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Abstract. We present the first comprehensive discussion of constraints on the cosmic neutrino
background (CνB) overdensity, including theoretical, experimental and cosmological limits for
a wide range of neutrino masses and temperatures. Additionally, we calculate the sensitivities
of future direct and indirect relic neutrino detection experiments and compare the results with
the existing constraints, extending several previous analyses by taking into account that the
CνB reference frame may not be aligned with that of the Earth. The Pauli exclusion principle
strongly disfavours overdensities ην � 1 at small neutrino masses, but allows for overdensities
ην . 125 at the KATRIN mass bound mν ' 0.8 eV. On the other hand, cosmology strongly
favours 0.2 . ην . 3.5 in all scenarios. We find that direct detection proposals are capable of
observing the CνB without a significant overdensity for neutrino masses mν & 50 meV, but
require an overdensity ην & 3 × 105 outside of this range. We also demonstrate that relic
neutrino detection proposals are sensitive to the helicity composition of the CνB, whilst some
may be able to distinguish between Dirac and Majorana neutrinos.
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Figure 1. Predicted electron neutrino flux from the CνB (blue), alongside those from nuclear (black)
and thermal (orange) processes in the sun, assuming degenerate neutrino mass mν = 0.1 eV. We also
show the energy thresholds for neutrino detection at gallium and chlorine radiochemical experiments,
alongside the threshold at Borexino [4]. For a comprehensive review of neutrino fluxes at all energies,
see [5].

1 Introduction

Precision measurements of the Cosmic Microwave Background (CMB) underpin much of our
current understanding of the evolution of the universe [1, 2]. These measurements are soon
to be complimented by those of the LISA space-based gravitational wave observatory [3],
which aims to detect the echoes of the Big Bang. Despite the remarkable achievements of
modern cosmology, relic neutrinos from the Cosmic Neutrino Background (CνB) remain ever
elusive, owing to their weakly interacting nature and low energy. As the CνB predates the
CMB, its detection could give important insight into Big Bang nucleosynthesis (BBN), whilst
simultaneously augmenting measurements made from the CMB. The successful detection of
photons, gravitational waves and neutrinos from the early universe would truly signal the
dawn of multi-messenger cosmology.

As shown in figure 1, existing neutrino experiments have detection thresholds that are
many orders of magnitude above the predicted CνB energy. Any experiment wishing to
observe relic neutrinos therefore requires a complete re-imagination of neutrino detection. At
present, there exist several proposals to detect the CνB using a wide range of techniques:
capturing relic neutrinos on radioactive nuclei [6, 7]; observing the annihilation of ultra-
high energy cosmic ray neutrinos on the CνB at the Z-resonance [8]; exploiting neutrino
capture resonances using an accelerator experiment [14]; measuring tiny accelerations induced
by elastic scattering of the relic neutrino wind on a test mass [15–26] and searching for
modifications in atomic de-excitation spectra due to Pauli blocking [27]. Many of these
proposals require a local overdensity of neutrinos to make a discovery, the magnitude of
which depends strongly on the properties of the CνB. In this paper we will attempt to place
constraints on the present day local relic neutrino overdensity, where possible in a model
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independent way, exploring both the theoretical and experimental constraints for a range
of neutrino masses and temperatures, as well as the constraints that could be set by each
proposal to detect the CνB.

Several studies have already attempted to estimate the magnitude of the local relic
neutrino overdensity using a variety of techniques. Estimates of the overdensity using
simulations of relic neutrinos in the galactic gravitational field typically lie in the range
ην ' 1− 10 in most conservative scenarios [25, 28–30], assuming the standard cosmological
evolution that we will present in section 2. On the other hand, arguments based on the
local baryon density predict overdensities as large as ην ' 103 − 106 [31, 32]. These results
depend on the choice of simulation method [33], as well the assumptions made regarding the
density profile of the galaxy and evolution of the CνB, which could significantly differ from
the standard scenario e.g. in the presence of extra degrees of freedom coupling to neutrinos.
As such, there is clearly a need for model independent constraints that can be placed on the
CνB from theory and experiment.

In section 3, we will explore the Pauli exclusion principle and the closely related Tremaine-
Gunn bound, which provide theoretical upper limits on the CνB overdensity as a function of
the neutrino mass and temperature. We will also calculate the bounds set by the existing
experiment with the lowest neutrino energy threshold, Borexino. Cosmological constraints
from Big Bang nucleosynthesis, the polarisation of the CMB, and the effective number of
neutrino species, Neff , will be discussed in section 4. Throughout this work, we will label
proposals to observe the CνB as either direct or indirect detection. Direct detection proposals
directly observe the final state of an interaction with the CνB, which will be discussed in
section 5. By contrast, indirect detection proposals are sensitive the effects of the CνB on
other observable parameters, for example, signals that are reduced in a window of parameter
space due to absorption by relic neutrinos. We will discuss indirect CνB detection proposals
in section 6. Finally, we will present our main results in figures 9, 10 and 11 and discuss them
in section 7, before concluding in section 8.

2 Neutrino thermal history

Neutrinos in the early universe remain in equilibrium with the Standard Model (SM) thermal
bath through weak interactions, which proceed at a rate Γν ∼ G2

FT
5
ν , where GF is Fermi’s

constant and Tν is the neutrino temperature. As the universe expands and cools, the rate
of weak interactions slows to the point where the time between interactions is of order the
age of the universe, Γν ' H ∼

√
GNT

2
ν , where H is the Hubble parameter and GN is the

gravitational constant. Neutrinos therefore freeze-out at a temperature Tν ' 1 MeV, shortly
before the temperature of the SM thermal bath drops sufficiently for electron-positron pair
production to become kinematically unfavourable. The subsequent annihilation of electron-
positron pairs must conserve entropy, reheating photons to a temperature Tγ = (11/4)1/3 Tν .
Using the present day CMB temperature, Tγ,0 = 0.235 meV [34], this relation gives a present
day neutrino temperature Tν,0 ' 0.168 meV. We additionally expect that in the absence of
significant interactions or clustering since decoupling, relic neutrinos should follow a redshifted
equilibrium distribution [35],

fνi(|~̃pνi |) = gνi

exp(|~̃pνi |/Tνi) + 1
, (2.1)
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with ~̃pνi the momentum of neutrinos in the CνB reference frame,1 whilst gνi is the degeneracy
which may itself be a function of the neutrino momentum. By integrating (2.1) over all
momenta at a temperature Tνi = Tν,0, we find a present day neutrino number density per
degree of freedom

nν,0 = 1
gνi

∫
d3p̃νi
(2π)3 fνi(|~̃pνi |) =

3T 3
ν,0ζ(3)
4π2 ' 56 cm−3, (2.2)

as well as a mean momentum |~̃pν,0| ' 3.15Tν,0. Combined with the results of neutrino
oscillation experiments, which set lower bounds on the neutrino masses of mν2 & 8.6 meV and
mν3 & 50.1 meV in the normal mass hierarchy (NH) and mν1 & 49.9 meV and mν2 & 50.6 meV
in the inverted mass hierarchy (IH) [36], we conclude that at least two out of three mass
eigenstates must be non-relativistic today provided that Tν = Tν,0.

Before continuing, we make two important observations following the arguments of [37].
First, whilst neutrinos are produced as flavour eigenstates, coherent superpositions of the
mass eigenstates, they have long since decohered to mass eigenstates. Secondly, as helicity
and chirality coincide for ultra-relativistic particles and only left-chiral neutrino fields exist in
the SM, we expect that all neutrinos will be left-helicity at freeze-out. Further, since helicity
is a good quantum number, all neutrinos should remain left-helicity until the present day
provided that they do not interact or cluster significantly since decoupling. By a similar
argument, there should be an equal abundance of right-helicity antineutrinos today and an
absence of left-helicity antineutrinos. As a result, we expect that gνi = 1 in (2.1), and the
predicted number densities for Dirac neutrinos today are2

ñν(νDi,L) = nν,0, ñν(νDi,R) ' 0,
ñν(ν̄Di,L) ' 0, ñν(ν̄Di,R) = nν,0.

(2.3)

If instead neutrinos are Majorana fermions, then we are unable to distinguish between
neutrino and antineutrino. In this case, the expected abundances are

ñν(νMi,L) = nν,0, ñν(νMi,R) = nν,0. (2.4)

After summing over helicity and mass eigenstates, the total predicted neutrino number
density for both Dirac and Majorana neutrinos is 6nν,0. For the remainder of the paper, we
will refer to the scenario with temperature Tνi = Tν,0 and the ratios of abundances given
in (2.3) and (2.4) as the standard scenario.

Of course, it is entirely possible for the true neutrino number densities to differ from
those presented in (2.3) and (2.4). For example, the addition of extra degrees of freedom with
late decays to neutrinos [38] alters the relation between the CMB and CνB temperature Tνi ,
leading to a modified number density (Tνi/Tν,0)3 nν,0. There is also no reason that the new
temperature should be shared by all three neutrino mass eigenstates. If the extra degrees
of freedom decay exclusively to a single mass eigenstate, then only those neutrinos will be
reheated. Other scenarios including mass dependent clustering and neutrino decay could lead

1Going forward, we will reserve tildes for quantities specific to the CνB frame.
2Here and in what follows, we will use the subscripts i ∈ {1, 2, 3} and α ∈ {e, µ, τ} to denote quantities

that differ between neutrino mass or flavour eigenstates respectively. Where appropriate, we will also use the
subscript s ∈ {L,R} to denote quantities differing between neutrinos with left or right helicity. Finally, we will
use the superscripts D or M when referencing quantities specific to Dirac or Majorana neutrinos respectively,
whilst

∑
ν
is the instruction to sum over neutrinos and antineutrinos.
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to similar situations in which the relic density differs on a per-eigenstate basis. For this reason,
we will consider the overdensity ην = nν/nν,0 separately for each neutrino and antineutrino
eigenstate and helicity, as well as for Dirac and Majorana neutrinos. This will be particularly
important when considering the constraints from experiments looking to detect the CνB,
whose sensitivities often differ depending on the properties of the neutrino being considered.

2.1 Kinematics
In general, it cannot be assumed that the CνB reference frame coincides with that of the
Earth. As such, the momentum distribution (2.1) only applies in the CνB frame and we
must necessarily transform the neutrino momentum into the Earth’s reference frame to make
accurate lab frame calculations. If the CνB is isotropic in its own reference frame, the
momentum vector of any given relic neutrino is

~̃pνi = |~̃pνi |

 cos φ̃ sin θ̃
sin φ̃ sin θ̃

cos θ̃

 , (2.5)

where φ̃ ∈ [0, 2π] and θ̃ ∈ [0, π]. Supposing that the Earth travels along the z-axis at speed
β⊕ with respect to the CνB frame, the true lab frame momentum of any neutrino can be
found through a simple Lorentz transformation

~pνi,true =

 |~̃pνi | cos φ̃ sin θ̃
|~̃pνi | sin φ̃ sin θ̃

γ⊕(|~̃pνi | cos θ̃ + β⊕Ẽνi)

 , (2.6)

where Ẽνi is the energy of relic neutrinos in the CνB frame and γ⊕ is the Lorentz factor of
the frame transformation. Unfortunately, as we cannot know the orientation of every neutrino
in the CνB, it is difficult to perform calculations using (2.6). Instead, we should use averaged
quantities, however we must be careful when doing so.

Consider, for example, the average momentum transfer ∆pνi to a test mass over several
neutrino scattering events. In the CνB frame where relic neutrinos are isotropic, we expect
that ∆pνi = 0. However, in the laboratory frame, the relative motion of the Earth induces
an asymmetry in the CνB, leading to a small momentum transfer proportional to β⊕. For
clarity, we sketch the simple 1-dimensional setup in figure 2. This quantity, averaged over
many scattering events, is therefore sensitive to the orientation of relic neutrinos. On the
other hand, cross sections depend only on the momentum of a single neutrino. This leads us
to define two averaged quantities

|~pνi | ≡ 〈|~pνi,true|〉 =
∫

(~βνi,true · ~n⊕) |~pνi,true| dΩ̃∫
(~βνi,true · ~n⊕)dΩ̃

= |~̃pνi |+O(β2
⊕), (2.7)

∆pνi ≡ |〈~pνi,true〉| =
∣∣∣∣∣
∫

(~βνi,true · ~n⊕) ~pνi,true dΩ̃∫
(~βνi,true · ~n⊕)dΩ̃

∣∣∣∣∣ = β⊕

3Ẽνi

(
4Ẽ2

νi − |~̃pνi |
2
)

+O(β2
⊕), (2.8)

which importantly are not equal. Here, the factor (~βνi,true ·~n⊕), where ~n⊕ is the normal vector
to the Earth in the lab frame, accounts for the increased flux of neutrinos in the path of the
Earth, compared to those in its wake. We additionally define the average lab frame neutrino
energy and velocity, Eνi =

√
|~pνi |2 +m2

νi and βνi = |~pνi |/Eνi , respectively. Going forward,

– 4 –
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Figure 2. 1-dimensional setup used to estimate the average momentum transfer by each scattering
event, ∆pνi

, in [18]. Left: the Earth moves at velocity β⊕ relative to the CνB frame, where neutrinos
have mean velocity β̃νi

. Right: in the Earth’s reference frame, neutrinos move with velocity β+
νi

or β−
νi
,

generating a lab frame asymmetry in the CνB.

we will use |~pνi | and Eνi when a quantity depends only on the dynamics of a single neutrino
(e.g. for calculating cross sections), and ~pνi,true for those which depend on the dynamics of
many neutrinos. The latter should then be flux-averaged using the same procedure as in (2.7)
and (2.8). Additionally, as βνi , |~pνi | and Eνi are all equal to their CνB frame counterparts to
leading order in β⊕, we will not distinguish between the two in what follows.

There are two natural choices for the CνB frame. If relic neutrinos are unclustered, the
CνB reference frame should coincide with that of the CMB, in which case we know from
measurements of the CMB dipole that β⊕ = βCMB

⊕ ' 10−3 [39, 40]. On the other hand, if
relic neutrinos are clustered then they should share a reference frame with the Milky Way
(MW), allowing us to set β⊕ = βMW

⊕ = 7.6 × 10−4 [41]. We additionally assume that the
velocity dispersion of clustered neutrinos is similar to that of objects in the MW, and so we
set βνi = βMW

⊕ .
To cluster, the velocity of neutrinos must not exceed the escape velocity of the galaxy,

βesc = 1.8×10−3 [42]. This in turn allows us to find the minimum mass above which neutrinos
will cluster for a given CνB temperature, mνi & 1.75× 103 Tνi . For Tνi = Tν,0, we find that
neutrinos only cluster with masses mνi & 0.29 eV, which lies below the upper bound on the
effective neutrino mass mν '

√∑
i |Uei|2m2

νi . 0.8 eV set by KATRIN [43], where Uei is an
element of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix. As such,
we will consider both clustered and unclustered neutrino scenarios in what follows.

3 Present day constraints

Placing model-independent constraints on the neutrino overdensity in the present epoch is
challenging. For example, a CMB constraint on the overdensity at recombination may not
still be valid today due to late decays of dark matter into neutrinos, or the decay of neutrinos
themselves. To that end, constraints on the CνB overdensity must be derived either from
present day observables or theory.

3.1 Pauli exclusion principle
As neutrinos are fermions, their local number density is bounded above by the Pauli exclusion
principle. This effect is particularly pronounced for relic neutrinos, which are expected to

– 5 –
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have macroscopic wavelengths λν = 2π/|~pν,0| ' 2.3 mm. To find this bound, we note that
each neutrino moving in an infinite square potential well of volume V occupies a volume in
momentum space Vp = π3/V . The total volume in momentum space available to be filled by
neutrinos is set by the Fermi momentum,

pf,i = βesc√
1− β2

esc
mνi ' βescmνi , (3.1)

which differs for each mass eigenstate. For a system of N c
ν clustered neutrinos, we therefore

have the condition satisfied by each neutrino degree of freedom

N c
ν (νi,s)

(
π3

V

)
≤ 1

8

(4
3πp

3
f,i

)
, (3.2)

where the factor 1/8 arises as we restrict ourselves to positive absolute momenta, whilst the
superscript c refers to the fact that we are only considering clustered neutrinos inside of the
potential well. We can translate this to a limit on the neutrino overdensity

ην (νi,s) ≤
2

9ζ(3)

(
pf,i
Tν,0

)3

+ 2
3ζ(3)

1
T 3
ν,0

∞∫
pf,i

x2 dx

exp(x/Tνi) + 1

'

1.82
(
mνi

0.2 eV

)3
+O

(
Tνi
pf,i

)
, Tνi � pf,i,(

Tνi
Tν,0

)3
+O

(
pf,i
Tνi

)
, Tνi � pf,i,

(3.3)

where the second term in the first line is the contribution from unclustered neutrinos above
the Fermi momentum. We note that the expression (3.3) naturally approaches equilibrium
scaling, ην = (Tνi/Tν,0)3, as either βesc → 0 or mνi → 0 and neutrinos are unable to cluster.

3.2 Tremaine-Gunn bound

For completeness, we note that there exists a similar bound on the neutrino overdensity.
Suppose that on macroscopic scales, clustered relic neutrinos are described by some coarse-
grained distribution f̄νi,s satisfying∫

d3pνi f̄νi,s(|~pνi |) = ncν(νi,s), (3.4)

where once again the superscript c refers to the clustered component of the CνB. From the
requirement that the maximum of f̄νi,s does not exceed the maximum Fermi-Dirac phase
space density, we find that

max
{
f̄νi,s

}
≤ max

{ 1
(2π)3

1
exp(|~pνi |/Tνi) + 1

}
= 1

2
1

(2π)3 . (3.5)

Defining the normalised coarse-grained phase space distribution satisfying f̄νi,s = ncν(νi,s)f̄Nνi,s ,
the condition (3.5) gives the constraint on the relic neutrino overdensity

ην (νi,s) ≤
1

12πζ(3)
1
T 3
ν,0

1
max{f̄Nνi,s}

+ 2
3ζ(3)

1
T 3
ν,0

∞∫
pf,i

x2 dx

exp(x/Tνi) + 1 , (3.6)
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where once more the second term is the contribution from unclustered neutrinos. This is
commonly known as the Tremaine-Gunn bound [44]. Supposing that the coarse-grained
distribution is Maxwell-Boltzmann with velocity dispersion βesc, we find that the Tremaine-
Gunn bound is weaker than (3.3) by a factor ∼ 1.88 for strongly clustered neutrinos. In
general, the Tremaine-Gunn bound is stronger than (3.3) for clustered neutrinos if

max
{
f̄Nνi,s

}
≥ 3

8πp3
f,i

. (3.7)

Similar to the Pauli limit, the first term in (3.6) should vanish as either βesc → 0 or mνi → 0.
This places an additional constraint on the coarse-grained distribution f̄νi,s .

3.3 Borexino
If the CνB is sufficiently energetic and dense, relic neutrinos could be visible at existing
neutrino experiments. Of these, Borexino is the experiment capable of probing the lowest
neutrino energies, with sensitivity down to Eν ' 20 keV [4].

Recently, Borexino has made the first measurement of solar neutrinos from the CNO
cycle [45], which dominate the solar neutrino flux in the energy range (range) 420 keV ≤ Eν ≤
1.73 MeV. The measured CNO flux at Borexino, φCNO = (7.5+3.0

−2.0)× 108 cm−2 s−1, lies slightly
above the predictions from theory in both the low (LZ) and high metallicity (HZ) Standard
Solar Models, for which the predicted fluxes are φLZ

CNO ' (3.51 ± 0.35) × 108 cm−2 s−1 and
φHZ

CNO = (4.88± 0.54)× 108 cm−2 s−1, respectively [46]. We can use these results to constrain
the CνB overdensity and temperature, assuming |~pνi | ' 3.15Tνi . Supposing that the entire
difference between the observed and predicted fluxes is due to the capture of energetic relic
neutrinos, we require that∑

ν,i,s

|Uei|2βνinν(νi,s) ≤ φCNO − φLZ
CNO, 133 keV ≤ Tνi ≤ 550 keV, (3.8)

where we have chosen to use the LZ flux as it gives the most conservative limits for CNO
cycle neutrinos. At the high energies required for relic neutrinos to mimic solar neutrinos,
βνi ' 1, giving a temperature dependent constraint on the overdensity

∑
ν,i,s

|Uei|2ην(νi,s) .
4π2

3ζ(3)T 3
ν,0

(
φCNO − φLZ

CNO

)
' (2.4+1.7

−1.2)× 10−4,

133 keV ≤ Tνi ≤ 550 keV. (3.9)

If the neutrino temperature lies outside the above range then relic neutrinos will appear in
other parts of the spectrum, for which different constraints will apply. By following this
procedure for other parts of the solar neutrino spectrum we can obtain similar constraints on
the overdensity, which we tabulate in table 1.

