AN ALGEBRAIC APPROACH TO HARDWARE/SOFTWARE
PARTITIONING

Qin Shengchao!** and He Jifeng!
'UNU/IIST, P.O.Box 3058, Macau, China
2Peking University, Beijing, China
{gsc, jifeng} @iist.unu.edu

ABSTRACT: Hardware and software co-design

is a design technique which delivers computer systems
comprising hardware and software components. A crit-
ical phase of co-design process is to decompose a pro-
gram into hardware and software. - This paper pro-
poses an algebraic partitioning method whose correct-
ness is verified in the algebra of programs. We introduce
the program analysis phase before program partitioning
and develop a collection of syntax-based splitting rules,
where the former provides the information for moving
operations from software to hardware and reducing the
interaction between components, and the latter supports
a compositional approach to the program partitioning.

1 INTRODUCTION

The design of a complex software product like a nu-
clear reactor control system is ideally decomposed into
a progression of related phases. It starts with an in-
vestigation of the properties and behaviours of the pro-
cess evolving within its environment, and an analysis
of requirement for its safety performance. From these
is derived a specification of the electronic or program-
centered components of the system. The project then
may go through a series of design phases, ending in a
program expressed in a high level language. After trans-
lation into a machine code of the chosen computer, it is
executed at high speed by electronic circuitry. In order to
achieve the time performance required by the customer,
additional application-specific hardware devices may be
needed to embed the computer into the system which it
controls. o

With chip size reaching. one million transistors, the
complexity of VLSI algorithms is approaching that of
software algorithms. However, the design methods for
circuits resemble the low level machine language pro-
gramming methods. Selecting individual gates and reg-
isters in a circuit like selecting individual machine in-
struction in a program. State transition diagrams are like
flowcharts. These methods may have been adequate for
small circuit design whien they were introduced, but they
are not adequate for circuits that pe;forfn complicated al-

*Partially supported by NSFC No. 69873003

0-7803-6542-9/00/$10.00 © 2000 IEEE

273

gorithms. Industry interest in the formal verification of
embedded systems is gaining ground since an error in a
widely used hardware device can have significant reper-
cussions on the stock value of the company concerned.
In principle, proof of correctness of a digital device can
always be achieved by making a comparison of the be-
havioral description of the circuit with its specification.
But for a large system this would be impossibly labori-
ous. What we need is a useful collection of proven equa-
tions and other theorems, which can be used to calculate,
manipulate and transform the specification formulae to

the product.

Hardware/software co-design is a design technique
which delivers computer systems comprising hardware
and software components. A critical phase of co-design
process is to partition a program into hardware and soft-
ware. This paper proposes a partitioning method whose
correctness is verified using the algebraic laws developed
for the high level programming language. To meet per-
formance goals, and reduce the communication between
components, our approach combines the program anal-
ysis technique with the syntax-based splitting rules to
move heavy-weight operations from software to hard-
ware. The allocation of variables is also based on the
data flow analysis of the source program. One of the ad-
vantages of our method is the integration of the splitting
phase with the joining phase of the partitioning process.
It optimizes the underlying target architecture, and facil-
itates the reuse of hardware devices.

The algebraic approach advocated in this paper to ver-
ify the correctness of the partitioning process has been
successfully employed in the ProCoS project on “Prov-
ably Correct Systems”. The original ProCoS project

‘[6] concentrated almost exclusively on the verification

of standard compiler of a high-level programming lan-
guage based on Occam down to a microprocessor based
on Transputer [5]. Sampaio showed how to reduce the
compiler design task to one of program transformation;
his formal framework is also a procedural language and
its algebraic laws [16]. Towards the end of the first phase
of the project, Ian Page et al made rapid advance in
the development of hardware compilation technique us-
ing an Occam-like language targeted towards Field Pro-

grammable Gate Arrays [12], and He Jifeng et al pro-
vided a formal verification of the hardware compilation
scheme within the algebra of Occam programs [4].

Recently, some works have suggested the use of for-
mal methods for the partitioning process [1, 2, 17]. Bal-
boni et al adopt Occam as an internal model for the sys-
tem exploration and partitioning strategy. Cheung pur-
sues the structural transformation and verification within
the functional programming framework. However, nei-
ther has provided a formal proof for the correctness of
the partitioning process. In [17], Silva et al provide a for-
mal strategy for carrying out the splitting phase automat-
ically, and present an algebraic proof for its correctness.
However, the splitting phase delivers a large number of
simple processes, and leaves the hard task of cluster-
ing these processes into hardware and software compo-
nents to the clustering phase and the joining phase. Fur-
thermore, additional channels and local variables intro-
duced in the splitting phase to accommodate huge num-
ber of parallel processes actually increase the data flow
between the hardware and software components.

