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Abstract. Let G be a connected reductive group defined over a finite field Fq
of characteristic p, with Deligne–Lusztig dual G∗. We show that, over Z[1/pM ]
where M is the product of all bad primes for G, the endomorphism ring of a
Gelfand–Graev representation of G(Fq) is isomorphic to the Grothendieck ring of
the category of finite-dimensional Fq-representations of G∗(Fq).

0. Introduction. — Let G be a connected reductive group defined over a finite
field Fq of characteristic p, let F be the associated Frobenius endomorphism of G, and
let Λ be a subring of Q containing Z[1

p
]. Let B0 be an F -stable Borel subgroup of G

with (necessarily F -stable) unipotent radical U0, and let ψ : UF
0 −→ Λ× be a regular

(also called nondegenerate) character. The Gelfand–Graev representation

ΓG,ψ := IndG
F

UF
0
ψ

is an important representation of GF (already studied in [DeLu, Sec. 10] and [DLM]).
Its endomorphism ring

ΛEG := EndΛGF (ΓG,ψ)

is commutative, independent of the choice of ψ up to isomorphism and, over Q, may
be identified with the ring of Q-valued class functions on G∗F ∗

ss , where (G∗, F ∗) is a
chosen Deligne–Lusztig dual of (G,F ) (see [Cu]). Such an identification only depends

on choices of group homomorphisms (Q/Z)p′ ≃ F×
q ↪→ Q×

, which we fix from now on.

There are then (at least) two natural Λ-lattices in QEG: ΛEG and the lattice ΛKG∗

spanned by Brauer characters of irreducible representations of G∗F ∗
; here, KG∗ is the

Grothendieck ring of the category of finite-dimensional FqG∗F ∗
-modules. Denoting by

G∗F ∗
ss / ∼ the set of semisimple conjugacy classes in G∗F ∗

, we may then, as in [Li2,
Sec. 2.5], identify

QEG = QG∗F∗
ss /∼

= QKG∗ (0.1)

as Q-algebras, where we recall that the second equality follows from the Brauer char-

acter isomorphism QKG∗
∼−→ QG∗F∗

p′ /∼
and from the fact that G∗F ∗

p′ /∼ = G∗F ∗
ss /∼. Here

G∗F ∗

p′ / ∼ is the set of p-regular conjugacy classes in G∗F ∗
.

The main result of this paper may now be stated as follows:
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Main theorem. If all bad primes for G are invertible in Λ, then the two Λ-lattices
ΛEG and ΛKG∗ of QEG are equal.

Here, we use the notion of “bad primes for G” from [Sp]. Denoting by R the root
system of G, a prime number ℓ is called bad for G if one of the following three conditions
holds: (i) ℓ = 2, and R has an irreducible factor not of type A; (ii) ℓ = 3, and R has
an irreducible factor of exceptional type (G2, F4, E6, E7, or E8); (iii) ℓ = 5, and R has
an irreducible factor of type E8.

In this theorem, the assumption on the bad primes for G is due to the use of almost
characters in Lusztig’s work on unipotent characters, where bad primes appear in the
denominators of the “Fourier transform matrix.” We expect that the theorem remains
true without this assumption, though our present method cannot prove it.

Our theorem improves the equality Z[ 1
p|W | ]EG = Z[ 1

p|W | ]KG∗ (where W is the Weyl

group of G) in [Li2, Thm. 2.3] whenever the adjoint group of G is simple of type other
than F4 or G2 (in these two excluded types, the bad primes and the primes dividing
the order of the Weyl group coincide). Moreover, via the Z-model EG of ΛEG from [Li2,
Sec. 1.5], if we denote by M is the product of all bad primes for G, then the above
theorem implies that Z[ 1

pM
]EG = Z[ 1

pM
]KG∗ . Indeed, this amounts to showing that the

identification Z[ 1
pM

]EG = Z[ 1
pM

]KG∗ in the above theorem is equivariant under the action

of the Galois group Gal(Q/Q) on the coefficients, and the proof of this equivariance is
the same as that of [Li2, Cor. 2.4].

Relation with invariant theory. Let BG∨ be the ring of functions of the Z-scheme
(T∨ �W )F

∨
, where (G∨, T∨) is the split Z-dual of (G, T ) with T an F -stable maximal

torus of G, W = NG∨(T∨)/T∨ is the Weyl group of (G∨, T∨), and F∨ : T∨ −→ T∨

is induced by the action of F on Y (T∨) = X(T ). If G∗ has simply-connected derived
subgroup, then ΛBG∨ is also a Λ-lattice of QEG and appears to be significant for the local
Langlands correspondence in families. Indeed, for GLn, in the course of constructing
this correspondence in joint work with Moss [HeMo], Helm proved in [Hel, Thm. 10.1]
the equality ΛEGLn = ΛBGL∨

n
for Λ being the ring of Witt vectors of Fℓ with ℓ ̸= p.