We can make strong arguments about the present day neutrino temperature using
the results in table 1. Increasing the temperature of relic neutrinos typically increases the
number density, either through equilibrium number density scaling, nν(νi,s) ∼ T 3

νi , or via late
time decays of additional degrees of freedom into neutrinos, where the increase in neutrino
temperature is due to entropy conservation. One would therefore naively expect that in
the case where Tνi � Tν,0, we would also have ην(νi,s) � 1, in contrast to the constraints
presented in table 1. As a result, it is reasonable to suggest that Tνi . 5 keV in order to safely
avoid these constraints.
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Flux Tνi,min (keV) Tνi,max (keV) ην,max

pp 6.35 133 (0+3
−4)× 10−3

7Be 274 274 (3± 2)× 10−4

pep 457 457 (0± 1)× 10−5

CNO 133 550 (2.4+1.7
−1.2)× 10−4

8B 550 5400 (7± 4)× 10−7

Table 1. Constraints on the CνB overdensity from the solar neutrino spectrum as measured by
Borexino, where the parameter ην,max is understood to replace the r.h.s. of (3.9). In all cases, we use
the theoretical flux values from the LZ model and measured fluxes from [45–47].

3.4 Other constraints
The bounds (3.3) and (3.6) are the only model-independent constraints that can placed on the
relic neutrino overdensity from theory. However, these can be supplemented with bounds on
the neutrino mass to further restrict the allowed parameter space. For stable neutrinos, the
strongest bounds on the neutrino mass come from cosmology [1], which require that

∑
imνi ≤

0.12 eV. This constraint is relaxed to
∑
imνi . 1 eV if neutrinos are allowed to decay [48]. An

additional constraint on the mass of Majorana neutrinos comes from experiments searching
for neutrinoless double beta decay (0νββ), for which the rate is proportional to the magnitude
of effective Majorana mass, mββ =

∑
i U

2
eimνi [49]. The strongest bound on the neutrino

mass using 0νββ is set by KamLAND-Zen, |mββ | ≤ 0.17 eV [50]. By 2024, the KATRIN
collaboration expects to be sensitive to effective neutrino masses mν ≤ 0.2 eV [51], which will
become the strongest constraint on the mass of unstable Dirac neutrinos. Future experiments
such as Project 8 [52], HOLMES [53] and ECHo [54] aim to improve this bound further,
with the potential to probe effective neutrino mass scales as low as mν ≤ 40 meV. The
Simons Observatory will improve upon the cosmological neutrino mass constraints with a
goal sensitivity of

∑
imνi ≤ 90 meV [55], capable of ruling out the inverted mass hierarchy.

Neutrino mass experiments utilising tritium beta decay such as KATRIN and those at
Troitsk [56] and Los Alamos [57] are also able to place model-independent constraints on the
relic neutrino overdensity by searching for the capture process 3H+νe → 3He++e−. We discuss
this at length in section 5.1. To a good approximation,3 assuming the standard cosmological
history presented in section 2, the overdensity is constrained to η̃ν(νi,L) . 1.3×1011, 8.9×1013

and 1.8× 1014 by KATRIN [58], Troitsk [59] and Los Alamos [57] respectively. These bounds
do not apply for antineutrinos and become a constraint on the combined left and right helicity
densities under the Majorana neutrino hypothesis, still assuming the standard scenario. In
this case, with η̃ν(νMi,L) = η̃ν(νMi,R), the constraints are stronger by a factor of two.

We plot all present day constraints on the CνB overdensity in figures 3 and 4 assuming
the standard scenario and β⊕ = βCMB

⊕ , where we note that the choice β⊕ = βMW
⊕ makes very

little difference. The limits labelled ∆m2
ij (orange) refer to the minimum mass constraints

from oscillation experiments, whilst those labelled mν(S/U) refer to the maximum mass
allowed by cosmology (green, purple) and KamLAND-Zen (red), for stable/unstable neutrinos.
The dotted line shows the KATRIN projection for Dirac neutrinos at three years, which is a

3The parameter combination constrained by neutrino mass experiments is given on the l.h.s. of (5.6).
This can be re-expressed in terms of the CνB frame overdensities using (5.36) and (5.37), and then solved
for η̃ν(νDi,L) in the standard scenario with η̃ν(νDi,R) = 0, assuming the same overdensity for all three mass
eigenstates. For Majorana neutrinos, the tritium experiments approximately constrain

∑
s
η̃ν(νMi,s) instead.
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Figure 3. Present day constraints on the CνB frame relic neutrino overdensity in the normal mass
hierarchy, assuming the standard scenario and β⊕ = βCMB

⊕ . The KATRIN, Troitsk and Los Alamos
overdensity bounds shown assume Dirac neutrinos, and are stronger by a factor of two under the
Majorana neutrino hypothesis. See the text for a full description of the figure.
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Figure 4. Present day constraints on the CνB frame relic neutrino overdensity in the inverted mass
hierarchy, assuming the standard scenario and β⊕ = βCMB

⊕ . The KATRIN, Troitsk and Los Alamos
overdensity bounds shown assume Dirac neutrinos, and are stronger by a factor of two under the
Majorana neutrino hypothesis. See the text for a full description of the figure.
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factor of two stronger under the Majorana neutrino hypothesis. It is immediately obvious
that large overdensities η̃ν(νi,s) � 1 are completely ruled out for stable neutrinos by the
exclusion principle, whilst for unstable neutrinos the combination of constraints requires
that η̃ν(νi,s) . 10. For warmer neutrinos, these constraints become weaker by a factor
∼ (Tνi/Tν,0)3, which could still allow for significant overdensities. To our best knowledge,
there are no present day constraints that can be placed on the relic neutrino temperature.
However, it is reasonable to suggest that the CνB temperature should be Tνi . 5 keV, given
the strength of the constraints on the overdensity set by Borexino above this temperature.

4 Cosmological constraints

The presence of a relic neutrino overdensity at large redshifts could significantly modify the
cosmological evolution of the universe. As such, if relic neutrinos do not interact strongly
since decoupling and as a result maintain a similar distribution today, cosmology could
provide strong constraints on the present day CνB overdensity. In this section we review the
constraints on the CνB overdensity from cosmology, which may still hold today.

These constraints can be modelled by assuming a neutrino degeneracy parameter,4 ξνi ,
proportional to the chemical potential. This leads to a modified relic neutrino number density,
as well as a neutrino-antineutrino asymmetry through the modified distribution functions

fνi(|~pνi |)→ f ξνi(|~pνi |) = gνi
exp(|~pνi |/Tνi − ξνi) + 1 , (4.1)

fν̄i(|~pνi |)→ f ξν̄i(|~pνi |) = gνi
exp(|~pνi |/Tνi + ξνi) + 1 , (4.2)

for neutrinos and antineutrinos, respectively. As we cannot distinguish between neutrino
and antineutrino for Majorana fermions, only Dirac neutrinos can have non-zero chemical
potential. The resulting overdensities are given by

∑
s

η̃ν(νDi,s) = 4π2

3ζ(3)T 3
ν,0

∫
d3~pνi
(2π)3 f

ξ
νi(|~pνi |)

= − 4gνi
3ζ(3)

(
Tνi
Tν,0

)3

Li3
(
−eξνi

)

= gνi

(
Tνi
Tν,0

)3(
1 + π2

9ζ(3)ξνi +O
(
ξ2
νi

))
,

(4.3)

where the antineutrino overdensity is found by making the replacement ξνi → −ξνi and Lik(z)
denotes the polylogarithm, defined by

Lik(z) =
∞∑
n=1

zn

nk
. (4.4)

Introducing a chemical potential also modifies the fit to the neutrino masses, so the mass
bounds from cosmology given in section 3 do not necessarily apply here. Where appropriate,
we will give the neutrino mass bounds for each fit.

We also note that a large degeneracy parameter can modify the neutrino decoupling
temperature due to Pauli blocking suppressing certain interactions. For a significantly large

4This is not to be confused with gνi , which is the number of neutrinos per momentum state.
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chemical potential, ξνi & 14, neutrinos decouple before muon-antimuon pair production
becomes kinematically unfavourable [60], leading to an extra reheating of the photon thermal
bath relative to the neutrinos. As a result, the ratio Tγ = (11/4)1/3 Tν no longer holds, and
we expect Tνi < Tν,0. This scenario becomes more extreme as the chemical potential increases
further and the decoupling temperature crosses more annihilation thresholds.

4.1 Big Bang nucleosynthesis
During the radiation-dominated era, protons and neutrons are kept in equilibrium through
weak interactions until they freeze-out at a temperature Tdec ' 0.7 MeV. Due to the presence
of energetic photons, these are unable to form stable nuclei until the temperature drops
below TBBN ' 0.07 MeV, at which point almost all neutrons become locked up in 4He. In
the intermediate phase, neutrons decay to protons with lifetime τn ' 879 s, decreasing the
neutron-proton ratio from its value at freeze-out. As a result, modifying the time between
decoupling and Big Bang nucleosyntheis (BBN) will affect the neutron-proton ratio and in
turn the primordial element abundances.

It should be clear from (4.3) that the introduction of a chemical potential increases
the energy density of relic neutrinos, appearing as a contribution to the effective number of
neutrino species, Neff , at order ξ2

νi . At early times this drives the expansion and cooling of
the universe, reducing the time between freeze-out and BBN and subsequently increasing the
4He mass fraction, Yp. An enhanced expansion rate could also modify structure formation, as
density perturbations will not grow enough to form galaxies in a universe that expands too
quickly [60]. However, assuming the same temperature for neutrinos and antineutrinos, these
contributions enter at O(ξ2

νi), which are largely irrelevant for ξνi � 1.
A much more significant effect occurs due to a neutrino-antineutrino asymmetry during

equilibrium. Protons and neutrons are held in equilibrium through the processes p+ν̄e ↔ n+e+

and n + νe ↔ p + e−, which proceed at significantly different rates for non-zero electron
neutrino chemical potential, ξνe . The result is a neutron-proton fraction that depends on
both magnitude and sign of ξνe through [60]

nn
np

∣∣∣∣∣
eq

' exp
(
−mn −mp

TSM
− ξνe

)
, (4.5)

where TSM is the temperature of the SM thermal bath. Between decoupling and the onset of
BBN, neutrons are allowed to decay. By using the temperature-time relation t1/t2 = (T2/T1)2

that holds during radiation-domination, we find that the neutron fraction at the start of BBN
satisfies

RBBN(ξνe) ≡ exp
(
−mn −mp

Tdec
− ξνe −

tdec
τn

[
1−

(
Tdec
TBBN

)2
])
' 0.141e−ξνe , (4.6)

where tdec ' 1 s is the time at weak interaction freeze-out. The degeneracy parameter can
therefore have a profound effect on the neutron fraction, which assuming that all neutrons
are locked up in 4He during BBN translates into the helium mass fraction

Yp(ξνe) = 2RBBN(ξνe)
1 +RBBN(ξνe)

= 0.247− 0.216 ξνe +O(ξ2
νe). (4.7)

Given that present day measurements find Yp = 0.2449±0.0002 [61], a large chemical potential
is strongly disfavoured, preferring ξνe ∼ O(10−2).
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Model I Model II
Parameter w/o GC w/ GC w/o GC w/ GC∑
imνi (eV) < 0.24 < 0.64 < 0.18 < 0.52
ξν 0.10± 0.54 0.02± 0.50 0.05± 0.56 −0.02± 0.51∑

s η̃ν(νDi,s) 1.10± 0.67 1.02± 0.57 1.05± 0.68 0.98± 0.57∑
s η̃ν(ν̄Di,s) 0.91± 0.36 0.98± 0.36 0.96± 0.39 1.02± 0.38

Table 2. Constraints on the relic neutrino overdensity resulting from the introduction of a degeneracy
parameter ξνi using the fits performed in [62].

The authors of [62] use a combination of data from Planck 2015 [63], baryon acoustic
oscillation measurements (BAO) [64–67], the local value of the Hubble parameter [68] and
the abundance of galaxy clusters (GC) [69–77] to determine ξνi under the assumptions that
Tνi = Tν,0, gνi = 1 and ξνi = ξν for all three mass eigenstates. We present their findings in
table 2, with and without GC data which are known to be in tension with CMB data [62],
for both their Model I and II along with the constraint on the CνB overdensity derived
using (4.3). As expected, the fits strongly favour ξνi ∼ O(10−2) and subsequently ηDν ∼ O(1).
Similar bounds −0.018 ≤ ξνe ≤ 0.008 are found in [78].

It has been demonstrated in [79] that neutrino oscillations reduce asymmetry in the
degeneracy parameter between the three neutrino states, such that ξν should take a similar
value for νµ and ντ . However, later studies [80, 81] have argued that a full treatment of neutrino
oscillations still allows for large ξνµ and ξντ in spite of a small ξνe . The strongest constraint
on ξνµ and ξντ therefore comes from ∆Neff . In the standard scenario, the contribution of ξνα
to ∆Neff is given by

∆N ξ
eff =

∑
α

[
30
7

(
ξνα
π

)2
+ 15

7

(
ξνα
π

)4
+O(ξ6

να)
]
, (4.8)

which using the 95% CL result ∆Neff < 0.30 from Planck 2018 [1] translates to |ξνα | . 0.82.
Including the BBN constraint on ξνe and using nν(να,s) =

∑
i |Uiα|2nν(νi,s), we find the

constraints on the relic neutrino overdensity

0.984 ≤
∑
i,s

|Uei|2η̃ν
(
νDi,s

)
≤ 1.007, (4.9)

0.46 ≤
∑
i,s

|Uαi|2η̃ν
(
νDi,s

)
≤ 2.06, α = µ, τ. (4.10)

By substituting in the values of the PMNS matrix, the constraints (4.9) and (4.10) can be used
to constrain the individual overdensities. We show the allowed region in figure 5. Clearly, the
constraints from BBN and ∆Neff are strongest for ν1 due to its large overlap with νe. For the
remaining two states, however, overdensities as large as

∑
s η̃ν ∼ O(3) are permitted in both

mass hierarchies. Several other works, e.g. [82, 83], find bounds on the neutrino degeneracy
parameters, and subsequently the overdensities, that are of the same order of magnitude.

For completeness, we also note that ∆Neff gives constraints on the relic neutrino
temperature during decoupling. Assuming no chemical potential, gνi = 1 and constant
temperature Tν for all three mass eigenstates, Neff scales with the neutrino temperature as
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Figure 5. Cosmological constraints on the relic neutrino overdensity due to a degeneracy parameter
ξνi

in the
∑
s η̃ν(ν2,s)-

∑
s η̃ν(ν3,s) plane, where the colour shows the mean allowed magnitude of∑

s η̃ν(ν1,s). Any point in the white regions is excluded. Left: in the normal mass hierarchy. Right: in
the inverted mass hierarchy.

Neff ∼ T 4
ν . We therefore find the relation

Neff
Neff,0

=
(
Tν
Tν,0

)4

, (4.11)

where Neff,0 = 3.044 is the predicted value of Neff in standard cosmology, taking both neutrino
oscillations and finite-temperature quantum electrodynamic effects into account [84–87], and
whose value is largely insensitive to the CP-violating phase [88]. Defining ∆Neff = Neff−Neff,0,
we find

Tν
Tν,0

≤
(

1 + ∆Neff
Neff,0

) 1
4

' 1.024, (4.12)

or equivalently Tν ≤ 0.172 meV. Assuming equilibrium number density scaling (2.2), we
can also translate this to the overdensity constraint

∑
s η̃ν(νi,s) ≤ 1.073. If the degenerate

temperature constraint is relaxed, however, a combination of states with Tνi < Tν,0 and
Tνi > Tν,0 could still reproduce the measured value of Neff . In the most extreme case with
two neutrinos at temperature Tνi = 0 and a third, hot, neutrino state, still with gνi = 1, the
temperature bound becomes Tνi ≤ 0.227 meV. This corresponds to

∑
s η̃ν(νi,s) ≤ 2.47.

Despite their strength, we once again stress that these constraints only hold if the CνB
is largely unmodified between the early universe and today. Extended scenarios, e.g. late time
decays to or of neutrinos, could significantly alter the CνB from its profile in the early universe.

4.2 Baryon acoustic oscillations

The presence of relativistic, weakly interacting degrees of freedom, such as neutrinos, in the
early universe has profound effects on the primordial photon-baryon plasma. Due to a lack of
interactions, hot neutrinos free-stream with speed βνi ' 1, whilst sound waves in the plasma
propagate at a speed βs ' 1/

√
3. Neutrinos therefore travel ahead of the sound horizon,

leaving metric perturbations in their wake that are felt by the succeeding sound waves [89–91].
The result is a phase shift in the BAO spectrum that depends on the wavenumber, ks, which
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can be parameterised as [89, 90]

φBAO(ks) ≡ bBAOF(ks), (4.13)

where bBAO is the amplitude of the phase shift and F(ks) denotes its wavenumber dependence.
The amplitude of the phase shift depends on Neff , and is normalised such that bBAO = 1
corresponds to the SM prediction, Neff = 3.046, whilst bBAO = 0 and the limit bBAO → 2.45
correspond to Neff = 0 and Neff →∞, respectively. Attributing the phase shift to neutrinos,
the amplitude of the phase shift can be written as

bBAO = 1
εfid

ρν
ρν + ργ

, (4.14)

where ρν =
∑
ν,i,s |~pνi |ñν(νi,s) and ργ are the total energy density in neutrinos and photons,

respectively, whilst εfid ' 0.407 is the SM prediction for fractional energy density in neutrinos
during the radiation-dominated era.

∑
ν,i,s

|~pνi |
|~pν,0|

η̃ν(νi,s) = 16
7

(
Tγ,0
Tν,0

)4
bBAOεfid

1− bBAOεfid
, (4.15)

where we have used the present day photon energy density, ργ = π2T 4
γ,0/15 and we remind

the reader that |~pν,0| ' 3.15Tν,0. As should be expected, the right hand side of (4.15) gives a
value of six for bBAO = 1.

Using the BOSS DR12 dataset [92] and without making any assumptions about the
underlying cosmology, the authors of [89] find the value bBAO = 1.2± 1.8. The central value
of this measurement predicts a set of overdensities satisfying ηtot ' 8.3, however, the 1σ error
bounds allow for the full range of values ηtot ∈ [0,∞], where ηtot is understood to be the
left hand side of (4.15). By instead assuming a ΛCDM cosmology, for which the standard
scenario applies with |~pν,i| = |~pν,0| and the number density ratios given in (2.3) and (2.4), the
same study [89] finds a more restricted value bBAO = 2.22± 0.75. At 99% significance, this
gives the bound on a common overdensity for the six populated neutrino states of

η̃ν(νi,s) ≥ 0.19, (4.16)

which allows for scenarios with significantly diminished cosmic neutrino backgrounds. However,
the same result excludes ην(νi,s) = 0 at 99.69% CL or 2.96σ. Importantly, (4.16) represents
the strongest lower bound on the Majorana neutrino overdensity, as the bounds given in (4.9)
and (4.10) only apply to Dirac neutrinos. As with the other cosmology bounds, however, (4.16)
only applies to scenarios in which the CνB is largely unmodified between radiation-domination
and the present era.

4.3 CMB polarisation
Photons scatter on neutrinos at a rate proportional to (αGF )2, which is enhanced in the early
radiation-dominated universe where both the relic neutrino and photon number densities
are large. As relativistic neutrinos are almost exclusively left helicity, the CMB photons
that scatter on relic neutrinos are polarised [93]. Several studies [94–96] suggest that this
could contribute to the B-mode power spectrum of the CMB at large multipole moments
50 . l . 200, modifying the ratio of tensor-scalar ratio rTS. Assuming the standard CνB
scenario, the authors of [95] estimate the contribution to rTS from this effect to be ∼ 0.025,
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which is currently constrained using combined measurements from Planck [97] and BICEP [98]
to rTS < 0.032 [99]. Both the Simons Observatory and CMB-S4 forecast sensitivity to
rTS ∼ O(10−3) [55, 100, 101], allowing them to place constraints on this effect.

The magnitude of the contribution to the B-mode spectrum depends on the averaged
relic neutrino number density,

n̄ν(νi,s) =
zLSS∫
0

ñν(νi,s)(z)
(1 + z)H(z) dz, (4.17)

where zLSS ' 1100 is the redshift at the last scattering surface and H(z) is the Hubble
parameter. Under the assumption that relic neutrinos do not interact strongly since decoupling,
the neutrino number density scales as ñν(νi,s)(z) = (1 + z)3ñν(νi,s). In this case, n̄ν will be
proportional to the present day number densities, allowing us to place constraints. However,
as the integrand of (4.17) is likely to peak strongly at large z, if we relax the assumption of
minimally interacting neutrinos since decoupling then the CMB polarisation provides very
little insight into the present day number density. Perhaps more interestingly, measurements
indicating no contribution from this effect would indicate a lack of polarisation in the CνB,
particularly at early times when they are relativistic. As relativistic neutrinos are expected
to be exclusively left helicity, this would require significant new physics. Finally, we note that
this effect is expected to be twice as large for Majorana neutrinos than for Dirac neutrinos [93].