The remainder of this paper is organized as follows.
Section 2 describes the splitting strategy. Section 3 in-
troduces the programming language we adopt and ex-
plores its algebraic laws. Section 4 poses the static
analysis that we perform on the source program. Sec-
tion 5 investigates the underlying target architecture of
hardware/software components. Section 6 provides the
syntax-based hardware/software splitting rules in both
bottom-up and top-down styles. A simple conclusion is
followed in section 7.

2 SPLITTING STRATEGY

Our partitioning strategy is described as follows. Sup-
pose a source program has been coded by the program-
mer in the source programming language out of the
customer’s requirements. A static analysis [11] is per-
formed on that program to obtain useful statistical data,
such as quantitative information concerned with occur-
rences of expressions and variables, distributive infor-
mation with respect to those variables occurring in ex-
pressions. Based on this analysis, the programmer marks
those parts of the program that are worth to be imple-
mented by hardware and leaves others to software, and
as well divides the interface of the program to two dis-
joint parts. The program marking and interface partition-
ing are conducted by the following guidelines:

e Generally busy expressions should be marked out
and implemented by hardware, to gain high perfor-
mance.

o Analogously, busy variables should be allocated to
hardware, to make high-speed access available, whereas
the remaining variables and large scale data structures,
such as arrays, should be left to software, to achieve
lower cost.

e The number of interactions between software and
hardware should be minimized since they incur high

274

cost.

o Additionally, the customer’s demands concerned

with the performance and the cost should be taken into
account.
We take such a marked program as input of our hard-
ware/software splitting process, which generates as out-
put a program comprising of two concurrent processes
representing software and hardware components respec-
tively.

3 PRELIMINARIES

The language we select to perform hardware/software
partitioning is a subset of Occam which was designed for
constructing communicating systems.

1. Sequential Process:
S = PC (primitive command)
| S;S (sequential composition)
| S S (conditional) | bx* .S (iteration)
| (¢5)] (gS) (guarded choice)
| var z e S (variable declaration)
where PCu=(z:=¢e) | skip | L | cle | c?z
and g is skip or a communication event ¢!e or d ? z.

2. Parallel Program:
P:=S|P|P

In later discussions, we adopt Var(P) and Chan(P) to
denote the set of variables and channels employed by P.

As a subset of Occam, the language enjoys a rich set of
algebraic laws presented in [15, 3, 7, 9, 8]. We explore
a collection of algebraic laws ([13]) which will be em-
ployed within the proofs in the following sections. Here
we omit them to meet the limit of space.

We introduce an ordering relation between two pro-
grams as follows before further discussion.
Definition 3.3 (Refinement)
Given programs P, @), we say () is a refinement of P,
denoted as P T @, if (skip P)|(skip Q) Pis
algebraically provable.

4 THE STATIC ANALYSIS

This section illustrates a sample static analysis, busy
expression and busy variable analysis, performed on the
source program, which provides primitive but useful in-
formation to the programmer to assist the appropriate
hardware/software marking and interface partitioning of
the source program, aiming to gain higher performance
and achieve lower cost.

First, we introduce a function cormplex for expressions,
which specifies the complexity of expressions.

Definition 4.1 complex : Expr — N is inductively
defined on the structure of expressions:
complex(v) =g4¢ 1, for any variable v,
complex(c) =4 0, for any constant ¢, and
complex(op(en, ..., en)) =4f
Soi, complex(e;) + complex(op),
where op is any operator used to construct expressions in

the source language, and complex(op) is defined by the
programmer in accordance with the complexity of op. O

An expression is regarded as a busy expression if it oc-
curs often in the program or owns an intricate structure.
The analysis generates a table to record the occurrence
frequency of expressions.

®(S) = {(e,n(e)) | e € Expr(S)},

where S is a program, n(e) represents the number of oc-
currences of the non-trivial expression e in S, i.e., € is
neither a single variable nor a constant. From this table,
the designer can figure out those busy expressions.