In our current context (G a connected reductive group over Fq), when G∗ has simply-
connected derived subgroup, it is known that BG∨ = KG∗ (see [Li2, Thm. 3.13]), so that
our main theorem yields the equalities

ΛEG = ΛKG∗ = ΛBG∨

for Λ = Z[ 1
pM

]. In particular, for GLn, M = 1 and so we provide an alternative proof
of Helm–Moss’s equality.

On the proof of the main theorem. Identify ΛEG = eψΛG
F eψ ⊂ ΛGF where

eψ := 1
|UF

0 |
∑

u∈UF
0
ψ(u−1)u is the primitive central idempotent of ΛUF

0 associated to ψ.

We may then consider the symmetrizing form

τ = τG := |UF
0 |ev1GF

: ΛEG −→ Λ
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and denote its Q-linear extension again by τ . Here ev1
GF

denotes the evaluation map
at 1GF ; recall that a symmetrizing form on a finite projective Λ-algebra A is a map
τ : A → Λ such that the map (a, b) 7→ τ(ab) is a perfect symmetric bilinear form. It
has been shown in [Li2, Prop. 2.2] that τ(KG∗) ⊂ Z and that τ |ΛKG∗ : ΛKG∗ −→ Λ is a
symmetrizing form. Therefore, the equality ΛEG = ΛKG∗ will hold if

τ(hπ) ∈ Λ for all h ∈ ΛEG and π ∈ ΛKG∗ . (0.2)

Indeed, (0.2) shows that each of ΛEG and ΛKG∗ is contained in the dual of the other
with respect to the above bilinear form; as each is self-dual, they are equal.

After preparations on Deligne-Lusztig characters and Curtis homomorphisms (Sec-
tion 1), we will reduce (0.2) to the study of the condition “τ(hπ) ∈ Λ” for π the
restriction to G∗F ∗

of a (virtual) algebraic Fq-representation of G∗, by fitting G∗ into a
central extension (Section 2) and studying related compatibility questions (Sections 3
and 4). To study the condition “τ(hπ) ∈ Λ” for such π, we will extend the definition
of τ(hπ) to h ∈ GF (Section 5), reduce the discussion to the case where the semisim-
ple part s of h is central in G (Section 6), and finally deal with the case of central s
(Section 7).
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The second author thanks Robert Kurinczuk for bringing the work [Li2] of the first
author to his attention. We thank Jay Taylor for providing a helpful reference.
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1. Preliminaries. — In this section, we recall some properties of Deligne–Lusztig
characters and Curtis homomorphisms that we will need later on.

Deligne–Lusztig characters. Let S be an F -stable maximal torus of G, let P be
a Borel subgroup containing S, and let V be the unipotent radical of P . Then we have
the Deligne–Lusztig variety (see [DiMi, Def. 9.1.1])

DLGS⊂P = {gV ∈ G/V : g−1F (g) ∈ V · F (V )},

which admits a (left) GF × (SF )op-action. When there is no need to specify the chosen
Borel subgroup P , we will write DLGS⊂P simply as DLGS .

We consider the virtual ℓ-adic cohomology H∗
c (·) =

∑
j≥0(−1)jHj

c (· ,Qℓ), for ℓ a

prime distinct from p. For every character χ : SF −→ Q×
, upon choosing a field

embedding Q ↪→ Qℓ, we have the corresponding Deligne–Lusztig character

RG
S (χ)(−) := Tr(−|H∗

c (DL
G
S⊂P )⊗QℓS

F χ) =
1

|SF |
∑
s∈SF

Tr((−, s)|H∗
c (DL

G
S⊂P ))χ(s

−1),

which is independent of the choice of P and which takes values in Qℓ à priori; but
by [DeLu, Prop. 3.3], for any (g, s) ∈ GF × SF , the trace Tr((g, s)|H∗

c (DL
G
S⊂P )) is an
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integer independent of ℓ, so in fact RG
S (χ) takes values in Q, and it can be verified that

RG
S (χ) is independent of the choices of ℓ and of the embedding Q ↪→ Qℓ.