5 Direct detection proposals

There exist several unique proposals to hunt for the CνB, despite the multitude of difficulties
in observing relic neutrinos. Each of these is sensitive to different regions of the temperature,
mass and overdensity parameter space, with some capable of offering additional information
about the Dirac or Majorana nature of neutrinos. Here we discuss direct detection proposals,
where the product of a relic neutrino interaction is directly observed.

5.1 PTOLEMY

The PTOLEMY experiment aims to detect the CνB by capturing electron neutrinos on a
100 g tritium target in the process 3H + νe → 3He+ + e− [7], as first proposed by Weinberg in
1963 [6] and later explored alongside several other candidate targets in [102]. Importantly, this
process has no energy threshold, making the capture of relic neutrinos possible independently
of their mass and temperature. The signature at PTOLEMY is an electron emitted with
energy ECνB,i = Kend +me +mνl + Eνi [37], where me and mνl are the electron and lightest
neutrino mass, respectively. Including the effects of nuclear recoil, the endpoint kinetic energy5

of electrons emitted in tritium β-decay is given by

Kend = QH −
meQH
m3H

− Q2
H

2m3He
. (5.1)

This takes the approximate value Kend ' 18.59 keV, and is given in terms of the energy release
QH = m3H−m3He−me−mνl , where m3H and m3He denote the nuclear masses of tritium and
helium-3 in turn. An excess of electrons with energies mνl + Eνi beyond the tritium β-decay

5Due to nuclear recoil, Kend is smaller than the Q-value of tritium QH ' 18.59 keV by ∼ 3.4 eV [37, 103].
As this difference is larger than the neutrino mass, we use Kend in our analysis instead of QH.
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endpoint energy, Kend +me, would therefore signal the capture of low energy neutrinos, such
as those from the CνB.

Following the formalism of [37], the neutrino capture rate on tritium per mass eigenstate is

ΓCνB(νi,s) = NT |Uei|2σ̄(ECνB,i)As(βνi)nν(νi,s), (5.2)

where NT ' 2× 1025 is the number of active tritium atoms in the target and σ̄ is the neutrino
capture cross section. The function As encodes the helicity dependence of the cross section

As(βνi) =
{

1− sβνi , ν = νD,

1 + sβνi , ν = ν̄D,
(5.3)

where s = ±1 for right (+) and left (-) helicity neutrinos, respectively. For Majorana neutrinos,
As should be chosen according to the equivalent Dirac neutrino process. We immediately
see from (5.2) that PTOLEMY is sensitive to the helicity composition of the CνB. On the
contrary, as tritium can only be used to capture neutrinos, PTOLEMY is unable to place
any constraints on antineutrinos.

The capture cross section is given in terms of the final state electron energy and 3-
momentum, Ee and ~pe, by

σ̄(Ee) = G2
F

2π |Vud|
2F (Z,Ee)

m3He
m3H

C(|~q|2)Ee|~pe|, (5.4)

where |Vud| ' 0.974 is an element of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [104], |~q|2 is the squared momentum transfer and C(|~q|2 ' 0) ' 5.49 contains details of
nuclear structure [37]. The Fermi function accounts for electromagnetic interactions between
the final state electron and a nucleus with atomic number Z, and is given by

F (Z,Ee) = 2(1 + Sβ)
Γ(1 + 2Sβ)2 (2|~pe|ρN )2Sβ−2 e−πηβ |Γ(Sβ − iηβ)|2, (5.5)

where ηβ = −ZαEe/|~pe|, Sβ =
√

1− (αZ)2 depend on the fine-structure constant α, and
ρN ' 1.2A1/3 fm is the nuclear radius, which depends on the final state mass number A. At
the endpoint, the cross section (5.4) takes the constant value σ̄(ECνB) ' 3.84 × 10−45 cm2

provided that Eνi � Kend.
By summing over the mass eigenstates6 and neglecting the neutrino energy dependence

of the capture cross section, we find that PTOLEMY will be able to set the CνB overdensity
constraint

∑
i,s

|Uei|2As(βνi)ην(νi,s) ≤
4π2

3ζ(3)T 3
ν,0

N

NT

1
t

1
σ̄(ECνB) ' 0.244N

(1 y
t

)
, (5.6)

after a runtime t, if N events are required for statistical significance. As the counting error
increases as

√
N , the significance scales like N/

√
N =

√
N . We therefore require N ' 25

events for a 5σ discovery of the CνB. Interestingly, whilst the capture rate (5.2) does not
6If PTOLEMY is able to resolve the individual mass splittings, ∆m2

ij , then we do not perform this sum.
Resolving the mass splittings requires an energy resolution ∆�

√
∆m2

ij , whilst PTOLEMY is expected to
achieve an energy resolution ∆ ' 0.05 eV [105, 106]. As such, we will retain the sum for the remainder of
this work.
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explicitly depend on the Dirac or Majorana nature, the standard scenario predicts that the
capture rate at PTOLEMY will differ between Dirac and Majorana neutrinos. As we expect
only left helicity Dirac neutrinos in the standard scenario, but an additional right helicity
abundance if neutrinos are Majorana in nature, the event rate at PTOLEMY should be twice
as large for Majorana neutrinos as it is for Dirac neutrinos. This distinction vanishes for large
neutrino velocities as the right helicity Majorana neutrino flux becomes non-interacting.

In order to place any constraints at all, however, PTOLEMY needs sufficient energy
resolution to distinguish between β-decay and relic neutrino capture electrons. This roughly
corresponds to an energy resolution requirement ∆ . Eνi + mνl to resolve the signal as-
sociated with neutrino mass eigenstate νi. At PTOLEMY, the energy resolution goal is
∆ = 0.05 eV [105, 106], such that for Eνi ' mνi the neutrino capture signal due to the heaviest
neutrino state will only be resolvable if the lightest neutrino mass satisfies

mνl &
∆2 −∆m2

hl

2∆ , (5.7)

where ∆m2
hl = ∆m2

31 (NH) or ∆m2
21 −∆m2

31 (IH) is the squared mass splitting between the
heaviest and lightest neutrino mass eigenstates. Below this minimum mass threshold, no
signal will be seen at all. With ∆ = 0.05 eV, the right hand side of (5.7) is negative in both
the NH and IH scenarios, such that with this naive estimate we expect that PTOLEMY
should always be able to resolve at least some signal neutrinos.

More rigorously, events at PTOLEMY will be collected in histogram bins of finite width
∆, each centred on energy Ec. In order to see the signal from relic neutrino capture for a
given bin, PTOLEMY requires a signal-noise ratio

rSN = ΓsCνB(Ec,∆)
Γsβ(Ec,∆) & rSN,0, (5.8)

where Γsν(Ec,∆) and Γsβ(Ec,∆) are the finite-energy-resolution-smeared neutrino capture and
tritium β-decay rates in the bin centred on Ec, respectively, and rSN,0 is the minimum signal
noise ratio required for a discovery, which we leave as a free parameter. The smeared capture
rates are in turn defined by [37, 107]

ΓsCνB(Ec,∆) = 1√
2πσ

Ec+ ∆
2∫

Ec−∆
2

dE′e

∑
i,s

ΓCνB(νi,s) exp
[
−(E′e − ECνB,i)2

2σ2

] , (5.9)

Γsβ(Ec,∆) = 1√
2πσ

Ec+ ∆
2∫

Ec−∆
2

dE′e

Eend∫
me

dEe

(
dΓβ
dEe

exp
[
−(E′e − Ee)2

2σ2

])
, (5.10)

where σ = ∆/
√

8 ln 2 is the standard deviation of the Gaussian smearing envelope. The
β-decay spectrum is [108]

dΓβ
dEe

' 1
π2NT

∑
i

|Uei|2σ̄(ECνB)Hβ(Ee,mνi), (5.11)
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with the shape function defined by

Hβ(Ee,mνi) = 1−m2
e/(Eem3H)

(1− 2Ee/m3H +m2
e/m

2
3H)2

√
y

(
y + 2mνim3He

m3H

)
×
(
y + mνi

m3H
(m3He +mνi)

)
,

(5.12)

where y = Eend −Ee and Eend = Kend +me. The largest signal-noise ratio will be found in a
bin centred on the most energetic mass eigenstate, Ec = Em ≡ max {ECνB,i}, for which the
smeared neutrino capture rate (5.9) reduces to

ΓsCνB(Em,∆) =
∑
i,s

ΓCνB(νi,s)G(∆Eνi ,∆), (5.13)

where ∆Eνi = Eνi −Eν,max is the difference in energy between mass eigenstate i and the most
energetic CνB neutrino state, which for non-relativistic neutrinos will be of order the mass
splittings. The integral function G is defined by

G(∆Eνi ,∆) = 1
2

{
erf
[(

1 + 2∆Eνi
∆

)√
ln 2

]
+ erf

[(
1− 2∆Eνi

∆

)√
ln 2

]}
, (5.14)

which takes the approximately constant value G(∆Eνi ,∆) ' 0.761 for ∆Ei � ∆. With the
same choice, Ec = Em, we can perform the integral over E′e in (5.10), yielding

Γsβ(Em,∆) =
Eend∫
me

dEe
dΓβ
dEe

G(∆Em,∆), (5.15)

where ∆Em = Em − Ee. The energy resolution requirement therefore corresponds to the
complimentary constraint on the CνB overdensity

∑
i,s

|Uei|2As(βνi)ην(νi,s)G(∆Eνi ,∆) ≤ 4rSN,0
3ζ(3)

1
T 3
ν,0

Eend∫
me

dEe
∑
i

|Uei|2Hβ(Ee,mνi)

×G(∆Em,∆).

(5.16)

As both of the conditions
∑
i,s ΓCνB(νi,s)t ≥ N and (5.8) need to be satisfied to make a

statistically significant discovery of the CνB, the constraint on the relic neutrino overdensity
for a given set of input parameters should be chosen as the weakest bound of (5.6) and (5.16).
The efficacy of PTOLEMY has also been explored in [109] for several specific CνB scenarios.

The energy resolution strongly limits the range of neutrino masses that could be observed
at PTOLEMY, with the signal-noise ratio rapidly diminishing for mνi � ∆. To that end, a
more recent work [110] has suggested hunting for relic neutrinos using angular correlations in
neutrino capture on β-decaying nuclei. By considering the polarisation of the target nucleus,
along with the polarisation of the outgoing electron, the authors of [110] find additional terms
proportional to products of ~βνi , ~βe, ~nN , ~nνi , ~ne that contribute to (5.3), where ~n denotes the
direction of the particle spin in its own reference frame.

As a result of the periodic motion of the Earth with respect to the CνB rest frame,
arising from the rotation of the Earth about the Sun and its own axis, these quantities all
have a time dependence. This leads to a time dependent capture rate, which could help to
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distinguish electrons originating from neutrino capture from those emitted in β-decays. For a
peculiar velocity β⊕ ' 10−3 and neutrino masses mνi . 0.05 eV, below the energy resolution
of PTOLEMY, the authors predict that the capture rate will vary by ∼ 0.1%. Given that for
the standard scenario without overdensities, approximately four events are expected per year
for Dirac neutrinos, and eight for Majorana neutrinos [37], this small variation will have little
to no effect on the capture rate at PTOLEMY.

To observe a consistent variation of one event per year due to this effect would require
overdensities ην(νDi,s) & 250, or ην(νMi,s) & 125, corresponding to a few thousand neutrino
captures per year. As we will show in section 7, these overdensities lie below those required
for the standard PTOLEMY setup to be sensitive to the CνB in the region where mνi � ∆,
such that this method could improve the efficacy of PTOLEMY. More concerning, however,
is that variations in the stochastic background of β-decay electrons will far exceed variations
due to the time dependent signal. This is also taken into account in [110], where the authors
estimate that with appropriate signal processing techniques, a signal-noise ratio of

rSN '
9
40

1
Γsβ(Ec,∆) (ACνBΓsCνB(Ec,∆))2 t & rSN,0, (5.17)

can be achieved, where ACνB is the amplitude of the time variation and therightmost inequality
denotes the requirement to make a discovery using this technique. Note that unlike the
standard approach to PTOLEMY, this signal-noise ratio increases with experimental runtime
as well as the number of targets, NT , through the additional factor of the neutrino capture
rate. By substituting the smeared capture rates (5.9) and (5.10) into (5.17), we find the limit
that can be set on the overdensity using this method

∑
i,s

|Uei|2As(βνi)ην(νi,s)G(∆Eνi ,∆)≤ 8
√

10π
9ACνBζ(3)

1
T 3
ν,0

√
rSN,0

NT σ̄(ECνB)t

×

 Eend∫
me

dEe
∑
i

|Uei|2Hβ(Ee,mνi)G(∆Em,∆)


1
2

.

(5.18)

As stated previously, we also need sufficient events to observe a time variation at all, which in
line with (5.6) will correspond to the complimentary constraint

∑
i,s

|Uei|2As(βνi)ην(νi,s) ≤ 0.244
(

N

ACνB

)(1 y
t

)
. (5.19)

In line with this reasoning, the limit on overdensity that can be set using this method will be
the weakest of the bounds (5.18) and (5.19). In practice, the value of ACνB will depend on
several properties including the neutrino mass, temperature and the peculiar velocity of the
Earth. For simplicity, however, we will use the constant value ACνB = 0.001 for the remainder
of this paper, which holds in the low mass regime where this method is expected to be most
effective. Clearly, this method offers an additional window through which the CνB may be
detected, which with an appropriate choice of target may be able to set strong bounds on relic
neutrinos in the regions of parameter space where the finite energy resolution of PTOLEMY
becomes problematic. Finally, we note that this result may be further improved with more
advanced signal processing techniques [110, 111].
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A similar technique to PTOLEMY using neutrino capture on both β+ and electron-
capture-decaying (EC) nuclei has been explored in [102] and [112], which could instead be
used to detect antineutrinos in the CνB. Here, the signal is an excess of final state positrons
with energies mνl +Eνi beyond the endpoint energy of the decay process, analogous to that of
PTOLEMY. In addition to the decay positrons, however, there will also be a background of
photons originating from the de-exciting EC daughter nuclei, which may complicate detection
e.g. through scattering on an outgoing positron. Nevertheless, this remains an alternative
method through which the CνB could be detected using a thresholdless process. We also note
that [112] makes a very important point regarding neutrino capture on nuclei at rest. If the
target is stable but has a decay threshold smaller than twice the neutrino mass, neutrinos
of all energies can be captured without background. This would constitute an unparalleled
technique to detect the CνB if a suitable target could be found.

5.2 Stodolsky effect

Another widely discussed proposal to detect the CνB uses the elastic scattering of relic
neutrinos on macroscopic targets. This can be roughly decomposed into two effects. The
Stodolsky effect [15–17], in which the presence of a neutrino background acts as a potential
that changes the energy of atomic electron spin states, analogous to the Zeeman effect in the
presence of a magnetic field. The second uses neutral current scattering of relic neutrinos
on a test mass [16–26], which is considerably enhanced by a coherence factor due to the
macroscopic de Broglie wavelength of relic neutrinos [16–22], λν ∼ O(mm). Both of these
effects may be observed from the small momenta that they impart to the target.

We begin by focusing on the Stodolsky effect. At low energies, the Hamiltonian density
for neutrino-electron interactions in the flavour basis is

H(x) = GF√
2

[∑
α

ν̄αγµ(1− γ5)να ēγµ(geV − geAγ5)e+ ν̄eγµ(1− γ5)e ēγµ(1− γ5)νe

]
, (5.20)

where geV = −1/2+2 sin2 θW and geA = −1/2 are the electron vector and axial-vector couplings
to the Z-boson, respectively, given in terms of the Weinberg angle θW . The first term in (5.20)
contains flavour diagonal neutral current interactions, whilst the second term accounts for
charged current interactions, in which only electron neutrinos can partake. It is instructive
to switch to the mass basis as we are interested in relic neutrinos, which have long since
decohered to mass eigenstates. To do so, we note that να =

∑
α Uαiνi and use the unitarity

of the PMNS matrix,
∑
α U
∗
αiUαj = δij , to find

H(x) = GF√
2
∑
i,j

ν̄iγµ(1− γ5)νj ēγµ(Vij −Aijγ5)e, (5.21)

where we have introduced Vij = δijg
e
V +U∗eiUej and Aij = δijg

e
A +U∗eiUej for brevity. In going

from (5.20) to (5.21), we have also applied a Fierz transformation to the charged current
to separate the neutrino and electron currents, allowing for both the charged and neutral
currents to be combined into a single term.

To leading order in H(x), the energy shift of an electron with spin se and momentum ~pe in
the presence of a neutrino background with approximately uniform momentum ~pνk is given by

∆Ee(~pe, se) =
∑
ν,k,s

Nν(νk,s)
∫
d3x
〈ese , νk,s|H(x)|ese , νk,s〉
〈ese , νk,s|ese , νk,s〉

, (5.22)
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where normal ordering is implied and we have summed over all neutrinos and antineutrinos,
mass eigenstates and helicities.

We use relativistic normalisation for the external states

|ese〉 =
√

2Eea†e(~pe, se) |0〉 , (5.23)

|νk,s〉 =
√

2Eνka
†
ν(~pνk , s) |0〉 , (5.24)

|ν̄k,s〉 =
√

2Eνkb
†
ν(~pνk , s) |0〉 , (5.25)

where a†(~p, s) and b†(~p, s) are the creation operators for particles and antiparticles with
momentum ~p and helicity s respectively. Along with their respective annihilation operators,
a(~p, s) and b(~p, s), these satisfy the standard anticommutation relations{

ai(~p, r), a†j(~q, s)
}

=
{
bi(~p, r), b†j(~q, s)

}
= (2π)3δ(3)(~p− ~q)δrsδij , (5.26)

with all other anticommutators vanishing identically. With these definitions, the denominator
of (5.22) trivially evaluates to

〈ese , νk,s|ese , νk,s〉 = 4EeEνkV
2, (5.27)

where V = (2π)3δ(3)(~0) is the volume. This is formally infinite, but we will see that the
volume factors cancel later on. To evaluate the numerator of (5.22), we first define the field
operators

ψD(x) =
∫

d3p

(2π)3
1√
2Ep

∑
s

(
a(~p, s)u(p, s)e−ip·x + b†(~p, s)v(p, s)eip·x

)
, (5.28)

ψ̄D(x) =
∫

d3p

(2π)3
1√
2Ep

∑
s

(
a†(~p, s)ū(p, s)eip·x + b(~p, s)v̄(p, s)e−ip·x

)
, (5.29)

in terms of the positive and negative frequency spinors u and v. For Majorana fields, the b
and b† operators appearing in (5.28) and (5.29) should be replaced by a and a† respectively.
After a little work, the numerator of (5.22) for Dirac neutrino fields evaluates to

〈ese , νk,s|HD|ese , νk,s〉 = GF√
2
ū(pνk , s)γµ(1− γ5)u(pνk , s)j

µ
k , (5.30)

〈ese , ν̄k,s|HD|ese , ν̄k,s〉 = −GF√
2
v̄(pνk , s)γµ(1− γ5)v(pνk , s)j

µ
k , (5.31)

for external neutrino and antineutrino states, respectively, where

jµk = ū(pe, se)γµ(Vkk −Akkγ5)u(pe, se), (5.32)

is the electron current. For Majorana fields, we instead have that

〈ese , νk,s|HM |ese , νk,s〉 = 〈ese , νk,s|HD|ese , νk,s〉+ 〈ese , ν̄k,s|HD|ese , ν̄k,s〉
= −
√

2GF ū(pνk , s)γµγ
5u(pνk , s)j

µ
k ,

(5.33)

where in going from the first line to the second we have used the Majorana condition to
make the replacement v(p, s) = Cū(p, s)T , with C the charge conjugation matrix. This change
transforms the V −A vertex to a purely axial one,7 as Majorana fermions cannot carry charge.

