained for each program

bisort | 320 | 7 0.0l 256 6/6 that we have verified via our type
em3d | 462 | 19 |0.05| 1.14 2020 | checker. Column 3 illustrates the
health | 562 | 22 10.05] 6.37 15/15 size and memory annotation over-
mst 473 | 31 10.02| 1.26 22/22 heads which must be made in
power | 765 | 24 |0.06| 4.28 19/19 the header declarations of each

treeadd | 195 | 6 |0.02| 0.32 4/4 class and method. Columns 4 and
tsp 545 | 10 10.02) 3.54 919 5 highlight the CPU times used
perlmeter 745 12 |0.02 21.81 8/8 (|n Seconds) for a|ias and mem-

n-body | 1128| 31 |0.60 1.25 22/22

\oronoi | 1000 | 45 |0.03 3.51 39/40 .
Stack 155 T 12 1001 0.08 10710 periments were done under Red

sieve | 88 | 7 |0.01] 0.09 6/6 that Lé”:XGﬂ'O p.'t%tfc?’ggMoé‘ Pen-
m-sort | 183 | 13 |0.01| 0.36 | 12712 | UUM 4 zwl main

ory checking, respectively. Our ex-

life 164 | 9 |0.02] 295 717 memory. Except for thgerimeter
Mandelbrof 194 | 11 |0.01| 1.72 | 10/10 | Program (which has more condi-
Reynolds3 98 | 6 |0.01| 0.18 4/4 tionals from using a quadtree data

structure), all programs take under
Fig. 6. Type Checking Experimental Results 10 seconds to verify, despite them
being medium-sized programs and
the high complexity of Presburger solving. We attributs thithe fact that memory dec-
larations are verified in a summary-based fashion for eachadedefinition. The last
column highlights the number of methods that have been ssfidy verified as using
memory spaces that are bounded by symbolic Presburger faemil methods’ heap
usage could be statically bounded, exédpt a method invoronoi that has an allocation
inside a loop, with a complex termination condition. Apadrh the memory check-
ing system described above, we have also conducted sonmaipeely investigation on
memory inference which is described in [17].

8 Related Work

Past research on memory models for object-oriented parelaye focused largely on
efficiency and safety. We are unaware of any prior type-bagell on analysing heap
memory usage by OO programs for the purpose of checking farengadequacy. The
closest related work on memory adequacy are based on fitet-fumctional paradigm,
where data structures are mostly immutable and thus easiarndle.

Hughes and Pareto [15] proposed a type and effect systenaoa spage estimation
for a first-order functional language, extended with redémguage constructs of Tofte
and Talpin's[20]. The use of region model facilitates remgwof heap space. However,
as each region is only deleted when all its objects become, deare memory than
necessary may be used, as reported by [4].

Hofmann and Jost [14] proposed a solution to obtain lineamkls on the heap
space usage of first-order functional programs. A key featfitheir solution is the use

2 For Olden programs which built tree-like data structure make a minor change to take total
nodes rather than heights as parameters. This avoids exjmrfermulae.

of linear typing which allows the space of each last-use datestructor (or record) to
be directly recycled by a matching allocation. With this mggzth, memory recovery can
be supported within each function, butt across functions general. Moreover, their
model does not track the symbolic sizes of data structuregeitheless, one significant
advance of their work is an inference mechanism throughatimgogramming (LP)
technique. The main advantage of LP technique is that nodimtnalysis is required,
but it restricts the memory effects to a linear form withoigjuhction.

Apart from the above memaory analysis work on high level laggs, Aspinall and
Compagnoni [3] presented a first-order linearly typed asdgtanguage to allow safe
reuse of heap space. Their system is a target for the comopilat a functional pro-
gramming language with a similar type systems (e.g. Hofrisdti¥PL) . More recently,
Cachera et. al. [6] proposed a constraint-based memorysisébr Java Bytecode-like
languages. For a given program their loop-detecting algorcan detect methods and
instructions that execute an unbounded number of times, ¢hn be used to check
whether the memory usage is bounded or not. However, thaiysis cannot check
whether a given amount of memory is adequate or not, whilesggtem does.

9 Concluding Remarks

We have proposed a memory usage type system for a non-whjatt-oriented core
language. We have designed a flexible specification meahdoiallow memory needs
of user programs to be declared abstractly, and then veififiesmory adequacy prop-
erty holds for the given definitions. Our approach requiregghspace to be explicitly
deallocated, which can be handled automatically. We hae lailt a prototype type
checker to confirm the viability and practicality of our apach. We envision our frame-
work to be useful for embedded system, where memory is ceridto be a critical
resource. We also envision the synergy of predicable mebmugds with region-based
memory management systems. In particular, bounded memgigrrs can result in bet-
ter performance. Synergistically, region-based systempcavide timely recovery for
shared objects that are dead, providing us with tighter mgimounds.
AcknowledgementThe authors would like to acknowledge the invaluable helglofin
Craciun with the evaluation of a set of the benchmark program

References

1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias Anniatatfor Program Understanding.
In ACM OOPSLASeattle, Washington, November 2002.

2. B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. HuehnD. Lieber, M. Mergen,
T. Ngo, J. Shepherd, and S. Smith. Implementing J@lape Java. INnACM OOPSLA
Denver, Colorado, November 1999.