Curtis homomorphisms. For an F -stable maximal torus S of G, we consider the
Curtis homomorphism

CurGS : QEG −→ QSF

defined as in [Li2, Sec. 1.7] (see also [Cu, Thm. 4.2]). In terms of the Deligne-Lusztig
dual, the map CurGS is simply a “restriction map to a dual torus”: indeed, upon fixing an
F ∗-stable maximal torus S∗ of G∗ dual to S (whence a duality IrrQ(S

F ) ≃ S∗F ∗
and thus

a ring isomorphism QSF ≃ QS∗F∗

), the map CurGS is the unique ring homomorphism
making the following diagram commutative (see [Li2, Lem. 1.6]):

QEG QG∗F∗
ss /∼

QSF QS∗F∗

(0.1)

∼

CurGS Res

∼

(1.1)

We will later need the following formula of Bonnafé–Kessar ([BoKe, Prop. 2.5], with
the missing sign factor corrected). For all h ∈ QEG ⊂ QGF ,

CurGS (h) =
ϵGϵS
|SF |

∑
s∈SF

Tr((h, s)|H∗
c (DL

G
S⊂P ))s

−1 ∈ QSF . (1.2)

Here, as usual, ϵG = (−1)rkFq (G) for G any reductive group over Fq. Observe that (1.2)
shows that CurGS is independent of the choice of S∗.

2. On central extensions. — For our group G, we can fit its Deligne–Lusztig
dual G∗ into an F ∗-equivariant exact sequence of reductive groups

1 −→ Z∗ −→ H∗ −→ G∗ −→ 1 (2.1)

where the derived subgroup of H∗ is simply-connected and Z∗ is a torus central in H∗.

We fix a choice of F -equivariant exact sequence of reductive groups

1 −→ G −→ H
κ−−→ Z −→ 1 (2.2)

which is dual to (2.1). Let TH be an F -stable maximal torus of H, let BH be a Borel
subgroup of H containing TH , and let V be the unipotent radical of BH . Then

DLHTH⊂BH
=

⊔
z∈ZF

(DLHTH⊂BH
)(z)

where for each z ∈ ZF we have set

(DLHTH⊂BH
)(z) := {hV ∈ DLHTH⊂BH

: κ(h) = z}.
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Let TG = ker(κ|TH : TH ↠ Z) (resp. BG = ker(κ|BH
: BH ↠ Z)), which is an F -stable

maximal torus of G (resp. a Borel subgroup of G). Then TG ⊂ BG, and the unipotent
radical of BG is also V . As TG is connected, we have κ(T FH ) = ZF , so for each z ∈ ZF

we may choose a ż ∈ T FH such that κ(ż) = z. Under the inclusion G ⊂ H, for each
z ∈ ZF we have

DLHTH⊂BH
(z) = DLGTG⊂BG

· ż ⊂ H/V,

so that
DLHTH⊂BH

(z) ≃ DLGTG⊂BG
as (GF × (T FG )

op)-varieties.

In terms of virtual ℓ-adic cohomology we therefore have

H∗
c (DL

H
TH⊂BH

) =
∑
z∈ZF

H∗
c (DL

H
TH⊂BH

(z)),

and the HF × (T FH )
op-action on H∗

c (DL
H
TH⊂BH

) satisfies:{
for every (h, t) ∈ HF × (T FH )

op, (h, t) ·H∗
c (DL

H
TH⊂BH

(z)) ⊂ H∗
c (DL

H
TH⊂BH

(κ(ht)z));

for every z ∈ ZF , H∗
c (DL

H
TH⊂BH

(z)) ≃ H∗
c (DL

G
TG⊂BG

) as GF × (T FG )
op-modules.

In particular, we obtain the following trace formulae: for (h, t) ∈ HF × (T FH )
op,{

κ(ht) ̸= 1 =⇒ Tr((h, t)|H∗
c (DL

H
TH⊂BH

)) = 0;

(h, t) ∈ GF × (T FG )
op =⇒ Tr((h, t)|H∗

c (DL
H
TH⊂BH

)) = |ZF | · Tr((h, t)|H∗
c (DL

G
TG⊂BG

)).

(2.3)

We will later need the compatibility (for χ : T FH −→ Q×
):

RH
TH

(χ)|GF = RG
TG
(χ|TF

G
). (2.4)

This follows immediately from the defining formula of RH
TH

(χ) and (2.3). (See also
[DiMi, Prop. 11.3.10]).

3. A compatibility lemma. — Notation as in Section 2. We extend the F -stable
Borel subgroup B0 of G in Section 0 (used to determine the Gelfand–Graev module
ΓG,ψ) to the F -stable Borel subgroup B′

0 of H, so that B′
0/B0 = Z under (2.2); the

unipotent radical of B′
0 is then equal to U0 (the unipotent radical of B0), and the

inclusion GF ⊂ HF induced by (2.2) gives rise to a Λ-algebra inclusion

ΛEG = eψΛG
F eψ ↪→ eψΛH

F eψ = ΛEH . (3.1)