7A neutral current vertex of the form ūΓµu for Dirac fermions transforms to ū(Γµ+CΓTµC−1)u for Majorana
fermions as a result of the Majorana condition [113].
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If the experiment is set up such that in the laboratory frame the electrons are at rest,
|~pe| = 0 and Ee = me. On the other hand, due to the relative motion of the Earth to CνB,
relic neutrinos have a momentum given by (2.6). The resulting energy splitting of the electron
spin states is found by taking the difference between the energy shift (5.22) for each spin state,
which should then be flux-averaged to yield (see appendix A for details of the calculation)

∆EDe =
√

2GF
3 β⊕

∑
i

Aii

[
2
∑
s

(2− β2
νi)(nν(νDi,s)− nν(ν̄Di,s))

+ 1
βνi

(
3− β2

νi

)
(nν(νDi,L)− nν(νDi,R) + nν(ν̄Di,R)− nν(ν̄Di,L))

]
,

(5.34)

for Dirac neutrinos. We see immediately that there are two terms that may contribute to the
Stodolsky effect. The first term, which was identified by Stodolsky [15], requires a difference
in the number of relic neutrinos and antineutrinos to be non-zero. The second term is only
non-vanishing if there is a net helicity asymmetry in the CνB; this effect was first identified
in [17] and appears to diverge as βνi → 0. This is an artefact of the transformation between
the CνB and laboratory frames, and we will soon show that there is no real divergence in this
limit. It should be noted that this is the only mechanical effect that scales linearly in GF [23],
avoiding the brutal G2

F suppression that typical neutrino cross sections face.
The result (5.34) also has several pleasing features. First, whilst the energy shifts (5.22)

depend on the spin-insensitive vector couplings Vii, their difference only depends on the axial
couplings Aii, as should be expected. Second, all terms proportional to nν(νi,R) and nν(ν̄i,L)
vanish in the ultrarelativistic limit βνi → 1 when helicity and chirality coincide. This is also
to be expected, as right chiral neutrinos and left chiral antineutrinos are sterile. For Majorana
neutrinos we find the similar result

∆EMe = 2
√

2GF
3 β⊕

∑
i

Aii
βνi

(
3− β2

νi

)
(nν(νMi,L)− nν(νMi,R)), (5.35)

which naturally only contains the term requiring a helicity asymmetry. Both (5.34) and (5.35)
are signed quantities, which could provide extra information about the CνB if measured. In
the case of (5.34), it is also possible that the energy splitting due to a neutrino-antineutrino
asymmetry could cancel with that from a helicity asymmetry. Similarly, since A11 < 0,
whilst A22, A33 > 0, for the right combination of neutrino masses and temperatures the
contributions from each mass eigenstate could sum to zero. Finally, we note that the standard
scenario predicts no neutrino-antineutrino asymmetry for Dirac neutrinos, such that the
effect will be dominated by the helicity asymmetry term. On the other hand, for Majorana
neutrinos there should be no helicity asymmetry and consequently no Stodolsky effect from the
CνB. Nevertheless, there are several mechanisms (e.g. finite chemical potential, non-standard
neutrino interactions, gravitational potentials) through which either asymmetry could develop.

Before continuing, we make some important comments about the helicity asymmetry
term appearing in both (5.34) and (5.35), and address the apparent singularity. As helicity
is not a Lorentz invariant quantity, an asymmetry in the CνB rest frame is not necessarily
indicative of one in the laboratory frame. It is entirely possible that if the relative motion of
the Earth far exceeds the velocity of neutrinos in the CνB frame then the helicity asymmetry
can be washed out entirely. Additionally, the relative motion of the Earth cannot generate
helicity asymmetry if there is none in the CνB frame. To prove these statements, suppose
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Figure 6. Helicity term appearing in the Stodolsky effect energy shifts for a range of reference
frame velocities, β⊕. As the neutrino velocity, βνi

, approaches the Earth’s velocity, the term vanishes
identically.

that in going between frames the helicity of relic neutrinos is flipped with a velocity dependent
probability PF (β⊕). In this case, the number densities in the two frames are related by

nν(νi,L) = γ⊕ {PF (β⊕) ñν(νi,R) + (1− PF (β⊕)) ñν(νi,L)} , (5.36)
nν(νi,R) = γ⊕ {PF (β⊕) ñν(νi,L) + (1− PF (β⊕)) ñν(νi,R)} , (5.37)

where the Lorentz factor γ⊕ appears due to length contraction along the direction of motion,
which increases the number density of relic neutrinos. The helicity difference is therefore

nν(νi,L)− nν(νi,R) = γ⊕ {ñν(νi,L)− ñν(νi,R) + 2PF (β⊕)(ñν(νi,R)− ñν(νi,L))} , (5.38)

which is identically zero if ñν(νi,L) = ñν(νi,R) independently of PF (β⊕), showing that the
relative motion of the Earth cannot generate a helicity asymmetry. Next, we note that for
initially isotropic relic neutrinos in the CνB frame (see appendix B)

PF (β⊕) =


1
π arcsin

(
β⊕
βνi

)
, β⊕ < βνi ,

1
2 , β⊕ ≥ βνi ,

(5.39)

such that the asymmetry (5.38) vanishes for β⊕ ≥ βνi , where we have used βνi ' β̃νi . This
demonstrates that a sufficiently large relative velocity between the two frames equalises the
number of left and right helicity neutrinos in the laboratory frame, regardless of the initial
distribution. The same arguments can be applied to the antineutrino helicity distributions.
This also resolves the singularity as βνi → 0; since β⊕ > 0, the helicity asymmetry will tend
to zero before the 1/βνi term diverges. This is demonstrated in figure 6. With this in mind,
the Stodolsky effect is expected to vanish completely for Majorana neutrinos if β⊕ ≥ βνi .

The energy splitting induces a torque with magnitude τe ' |∆Ee| on each electron, such
that a ferromagnet with Ne polarised electrons in the presence of the CνB experiences a total
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torque
Neτe '

NA

mA

Z

A
M |∆Ee|, (5.40)

where NA is Avogadro’s number, Z and A are the atomic and mass number of the target
material respectively, M is the total target mass and we have introduced the “Avogadro mass”
mA = 1 g mol−1. A ferromagnet with spatial extent R and moment of inertia I = I0MR2 will
therefore experience a linear acceleration

a ' NA

mA

Z

A

1
R
I0|∆Ee|. (5.41)

As our reference scenario we consider a torsion balance consisting of Nm spherical and
uniformly dense ferromagnets of mass M , each a distance R from a common central axis.
The ferromagnets should be oriented such that the polarisation of those on opposing sides of
the central axis are antiparallel in order to maximise the net torque on the system. In this
scenario I0 = Nm.

Assuming that accelerations as small as a0 are measurable, by plugging in our expressions
for the energy splittings we find the overdensities that can be constrained by the Stodolsky
effect∣∣∣∣∑

i

Aii

[
2
∑
s

(2− β2
νi)(ην(νDi,s)− ην(ν̄Di,s)) +

∑
ν

1
βνi

(
3− β2

νi

)
(ην(νDi,L)− ην(νDi,R))

]∣∣∣∣
≤ 2

√
2π2

ζ(3)T 3
ν,0GF

mA

NA

A

Z

R

Nm

a0
β⊕

' (2.18× 1011)A
Z

[
R

1 cm

] [ 2
Nm

] [
a0

10−15 cm s−2

] [
βCMB
⊕
β⊕

]
,

(5.42)

for Dirac neutrinos, whilst for Majorana neutrinos∣∣∣∣∑
i

Aii
βνi

(
3− β2

νi

)
(ην(νMi,L)− ην(νMi,R))

∣∣∣∣
≤

√
2π2

ζ(3)T 3
ν,0GF

mA

NA

A

Z

R

Nm

a0
β⊕

' (1.09× 1011)A
Z

[
R

1 cm

] [ 2
Nm

] [
a0

10−15 cm s−2

] [
βCMB
⊕
β⊕

]
,

(5.43)

where we have chosen a0 = 10−15 cm s−2 as our reference sensitivity, which has recently been
achieved in tests of the weak equivalence principle using Cavendish-style torsion balances [114].
Torsion balances utilising test masses suspended by superconducting magnets have also
been considered in [115], which have the potential to probe accelerations as small as a0 '
10−23 cm s−2. Such an experiment would be able to set constraints on CνB overdensities
that are competitive with the PTOLEMY proposal. Due to their helicity dependence, the
constraints that can be set using the Stodolsky effect are naturally complimentary to those set
by PTOLEMY, as together they can give an insight into the helicity composition of the CνB.

5.3 Coherent scattering
We now turn our attention to the detection of relic neutrinos using coherent neutral current
scattering. This section will largely follow the formalism of [18], with some exceptions. To

– 25 –



J
C
A
P
0
1
(
2
0
2
3
)
0
0
3

avoid the introduction of ill-defined quantities such as mνα and Tνα , particularly at small
neutrino masses, we will work in the mass basis throughout. Additionally, we will work
with polarised cross sections, and by introducing structure factors we will more rigorously
introduce macroscopic coherence, allowing us to extend the proposal to a system of more
than one coherent scattering volume. Finally, we will address the contribution from coherent
neutrino-electron scattering in more detail than in previous works [16, 18].

For neutrino energies much less than the nuclear mass, the cross sections for coherent
neutrino-nucleus scattering are (see appendix C)

σN (νDi,s) = G2
F

8π (Q2
V + 3Q2

A)As(βνi)E2
νi , (5.44)

σN (ν̄Mi,s) = G2
F

4π
(
β2
νiQ

2
V + 3(2− β2

νi)Q
2
A

)
E2
νi , (5.45)

where QV = A−2Z(1−2 sin2 θW ) ' A−Z is the vector charge of the nucleus and QA = A−2Z
is its axial charge, given in terms of its mass and atomic numbers A and Z, respectively. For a
typical nucleus QV � QA, such that the term proportional to QA is typically neglected [116].
As a result, in previous works [16, 17], including a paper by one of the present authors [18], it
was stated that the Majorana neutrino scattering cross section was β2

νi suppressed compared
to the equivalent Dirac neutrino cross section. From (5.45), it is clear that this is only true
for symmetric nuclei, for which A = 2Z.

The relative motion of the Earth to the CνB generates a relic neutrino wind with net
directionality, such that each neutrino scattering event will transfer an average momentum
∆pνi to the target, which has already been estimated in (2.8). This induces a small macroscopic
acceleration in a target with total mass M ,

aN (νi,s) = 1
M

ΓN (νi,s)∆pνi , (5.46)

where ΓN = NTβνiσNnν is the neutrino scattering rate and NT is the total number of nuclei
in the target. After summing over all neutrino degrees of freedom, the total acceleration of a
target with mass M due to neutrino-nucleus scattering is

aDN,tot '
G2
F

8π
NA

AmA
(Q2

V + 3Q2
A)
∑
ν,i,s

Eνi |~pνi |∆pνiAs(βνi)nν(νDi,s), (5.47)

for Dirac neutrinos, whilst for Majorana neutrinos

aMN,tot '
G2
F

4π
NA

AmA

∑
ν,i,s

Eνi |~pνi |∆pνi
(
β2
νiQ

2
V + 3(2− β2

νi)Q
2
A

)
nν(νMi,s), (5.48)

where NA and mA = 1 g mol−1 are Avogadro’s number and the ‘Avogadro mass’, respectively.
Akin to the PTOLEMY proposal, coherent scattering is sensitive to the helicity composition
of the CνB. However, unlike PTOLEMY, the difference in the Dirac and Majorana neutrino
scattering cross sections allows insight into the nature of neutrinos irrespective of whether
the standard scenario is assumed. In practice, however, the number of uncertain quantities
entering into (5.47) and (5.48) make the distinction incredibly difficult.

The results (5.47) and (5.48) apply when coherence can only be maintained over a single
nucleus, i.e. for neutrino wavelengths λνi = 2π/|~pνi | of order the nuclear radius. Coherent
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scattering on a large nucleus of radius 10 fm can therefore be achieved with neutrino momenta
of order |~pνi | ∼ O(0.1 GeV), which far exceeds that of relic neutrinos. Clearly, relic neutrinos
with macroscopic wavelengths λν ∼ O(mm) should be capable of maintaining coherence over
many nuclei, leading to vastly enhanced cross sections.

To account for this, the scattering amplitudes should be augmented by a structure factor,
F (~q), to give macroscopic coherent scattering cross sections proportional to |F (~q)|2, where
~q ∼ ~pνi is the recoil momentum of the scattered nucleus. For a large target consisting of many
scattering centres, each located at position ~xi, the structure factor is given by

F (~q) =
∑
i

e−i~q·~xi =⇒ |F (~q)|2 =
∑
i,j

e−i~q·(~xi−~xj), (5.49)

which encodes the relative phase between each of the nuclei in the target. For small recoils
|~q|−1 � 〈|~xi − ~xj |〉 ' R, where R is the radius of the target, all nuclei are in phase the
structure factor reduces to N2

T . As such, if the target is chosen with R ' λνi , the coherent
scattering rate ΓN picks up an enhancement factor equal to the number of nuclei within a
volume λ3

νi ,

NC,i =
( 2π
|~pνi |

)3 NA

AmA
ρ, (5.50)

where ρ is the mass density of the target. The total acceleration of a test mass due to
macroscopic coherent scattering is therefore given by

aC,DN,tot ' π
2G2

F

(
NA

AmA

)2
(Q2

V + 3Q2
A)ρ

∑
ν,i,s

Eνi
|~pνi |2

∆pνiAs(βνi)nν(νDi,s), (5.51)

for Dirac neutrinos, whilst the expression for Majorana neutrinos takes the form

aC,MN,tot ' 2π2G2
F

(
NA

AmA

)2
ρ
∑
ν,i,s

Eνi
|~pνi |2

∆pνi
(
β2
νiQ

2
V + 3(2− β2

νi)Q
2
A

)
nν(νMi,s). (5.52)

These are significantly larger than their microscopically coherent counterparts (5.47) and (5.48)
due to the scaling with N2

A. Importantly, macroscopic coherent scattering naturally favours
scenarios with small neutrino momenta, making it an ideal candidate for the detection of
non-relativistic relic neutrinos.

To avoid confusion, we comment on the divergent limit as |~pνi | → 0. This is a result of
the assumption that R ' λνi , which becomes impossible to uphold as λνi →∞. To account
for this, one should make the replacement 2π/|~pνi | → R in (5.50) for neutrino wavelengths
much larger than the experiment. We discuss the case where only partial coherence can be
obtained, λνi � R, and give a derivation of the structure factor in appendix D.

Neutrinos can also scatter from electrons in the target. Working in the mass basis, these
can proceed in two ways; either ‘mass diagonal’, in which both the incoming and final state
neutrinos are the same mass eigenstate, or ‘mass changing’, where the neutrinos differ. As
the neutral current is both flavour and mass diagonal, this can only contribute to the mass
diagonal processes, whilst charged current interactions can contribute to both.

After working through the calculations given in appendix C, we find the cross sections
for neutrinos to scatter on electrons

σe(νDi,s → νDj ) = G2
F

2π EνiEνjAs(βνi)K
D
ij , (5.53)

σe(νMi,s → νMj ) = G2
F

π
EνiEνjK

M
ij , (5.54)
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for neutrino momenta much less than the electron mass, where the functions Kij depend on
the electron vector and axial couplings, as well as elements of the PMNS matrix, and are
given in appendix C. The cross sections (5.53) and (5.54) should be augmented by structure
factors when considering macroscopic coherent scattering. We also highlight that in order for
the νi 6= νj processes to contribute, the incident neutrino must be sufficiently energetic to
produce mass eigenstate j. Explicitly, we require

Eνi ≥ mνj +
∆m2

ji

2me
' mνj , (5.55)

where ∆m2
ij = m2

νi −m
2
νj is the squared mass splitting between mass eigenstates i and j.

Neutrino-electron scattering naively seems like a subleading effect compared to neutrino-
nucleus scattering due to the absence of the nuclear vector and axial charges that appear
in (5.44) and (5.45). However, as noted in [18] there are Z electrons for every nucleus in the
target, such that the contribution from neutrino-electron scattering picks up a Z2 enhancement
when the scattering is fully coherent. In this limit, we also set Eνj =

√
m2
νj + |~pνi |2.

Once again assuming that an average momentum ∆pνi is transferred to the test mass by
each scattering event, the total acceleration due to macroscopic coherent neutrino-electron
scattering is given by

aC,De,tot ' 4π2G2
F

(
NA

mA

Z

A

)2
ρ
∑
ν,i,j,s

Eνj∆pνi
|~pνi |2

KD
ij θ
(
Eνi −mνj

)
As(βνi)nν(νi,s), (5.56)

for Dirac neutrinos, and

aC,Me,tot ' 8π2G2
F

(
NA

mA

Z

A

)2
ρ
∑
i,j,s

Eνj∆pνi
|~pνi |2

KM
ij θ

(
Eνi −mνj

)
nν(νi,s), (5.57)

for Majorana neutrinos, where θ(Eνi −mνj ) is the Heaviside step function, ensuring that the
incident neutrino has sufficient energy for the νi → νj process. We remind the reader that
Eνj =

√
m2
νj + |~pνi |2 for coherent scattering.

The size of the contribution from neutrino-electron scattering depends strongly on the
properties of the material, specifically how well the electrons can transfer momentum to the
bulk solid. For example, in a metallic target with many delocalised electrons, a fraction of
the energy transferred from the neutrinos may instead be lost to bremsstrahlung radiation.
On the other hand, a non-metallic target where the electrons are tightly bound to their host
nucleus will recoil efficiently due to neutrino-electron scattering. We therefore choose to
parameterise the total acceleration of a test mass due to the macroscopic coherent scattering
of a neutrino wind as

aCtot = aCN,tot + εaCe,tot, (5.58)

where ε ∈ [0, 1] is the efficiency of momentum transfer by neutrino-electron scattering. It
has been argued in [117] that even in good conductors, restoring forces between the ions and
scattered electrons in the target suppress bremsstrahlung whilst strongly coupling the electron
momentum to that of the bulk solid. In line with this reasoning, we will choose ε = 1 when
plotting the sensitivity coherent scattering experiments.
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Once again assuming a sensitivity a0 to accelerations of the target, and inverting (5.58),
we find that a coherent neutrino scattering experiment could set the constraint

∑
ν,i,s

∆pνi
|~pνi |2

[(
Q2
V

A2 + 3Q
2
A

A2

)
Eνi+4εZ

2

A2

∑
j

KD
ijEνjθ

(
Eνi −mνj

) ]
As(βνi)ην(νDi,s)

.
4

3ζ(3)

(
mA

NA

)2 a0
T 3
ν,0G

2
F

1
ρ

' (6.70× 1014)
[

11.34 g cm−3

ρ

] [
a0

10−15 cm s−2

]
,

(5.59)

on the Dirac neutrino overdensity, and

∑
i,s

∆pνi
|~pνi |2

[(
β2
νi

Q2
V

A2 + 3(2− β2
νi)
Q2
A

A2

)
Eνi + 4εZ

2

A2

∑
j

KM
ij Eνjθ

(
Eνi −mνj

) ]
ην(νMi,s)

.
2

3ζ(3)

(
mA

NA

)2 a0
T 3
ν,0G

2
F

1
ρ

' (3.35× 1014)
[

11.34 g cm−3

ρ

] [
a0

10−15 cm s−2

]
,

(5.60)

on the Majorana neutrino overdensity. As before, we have chosen a0 = 10−15 cm s−2 as our
reference acceleration, whilst ρ = 11.34 g cm−3 corresponds to a lead target.

Clearly, the scale of accelerations due to coherent scattering is much smaller than those
from the Stodolsky effect, provided that there are asymmetries in the CνB. However, as
first discussed in [16] and further developed in [118], there is also the possibility of observing
coherent scattering as tiny strains at laser interferometer gravitational wave detectors, rather
than as accelerations of e.g. a torsion balance. The strain profile for a series of successive
scattering events at times tn within a given sampling window, each transferring a momentum
∆pνi , is

h(ω) =
∑
ν,i,s

√
2ω
π

∆pνi
ML

∣∣∣∣ 1
ω2
r − (ω − iωrξω)2

∣∣∣∣ ∣∣∣∣∑
tn

e−iωtn
∣∣∣∣, (5.61)

where ω is the signal frequency, ωr is the resonance frequency of the system, L is the
interferometer arm length and ξω � 1 is related to the damping of the oscillator, discussed
in [118]. We have assumed in (5.61) that the target is a single oscillator with one resonance
frequency. In practice, laser interferometer mirrors are a set of coupled harmonic oscillators
with several resonance frequencies, which may lead to cancellations in parts of the spectrum.
More complicated setups are reviewed comprehensively in [118] and [119].