The analysis produces a table

T(S) = {(v,eset(v)) | v € Var(9)}

for variables employed by S, where eset(v) is the set of
expressions containing the variable v. Such a table can
provide helpful information for the variable partitioning.

We propose an algorithm to generate the results of the
analysis, which is omitted here because of the limit of
space. Readers can refer to [13, 14], where the former
presents the details of the simple analysis, the latter poses
a more detailed analysis which takes data types and pro-
cedures/subroutines into account and illustrates an exam-
ple with respect to the design of an ATM switch.

S THE HARDWARE/SOFTWARE
TARGET ARCHITECTURE

This section describes the target architecture of our
partitioning approach by confining hardware and soft-
ware components to specially chosen forms. To synchro-
nize their activities, we introduce a simple handshaking
protocol to streamline communications between them.

Suppose B = {rj,a; | j € I} is aset of channels, we
define CP(B) as a subset of the source language, com-
prising processes C' with Chan(C) 2 B and one of the
following forms.

(1). a sequential process not using channels in B.

(2).7;1e; C; a; 7z, whereC isamemberof CP(B)
not interacting via any channel in B.

(3). C1; Cy, or Cy <4 bD> Cy, or (g1 C1)[(g2 C2),
where both g; and C; lie in CP(B), fori = 1, 2.

(4). b+ C, where C is a member of CP(B).

To simplify the interface design, we confine the inter-
actions between the hardware and software components
to the communications along the channels from the set
B. Our partitioning rules will select the software com-
ponents from the set CP(B), and organize the hardware
component in the form of

D = pX o (e, (r;72;; My; azly;; X)|skip)
where none of M; mentions channels in B. The com-
municating process D represents a digital device which
offers a set of services to its environment, each of which
responds to a request from its environment on an input
channel r; by running the corresponding program M ;
and delivering the result to the output channel a; after-
wards.

We denote as H(B) the set of those processes which

275

own the same form as D.

Theorem 5.1 For any C, C, in CP(B), we have
(C1;C) I D = (o I D); (C: || D).

The proof (presented in [13]) is omitted here because of

the limit of space.

Corollary 5.2 If C € CP(B), then
B+C) || D=0bx(C || D).

]

6 SYNTAX-BASED SPLITTING
RULES

This section is devoted to the design of program split-
ting rules. First we show how the static analysis affects
the partition of primitive commands into hardware and
software components. Secondly we demonstrate how
to construct hardware and software parts of a construct
from those of its constituents. We establish the correct-
ness of those rules by using the algebraic laws we have
explored.

We introduce a predicate Split, which will be of great
help in formalizing the decomposition rules.

Definition 6.1(Split)
Let B = {rj,a; | j € I}. Given the source program 5,
its hardware/software partition (C, D) is specified by the
following predicate:
Splitg(S,C, D) =4
SC(C||D) A Var(C)NVar(D) =0 A
Chan(C) N Chan(D) = B A
Chan(C).dnput N Chan(D).Input = § A
Chan(C).Output N Chan(D).Output = § A
C e CP(B) AN D e H(B)

The splitting task can be undertaken in two different ap-
proaches: the bottom-up approach and the rop-down one,
where the former builds the hardware component from
the marked source program in one step, and constructs
the software component from those of its constituents,
whereas the latter assembles both the hardware and soft-
ware components from those of its constituents.

A complete set of splitting rules are explored in [13].
Here we only present four of them for the space limit.

]

Bottom-up Rule for Sequential Composition

SplifB(Si, Ci, D), 1=1,2
Var(Sy) = Var(Sa), Chan(Cy) = Chan(Cs)
SplitB(Sl;SQ, 01;02, D)

Proof S5 ; 5> {; is monotonic}
C (Ci I D); (C2 |1 D) {Th. 5.1}
= (Ci; G) I D 0

Bottom-up Rule for Iteration

Splitg(S, C, D), Var(b) C Var(C)
Splitg(b* S, b= C, D)

Before presenting the rop-down splitting rules, we in-
troduce the notion of interface-consistency on hardware
components:

Definition 6.2(/nterface-consistency)
Let Dy, =45 pX ® (|;¢p, (ri?2s; My; a;lys; X)[skip), for
k = 1,2, Dy and D, are said to be interface-consistent,
denoted by Consistency(D1, D3), if

Var(D,) = Var(D;), and

Chan(D1)\B1 = Chan(D)\Bs,
where B; =47 {rj,a; | j € I}, fori =1,2.
In such a case, we define

D = union(Dy, D3) =4f

pX e (uz‘ell Uls (ri?m55 My; aslys; X)|skip)

We present two splitting rules in the top-down approach
as follows.