On the other hand, (2.1) yields the identification

(G∗F ∗

ss /∼) = (H∗F ∗

ss /∼)/Z∗F ∗
, (3.2)

which enables us to regard functions on G∗F ∗
ss /∼ as functions on H∗F ∗

ss /∼ which are
constant on each Z∗F ∗

-orbit.
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Let us prove the following “compatibility lemma”:

Lemma. The following diagram of rings is commutative:

QEG QG∗F∗
ss /∼

QEH QH∗F∗
ss /∼

(0.1)

∼

(3.1) (3.2)

(0.1)

∼

(3.3)

Proof. Let TG and TH be as in Section 2, and choose an F ∗-stable maximal torus
T ∗
G of G∗ dual to TG (resp. T ∗

H of H dual to TH) such that T ∗
H/Z

∗ = T ∗
G. Then the Weyl

groups of (G, TG), (G
∗, T ∗

G), (H,TH) and (H∗, T ∗
H) are all the same, and we denote this

common Weyl group by W . For each w ∈ W , choose an F -stable maximal torus TG,w
of G whose GF -conjugacy class corresponds to the F -conjugacy class of w in W (with
respect to TG, so that we may choose TG,1 = TG); choose T

∗
G,w ⊂ G∗, TH,w ⊂ H and

T ∗
H,w ⊂ H∗ in a similar way.

In the toric case where (G,H) = (TG, TH), the commutativity of (3.3) follows from
toric dualities.

For the general case of (G,H), we use the Curtis embeddings CurG = (CurGTG,w
)w∈W

and CurH = (CurHTH,w
)w∈W (see Section 1) to embed (3.3) into the following cubic

diagram of rings:

∏
w∈W

QT FG,w
∏
w∈W

QT ∗F∗
G,w

QEG QG∗F∗
ss /∼

∏
w∈W

QT FH,w
∏
w∈W

QT ∗F∗
H,w

QEH QH∗F∗
ss /∼

∼

∼

CurG Res

∼

∼

CurH Res

(3.4)

In (3.4), the right face is clearly commutative; the top and the bottom faces are com-
mutative by (1.1); the back face is the toric case of (3.3) and is hence commutative.
So to prove the commutativity of (3.3), it remains to show that the left face in (3.4) is
commutative.

Using (1.2) and the relation ϵHϵTH,w
= ϵGϵTG,w

, the commutativity of the left face

in (3.4) is equivalent to the property that, for all h ∈ QEG ⊂ QGF and all w ∈ W , we
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have

1

|T FH,w|
∑
t∈TF

H,w

Tr((h, t)|H∗
c (DL

H
TH,w

))t−1 =
1

|T FG,w|
∑
t∈TF

G,w

Tr((h, t)|H∗
c (DL

G
TG,w

))t−1. (3.5)

By (2.3) and the fact that T FH,w/T
F
G,w = ZF , we see that (3.5) is true for all h ∈ GF , so

the left face in (3.4) commutes. This completes the proof of the lemma.

4. Reduction to the study of τ(hπλ). — Notation as in Section 2. As Z∗F ∗
is

central in H∗F ∗
, the association of each irreducible FqH∗F ∗

-module to its restriction to

Z∗F ∗
induces a Ẑ∗F ∗-graded decomposition

KH∗ =
⊕

λ∈Ẑ∗F∗

(KH∗)λ with KG∗ = (KH∗)1. (4.1)

In particular, we have a ring inclusion KG∗ ⊂ KH∗ , and it is evident that the following
diagram of rings is commutative (where br denotes the Brauer character map):

QKG∗ QG∗F∗
ss /∼

QKH∗ QH∗F∗
ss /∼

(4.1)

br
∼

(3.2)

br
∼

(4.2)

Let h ∈ ΛEG and π ∈ KG∗ . Via the commutative diagrams (3.3) and (4.2), we

can define the product hπ consistently as an element of QEG, QEH , Q
G∗F∗

ss /∼
, QH∗F∗

ss /∼
,

QKG∗ or QKH∗ . As τG = |UF
0 |ev1GF

= |UF
0 |ev1HF

= τH , we deduce that

τG(hπ) = τH(hπ). (4.3)

Therefore, if we can prove (0.2) for τH(hπ), then we can prove it for τG(hπ).

Now let K(G∗-mod) be the Grothendieck ring of the category of finite-dimensional
algebraic G∗-modules and let K◦

G∗ be the image of the restriction map

Res : K(G∗-mod) −→ KG∗ .

Adopting similar notation forH, we have that Res is surjective ([St, Thm. 7.4] and [Her,
Thm. 3.10]) so that K◦

H∗ = KH∗ . We are therefore reduced to proving that τH(hπ) ∈ Λ
for π ∈ K◦

H∗ . This turns out to be true without the assumption that H∗ has simply-
connected derived subgroup; in the following, we shall thus return to the group G and
study the condition “τG(hπ) ∈ Λ for π ∈ K◦

G∗ .”