The observant reader will notice that the sum appearing in (5.61) is analogous to the
structure factor (5.49) discussed thus far. The strains from successive scattering events will
therefore add coherently when the signal frequency is much less than the mean scattering
frequency, ω � 〈|tn − tm|〉−1. Supposing that neutrinos strike the target at regular intervals,
such that tn = n/Γν , with

Γν(νi,s) = N2
Tβνi

σN (νi,s) +
∑
j

σe(νi,s → νj)

nν(νi,s) (5.62)
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the fully coherent scattering rate and n ∈ Z, we find that scattering events within a range

〈|n−m|〉 ≡ ncoh '
Γν
ω
, (5.63)

of each other will add coherently. In these regions, the squared ‘structure factor’ will scale as
n2

coh. If the experiment has a sampling rate Γexp � Γν , there will be ntot = Γν/Γexp total
events within a given sampling window, of which a fraction ntot/ncoh will sum coherently.
This allows us to make the replacement∣∣∣∣∑

tn

e−iωtn
∣∣∣∣ ' √ntotncoh = Γν√

ωΓexp
. (5.64)

Substituting this into (5.61) and inverting, we find that a gravitational wave detector with
strain sensitivity profile h0(ω) can set the overdensity constraints

∑
ν,i,s

∆pνi
|~pνi |2

(Q2
V

A2 + 3Q
2
A

A2

)
Eνi + 4εZ

2

A2

∑
j

KD
ijEνjθ

(
Eνi −mνj

)As(βνi)ην(νDi,s)

.
2
√

2π
3ζ(3)

(
mA

NA

)2 h0(ω)
T 3
ν,0G

2
F

L

ρ

√
Γexp

∣∣∣ω2
r − (ω − iωrξω)2

∣∣∣ ,
(5.65)

on Dirac neutrinos, and

∑
i,s

∆pνi
|~pνi |2

[(
β2
νi

Q2
V

A2 + 3(2−β2
νi)
Q2
A

A2

)
Eνi + 4εZ

2

A2

∑
j

KM
ij Eνjθ

(
Eνi −mνj

) ]
ην(νMi,s)

.

√
2π

3ζ(3)

(
mA

NA

)2 h0(ω)
T 3
ν,0G

2
F

L

ρ

√
Γexp

∣∣∣ω2
r − (ω − iωrξω)2

∣∣∣ ,
(5.66)

on Majorana neutrinos. We stress, however, that the results (5.65) and (5.66) only apply
when Γν � Γexp. Otherwise, (5.61) should be used with the structure factor set equal to
unity and the sum over neutrino degrees of freedom omitted, in which case the strain profile
is insensitive to the overdensity. In the standard scenario, the relic neutrino scattering rate
is Γν ∼ O(kHz) [18], whilst the land based interferometers LIGO and Virgo sample at rates
Γexp ∼ 4−16 kHz [120]. As such, these are only capable of placing constraints on overdensities
ην � 1, for which Γν � Γexp. Finally, we note that the signal from thermal noise can add
coherently in the same manner as that from relic neutrinos, whilst also peaking at the same
resonance frequencies, ωr. As such, increasing the exposure time may weaken the constraints
on the relic neutrino overdensity through a reduced strain sensitivity, h0(ω).

5.4 Accelerator
Due to the low temperature of the CνB, there are very few methods with an energy threshold
that are capable of detecting relic neutrinos. However, as pointed out in [14], the centre-of-
mass frame (CoM) energy requirements for thresholded neutrino capture processes can be
met by running an accelerated beam of ions through the CνB. This offers the additional
advantage of being able to tune the neutrino energy to hit a resonance, in doing so significantly
enhancing capture cross sections. Here we will largely follow the derivation given in [14], but
extend it to include non-degenerate neutrino masses, in which case the contribution from
each neutrino mass eigenstate must be considered separately.
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We consider the resonant bound beta decay (RBβ) and resonant electron capture (REC)
processes

A
ZP + νe → A

Z+1D + e− (bound), (5.67)

A
ZP + e− (bound) + ν̄e → A

Z−1D, (5.68)

where P and D are the parent and daughter states respectively, with mass number A and
atomic number Z. To maximise the capture rate, P should be fully ionised for the RBβ
process, and ionised down to a single electron for a REC process [14]. This method is
only sensitive to the electron neutrino component of the CνB through the processes (5.67)
and (5.68). However, these are just two examples of resonant processes; one might also
consider resonant capture on a muon, in which case this experiment would be sensitive to the
muonic component of relic neutrinos.

The energy of neutrino mass eigenstate i in the rest frame of the high energy ion beam is

Ebνi '
Eνi
M

E, (5.69)

where M and E are the beam ion mass and energy, respectively. For Ebνi � M , incoming
neutrinos of mass eigenstate i are captured on a beam ion with cross section

σi = 2π(
Ebνi

)2

(2JD + 1
2JP + 1

) Γ2
D/4(

Ebνi −Q
)2

+ Γ2
D/4

 |Uei|2BDP , (5.70)

for daughter and parent state spins JD and JP , respectively, where ΓD is the daughter decay
width and BDP = Br (D + e− (bound)→ P + νe) or Br (D → P + νe + e− (bound)) is the
branching ratio for the daughter state to decay back to the parent state. The threshold to
resonantly capture a neutrino, Q, depends on several properties of the daughter and parent
states and is discussed alongside the computation of BDP at length in [14].

By inspection of (5.70), we see that the capture rate of neutrino mass eigenstate i
is maximised when Ebνi = Q. However, due to the finite width of the neutrino and beam
momentum distributions, ∆νi and ∆b respectively, only a fraction of relic neutrinos will be
captured resonantly. To estimate this fraction, we make the ansatz that the relic neutrino
flux in the beam rest frame follows a Gaussian distribution, normalised appropriately

dφbνi
dEbνi

= γbβb
∑
s

nν(νi,s)
1

∆b
νi

√
2π

exp

−1
2

(
Ebνi − µi

∆b
νi

)2
 , (5.71)

where γb = E/M and βb ' 1 are the Lorentz factor and velocity of the ion beam, respectively,
whilst µi is the mean neutrino energy in the beam rest frame. Ideally, the beam energy should
be chosen such that these distributions will be centred on µi = Q for all three of the neutrino
mass eigenstates, however, due to their different masses and temperatures, it is unlikely that
more than one will be exactly on resonance. Explicitly, if µi = Q, then µj = (Eνj/Eνi)Q for
j 6= i. The parameter ∆b

νi denotes the width of the neutrino momentum distribution in the
beam rest frame, which by treating ∆νi and ∆b as uncertainties in the lab frame momenta is
given approximately by

∆b
νi =

√√√√(∆νi

∂Ebνi
∂pνi

)2

+
(

∆b
∂E

∂p

)2
' µi

√
δ2
νi + δ2

b , (5.72)
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where we have introduced the fractional uncertainties δνi = ∆νi/Eνi and δb = ∆b/E, and
p ' E is the beam momentum. Assuming a Fermi-Dirac distribution (2.1) at temperature
Tνi and taking the appropriate moments, ∆νi can be estimated as

∆νi ' 0.291 meV
(
Tνi
Tν,0

)
, (5.73)

such that for non-relativistic neutrinos with Tνi = Tν,0, δνi ' 2.91× 10−3 (0.1 eV/mνi). This
is slightly smaller than the estimate of δνi given in [14]. By comparison, the ion beam at
RHIC has δb ' 10−4 [121], and as a result we expect that the dominant contribution to (5.72)
will come from δνi for all but the largest allowed neutrino masses. By making the replacement

Γ2
D/4(

Ebνi −Q
)2

+ Γ2
D/4

−→ π

2 ΓD δ
(
Ebνi −Q

)
(5.74)

in (5.70), which is valid for narrow resonances satisfying ΓD � ∆b
νi , we find that the total lab

frame neutrino capture rate per target ion on the beam is given by

R

NT
= 1
γb

∑
i

∫
σi
dφbνi
dEbνi

dEbνi

=

√
π3

2

(2JD + 1
2JP + 1

) ΓD
Q2 BDP

∑
i,s

|Uei|2 nν (νi,s)
µi
√
δ2
νi + δ2

b

exp

−1
2

 Q− µi
µi
√
δ2
νi + δ2

b

2
 . (5.75)

Written in this form, (5.75) also encompasses the case where the neutrino energy is not known
exactly, resulting in a beam energy is not centred exactly on resonance. If the experiment is set
up assuming a neutrino energy Eνi,p but the true neutrino energy is Eνi,t, then the mean beam
rest frame neutrino energy transforms as µi → (1− δEi)−1µi, where δEi = (Eνi,t−Eνi,p)/Eνi,t.
The fractional uncertainty δνi = ∆νi/Eνi should also be evaluated in terms of the true neutrino
energy Eνi,t = (1− δEi)−1Eνi,p. It is advantageous to work in terms of δEi rather than Eνi,t,
particularly for non-relativistic neutrinos with Eνi ' mνi , as the former can be approximated
by the fractional uncertainty in the measured value of the neutrino mass.

The daughter states produced in the resonant processes (5.67) and (5.68) are unstable,
leading to a signal that decays over time. As a result, the neutrino capture rate (5.75) is not
the best measure of performance for this experiment. Instead, we define the quality factor

Rτ = γb
ΓD

R

NT

=

√
π3

2

(2JD + 1
2JP + 1

)
γb
Q2BDP

∑
i,s

|Uei|2 nν (νi,s)
µi
√
δ2
νi + δ2

b

exp

−1
2

 Q− µi
µi
√
δ2
νi + δ2

b

2
 , (5.76)

which is the ratio of the neutrino capture rate to the effective daughter decay rate, ΓD/γb. In
terms of the quality factor, the number of daughter states on the beam at any one time is
given by (see appendix C of [14])

ND(x) = NTRτ
(
1− e−x

)
+O

(
R2
τ

)
, (5.77)
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where x = t/(γbτD) parameterises the number of daughter lifetimes τD = 1/ΓD that have
elapsed in a lab frame time t and NT is the initial number of parent states on the beam.
We see that for x > 1, the number of daughter states quickly tends to its maximum value
NTRτ , at which time the rate of neutrino captures is equal to the number of daughter decays
back to the parent state. This places an upper limit on what can be achieved with the
systems (5.67) and (5.68); if N > NTRτ events are required in order to make a statistically
significant discovery of the CνB, then no detection is possible with this method.

To resolve this issue, we can instead consider 3-state RBβ and REC systems [14]

A
ZP + νe → A

Z+1D + e− (bound)→ A
Z+2F + 2e− (bound) + ν̄e, (5.78)

A
ZP + 2e− (bound) + ν̄e → A

Z−1D + e− (bound)→ A
Z−2F + νe, (5.79)

where the new final state F is a stable decay product of the daughter state D that differs
from P . Similar to the 2-state systems, P should be ionised down to two electrons for an
RBβ process, or completely ionised for a REC process. With this modification, there is now
a probability for each daughter state to decay to the stable F state, where it will remain
indefinitely. As a result, the number of F states on the beam at large x far exceeds NTRτ ,
the maximum number of D states. Explicitly, the number of states on the beam evolves
according to

NF (x) = NTRτBDF
(
x+ e−x − 1

)
+O(R2

τ ), (5.80)

where BDF = Br(D + e−(bound)→ F + 2e−(bound) + ν̄e) or Br(D + e−(bound)→ F + νe)
is the branching ratio for the daughter state to decay to the new final state. Including the
O(R2

τ ) terms in (5.80), the maximum number of states that can be converted to signal is now

lim
x→∞

NF (x) = NTBDFχ
χ− BDP

� NTRτ. (5.81)

Here, χ ∈ [0, 1] accounts for the fraction of daughter states that decay to the wrong parent
isomer.

As many parent ions as possible should be put on the beam in order to maximise the
amount of signal. However, the synchrotron radiation emitted by a high energy ions can
damage equipment, an effect which becomes significantly worse at the high energies required
to perform this experiment. Following [14], we make the crude estimate that the maximum
number of ions in ionisation state I than be put on the beam before causing damage is

NT,max = 6
√

2πR
7
2
c
√
r

αI2ap

1
γ5
b

qout(T∞, Tc), (5.82)

for an accelerator ring of radius Rc and beampipe radius r, where α is the fine structure
constant and ap ∈ [0, 1] is the absorptance of the beam pipe that accounts for the incomplete
absorption of synchrotron radiation. The function qout(T∞, Tc) encodes the rate of heat loss
by the beampipe in contact with a coolant at temperature Tc, assuming a safe equilibrium
temperature T∞ can be attained. This is in turn given by

qout(T∞, Tc) = κcon
∆ (T∞ − Tc) + εrσ(T 4

∞ + T 4
c ), (5.83)

where κcon, εr and ∆ are thermal conductivity, emissivity and thickness of the beampipe wall
respectively, and σ is the Stefan-Boltzmann constant.
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We now have everything required to estimate the constraints that can be placed on the
local CνB overdensity using this method. Assuming that N events are required for statistical
significance, and setting µi = (Eνi/Eνj )Q and γb = Q/Eνj , i.e. choosing the beam energy
such that mass eigenstate j is precisely on resonance, we find the limit on the overdensity
after an experimental runtime x

∑
i,s

Eνj
Eνi

|Uei|2 ην(νi,s)√
δ2
νi + δ2

b

exp

−1
2

 Eνj − Eνi
Eνi

√
δ2
νi + δ2

b

2


≤ 2αI2ap
9
√
πζ(3)

N

T 3
ν,0

(2JP + 1
2JD + 1

)
Q7

E4
νj

1

R
7
2
c
√
r

1
qout(T∞, Tc)

1
BDPX(x)

' (9.58× 106) NI
2

BDP

(2JP + 1
2JD + 1

)[
Q

10 keV

]7
[

10 meV
Eνj

]4 [1− e−1

X(x)

]
,

(5.84)

where

X(x) =
{

1− e−x, 2-state systems,
BDF (x+ e−x − 1), 3-state systems.

(5.85)

If the neutrino energy is not well known, recall that we must make the replacement Eνi →
(1− δEi)−1Eνi in (5.84). For the reference scenario in (5.84) we have chosen an LHC-sized
ring with the choice of experimental parameters given in [14], using a two state system at
time x = 1.

Perhaps most striking about (5.84) is the Q7 dependence, strongly emphasising the need
for targets that have a small neutrino capture threshold to place any meaningful constraints.
Reducing the threshold also decreases the beam energy requirements to hit a resonance,
making the experiment easier to perform. Provided that the threshold can be kept small,
however, it is clear that an accelerator experiment can set very competitive constraints on
the CνB overdensity. Typical thresholds for REC and RBβ processes range from ten to a few
hundred keV, requiring beam energies of a hundred to several thousand TeV. Fortunately,
this can be alleviated somewhat by instead using excited states on the beam, which effectively
reduces the threshold from Q to Q−E∗, where E∗ is the excitation energy. With this method,
keV or smaller thresholds are attainable [122, 123], strengthening the bounds (5.84) by many
orders of magnitude. Unfortunately, using excited states comes at the cost of beam stability
and increased experimental challenge, both of which are discussed at length in [14]. It is
also important to note this experiment could be performed with targets other than ions; any
resonant process where the parent state can be accelerated on a beam, e.g. a muon to pion
system, can be used with the formalism developed here.

It should be noted that we have not used polarised cross sections in this section as they
do not change the bound on the overdensity. If we use polarised cross sections, then (5.70)
should be appended with a factor of As(βνi), which due to the relativstic nature of neutrinos
in the beam rest frame equates to a global factor of two for beam frame left helicity neutrinos,
and zero for right helicity neutrinos. However, replacing β⊕ in (5.39) with the beam velocity,
βb ' 1, we see that any helicity asymmetry should be completely washed out by the relative
motion of the beam to the CνB. As a result, the beam rest frame left helicity neutrino flux
should be the average of the lab frame left and right helicity fluxes, cancelling the factor
of two and recovering (5.84). Finally, we note that in the standard scenario, we expect the
capture rate for Majorana neutrinos twice as large as for Dirac neutrinos due to the additional
right helicity flux.
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5.5 Neutrino decay
There is now considerable evidence that at least two of the three neutrino states are massive.
Consequently, massive neutrino states pick up an electromagnetic moment through loop
induced effects, allowing for decays from heavier to lighter neutrinos through the emission of a
photon. Considering only the degrees of freedom in the SM, along with a right chiral neutrino
field that is required to generate a neutrino mass, the neutrino lifetime is predicted to be
τνi ' 2.4 (10 meV/mνi)5 × 1046 y [124], which far exceeds the age of the universe. However,
this could be significantly shorter in the presence of additional degrees of freedom, with
the current strongest bounds allowing for neutrino lifetimes that satisfy

∑
i |Uei|2τνi/mνi &

220 y eV−1 [125].
The electromagnetic decay of neutrinos from the cosmic neutrino background would

result in an background of photons, which in the rest frame of the decaying neutrino are
emitted with energy

Eijγ (mνi) =
∆m2

ij

2mνi

, (5.86)

for the decay νi → νj + γ. It has therefore been suggested in [126] that the spectral lines
from relic neutrino decays could be observed using line intensity mapping (LIM), which could
place competitive bounds on the neutrino lifetime and provide direct evidence for the cosmic
neutrino background. The observables at a LIM experiment depend on the emitted photon
luminosity density at each point ~r, which for the decay νi → νj is given by

ρijL (~r) =
∑
ν,s

nν(νi,s)(~r)Γijν Eijγ (mνi), (5.87)

where Γijν is the partial decay width for the process. The signal therefore depends not
only on the neutrino decay lifetime, but also the magnitude of the relic neutrino number
density. In [126] the authors assume the standard scenario, where each of the six populated
neutrino states has a constant number density nν,0, and forecast the sensitivity of several LIM
experiments to the neutrino lifetime. If we instead fix the neutrino lifetime to a well-motivated
value from theory, we can translate their forecasted sensitivities to the neutrino lifetime to an
overdensity bound via ∑

ν,s

ην(νi,s) ≤ 2
Γijν,0
Γijν

, (5.88)

where Γijν,0 is the sensitivity projection given in [126]. We note, however, that this process is
unable to place any bounds on the radiatively-stable neutrino overdensities. The simplest
choice for the neutrino decay width is to consider an uncharged neutrino8 with a non-zero
effective electromagnetic moment µeff

ij , in which case the partial width is given by [130]

Γijν =
(µeff
ij )2

8π

(
∆m2

ij

mνi

)3

, (5.89)

leading to the overdensity bound

∑
ν,s

ην(νi,s) ≤ 16π
Γijν,0

(µeff
ij )2

(
mνi

∆m2
ij

)3

. (5.90)

8Millicharged neutrinos are possible with the introduction of an SU(2)L singlet neutrino [132], also generating
a Dirac mass. However, the charge of the neutrino is heavily constrained by measurements of the angular
velocities of pulsars to satisfy Qν . 1.3× 10−19 e [133], where e is the elementary charge.
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Figure 7. Bounds that could be set on the decaying relic neutrino overdensity by LIM experiments
as a function of the lightest neutrino mass. For all values of the mass, we use the best experimental
sensitivity of COMAP [127], CCAT-prime [128] and AtLAST [129] as given in [126], and assume the
theoretical decay width (5.89), with effective electromagnetic moment (5.91). Left: in the normal mass
hierarchy. Right: in the inverted mass hierarchy.

In the SM, the effective electromagnetic moment is given by [131, 132]

µeff
ij ≡

√
|µij |2 + |εij |2

' (7.8× 10−25)µB


√
m2
νi −∆m2

ij

10 meV

 , (5.91)

where µij and εij are the neutrino transition magnetic and electric dipole moments, respectively,
and µB is the Bohr magneton. We will use (5.91) for the remainder of this section, although
we note that the bounds on µeff

ij are far weaker than the theoretical value, still allowing for
neutrino transition electromagnetic moments satisfying [130]

µeff
ij . 3.2× 10−16µB

(
mνi

10 meV

)9/4
. (5.92)

We plot the forecasted sensitivity to the CνB overdensity in figure 7, where the bounds for the
ν3 → ν2 (NH) and ν1 → ν3 (IH) transitions are expected to be similar to for ν3 → ν1 (NH)
and ν2 → ν3 due to the relative smallness of ∆m2

12. Clearly, if neutrinos have the lifetime and
effective electromagnetic moment predicted by theory, LIM experiments will have very little
sensitivity to the overdensity. However, for a neutrino electromagnetic moment saturating the
experimental bound (5.92), LIM experiments could set overdensity limits that are competitive
with the other direct detection proposals. For completeness, we note that a similar proposal
to detect relic neutrinos using radiative neutrino-neutrino scattering can be found in [134].

6 Indirect detection proposals

It is clear that the direct detection of relic neutrinos is incredibly challenging for any terrestrial
experiment, requiring either extreme precision or energy in order to make an observation.
Fortunately, the presence of the CνB may instead be deduced from the effect it has on visible
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matter, which naturally becomes stronger with larger overdensities. Here we discuss indirect
detection proposals, where the effects of relic neutrinos are inferred from their effects on other
observable parameters.

6.1 Cosmic ray neutrino attenuation
The presence of the CνB may be inferred from measurements of cosmic rays reaching Earth,
whose flux may be attenuated by scattering on relic neutrinos. This effect is expected to
be most pronounced when the incident cosmic ray scatters from a relic neutrino resonantly,
resulting in a narrow absorption line in the cosmic ray spectrum analogous to the Greisen-
Zatsepin-Kuzmin (GZK) cutoff [135, 136] for protons scattering on the CMB.