3. D. Aspinall and A. Compagnoni. Heap bounded assemblyulage. Journal of Automated
Reasoning31:261-302, 2003.

4. E. D. Berger, B. G. Zorn, and K. S. Mckinley. Reconsider@gstom Memory Allocation.
In ACM OOPSLANovember 2002.

5. J. Boyland, J. Noble, and W. Retert. Capabilities for BigarA Generalization of Unique-
ness and Read-Only. BECOOR Budapest, Hungary, June 2001.

6. D. Cachera, T. Jensen, D. Pichardie, and G. Schneidetifi€kMemory Usage Analysis.
In 13th International Symposium of Formal Methods Europe (@)’ July 2005.

7. M. C. Carlisle and A. Rogers. Software caching and contjgutanigration in Olden. Irth
Principles and Practice of Parallel Programmin§anta Barbara, California, May 1993.

8. E. C. Chan, J. Boyland, and W. L. Scherlis. Promises: lechBpecifications for Analysis
and Manipulation. IrProceedings of the International Conference on Softwawgitaering
pages 167-176, Kyoto, Japan, April 1998.

9. W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyégrifying Safety Policies
with Size Properties and Alias Controls. 2@th International Conference on Software En-
gineering (ICSE05)St. Louis, Missouri, May 2005.

10. W.N. Chin, H.H. Nguyen, S.C. Qin, and M. Rinard. PredigaMemory Usage for Object-
Oriented Programs. Technical report, SoC, Natl Univ. ob&pore, November 2004. avail.
at http://www.dur.ac.uk/shengchao.qgin/papers/mengzs

11. M. V. Christiansen and P. Velschow. Region-Based MerMagagement in Java. Master’s
Thesis, Department of Computer Science (DIKU), UniversitCopenhagen, 1998.

12. M. Fahndrich and R. Leino. Declaring and checking nolhtypes in an object-oriented
language. IMCM OOPSLAAnaheim, CA, October 2003.

13. C. A. R. Hoare and J. Hélnifying Theories of Programmindrentice-Hall, 1998.

14. M. Hofmann and S. Jost. Static prediction of heap spaageufor first order functional
programs. IPACM POPL, New Orleans, Louisiana, January 2003.

15. J. Hughes and L. Pareto. Recursion and Dynamic Dat&t8tes in Bounded Space: To-
wards Embedded ML Programming. Rroceedings of the International Conference on
Functional Programming (ICFP '99)September 1999.

16. L. Lamport. The temporal logic of action&CM Trans. on Programming Languages and
Systemgsl6(3):872-923, May 1994.

17. H. H. Nguyen. Memory Usage Inference for Object-OridrReograms. Technical report,
CS Programme, Singapore-MIT Alliance, July 2004. (TermePpap

18. S Peyton-Jones and et al. Glasgow Haskell Compiler./fttpw.haskell.org/ghc.

19. W. Pugh. The Omega Test: A fast practical integer programg algorithm for dependence
analysis.Communications of the ACN8:102-114, 1992.

20. M. Tofte and J. Talpin. Region-based memory managenhefiormation and Computatign
132(2), 1997.

21. H. Xiand F. Pfenning. Eliminating array bound checkingugh dependent types. ACM
PLDI. ACM Press, June 1998.

A Alias Checking

We introduce four alias control mechanismss | & | L adopted from [5, 8, 1]. These
alias mechanisms shall be used to support precise sizertgaickthe presence of mu-
table objects, and also for the automatic recovery of deaguenobjects. For size-
tracking, we introduc&-mode fields to allow size-immutable properties to be accu-
rately tracked for all objects. For example, an alternatiess declaration for the list
data type is given below, where itsxt field is marked as read-only (or immutable).
Note that theral field remains mutable.

class RList(n) where n=m+1; n>0{ Object()@ val; RList(m)@ next; --- }

The size property of such aList type can be analysed at compile-time, while
allowing its objects to be freely shared. However, this cemethe cost of losing both
mutability and uniqueness.

We make use di-mode parameters, with thienited uniqueor lent-oncé property
[8], to capture unique references that are temporarily deritto method calls. They
allow the preservation of uniqueness together with presiimetracking across methods.
Consider the following method with twiaist parameters.

void()@ join(List(m)@ x, List(n)@ y) where n > 0;m'=n+m;---

{ if isNull(x.next) then x.next =y else join(x.next,y) }

The first parameter is annotatedast-onceand can thus be tracked for size proper-
ties without loss of uniqueness. However, the second pagaisemarkediniqueas its
reference escapes the method body (into the tail of tke from the first parameter). In
other words, the parametgican have its uniqueness consumed butxnets reflected
in the body of the above method declaration. Given two unigi® a andb, the call
join(a, b) would consume the uniquenessdut not that ofa. Our lent-once policy is
more restrictive than normal lending [1] as we require e&cit-bnce parameter to be
unaliased within the scope of its method. For exampley(a, a) is allowed by the type
rules of [1], but disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferreddrantocation (variable,
field or parameter) to another location. Consider a typerenwment{x::0bject ()@,
y::0bject ()@, z::0bject()@} wWhere variables andy are unique, while is shared. In
the following code{x = y; z = x}, the uniqueness gfis first transferred to locatiof
followed by the consumption of uniquenessdahat is lost to the shared variakle In
our type judgement, we track variables/fields that have inecdead using:

I0Fet, 61

Here, each dead-se(©,) captures the set of references with consumed uniqueness
before(after) the evaluation of expression is a type enviroment which maps vari-
ables to their annotated types. Other type judgements ftrods, classes and programs
have the following forms.

I Fmeth meth Faerdef pdef, , meth

The full set of alias checking rules are given in our techimegort [10]).