5. An extension τ̃ for τ(hπ). — We return to the group G (the derived subgroup
of G∗ may not be simply-connected) and write τG = τ . Let T be an F -stable maximal
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torus of G, let W = NG(T )/T be the Weyl group of (G, T ), and let Tw be an F -stable
maximal torus of G associated with w ∈ W (with respect to T ) as in the proof of (3.3).
Recall the identification QEG = QKG∗ from (0.1). Then, for h ∈ QEG and π ∈ QKG∗ :

τ(hπ) =
1

|W |
∑
w∈W

ev1
TF
w
(CurGTw(hπ)) (by [BoKe, Eq. 3.5])

=
1

|W |
∑
w∈W

ev1
TF
w
(CurGTw(h) · Cur

G
Tw(π)) (CurGTw is a ring homomorphism)

=
1

|W |
∑
w∈W

∑
t∈TF

w

CurGTw(h)(t
−1) · CurGTw(π)(t)

=
1

|W |
∑
w∈W

∑
t∈TF

w

ϵGϵTw
|T Fw |

· Tr((h, t)|H∗
c (DL

G
Tw)) · Cur

G
Tw(π)(t) (by (1.2))

=
1

|W |
∑
w∈W

ϵGϵTw
|T Fw |

∑
t∈TF

w

∑
χ∈IrrQ(TF

w )

RG
Tw(χ)(h) · χ(t) · Cur

G
Tw(π)(t) (trace formula)

=
1

|W |
∑
w∈W

ϵGϵTw
|T Fw |

∑
χ∈IrrQ(TF

w )

RG
Tw(χ)(h) · χ(Cur

G
Tw(π)). (5.1)

Using the formula (5.1), we can extend the Q-bilinear map

QEG ×QKG∗ −→ Q, (h, π) 7−→ τ(hπ),

to a Q-bilinear map τ̃(·, ·) : QGF×QKG∗ −→ Q by setting, for h ∈ QGF and π ∈ QKG∗ ,

τ̃(h, π) :=
1

|W |
∑
w∈W

ϵGϵTw
|T Fw |

∑
χ∈IrrQ(TF

w )

RG
Tw(χ)(h) · χ(Cur

G
Tw(π)). (5.2)

We then have

τ(hπ) = τ̃(h, π) for all h ∈ QEG and all π ∈ QKG∗ . (5.3)

The formula (5.2) for τ̃ involves choices of T and Tw; we now derive an intrinsic
formula for τ̃ as follows.

Let TG be the set of F -stable maximal tori of G, and let TG/GF be the set of
GF -conjugacy classes in TG. For each S ∈ TG, let WG(S) = NG(S)/S. Since the
isomorphism class of Tw depends only on the F -twisted conjugacy class of w ∈ W , and
the stabiliser of w ∈ W under F -twisted conjugacy may be identified with WG(Tw)

F ,

we have that there are |W |
|WG(S)F | elements w ∈ W such that Tw is GF -conjugate to S.

By (5.2), for h ∈ QGF and π ∈ QKG∗ , we have:

τ̃(h, π) =
∑

S∈TG/GF

ϵGϵS
|WG(S)F |

1

|SF |
∑

χ∈IrrQ(SF )

RG
S (χ)(h) · χ(CurGS (π))
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=
1

|GF |
∑
S∈TG

ϵGϵS
∑

χ∈IrrQ(SF )

RG
S (χ)(h) · χ(CurGS (π)). (5.4)

6. Reduction to the case of central s. — From now on, let h = su ∈ GF

with s ∈ GF (resp. u ∈ GF ) the semisimple (resp. unipotent) part in the Jordan de-
composition of h. Recall Deligne–Lusztig’s character formula [DeLu, Thm. 4.2] for each
F -stable maximal torus S of G: (notation: ad(g)x = gx = gxg−1)

RG
S (χ)(h) =

1

|CG(s)◦F |
∑
g∈GF

g−1sg∈SF

Q
CG(s)◦

ad(g)S (u) · (
gχ)(s) (6.1)

where QG
S = RG

S (1)|GF
unip

denotes the Green function and CG(s)
◦ is the identity compo-

nent of the centralizer of s in G.