In particular, we consider scattering of high energy neutrinos on the CνB at the Z-boson
resonance [8–12] as well as the ρ0, ω and φ vector meson resonances [13]. The Z-boson is
chosen due to its large resonant cross section and the vector meson resonances due their
significantly smaller mass, mV �MZ , which as a result require much lower neutrino energies
to produced resonantly. We note that several other resonances exist; one may also consider the
scattering of electrons on relic neutrinos at the W -resonance or into charged vector mesons,
or neutrino scattering into neutral (pseudo)-scalar resonances. However, at ultrahigh energies,
the cosmic ray electron flux is considerably smaller than the proton flux [137], which is
comparable to the neutrino flux [138], whilst the absorption cross section for (pseudo-)scalar
resonances is smaller than the (axial-)vector cross section by a factor ∼ m2

ν/m
2
S , for scalar

meson mass mS . We therefore expect that the Z-boson and vector meson resonances are the
most promising channels through which we can observe this effect.

The cross section for the resonant process νi + νi,CνB → R→ X, where R is the vector
resonance under consideration and X is some non-specific final state, takes the standard
Breit-Wigner form

σR = 3π
k2

[
Ē2Γ2

R

(Ē2 −m2
R)2 + Γ2

Rm
2
R

]
Br(R→ νiν̄i), (6.1)

where Ē2 ' 2EνiECR is the CoM energy given in terms of the cosmic ray energy, ECR, mR

and ΓR are the mass and total decay width of the resonance, respectively, k is the initial state
momentum in the CoM frame and Br(R→ νiν̄i) is the branching ratio for the resonance to
decay back to a pair of neutrinos. These are in turn given by

Br(Z → νiν̄i) ' 0.067, (6.2)
Br(ρ0 → νiν̄i) ' 7.45× 10−14, (6.3)
Br(ω → νiν̄i) ' 7.99× 10−14, (6.4)
Br(φ→ νiν̄i) ' 6.04× 10−12, (6.5)

for each of the resonances, where we have used the Z-boson branching ratio to neutrinos and
total vector meson decay widths found in [104], along width the theoretical vector meson
decay widths to neutrinos derived in appendix E.

Directly on resonance when Ē2 = m2
R and k ' mR/2, the square bracketed term

appearing in (6.1) is equal to one, and the cross section takes its maximum value. By
comparing the branching ratios and masses, we see that the cross section for the production
of vector meson resonances is much smaller than that for Z-production. However, due to their
lower masses the vector meson resonances can be produced with significantly lower energies
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than their Z-boson counterparts, requiring less extreme cosmic neutrinos sources to observe
this effect. In general, the cosmic ray neutrino energy required to produce resonance R by
scattering from relic neutrino mass eigenstate i is

ECR '
m2
R

2Eνi
, (6.6)

such that for non-relativistic neutrinos with mass mνi = 0.1 eV, the Z-resonance requires
ECR ' 4× 1010 TeV, whilst the vector meson resonances can be hit with much lower energies
ECR ' 106 TeV. Importantly, there is predicted to be a sizeable diffuse flux of neutrinos
near the vector meson threshold at 106 TeV, which rapidly drops off at higher energies [138].
IceCube-Gen2 is expected to be able to probe this region [139], and a significant deviation
from the predicted flux may be indicative of strong interactions between CνB and cosmic
ray neutrinos. However, as the cosmic ray neutrinos at EeV and above energies are predicted
to originate primarily from extragalactic sources [140], this would not necessarily indicate a
local overdensity. This is particularly true for distant sources at large redshifts z, as the relic
neutrino density should scale as (1 + z)3. For this reason, we will only consider local sources
for the remainder of this section for which nν 6= nν(z).

Now suppose that a source at a distance L from Earth emits neutrinos of mass eigenstate
i with flux φCR(ECR, ` = 0). The change in this flux along the line of sight due to attenuation
by annihilation on relic neutrinos will satisfy

dφCR
d`

= −φCR(ECR, `)
∑
R,s

σR(ECR)nν(νi,s). (6.7)

This is easily solved to find the flux of high energy cosmic ray neutrinos reaching the Earth

φCR(ECR, L) = φCR(ECR, 0) exp

−L∑
R,s

σR(ECR)nν(νi,s)

 . (6.8)

Considering the Z-resonance, the effective survival distance of cosmic ray neutrinos on
resonance is therefore

LS = 1
σZ(ECR)nν(νi,s)

'
(

1.29× 104∑
s ην(νi,s)

)
kpc. (6.9)

Cosmic ray neutrinos originating from distances L� LS should have clear absorption lines
in their spectra, which for ην & 100 extends to all extragalactic sources. It is also important
to estimate the widths, ∆ECR, of these absorption lines, as any cosmic ray detector with
insufficient energy resolution ∆� ∆ECR will be unable to clearly resolve the attenuation.
The cross section (6.1) receives a resonant enhancement when (Ē2 −m2

R)2 � Γ2
Rm

2
R. This is

satisfied on the interval

m2
R −mRΓR

2Eνi
� ECR �

m2
R +mRΓR

2Eνi
, (6.10)

which has width
∆ECR '

mR

Eνi
ΓR. (6.11)

For the Z-resonance scenario with Eνi ' mνi = 0.1 eV, this corresponds to a width ∆ECR '
2× 109 TeV at an energy ECR = 4× 1010 TeV, or equivalently a fractional energy resolution of

– 38 –



J
C
A
P
0
1
(
2
0
2
3
)
0
0
3

around 5%. Achieving this energy resolution at such high energies is an incredible challenge;
IceCube achieves an energy resolution of around 25% atO(10 GeV) energies [141]. Nevertheless,
the attenuation may be still be visible as a small decrease in the number of events in the
energy bin centred around the resonance.

We can also translate the result (6.8) to a limit on the local overdensity. Given that the
initial flux of the source is well modelled and no attenuation is seen at Earth, we can place
the following constraint on the local relic neutrino overdensity

∑
s

ην (νi,s) ≤
4π2

3T 3
ν,0ζ(3)

(
L
∑
R

σR(ECR)
)−1

ln
(
φCR(ECR, 0)
φCR(ECR, L)

)
. (6.12)

We also note that this process can be used to constrain the presence of resonances beyond
the Standard Model (BSM) without modification.

The role of resonant cosmic neutrino scattering in constraining CνB overdensities has
been explored in detail in [142], assuming the standard scenario, where it has been estimated
that IceCube-Gen2 will be able to place the experimental constraints ηνi(νi,s) . 1010 after
ten years of exposure. If realised, this constraint would improve upon the best existing
experimental constraint from KATRIN, which we have previously discussed in section 3.

It has previously been suggested that the decays of resonances resulting from resonant
Z-production could be responsible for the highest energy cosmic rays observed today, in
particular those above the GZK cutoff [143, 144]. However, the required cosmic neutrino
fluxes have since been ruled out by the ANITA experiment [145]. Nevertheless, secondaries
from such ‘Z-burst’ scenarios could provide an additional window into relic neutrino detection.

6.2 Atomic de-excitation

An alternative method of detecting relic neutrinos using the Pauli exclusion principle has
been suggested in [27]. Due to the presence of the CνB, processes emitting neutrinos will
have their phase space restricted by a factor ∼ (1− fνi(|~pνi |)) for each final state neutrino,
which becomes important in the regions where |pνi | is comparable to the CνB momentum and
leads to a modified emission spectrum. In the standard scenario, the maximum suppression
of any region of phase space is 1/2n for a process emitting n neutrinos. This effect could be
significantly larger if both relic neutrino helicity states are at least partially filled by some
mechanism, such that gνi > 1.

The authors of [27] consider the radiative emission of neutrino pairs (RENP) by de-
exciting atomic states [146–150]

|e〉 → |g〉+ γ + νi + ν̄j , (6.13)

where |e〉 is an excited state of |g〉. The neutrino pair can either be emitted by the de-exciting
valence electron or nucleus, with the rate of the latter expected to be significantly larger [150].
This process involves three states, |e〉, |p〉 and |g〉, where |p〉 and |g〉 are connected by an E1
transition, whilst the transition from |e〉 and |g〉 involves a much weaker E1×M1 operator. The
result is a strongly suppressed rate of de-excitation by photon pair emission, |e〉 → |g〉+ γ+ γ,
aiding in the measurement of RENP which proceeds through the electron spin operator
from |e〉 to |p〉, followed by an E1 transition from |p〉 to |g〉. Additionally, RENP gains a
macroscopic coherent enhancement when the final state photon is emitted back to back with
the neutrino pair, analogous to the process of paired superradiance discussed in [151–153].
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Figure 8. RENP photon energy spectrum in the presence of the CνB for the toy ‘Cs-like’ system
described in the text, where nT = 1021 cm−3, V = 100 cm3 and the lightest neutrino mass mνl

= 5 meV.
Left: varying the neutrino degeneracy parameter, gνi , at constant temperature Tνi = Tν,0. Right:
varying the neutrino temperature, Tνi

in multiples of the standard temperature, Tν,0 = 0.168 meV,
with gνi

= 1. In both plots, we assume Dirac neutrinos in the normal mass hierarchy.

In the presence of the CνB, the shape of the outgoing photon energy spectrum will
be modified due to the suppression of neutrinos emitted with momenta |~pνi | ' Tνi . This
process can also be used to determine the neutrino mass spectrum. At each photon energy
threshold ωij = εeg/2 + (mνi +mνj )2/2εeg, where εeg is the excitation energy of |e〉 relative
to |g〉, there will a discontinuity in the event rate as the production of the neutrino pair i
and j becomes available. For three neutrino mass eigenstates, we expect that there will be
six thresholds for neutrino pair emission by valence electrons, or three for emission by the
nucleus where only the neutral current contributes. Additionally, RENP has sensitivity to
the Dirac or Majorana nature of neutrinos due to the possible interference between identical
final state neutrinos [146]. In what follows, we will only explore the dominant mass diagonal
contribution from pair emission by the nucleus.

The rate at which photons with energy ω are produced by RENP is given by [150]

Γγ2ν(ω) = Γ0F
2(ω)I(ω)ηω(t), (6.14)

where ηω(t) is a dynamical factor discussed at length in [149], for which we will use the
conservative estimate of ηω(t) ' 10−6 following [150]. The remaining quantities are

Γ0 = 3
4G

2
Fn

3
TV εeg, (6.15)

F (ω) = QV JN
εpe(εpe + ω)(εeg − ω)

√
γpg
εpg

, (6.16)

I(ω) =
∑
i

∆ii(ω)Iii(ω)θ(ωii − ω), (6.17)

∆ii(ω) =
√

1−
4m2

νi

εeg(εeg − 2ω) , (6.18)

where εab denotes the energy gap between states |a〉 and |b〉, nT and V are the number density
and volume of the target, respectively, γpg is the transition rate from state |p〉 to |g〉 and
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QV = A − 2Z(1 − 2 sin2 θW ) is the vector charge of the nucleus. The factor JN in (6.16)
accounts for electromagnetic interactions between the nucleus and de-exciting valence electron,
and is given approximately by

JN '
9
5α

2Z
4
3me, (6.19)

with α the fine structure constant. The remaining factor, Iii(ω), is the one of most interest to
us as it contains the phase space integral, which includes the suppression factor due to the
presence of the CνB. This is defined by

Iii(ω)∆ii(ω) ≡ 1
ω

E+∫
E−

dEνi

(
−E2

νi + Eνi(εeg − ω)− 1
4εeg(εeg − 2ω) +

m2
νi

2 (1 + δM )
)

×
{

1− fνi
(√

E2
νi −m2

νi

)}{
1− fν̄i

(√
(εeg − ω − Eνi)2 −m2

νi

)}
,

(6.20)

where the limits of the integral are E± = (εeg − ω ± ω∆ii(ω))/2 and δM is zero for Dirac
neutrinos, and one for Majorana neutrinos. In the absence of Pauli blocking, we find that

Iii(ω)
∣∣∣
fνi=0

= ω2

6 + ω2

3
m2
νi

εeg(εeg − 2ω) +
m2
νi

2 (1 + δM ), (6.21)

which is exactly a factor of two smaller than the result computed in [150]. The full integral
including the distribution functions can in fact be evaluated analytically, however we do not
give the expression here.

The maximum suppression due to Pauli blocking is seen in the regions of phase space
that are already heavily restricted by kinematics, namely near the thresholds ωii. Near ωii,
the emitted neutrino pair is collinear, with each neutrino carrying momentum ∼ ωii/2. In
order to maximise the suppression effect, we require that this momentum be of the same
order as the neutrino temperature,9 such that optimal energy gap εeg to observe the Pauli
blocking will satisfy

ωii ' 2Tνi =⇒ εeg ' 2
(
Tνi +

√
m2
νi + T 2

νi

)
, (6.22)

which reduces to εeg ' 2mνi for non-relativistic relic neutrinos, Tνi � mνi . Unlike the
proposals presented so far, we cannot use RENP to directly measure the local overdensity.
However, a strong suppression in the spectrum could indicate at least a partial filling of
the right helicity neutrino or left helicity antineutrino states, corresponding to gνi > 1 and
a deviation from the standard scenario. Additionally, we may gain insight into the energy
dependence of the local overdensity by use of the relation

∑
s

nν(νi,s) = nν,0
∑
s

ην(νi,s) =
∫
d3~pνi
(2π)3 fνi(|~pνi |), (6.23)

from which it follows that

fνi(|~pνi |) =
3ζ(3)T 3

ν,0
|~pνi |2

∑
s

dην(νi,s)
d|~pνi |

, (6.24)

9This is true for unclustered neutrinos that follow their equilibrium distribution (2.1), whose momenta will
be distributed around Tνi . The phase space of clustered relic neutrinos may be populated differently.
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and similar for fν̄i . As an illustrative example, we show the RENP photon spectrum with and
without Pauli blocking in figure 8 for a toy ‘Cs-like’ system with εeg = 11 meV, εpg = 20 meV
and εpe = 9 meV, whilst γpg = 5× 10−9 meV and the lightest neutrino mass mνl = 5 meV to
approximately align with the condition (6.22). This ratio of parameters is similar to that of
the 133Cs system chosen in [150], where the involved states are |e〉 = 6 2P1/2, |g〉 = 6 2S1/2 and
|p〉 = 7 2P1/2 in standard spectroscopic notation. For this system, the relevant parameters are
εeg = 1.386 eV, εpg = 2.699 eV and εpe = 1.313 eV, whilst γpg = 5.226× 10−10 eV [154].

Clearly, with the right choice of εeg, the effects of Pauli blocking can have a measurable
impact on the neutrino emission spectrum which becomes more pronounced as we vary
gνi . Interestingly, however, the Pauli blocking effect is also very sensitive to the neutrino
temperature; as a large fraction of momentum states with |~pνi | � Tνi are filled, a higher
temperature can lead to a drastically different photon spectrum. However, we expect that
finding systems with gaps satisfying (6.22) and appropriate set of states |g〉, |e〉 and |p〉 will be a
significant challenge, which also requires knowledge of the absolute neutrino mass. Nevertheless,
this remains an interesting prospect for probing the CνB. We also note that indirectly
observing relic neutrinos using Pauli blocking is not limited to RENP systems, a similar
experiment could equally be performed using any process that emits low energy neutrinos.

7 Discussion

We plot the constraints on the relic neutrino overdensity in the CνB frame and the reach
of the direct detection proposals presented in section 5 as a function of the neutrino mass,
for both the NH and IH scenarios in figures 9 and 10, in all cases assuming the same
overdensity for all three mass eigenstates, a constant temperature Tνi = Tν0 and unclustered
neutrino momentum |~pνi | ' 3.15Tνi . In addition, we assume only left (right) helicity Dirac
(anti)neutrinos or both left and right helicity Majorana neutrinos, in line with the standard
scenario presented in section 2. Where a distinction can be made, all solid lines show the
constraints on Dirac neutrinos, whilst the dotted lines show the constraints that could be
set for Majorana neutrinos. The grey region shows the existing constraints on the CνB from
the exclusion principle assuming Tνi = Tν,0, as well as the mass bounds from KATRIN and
oscillation experiments, whilst the purple, red and dark green regions are those that are
potentially constrained by KamLAND-Zen and cosmology, which are discussed in section 3.
Finally, we assume a runtime of t = 1 y, N = 25 events, corresponding to 5σ significance, and
a required signal noise ratio rSN,0 = 1 for all of the experimental constraints presented, where
appropriate.

Clearly, PTOLEMY (orange) has the best sensitivity to the CνB overdensity for this
parameter set, which rapidly becomes weaker as the neutrino mass approaches the proposed
energy resolution ∆ = 50 meV. Importantly, PTOLEMY has the potential to probe part of
the region currently unconstrained by the combination of existing constraints from KATRIN
and the exclusion principle. We stress, however, that PTOLEMY is unable to set any
constraints on the antineutrino overdensity, but note that the similar technique presented
in [102] and [112] could fill this role. We also show using the sensitivity of PTOLEMY to
Dirac neutrinos10 using the time variation method with the orange dot-dashed curve. For
neutrino masses below the proposed energy resolution of PTOLEMY, the sensitivity becomes
comparable to that of the standard method for the combination of parameters considered here.

10The sensitivity to Majorana neutrinos using this method will differ by the same amount as the standard
PTOLEMY technique.
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However, if the signal-noise ratio can be improved further through advanced signal processing
techniques, a longer runtime, or if the effect of the time dependence is significantly larger
than 0.1%, this becomes the most sensitive technique to detect low mass relic neutrinos.

For the Stodolsky effect sensitivity (cyan), we have additionally assumed that the CνB
is composed entirely of left helicity neutrinos11 and used the reference scenario given in (5.42)
for a 208Pb torsion balance. Under this assumption, the Stodolsky effect is significantly
more sensitive to CνB overdensities than both coherent scattering (pink) and the accelerator
proposal (light green) at low neutrino masses, but becomes considerably weaker at large
masses when βνi < β⊕ and the helicity asymmetry is washed out by the relative motion of
the Earth to the CνB frame. As shown by the dotted blue curve, there is no Stodolsky effect
for Majorana neutrinos in this limit.

The sensitivity of coherent scattering, for which we assume the reference scenario in (5.59)
and a 208Pb torsion balance, is almost uniform at small values of the lightest neutrino mass,
where the contribution to the momentum transfer is dominated by the approximately constant
mass of the heaviest neutrino state. In the quasi-degenerate mass regime (mνi & 0.1 meV),
the sensitivity improves quadratically with the neutrino mass and all three mass eigenstates
contribute. Importantly, coherent scattering remains large in the region where the contribution
to the Stodolsky effect from a net helicity asymmetry is zero. If the torsion balance proposal
with sensitivity a0 = 10−23 cm s−2 can be realised [115], both the Stodolsky effect and coherent
scattering become significantly more sensitive than PTOLEMY in the low mass regime.

Finally, we show the sensitivity of an accelerator experiment in light green, where we have
assumed the reference scenario presented in (5.84) and the 157Gd target given in table 1 of [14],
for which Q = 10.95 keV and x ' 8.91× 10−8 at t = 1 y. This proceeds via the RBβ process,
and so is only sensitive to the neutrino overdensity. We note, however, that an accelerator
experiment utilising a REC process would instead be sensitive to the antineutrino overdensity.
For this choice of target, the required beam energy per nucleon is E/A ' 100 TeV (0.1 eV/Eνi),
assuming an LHC sized experiment. The accelerator experiment has the worst sensitivity at
low masses, where the incredible beam energy requirement significantly reduces the number
of ions that can be placed on the beam. At large masses, however, the sensitivity exceeds
both coherent scattering and the Stodolsky effect. We also show the constraint that could be
placed with a toy ‘157Gd-like’ target using a light green dot-dashed line, assuming a smaller
Q-value of 1.095 keV, from which it should be clear that the performance of the accelerator
experiment can be enhanced considerably through a better choice of target.

In figures 11 and 12 we instead show the constraints and sensitivities as a function of the
neutrino temperature, Tνi = Tν for all three mass eigenstates, still with ~pνi ' 3.15Tνi , but
now assuming a fixed lightest neutrino mass mνl = 10 meV, which is not presently excluded
by any mass constraint. The most striking result from varying the temperature is that the
Pauli exclusion principle constraint now allows for significantly larger neutrino overdensities,
scaling as T 3

ν . For this choice of parameters, the sensitivity of PTOLEMY is also considerably
diminished, becoming unable to place strong constraints on the overdensity with either method
until Tν � ∆ = 50 meV. Additionally, at low temperatures, the sensitivity of PTOLEMY to
Majorana neutrinos is a factor of two better than the sensitivity to Dirac neutrinos due to
additional flux of right helicity neutrinos. However, at high temperatures, the two sensitivities
coincide as the right helicity flux becomes non-interacting.