We shall write τ̃ = τ̃G to specify the group G. Substituting (6.1) into (5.4), we
obtain: (below, π ∈ KG∗)

τ̃G(h, π) =
1

|GF |
∑
S∈TG

ϵGϵS
∑

χ∈IrrQ(SF )

1

|CG(s)◦F |
∑
g∈GF

g−1sg∈SF

Q
CG(s)◦

ad(g)S (u) · χ(
g−1

s · CurGS (π))

=
1

|GF |
1

|CG(s)◦F |
∑
S∈TG

ϵGϵS|SF |
∑
g∈GF

g−1sg∈SF

Q
CG(s)◦

ad(g)S (u) · Cur
G
S (π)(

g−1

(s−1))

(where we have applied the orthogonality of characters)

=
1

|GF |
1

|CG(s)◦F |
∑
g∈GF

∑
S∈TG

s∈(ad(g)S)F

ϵGϵS|SF | ·QCG(s)◦

ad(g)S (u) · Cur
G
ad(g)S(π)(s

−1)

(where we have used CurGad(g)S(π)(
gx) = CurGS (π)(x) for g ∈ GF )

=
1

|CG(s)◦F |
∑
S∈TG
s∈SF

ϵGϵS|SF | ·QCG(s)◦

S (u) · CurGS (π)(s−1) (S 7−→ ad(g−1)S)

=
1

|CG(s)◦F |
∑

S∈TCG(s)◦

s∈SF

ϵGϵS|SF | ·QCG(s)◦

S (u) · CurGS (π)(s−1), (6.2)

where the last equality holds because for S ∈ TG, if SF contains s then S ⊂ CG(s)
◦.

Recall the subring K◦
G∗ ⊂ KG∗ from section 4.

Lemma. Let Λ0 be a subring of Q. Fix an h = su ∈ GF as above, and consider the
following statement:

τ̃G(h, π) ∈ Λ0 for all π ∈ K◦
G∗ . (6.3)
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Suppose that (6.3) is true when G therein is replaced by CG(s)
◦ (by [DiMi, Prop. 3.5.3],

u ∈ CG(s)
◦ and hence h ∈ CG(s)

◦F ). Then (6.3) is true for G.

As s is central in CG(s)
◦, this lemma will reduce the study of the condition (6.3) to

the case where s is central in G.

Proof of lemma. First, we require a certain special set of generators for K◦
G∗ . As

shown in [Ja, Ch. II.2], for every maximal torus T ∗ ofG∗, the associated formal character
map gives a ring isomorphism

ch : K(G∗-mod)
∼−−→ Z[X(T ∗)]W

where X(T ∗) = Homalg(T
∗,Gm) is the character group of T ∗ and W is the Weyl group

of (G∗, T ∗). For λ ∈ X(T ∗), set

rG,λ :=
∑
µ∈Wλ

µ ∈ Z[X(T ∗)]W and πG,λ := ch−1(rG,λ)|G∗F∗ ∈ K◦
G∗ ,

where for λ ∈ X(T ∗),Wλ denotes theW -orbit of λ. Note that the Z-module Z[X(T ∗)]W

is generated by {rG,λ : λ ∈ X(T ∗)}, and so the πG,λ generate K◦
G∗ as a Z-module.

Choose an F -stable maximal torus T of G containing s, so that T is also an F -
stable maximal torus of CG(s)

◦. To verify (6.3) for the chosen h, it suffices to show
that τ̃G(h, πG,λ) ∈ Λ0 for all λ ∈ X(T ∗).

Let S be an F -stable maximal torus of G, choose an F ∗-stable maximal torus S∗ of
G∗ dual to S and with a duality ·̂ : SF ∼−→ IrrFq

(S∗F ∗
), and fix a choice of g ∈ G∗ such

that S∗ = gT ∗. This duality and the fixed embedding F×
q ↪→ Q×

allow us to identify

QSF with QS∗F∗

. For each µ ∈ X(T ∗), set µS∗ = gµ ∈ X(S∗), and define ϕS(µ) ∈ SF by

the relation µS∗|S∗F∗ = ϕ̂S(µ) ∈ IrrFq
(S∗F ∗

). We then have a map ϕS : X(T ∗) −→ SF

which extends to a ring homomorphism

ϕS : Q[X(T ∗)] −→ QSF = QS∗F∗

.

The following diagram then commutes (where W = WG∗(T ∗) = NG∗(T ∗)/T ∗):

QK(G∗-mod) Q[X(T ∗)]W

QKG∗ QG∗F∗

QS∗F∗

ch
∼

ResG
∗

G∗F∗ ϕS

br
∼

ResG
∗F∗

S∗F∗

Combining this with (1.1) we see that the following diagram of rings also commutes:

QK(G∗-mod) QKG∗ QEG QSF

Q[X(T ∗)]W

ResG
∗

G∗F∗

ch

∼

(0.1) CurGS

ϕS
(6.4)
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The commutative diagram (6.4) gives the relation

CurGS (πG,λ) = ϕS(rG,λ). (6.5)

Via the identifications

WCG(s)◦∗(T
∗) = WCG(s)◦(T ) ≤ WG(T ) = WG∗(T ∗),

we may write WG∗(T ∗)λ =
⊔
λ′∈Ω

WCG(s)◦∗(T
∗)λ′ for some finite subset Ω of WG∗(T ∗)λ,

so that rG,λ =
∑
λ′∈Ω

rCG(s)◦,λ′ and then CurGS (πG,λ) =
∑
λ′∈Ω

Cur
CG(s)◦

S (πCG(s)◦,λ′) by (6.5).