11We remind the reader that if the standard scenario is assumed, either η̃ν(νDi,L) = η̃ν(ν̄Di,R) or η̃ν(νMi,L) =
η̃ν(νMi,R), such that the Stodolsky effect for Majorana neutrinos is expected to vanish identically, whilst the
effect for Dirac neutrinos will only contain the helicity asymmetry term.
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Curve Description Relevant text
and equations

Orange
PTOLEMY sensitivity to Dirac (solid) and Majorana
(dotted) neutrinos, standard method. Time dependent

method for Dirac neutrinos (dot-dashed).

Section 5.1,
(5.6), (5.16),
(5.18), (5.19).

Cyan Stodolsky effect sensitivity to Dirac (solid) and Majorana
(dotted) neutrinos.

Section 5.2,
(5.42), (5.43).

Pink Coherent scattering sensitivity to Dirac (solid) and
Majorana (dotted) neutrinos.

Section 5.3,
(5.59), (5.60).

Light
green

Accelerator sensitivity to Dirac (solid) and Majorana
(dotted) neutrinos. Using an optimistic setup for Dirac

neutrinos (dot-dashed).

Section 5.4,
(5.84).

Grey
Excluded by theory and experiment for Tνi = Tν,0 (solid,

figures 9 and 10). Excluded by KATRIN (dashed, figures 11
and 12).

Sections 3.1
and 3.4, (3.3).

Blue Excluded by Pauli exclusion principle for Tνi 6= Tν,0.
Section 3.1,

(3.3).

Purple Strongest mass bound on unstable Dirac neutrinos, from
cosmology. Section 3.4.

Red Strongest mass bound on unstable Majorana neutrinos, from
KamLAND-Zen. Section 3.4.

Green Strongest mass bound on stable neutrinos, from cosmology. Section 3.4.

Table 3. Descriptions of the curves in figures 9, 10, 11 and 12, along with links to the relevant text
and equations.
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Figure 9. Sensitivity of each direct detection proposal to the CνB overdensity as a function of the
neutrino mass, assuming Tνi = Tν,0 and only left (right) helicity (anti)neutrinos in the normal mass
hierarchy. See the text and table 3 for a full description of the figure.
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Figure 10. Sensitivity of each direct detection proposal to the CνB overdensity as a function of the
neutrino mass, assuming Tνi = Tν,0 and only left (right) helicity (anti)neutrinos in the inverted mass
hierarchy. See the text and table 3 for a full description of the figure.
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Figure 11. Sensitivity of each direct detection proposal to the CνB overdensity as a function of the
neutrino temperature, assuming mν1 = 10 meV and only left (right) helicity (anti)neutrinos in the
normal mass hierarchy. See the text and table 3 for a full description of the figure.

Figure 12. Sensitivity of each direct detection proposal to the CνB overdensity as a function of the
neutrino temperature, assuming mν3 = 10 meV and only left (right) helicity (anti)neutrinos in the
inverted mass hierarchy. See the text and table 3 for a full description of the figure.

By plotting as a function of the temperature, we also see several interesting features of
the Stodolsky effect. As the temperature decreases, the helicity asymmetry of each of the
three mass eigenstates is washed out by the relative motion of the Earth, leading to three
‘threshold-like’ steps in the sensitivity. The sharp peak in the Stodolsky sensitivity coincides
with the point at which the acceleration due to the effect vanishes identically. This is due to
the signs of the effective axial couplings, Aii; as A11 > 0, whilst A22, A33 < 0, it is possible
for the contribution from ν1 to cancel exactly with those from ν2 and ν3.

As expected, the sensitivity of coherent scattering rapidly becomes stronger as Tν
decreases. This is a result of the coherent scattering volume increasing as |~pνi |−3, but requires
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that the target size is increased by the same amount. However, for Tν/Tν,0 = 10−3, this still
only requires a target radius of R ∼ O(10 cm), which is achievable by a tabletop experiment.
At low temperatures, there is a clear distinction between the coherent scattering sensitivity
to Dirac and Majorana neutrinos present, with a greater sensitivity to Majorana neutrinos by
a factor ∼ 3.8. This distinction vanishes at high temperatures, where the mass scale becomes
irrelevant and both Dirac and Majorana neutrinos can be approximated as Weyl fermions.

Finally, the sensitivity of the accelerator experiment develops a ‘knee’ at Tν ' mνi when
plotted in temperature space. Below this knee, the sensitivity becomes weaker with increasing
temperature due to the broadening of the CνB momentum distribution, resulting in fewer relic
neutrinos being captured on resonance. Above this temperature, the increased CνB momentum
has a significant contribution to the neutrino energy and the E4

νi scaling of the sensitivity
dominates. This high neutrino energy scaling is largely due to the decreased beam energy
requirements, and subsequently the larger number of ions that can be placed on the beam. For
completeness, we also show the overdensity bound from KATRIN on Dirac neutrinos12 using a
dashed grey line, whilst the dot-dashed light green line corresponds the toy ‘157Gd-like’ target
discussed previously. Additionally, the accelerator is a global factor of two more sensitive to
Majorana neutrinos in the standard scenario, for reasons outlined in detail in section 5.4.

8 Conclusions

Detecting relic neutrinos is an overwhelmingly difficult challenge due to their low energy and
weakly interacting nature. A successful detection of the CνB could provide valuable insight
into Big Bang nucleosynthesis and allow us to further improve the accuracy of cosmological
models. Whilst many of the as yet unmeasured parameters such as the temperature and
number density of the CνB can be predicted from theory, extended scenarios could result in
significantly different values. As the success of many detection proposals depends heavily on
these parameters, it is important to constrain the allowed, present day parameter space as
much as possible to determine the most effective detection technique.

We have explored the constraints that can be set on the CνB overdensity from theory,
experiment and cosmology, as well as the sensitivity of both direct and indirect relic neutrino
detection proposals, for a range of neutrino temperatures and masses. Where they differ, we
have calculated the limits for Dirac and Majorana neutrinos, in both the normal and inverted
mass hiearchy scenarios. In all cases, we have worked in the mass basis and have allowed for
non-degenerate neutrino masses. Additionally, we have accounted for a CνB reference frame
that does not necessarily coincide with that of the Earth and transformed all quantities that
depend on the relative frame kinematics appropriately. Finally, as the CνB is expected to
consist entirely of left (right) helicity (anti)neutrinos, we have used polarised cross sections
throughout.

The current experimental constraints on the relic neutrino overdensity are very weak,
with the strongest constraint currently set by KATRIN at η̃ν(νi,L) . 1.3 × 1011. By at-
tributing deviations in the measured solar neutrino spectrum from theoretical predictions
to relic neutrinos, we have demonstrated that Borexino strongly favours relic neutrinos with
temperature Tνi . 5 keV.

Theory places much stronger constraints on relic neutrinos. At the neutrino temperature
predicted by standard cosmology, Tνi = Tν,0, we have shown that overdensities η̃ν(νi,s)� 1

12We remind the reader that this constraint is stronger by a factor of two for Majorana neutrinos, assuming
the standard scenario with η̃ν(νMi,L) = η̃ν(νMi,R).
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are forbidden by the Pauli exclusion principle for neutrino masses mνi . 0.15 eV. At the
upper mass bound set by KATRIN, mνi ' 0.8 eV, the exclusion principle bound becomes
weaker, allowing for overdensities η̃ν(νi,s) . 125. However, if the neutrino temperature differs
from the predicted value, the Pauli bound is modified by a factor ∼ (Tνi/Tν,0)3, allowing for
significantly larger overdensities.

Cosmology also heavily restricts the allowed CνB parameter space. For a neutrino
overdensity generated by the introduction of a chemical potential, we have demonstrated that
the combination of constraints from BBN and ∆Neff limit the Dirac neutrino overdensities to∑
s η̃ν(νD1,s) . 1.5,

∑
s η̃ν(νD2,s) . 3.5 and

∑
s η̃ν(νD3,s) . 3.5, all assuming Tνi = Tν,0 and gνi = 1.

If we instead attribute the contribution to ∆Neff entirely to a modified neutrino temperature,
the cosmological constraints become Tνi ≤ 1.024Tν,0 and

∑
s η̃ν(νi,s) ≤ 1.073 for a mass

eigenstate-independent temperature Tνi = Tν , or Tνi ≤ 1.351Tν,0 and
∑
s η̃ν(νi,s) ≤ 2.47 in

the most extreme scenario with two neutrinos at Tν,i = 0 and a third, hot neutrino state.
Measured phase shifts in the baryon acoustic oscillation spectrum instead constrain the relic
neutrino from below, permitting η̃ν(νi,s) ≥ 0.19 at just below ∼ 3σ. However, these bounds do
not apply today if the CνB has undergone significant changes since the radiation-dominated
era, e.g. as a result of neutrino decay or strong neutrino interactions with dark matter.

We have shown that the regions of overdensity space that can be probed by each direct
detection proposal are strongly dependent on the CνB mass and temperature. For large
relic neutrino masses or temperatures, mνi & 50 meV or Tνi & 30 meV, PTOLEMY could
probe overdensities as small as η̃ν(νi,L) & 6 with 5σ significance after one year, assuming
only left helicity neutrinos. For very low energy neutrinos, however, this rapidly diminishes
to η̃ν(νi,L) . 3 × 105, but may be improved by measuring the time dependence of the
signal. PTOLEMY is also completely unable to observe relic antineutrinos, but may be
complimented by an experiment using a β+-decaying target [102, 112]. For a conservative
setup, torsion balance experiments utilising the Stodolsky effect or coherent scattering could
observe overdensities of η̃ν(νi,L) & 1010 and η̃ν(νi,L) & 1012 in the small neutrino mass regime,
respectively. The sensitivities of these torsion balance experiments could be up to eight orders
of magnitude stronger with an optimistic experimental setup, surpassing the potential of
PTOLEMY. However, the Stodolsky effect relies on either a net neutrino-antineutrino or
helicity asymmetry in the CνB, and as such is expected to vanish identically for Majorana
neutrinos in the standard scenario, whilst only containing the helicity asymmetry contribution
for Dirac neutrinos. Both torsion balance experiments are also capable of distinguishing
between Dirac and Majorana neutrinos, with the Stodolsky effect for Majorana neutrinos
expected to vanish completely at large neutrino masses or low neutrino temperatures. On the
other hand, the sensitivity of a coherent scattering experiment improves at a rate T−2

νi with
decreasing neutrino temperature. We have also shown that an accelerator experiment using a
conservative setup is sensitive to relic neutrino overdensities η̃ν(νi,L) & 109 at the KATRIN
mass bound, mνi = 0.8 eV, rapidly becoming less sensitive at lower masses. For Tνi > mνi ,
however, the sensitivity improves as T 4

νi , whilst for a more optimistic setup the sensitivity
could be up to seven orders of magnitude stronger. Finally, we showed in section 5.5 that
line intensity mapping experiments searching for radiative CνB neutrino decay could be
sensitive to overdensities ην(νi,s) & 1023 assuming only Standard Model processes, but would
be many orders of magnitude more sensitive for a neutrino transition electromagnetic moment
approaching the experimental bound.

Indirect searches could also yield interesting constraints; we have demonstrated that
large overdensities could lead to the severe attenuation of extragalactic neutrino fluxes at high
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energies. By searching for this attenuation, IceCube-Gen2 could be sensitive to overdensities
η̃ν(νi,s) ≥ 1010. Additionally, the exclusion principle could heavily suppress processes emitting
exclusively low energy neutrinos. Similar to the direct detection proposals, the extent of these
effects depends heavily on the properties of the CνB.

In summary, the magnitude of any relic neutrino overdensity is heavily constrained by
the Pauli exclusion principle and cosmology, whilst PTOLEMY is expected to have the best
sensitivity of any CνB detection proposal in most scenarios. However, we have demonstrated
that the other direct detection proposals could provide insight into the Dirac or Majorana
nature of neutrinos, the helicity profile CνB and the mass hierarchy, whilst scenarios differing
significantly from the standard cosmological history could see them outperform PTOLEMY.

Acknowledgments

We thank Martin Spinrath for bringing the bound from baryon acoustic oscillations to our
attention. We would also like to thank Peter Denton for highlighting a minor mistake in a
previous draft of this work. Jack D. Shergold is supported by an STFC studentship under
the STFC training grant ST/T506047/1. Martin Bauer acknowledges support by the Future
Leader Fellowship ‘DARKMAP’.

A Electron energy shifts

Here we derive the energy shift of each electron spin state due to the Stodolsky effect. We
begin by calculating the expectation values (5.30), (5.31) and (5.33). The electron energy
shifts due to Dirac neutrinos can be rewritten in terms of traces as

〈ese , νi,s|HD|ese , νi,s〉 = GF√
2

Tr
[
u(pνi , s)ū(pνi , s)γµ(1− γ5)

]
× Tr

[
u(pe, se)ū(pe, se)γµ(Vii −Aiiγ5)

]
,

(A.1)

〈ese , ν̄i,s|HD|ese , ν̄i,s〉 = −GF√
2

Tr
[
v(pνi , s)v̄(pνi , s)γµ(1− γ5)

]
× Tr

[
u(pe, se)ū(pe, se)γµ(Vii −Aiiγ5)

]
,

(A.2)

whilst for Majorana neutrinos we instead have

〈ese , νi,s|HM |ese , νi,s〉 = −
√

2GFTr
[
u(pνi , s)ū(pνi , s)γµγ5

]
×Tr

[
u(pe, se)ū(pe, se)γµ(Vii −Aiiγ5)

]
.

(A.3)

To evaluate the outer products of spinors in a basis independent way, we use the identities

u(p, s)ū(p, s) = 1
2(/p+m)(1 + γ5/S), (A.4)

v(p, s)v̄(p, s) = 1
2(/p−m)(1 + γ5/S), (A.5)

where /A ≡ γµAµ and the spin vector for massive and massless particles are defined, respectively,
by

Sµ = s

(
~p · ~n
m

,~n+ (~p · ~n)~p
m(E +m)

)
, Sµ = s

(
1, ~p
|~p|

)
, (A.6)
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for a particle with spin s, where the unit vector ~n denotes the spin orientation of the particle
in its rest frame. The choice ~n = ~p/|~p| picks out the component of ~S along the momentum
direction, allowing us to instead identify s with the particle helicity. This also considerably
simplifies Sµ to

Sµ = s

( |~p|
m
,
E

m

~p

|~p|

)
, (A.7)

where s = ±1 is now the particle helicity, with +1 corresponding to right helicity and −1
corresponding to left helicity. We note that (A.7) is not valid for particles at rest, and
instead (A.6) should be used. With these definitions, we can perform the traces to find the
energy shift

∆EDe (~pe, se) = GF√
2
me

Ee

∑
i,s

Aii
Eνi

[
mνi(Se · Sνi)(nν(νDi,s) + nν(ν̄Di,s))

−(Se · pνi)(nν(νDi,s)− nν(ν̄Di,s))
]

+ f(Vkk),
(A.8)

for Dirac neutrinos, whilst for Majorana neutrinos the shift is given by

∆EMe (~pe, se) =
√

2GF
me

Ee

∑
i,s

Aii
mνi

Eνi
(Se · Sνi)nν(νi,s) + f(Vkk), (A.9)

where we have made the replacement
∫
d3x→ V as no terms depend on position, and f(Vkk)

contains terms that do not depend on electron spin that will cancel when we take the difference
between the energy of the two spin states. We also see that in all cases the term containing
(Se · Sνi) is proportional to mνi , such that we only need to evaluate it using (A.6) for massive
neutrinos.

As the Stodolsky effect depends on all neutrinos in the background, we should work in
terms of ~pνi,true and perform the flux-weighted averaging outlined in section 2.1 at the end.
However, before performing the lab frame calculation where the averaging is more complicated,
we compute the averages of (Se · Sνi) and (Se · pνi) in the CνB frame as a cross check. In
the CνB frame the neutrino momentum is given by (2.5), whilst the electron momentum is
generated due to the relative motion of the Earth and is given by

p̃e = me√
1− β2

⊕


1
0
0
−β⊕

 . (A.10)

Using this, we find the CνB frame averages

1
4π

∫
(S̃e · S̃νi) dΩ̃ = sesβ⊕√

1− β2
⊕

|~pνi |
mνi

, (A.11)

1
4π

∫
(S̃e · p̃νi) dΩ̃ = seβ⊕√

1− β2
⊕

Eνi , (A.12)

where s is the neutrino helicity. Importantly, these are all proportional to the asymmetry
parameter, β⊕. As such, we expect that the Stodolsky effect will also be proportional to β⊕
in the lab frame, where the electrons are at rest and the asymmetry is instead generated by
the neutrino wind. If we did not make the assumption of isotropy in the CνB frame then

– 51 –



J
C
A
P
0
1
(
2
0
2
3
)
0
0
3

Stodolsky effect would not necessarily be proportional to β⊕, but would still require some
non-zero asymmetry parameter.

For electrons polarised along z in the lab frame, Sµe = se(0, 0, 0, 1), we find the flux-
weighted averages 〈

(Se · Sνi,true)
Eνi,true

〉
= −β⊕ses3mνi

1
βνi

(
3− β2

νi

)
+O(β2

⊕), (A.13)〈
(Se · pνi,true)
Eνi,true

〉
= −2β⊕se

3 (2− β2
νi) +O(β2

⊕), (A.14)

which are all proportional to β⊕ as expected. We note that (A.13) diverges in the limit
βνi → 0. However, as (A.11) is finite, this divergence must be a consequence of the frame
transformation and should cancel elsewhere to leave a finite result. As a consequence of (5.38),
this is indeed the case.

After substituting the averages into the energy shifts (A.8) and (A.9), we find an energy
splitting between the two electron spin states

∆EDe =
√

2GF
3 β⊕

∑
i

Aii

[
2
∑
s

(2− β2
νi)(nν(νDi,s)− nν(ν̄Di,s))

+ 1
βνi

(
3− β2

νi

)
(nν(νDi,L)− nν(νDi,R) + nν(ν̄Di,R)− nν(ν̄Di,L))

]
,

(A.15)

for Dirac neutrinos. Importantly, the contributions from right helicity neutrinos and left
helicity antineutrinos vanish in the limit βνi → 1. For Majorana neutrinos, where only the
spin-spin term contributes, we instead find a splitting

∆EMe = 2
√

2GF
3 β⊕

∑
i

Aii
βνi

(
3− β2

νi

)
(nν(νMi,L)− nν(νMi,R)), (A.16)

as given in the main text.

B Helicity flipping probability

In this appendix, we derive the helicity flipping probability, PF (β⊕), when transforming
from the CνB to laboratory frame, assuming that relic neutrinos are isotropic in their own
reference frame.

We begin by noting that the helicity of a relic neutrino will flip if its velocity changes
sign when going between frames. In order for this to happen, two conditions must be met.
First, the velocity of the relic neutrino must contain a component that is initially antiparallel
to the velocity of the Earth. If the neutrino velocity only contains a parallel component, then
the relative motion of the two frames will increase the magnitude of the relic neutrino velocity
but can never change its sign. We therefore require

PF (β⊕) + PDNF (β⊕) + PCNF = 1, (B.1)

where PDNF (β⊕) is the probability that a neutrino can flip helicity, but does not, whilst PCNF
accounts for the neutrinos that cannot flip helicity as their velocity is initially antiparallel to
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that of the Earth. For an isotropic background, PCNF = 1/2. Second, the Earth must be
moving faster than the relic neutrino along its direction of travel,

β⊕ cos θh ≥ β̃νi , (B.2)

where θh ∈ [0, π/2] is the angle between the velocity of the relic neutrino and the Earth. We
restrict θh to this domain, as θh > π/2 corresponds to neutrinos with only parallel velocity
components, which are already accounted for in PCNF .

Given this, we define the function

S(θh) = sgn
(
β⊕ cos θh − β̃νi

)
, (B.3)

which outputs +1 if neutrinos flip helicity during the frame transformation, or −1 if the
helicity retains its sign. Its integral

π/2∫
0

S(θh) dθh = ADNF (β⊕)−AF (β⊕), (B.4)

outputs the difference between the areas of two unit height rectangles, AF (β⊕) and ADNF (β⊕),
with lengths proportional to PF (β⊕) and PDNF (β⊕) respectively. Their sum must be equal to
the length of the domain, AF (β⊕)+ADNF (β⊕) = π/2, such that given PF (β⊕)+PDNF (β⊕) =
1/2, we must necessarily have AF (β⊕) = πPF (β⊕) and ADNF (β⊕) = πPDNF (β⊕). Finally,
rewriting PDNF (β⊕) = 1/2− PF (β⊕), we find

PF (β⊕) = 1
4 −

1
2π

π/2∫
0

S(θh) dθh =


1
π arcsin

(
β⊕

β̃νi

)
, β⊕ < β̃νi ,

1
2 , β⊕ ≥ β̃νi ,

(B.5)

as given in (5.39).