Applying (6.2) to π = πG,λ, we thus deduce that

τ̃G(h, πG,λ) = ϵGϵCG(s)◦

∑
λ′∈Ω

τ̃CG(s)◦(h, πCG(s)◦,λ′). (6.6)

By (6.6) and the assumption of the lemma, we get τ̃G(h, πG,λ) ∈ Λ0 for all λ ∈ X(T ∗),
whence τ̃G(h, π) ∈ Λ0 for all π ∈ K◦

G∗ .

7. The case of central s. — Keep the notation T , W and Tw as in Section 5.
Let π ∈ KG∗ , let h = su ∈ GF be as in Section 6, and suppose furthermore that s lies
in the centre of G. Then CG(s)

◦ = G, and (6.1) becomes RG
S (χ)(h) = QG

S (u)χ(s), so
that (5.2) yields

τ̃G(h, π) =
1

|W |
∑
w∈W

ϵGϵTw
|T Fw |

∑
χ∈IrrQ(TF

w )

QG
Tw(u) · χ(s) · χ(Cur

G
Tw(π))

=
1

|W |
∑
w∈W

ϵGϵTwQ
G
Tw(u)⟨π|T ∗F∗

w
, ŝ−1⟩T ∗F∗

w
(orthogonality of characters)

= ⟨π̃, γ⟩G∗F∗ (7.1)

where (using [DeLu, Prop. 7.3])

γ :=
1

|W |
∑
w∈W

ϵGϵTwQ
G
Tw(u)Ind

G∗F∗

T ∗F∗
w

ŝ−1 =
1

|W |
∑
w∈W

QG
Tw(u)R

G∗

T ∗
w
ŝ−1 ⊗ StG∗

and π̃ is any extension of the Brauer character π to an ordinary virtual character (which

exists by [Se, Thm. 33]). As s lies in the centre of G, ŝ−1 is in fact a multiplicative
character of G∗F ∗

, so

γ = γ′ ⊗ ŝ−1 ⊗ StG∗

with

γ′ :=
1

|W |
∑
w∈W

QG
Tw(u)R

G∗

T ∗
w
(1). (7.2)
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Our strategy will be to show that γ′ is a Q-linear combination of irreducible G∗F ∗
-

representations with only bad primes appearing in the denominators.

We need some facts from the theory of almost characters, following [Lu, Ch. 3-4]; in
the notation of that book, we are considering the case n = 1 and L trivial. See also [Ca,
Sec. 7.3] for a concise exposition, but with some extraneous hypotheses. Let c be the

order of the automorphism F on W (when G is split, we have c = 1); denote by Ŵex

the set of all ϕ ∈ IrrQ(W ) which can be extended to a Q-valued irreducible character

of Ŵ := W ⋊ ⟨F ⟩ (by [Sp2, Cor. 1.15], every irreducible representation of W over a

characteristic 0 field is defined over Q); for each ϕ ∈ Ŵex, there exists such an extension

(in fact, exactly two) ϕ̃ ∈ IrrQ(Ŵ ). Fixing a choice of such ϕ̃, we then call

RG∗

ϕ̃
:=

1

|W |
∑
w∈W

ϕ̃(wF )RG∗

T ∗
w
(1)

an almost character of G∗F ∗
.

Recall from Section 0 the definition of bad primes for G. Note that a prime is bad
for G if and only if it is bad for G∗. Define

MG = product of all bad primes for G. (7.3)

Using Lusztig’s work on unipotent characters,

each almost character RG∗

ϕ̃
is a Z[ 1

MG
]-linear combination

of irreducible Q-valued unipotent characters of G∗F ∗
.

(7.4)

Indeed, if G∗ has connected centre, then [Lu, Thm. 4.23] expresses Rϕ̃ as a linear combi-

nation of unipotent characters of G∗F ∗
. By [Lu, (4.21.7)], the denominators divide the

orders of certain groups GF of the form
∏

GFi
where the product is over the irreducible

factors of the root system of G∗. Each GFi
is defined in a case-by-case fashion, in a

way depending only on the corresponding irreducible factor of the root system, in [Lu,
4.4–4.13], and has order divisible only by bad primes for that factor. If G∗ does not
have connected centre then we choose a short exact sequence

1 → G∗ → H∗ → Z∗ → 1

as in (2.2) (with the roles of G∗ and G reversed). Extending the chosen maximal F ∗-
stable torus and Borel from G∗ to H∗ as in Section 2, we may identify the Weyl groups
of G∗ and H∗. Using (2.4) (with χ = 1 therein), we then have

RH∗

ϕ̃
|G∗F∗ = RG∗

ϕ̃
,

whence RG∗

ϕ̃
is Z[ 1

MG
]-linear combination of restrictions to G∗F ∗

of unipotent characters

ofH∗F ∗
. However, the restriction toG∗F ∗

of a unipotent character ofH∗F ∗
is a unipotent

character by [DiMi, Prop. 11.3.8], so (7.4) follows.
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Now we prove the following lemma:

Lemma. The sum γ′ in (7.2) is a finite Z[ 1
MG

]-linear combination of almost char-

acters of G∗F ∗
.

Proof. We have

γ′ =
1

|W |
∑
w∈W

RG
Tw(1)(u)R

G∗

T ∗
w
(1)

=
1

|W |
∑
w∈W

RG
Tw(1)(u)

∑
ϕ∈Ŵex

ϕ̃(wF )RG∗

ϕ̃
(see [Ca, p. 76])

=
∑
ϕ∈Ŵex

RG
ϕ̃
(u)RG∗

ϕ̃
;

by (7.4) and the fact that character values of representations of finite groups are alge-
braic integers, all RG

ϕ̃
must take values in Z[ 1

MG
].

Remark. In the above lemma, the class function γ′ can in fact be written as a
finite Z-linear combination of almost characters of G∗F ∗

. We won’t need this stronger
property of γ′ later, so here we only briefly explain how to achieve this, following the
complete proof in [Li, Rmk. of Lem. 2.23]. First, one uses a theorem of Shoji ([Sh,
Thm. 5.5]; see also [DiMi, Thm. 13.2.3]) to get that QG

Tw
(u) = Tr(wF |H∗

c (Bu)) for all
w ∈ W , where Bu is the variety of Borel subgroups of G containing u. One then studies
the contribution of each composition factor V of the finite-dimensional QℓŴ -module
H∗
c (Bu) (ℓ ̸= p) to Tr(wF |H∗

c (Bu)); one proves that Tr(wF |V ) ̸= 0 only if V |W is

irreducible, and in this case Tr(wF |V ) = χV (F ) · Tr(wF |ϕ̃) for some linear character

χV : ⟨F ⟩ −→ Q×
ℓ and some ϕ̃ ∈ IrrQ(Ŵ ) fitting the definition of the almost character

RG∗

ϕ̃
and on which F c acts trivially, so that γ′ is the sum of finitely many χV (F ) · RG∗

ϕ̃

with V |W irreducible. As all eigenvalues of the endomorphism F on H∗
c (Bu) lie in Z

(see [De, Lem. 1.7]), each χV (F ) must lie in Z×
, so γ′ is a finite Z-linear combination

of almost characters of G∗F ∗
, as desired.

Using the previous lemma, (7.1), (7.2) and (7.4), we get the following proposition:

Proposition. We have τ̃G(h, π) ∈ Z[ 1
MG

] for all π ∈ KG∗ and all h ∈ GF whose
semisimple part s is central in G. (MG is as in (7.3).)

End of proof of the main theorem in Section 0. From now on, we remove the
assumption that s is central in G.

Observe that a prime number that is bad for CG(x)
◦ with x a semisimple element of

GF is also bad for G; indeed, this follows from the definition of bad primes in Section
0 and from the following two facts: (i) if G is simple of type A (resp. of classical type),
then the centralizer of every semisimple element of G has only factors of type A (resp. of
classical type); (ii) if G is simple of type G2, F4, E6 or E7, then the centralizer of every
semisimple element of G cannot have factors of type E8 (for dimensional reasons).
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Therefore, the previous proposition and the lemma in Section 6 together imply that
τ̃G(h, π) ∈ Z[ 1

MG
] for all h ∈ GF and all π ∈ K◦

G∗ . We then deduce from (5.3) that

τG(hπ) = τ̃G(h, π) ∈ Λ[ 1
MG

] for all h ∈ ΛEG and all π ∈ K◦
G∗ . (7.5)

Now fit G into the exact sequence (2.2). As H therein has the same type of root datum
as G, we have MH =MG, so (7.5) applied to H gives τH(hπ) ∈ Λ[ 1

MG
] for all h ∈ ΛEH

and all π ∈ K◦
H∗ = KH∗ . For our G, (4.3) then tells us that (0.2) is true when Λ therein

is replaced by Λ[ 1
MG

]. Consequently, when all bad prime numbers for G are invertible

in Λ, we have Λ[ 1
MG

] = Λ and ΛEG = ΛKG∗ .
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