C Polarised neutrino scattering cross sections

Here we calculate the polarised neutrino scattering cross sections on nuclei and electrons,
working in the mass basis, for both Dirac and Majorana neutrinos. We begin with the
neutrino-nucleus cross section, assuming full coherence over nuclear distances such that any
details of substructure can be ignored. From left to right, the Feynman diagrams given in
figure 13 correspond to the amplitudes

iMN (νDi,s) = iGF√
2
ū(qνi , s′)γµ(1− γ5)u(pνi , s)j

µ
X , (C.1)

iMN (ν̄Di,s) = iGF√
2
v̄(pνi , s′)γµ(1− γ5)v(qνi , s)j

µ
X , (C.2)

for incoming neutrinos and antineutrinos with helicity s, where pνi and qνi are the four-
momenta of the incoming and outgoing neutrino, respectively. The nuclear current is written
in terms of the vector and axial charges, QV = A− 2Z(1− 2 sin2 θW ) and QA = A− 2Z, as

jµX = −1
2 ū(qX , r′)γµ(QV −QAγ5)u(pX , r), (C.3)

– 53 –



J
C
A
P
0
1
(
2
0
2
3
)
0
0
3

Figure 13. Tree level diagrams contributing to the scattering of (anti)neutrino mass eigenstate i on
nucleus X. The Majorana neutrino amplitude is found by taking the difference between these two
diagrams.

for a nucleus with incoming and outgoing four-momenta pX and qX . For Dirac neutrinos and
antineutrinos, the scattering amplitudes on nuclei are given by (C.1) and (C.2), respectively.
Conversely, the Majorana scattering amplitude is found by taking the difference

iMN (νMi,s) = iMN (νDi,s)− iMN (ν̄Di,s)
= −i

√
2GF ū(qνi , s′)γµγ5u(pνi , s)j

µ
X ,

(C.4)

where in going from the first to second line we have applied the Majorana condition v(p, s) =
Cū(p, s)T , with C the charge conjugation matrix. Squaring the amplitude, averaging over
target nucleus spins, and summing over the final state helicities yields〈∣∣∣MN (νDi,s)

∣∣∣2〉 = 1
2
∑
s′,r,r′

∣∣∣MN (νDi,s)
∣∣∣2 = G2

F

16 TαβT
αβ
X , (C.5)

〈∣∣∣MN (ν̄Di,s)
∣∣∣2〉 = G2

F

16 T̄αβT
αβ
X , (C.6)〈∣∣∣MN (νMi,s)

∣∣∣2〉 = G2
F

4 UαβT
αβ
X , (C.7)

where the traces are defined by

T αβ = Tr
[
γα(/qνi +mνi)γβ(1− γ5)u(pνi , s)ū(pνi , s)(1 + γ5)

]
, (C.8)

T̄ αβ = Tr
[
γαv(pνi , s)v̄(pνi , s)γβ(1− γ5)(/qνi −mνi)(1 + γ5)

]
, (C.9)

Uαβ = Tr
[
γαγ5(/qνi +mνi)γβγ5u(pνi , s)ū(pνi , s)

]
, (C.10)

T αβX = Tr
[
γα(/qX +mX)γβ(QV −QAγ5)(/pX +mX)(QV +QAγ

5)
]
, (C.11)

whilst mX is the mass of the target nucleus. To evaluate the spinor product appearing in (C.8)
we use the identities (A.4), (A.5) and (A.6), where we note that we once again only require
the massive version of (A.6) and Sµ is always multiplied by mνi . With these definitions, the
traces are readily evaluated using a computer algebra package such as FeynCalc [155–157].

As all momenta in the problem are small relative to the target mass, the lab frame
approximately coincides with the CoM frame. This considerably simplifies the phase space
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integration, yielding a cross section

σDN '
1

32πĒ2

1∫
−1

d cos θ
〈
|MN |2

〉
, (C.12)

where Ē2 = m2
νi +m2

X + 2mXEνi is the CoM energy and θ is the angle between the incoming
and outgoing neutrino. Evaluating the traces, and performing the phase space integral (C.12),
we find the polarised cross sections

σN (νDi,s) = G2
F

8π (Q2
V + 3Q2

A)(1− sβνi)E2
νi , (C.13)

σN (ν̄Di,s) = G2
F

8π (Q2
V + 3Q2

A)(1 + sβνi)E2
νi , (C.14)

σN (νMi,s) = G2
F

4π (β2
νiQ

2
V + 3(2− β2

νi)Q
2
A)E2

νi . (C.15)

Naturally, the cross sections for right helicity neutrinos and left helicity antineutrinos vanish
as βνi → 1.

We now repeat the process for scattering on electrons, noting that both mass diagonal
(νi → νi) and mass changing (νi → νj) processes can contribute to the total scattering rate
through the diagrams given in figure 14. Once again from left to right, the Feynman diagrams
in figure 14 correspond to the amplitudes

iMNC
e = iGF√

2
ū(qνi , s′)γµ(1− γ5)u(pνi , s)jµe , (C.16)

iM̄NC
e = iGF√

2
v̄(pνi , s′)γµ(1− γ5)v(qνi , s)jµe , (C.17)

iMCC
e,ij = iGF√

2
UeiU

∗
ej ū(qe, r′)γµ(1− γ5)u(pνi , s)ū(qνj , s′)γµ(1− γ5)u(pe, r), (C.18)

iM̄CC
e,ij = iGF√

2
UeiU

∗
ej v̄(pνi , s)γµ(1− γ5)u(pe, r)ū(qe, r′)γµ(1− γ5)v(qνj , s′), (C.19)

where the electron current is given in terms of its vector and axial-vector couplings to the
Z-boson, geV = −1/2 + 2 sin2 θW and geA = −1/2, by

jµe = ū(qe, r′)γµ(geV − geAγ5)u(pe, r). (C.20)

The neutral current amplitudes can only to contribute to the mass diagonal scattering rate,
whilst the mass changing scattering rate receives a contribution from both neutral and charged
current processes. The amplitudes for Dirac neutrinos to scatter on electrons are therefore
given by

iMe(νDi,s → νDj ) = iMNC
e δij − iMCC

e,ij , (C.21)
iMe(ν̄Di,s → ν̄Dj ) = iM̄NC

e δij − iM̄CC
e,ij , (C.22)

where δij is the Kronecker delta. The relative sign between the neutral and charged current
amplitudes in (C.21) and (C.22) arises when permuting the external fermion fields. This
can be calculated algorithmically using the permutation rules given in [113]. For Majorana
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Figure 14. Tree level diagrams contributing to the scattering of neutrino mass eigenstate i on electrons.

neutrinos, all four diagrams in figure 14 contribute to the total scattering amplitude, which
following the permutation rules to find the relative sign between diagrams is given by

iMe(νMi,s → νMj ) = (iMNC
e − iM̄NC

e )δij + iM̄CC
e,ij − iMCC

e,ij . (C.23)

From here, the procedure follows that of the nuclear scattering case, where we square the
amplitudes, average over the initial state electrons spins and sum over final state helicities to
find for Dirac neutrinos〈∣∣∣Me(νDi,s→ νDj )

∣∣∣2〉= G2
F

4
{
|Uei|2|Uej |2T1,αβT αβ2 +δij

(
TαβT αβe −2|Uei|2Re(T )

)}
, (C.24)〈∣∣∣Me(ν̄Di,s→ ν̄Dj )

∣∣∣2〉= G2
F

4
{
|Uei|2|Uej |2T̄1,αβ T̄ αβ2 +δij

(
T̄αβT αβe −2|Uei|2Re

(
T̄
))}

(C.25)

where it is understood that we take qνi → qνj in the traces Tαβ and T̄αβ where appropriate,
and the two index traces are given by

T αβ1 = Tr
[
γα(/qe +me)γβ(1− γ5)u(pνi , s)ū(pνi , s)(1 + γ5)

]
, (C.26)

T αβ2 = Tr
[
γα(/qνj +mνj )γβ(1− γ5)(/pe +me)(1 + γ5)

]
, (C.27)

T̄ αβ1 = Tr
[
γαv(pνi , s)v̄(pνi , s)γβ(1− γ5)(/pe +me)(1 + γ5)

]
, (C.28)

T̄ αβ2 = Tr
[
γα(/qe +me)γβ(1− γ5)(/qνj −mνj )(1 + γ5)

]
, (C.29)

T αβe = Tr
[
γα(/qe +me)γβ(geV − geAγ5)(/pe +me)(geV + geAγ

5)
]
, (C.30)

whilst the fully contracted traces arising from the interference terms are

T = Tr
[
γα(/qνj +mνj )γβ(1− γ5)u(pνi , s)ū(pνi , s)(1 + γ5)

× γρ(/qe +me)γσ(geV − geAγ5)(/pe +me)(1 + γ5)
]
,

(C.31)

T̄ = Tr
[
γα(/qe +me)γβ(geV − geAγ5)(/pe +me)(1 + γ5)

× γαv(pνi , s)v̄(pνi , s)γβ(1− γ5)(/qνj −mνj )(1 + γ5)
]
.

(C.32)

Computing the averaged Majorana amplitude requires significantly more work, in particular for
the interference term between the two charged current diagrams. After repeated applications
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of the Majorana condition, we find〈∣∣∣Me(νMi,s → νMj )
∣∣∣2〉 = G2

F

4
{
|Uei|2|Uej |2

(
T1,αβT αβ2 + T̄1,αβ T̄ αβ2 − 2Re (U1)

)
+ 4δij

(
UαβT αβe + |Uei|2Re (U2 + U3)

)}
,

(C.33)

where once more we have qνi → qνj in Uαβ, and the fully contracted traces appearing in the
Majorana amplitude are

U1 = Tr
[
γα(1 + γ5)(/pe −me)(1− γ5)γβu(pνi , s)u(pνi , s)

× (1 + γ5)γα(/qe +me)γβ(1− γ5)(/qνj −mνj )
]
,

(C.34)

U2 = Tr
[
γα(/qe +me)γβ(geV − geAγ5)(/pe +me)(1 + γ5)

× γαv(pνi , s)v̄(pνi , s)γβγ5(/qνj −mνj )(1 + γ5)
]
,

(C.35)

U3 = Tr
[
γα(/qνj +mνj )γβγ5u(pνi , s)ū(pνi , s)(1 + γ5)

× γα(/qe +me)γβ(geV − geAγ5)(/pe +me)(1 + γ5)
]
.

(C.36)

As all momenta and neutrino mass splittings are small compared to the electron mass, we
can use the analogous expression to (C.12) to compute the neutrino-electron scattering cross
sections. This yields

σe(νDi,s → νDj ) = G2
F

2π EνiEνj (1− sβνi)K
D
ij , (C.37)

σe(ν̄Di,s → ν̄Dj ) = G2
F

2π EνiEνj (1 + sβνi)KD
ij , (C.38)

σe(νMi,s → νMj ) = G2
F

π
EνiEνjK

M
ij , (C.39)

to leading order in small quantities, where

KD
ij = 4|Uei|2|Uej |2 + δij

(
3(geA)2 + (geV )2 + 2|Uei|2(3geA + geV )

)
(C.40)

KM
ij =

(
4 + 2

√
1− β2

νi

√
1− β2

νj

)
|Uei|2|Uej |2

+ δij

[(
3(geA)2 + (geV )2 + 2|Uei|2(3geA + geV )

)
+
√

1− β2
νi

√
1− β2

νj

(
3(geA)2 − (geV )2 + 2|Uei|2(3geA − geV )

)]
.

(C.41)

Once more, the left helicity neutrino and right helicity antineutrino cross sections vanish in
the relativistic limit. In the same limit, βνi → 1, the sum of the scattering cross sections
for Dirac neutrinos and antineutrinos is equal to the Majorana neutrino cross section, as
both follow the same equation of motion in the massless regime. We also note that as all
terms proportional the vector couplings, QV and geV , in the Majorana cross sections (C.15)
and (C.39) tend to zero in the non-relativistic limit, βνi → 0. This is a consequence of the
pure axial neutral current vertex for Majorana neutrinos, which couples to the electron vector
current at O(βνi) and the axial current at O(1).
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D Coherent scattering structure factors

In this section we will derive the N2
T enhancement in coherent scattering, and generalise it

to the case where only partial coherence can be obtained. The cross section for a 2 → n
scattering process is proportional to the scattering probability

P = |out〈φ1φ2 . . . φn|φAφB〉in|2, (D.1)

where the labels in and out refer to states that are at time t = ∓∞ respectively. We implicitly
assume in (D.1) that the incoming state B scatters off of a single scattering centre A, located
at position ~x. The states themselves are represented by wavepackets

|φ〉 =
∫
dΠφ(~p)|~p〉, dΠ = d3p

(2π)3
1√
2Ep

, (D.2)

where |~p〉 is a one particle state of momentum ~p, and φ(~p) is the Fourier transformed spatial
wavefunction, explicitly

φ(~p) =
∫
d3x e−i~p·~xφ(~x). (D.3)

The matrix element for a 2→ n scattering process is defined in terms of the states of definite
momentum by

out〈~p1~p2 . . . ~pn|~pA~pB〉in = (2π)4δ(4)

pA + pB −
∑
f

pf

 iMAB→f , (D.4)

where the sum runs over the final states.
Now suppose that we instead have an incoming state B with the potential to scatter

from one of many centres Ai, each located at position ~ri = ~x− ~xi with the same momentum
~pA. The cross section will now be proportional to

PC =
∣∣∣∣∣∑
i

out〈φ1iφ2 . . . φn|φAiφB〉in

∣∣∣∣∣
2

=
∣∣∣∣∣∑
i

(
n∏
f=2

∫
dΠf φ

∗
f (~pf )

∫
dΠ1 φ

∗
1i(~p1)

∫
dΠA φAi(~pA)

×
∫
dΠB φB(~pB) out〈~p1~p2 . . . ~pn|~pA~pB〉in

)∣∣∣∣∣
2

,

(D.5)

where the superscript C is used to denote the coherent quantities that we wish to compute,
and we have assumed that each final state 〈φ1i | is produced at the site ~ri with momentum ~p1.
The Fourier transform of the field operator, φi(~p) is

φi(~p) =
∫
d3x e−i~p·~xφ(~x− ~xi) = φ(~p)e−i~p·~xi , (D.6)

such that the coherent scattering probability is given by

PC =

∣∣∣∣∣∣
∏
f,i

∫
dΠf φ

∗
f (~pf )

∫
dΠi φi(~pi) out〈~p1~p2 . . . ~pn|~pA~pB〉in

∑
j

e−i(~pA−~p1)·~xj

∣∣∣∣∣∣
2

, (D.7)
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where the products over i and f now run over all initial and final states respectively, whilst
the sum over j runs over each scattering centre. We immediately see that going from P → PC
is equivalent to making the transformation

out〈~p1~p2 . . . ~pn|~pA~pB〉in → out〈~p1~p2 . . . ~pn|~pA~pB〉in
∑
i

e−i(~pA−~p1)·~xi , (D.8)

allowing us to make the convenient definition of the coherent scattering amplitude

iMC
AB→f = iMAB→f F (~q), (D.9)

where F (~q) is the structure factor, defined in terms of the momentum transfer ~q = ~pA − ~p1 by

F (~q) =
∑
i

e−i~q·~xi . (D.10)

The coherent scattering cross section will therefore be proportional to |F (~q)|2. As a result, in
the low momentum regime |~q|−1 � 〈|~xi − ~xj |〉 ' R, where R is the radius of the target, it
follows that the scattering cross section is enhanced by a factor

|F (~0)|2 =
∑
i,j

e−i
~0·(~xi−~xj) = N2

T , (D.11)

for a system of NT scattering centres. We make the important note that the total scattering
rate is not multiplied by an additional factor of NT , as the incoming state scatters coherently
on a single target containing NT centres, rather than NT targets incoherently. If coherence
can only be maintained over a volume |~q |−3 < R3, each containing NC < NT centres, the
coherent cross section will instead be proportional to NVN

2
C , where NV = NT /NC is the

number of coherent volumes in the target. The overall enhancement factor is therefore well
approximated by

|F (~q)|2 ' NTNC = NT ×


NT , (R|~q|)3 ≤ 1,( 1
R|~q|

)3
NT , 1 < (R|~q|)3 ≤ NT ,

1, (R|~q|)3 > NT ,

(D.12)

which is computationally efficient at large NT . We plot the structure factor in figure 15, along
with its approximation (D.12).

More generally, one can use the definition of the Dirac delta function to write

(2π)3δ(3)(~q) =
∫
e−i~q·~x d3x ' V

NT

∑
i

e−i~q·~xi , (D.13)

where the far right equality holds for large NT , and V is the volume of the target. Performing
a double integral therefore yields∫ ∫

e−i~q·(~x−~x
′) d3x d3x′ ' V 2

N2
T

∑
i,j

e−i~q·(~xi−~xj)

=
[
(2π)3δ(3)(~q)

] [
(2π)3δ(3)(~q)

]
.

(D.14)
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Figure 15. Structure factor for a spherical target of radius R containing N = 106 randomly placed
scattering centres, smoothed using a moving average. For simplicity, we choose ~q = (0, 0, |~q|). The
true value (D.10) is plotted in blue, whilst the approximation (D.12) is shown in orange. The wiggles
in the true value at |~q|R > 1 correspond to the Bragg condition, ~q · (~xi − ~xj) = nπ for n ∈ Z, being
satisfied, where coherence is partially restored.

As the delta function is only defined under an integral, there is implicitly an integral over
~q being performed that effectively picks out the value δ(~q = 0) = V/(2π)3 for the second
delta function. Identifying the squared structure factor on right hand side of (D.14) and
rearranging, we therefore find that

|F (~q)|2 ' N2
T

V
(2π)3δ(3)(~q). (D.15)

This is the form of the structure factor using to compute the RENP rate in section 6.2, which
recovers the N2

T enhancement for |~q| = 0. For a comprehensive review of macroscopic coherent
scattering, see [158].

E Meson decay

Here we derive the vector meson decay widths to neutrinos used in 6.1. The amplitude for
the decay of vector meson V ∈

{
ρ0, ω, φ

}
into two outgoing neutrinos with momenta p1 and

p2 is13

iM(V → νiν̄i) = −i
√

2GF ū(p1)γµ(gνV − gνAγ5)v(p2) 〈0| jZµ |V (pV )〉 , (E.1)

where gxV = T x3 − 2QxEM sin2 θW and gxA = T x3 are the vector and axial-vector couplings of
species x, given in terms of their weak isospin T3 and electric charge QEM, whilst jZµ is the
weak neutral current.

We note that the hadronic matrix element appearing in (E.1) must be gauge invariant
since it is just a number. Since the external state |V 〉 transforms as a vector, the neutral

13As a neutral current process, this must be mass diagonal.
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current jZµ must transform in the same way to leave the amplitude invariant. As such, jZµ can
only contain quark vector currents, and so we define in analogy with [159]

jZµ = gsV j
φ
µ + guV + gdV√

2
jωµ + guV − gdV√

2
jρ

0
µ , (E.2)

where the individual vector currents are written in terms of the constituent quark fields as

jω,ρ
0

µ = 1√
2

(
ūγµu± d̄γµd

)
, jφµ = s̄γµs, (E.3)

with the +(−) sign chosen for the ω
(
ρ0) meson. Due to mixing between the three mesons,

amplitudes of the form 〈V | jV ′µ |0〉 with V 6= V ′ are also non-zero. This is discussed at length
in [159]; here we simply quote the results for each of the three mesons in terms of the decay
constants f qV〈

ρ0
∣∣∣ jZµ |0〉 =

εµmρ0
√

2

(
guV f

u
ρ0 − gdV fdρ0

)
≡ εµmρ0geff

ρ0 f eff
ρ0 , (E.4)

〈ω| jZµ |0〉 = εµmω√
2

[
guV f

u
ω + gdV f

d
ω − ηωφgsV

(
fuω + fdω√

2

)]
≡ εµmωg

eff
ω f

eff
ω , (E.5)

〈φ| jZµ |0〉 = εµmφfφ

[
gsV + ηωφ

(
guV + gdV√

2

)]
≡ εµmφg

eff
φ f

eff
φ , (E.6)

where ηωφ ' 0.05 accounts for ω − φ mixing and εµ is the polarisation vector of the decaying
meson. With these definitions and the values of f qV given in appendix C of [159], we find

geff
ρ0 f eff

ρ0 = 81.3 MeV, geff
ω f

eff
ω = −19.8 MeV, geff

φ f
eff
φ = −81.9 MeV. (E.7)

Setting gνV = gνA = 1/2 in (E.1), we find the spin and polarisation averaged meson decay
amplitude 〈

|M(V → νiν̄i)|2
〉

= 4G2
F

3 m4
V

(
geff
V f

eff
V

)2
+O

(
m2
νi

m2
V

)
, (E.8)

such that the decay width for the vector meson to decay to a pair of neutrinos is

Γ(V → νiν̄i) = G2
F

12πm
3
V

(
geff
V f

eff
V

)2
. (E.9)

The result is identical to leading order in mνi/mV for both Dirac and Majorana neutrinos.
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