O

Top-down Rule for Conditional

SplitBi(Sl‘, Ci, Dy), 1=1,2
Var(S1) = Var(Sz2), Chan(S:) = Chan(Sy)
Consistency(D1, D3), D = union(D1, D5)

Var(b) C Var(Ch)
SPlif31U32(S1 b Sy, CL b Oy, D)

Top-down Rule for Guarded Choice

SplitBi(Siy Ci, Dz), 1=1,2
Var(S1) = Var(Ss), Chan(S1) = Chan(Ss)
Consistency(D1, D2), D = union(D1, D5)
Var(g;) C Var(C1), Chan(g;) C Chan(C1), 1 =1,2

Splitg g, (g1 51)1(g2 S2), (91 Ci1)(92C2), D)

Based on the results of the analysis, an assignment « :=
e(v) can be decomposed to hardware and software com-
ponents. We present one case here, others in [13].

Case 1: e(v) is a busy expression, however, u,v have
been allocated to the software component.
Splitg(u := e(v), C, D), where
C =g (rj'v; a; 7u), and
D=4 (r;7x; y :=e(z); a;'y)

7 CONCLUSION

This paper shows how the hardware/software parti-
tioning problem can be tackled in the algebra of pro-
grams. The partitioning task consists of the static pro-
gram analysis phase and the splitting phase, where the
former provides the information for moving operations
from software to hardware and reducing the communica-
tion between components, and the latter supports a com-
positional approach to the program partitioning. To syn-
chronize software and hardware components, and reduce
the complexity of their interface, we introduce a simple
handshaking protocol, and propose a normal form for the
hardware components. The correctness of the splitting
process is verified using the algebraic laws of the source
language.

276

REFERENCES

[11 A. Balboni er al, “Partitioning and Exploration
Strategies in the TOSCA Design Flow”, In Pro-
ceedings of Fourth International Workshop on Hard-
ware/Software Codesign, 62~69, IEEE Computer
Society Press, (1996).

T. Cheung, “A Multi-level Transformation Ap-
proach to Hardware/Software Co-design”, In Pro-
ceedings of Fourth International Workshop on Hard-
ware/Software Codesign, 10-17, (1996).

He Jifeng, Provably Correct Systems: Modelling
of Communication Languages and Design of Opti-
mised Compilers, McGraw-Hill Publisher, 1994.

He Jifeng, 1. Page and J. Bowen, “A Provable Hard-
ware Implementation of Occarn”, Lecture Notes in

Computer Science 711, 693-703, (1993).

He Jifeng and J. Bowen, “Specification, Verification
and Prototyping of an Optimised Compiler”, Formal
Aspect of Computing 6, 643-658, (1994).

[6] He Jifeng et al, “Provably Correct Systems”, Lecture
Notes in Computer Science 863, 288-335, (1994).

[7] C.AR. Hoare, Communicating Sequential Pro-
cesses, Prentice Hall, 1985.

[8] C.A.R. Hoare and He Jifeng, Unifying Theories of
Programming, Prentice Hall, 1998.

[2)

[3

—_—

[4

—_

[5

—_

[9] C.A.R. Hoare et al, “Laws of Programming”, Com-
munications of the ACM, Vol 30(8): 672-686, 1987.

[10] Mathematics of Program Construction Group,
“Fixed-point Calculus”, Information Processing Let-
ters, 53(1995) 131-136. :

[11] Flemming Nielson, Hanne Riis Nielson, and Chris
Hankin, Principles of Program Analysis, Springer-
Verlag, 1999.

[12] Ian Page and Wayne Luk, “Compiling Occam into
FPGAs”, in FPGAs, eds., Will Moore and Wayne
Luk, 271-283, Abingdon EE&CS books, 1991.

[13] Qin Shengchao and He Jifeng, “An Algebraic Ap-

proach to Hardware/software Partitioning”, Techni-
cal Report 206, UNU/IIST, June, 2000.

[14] Qin Shengchao and He Jifeng, “Partitioning Pro-
gram into Hardware and Software”, draft paper,
UNU/IST, August, 2000.

[15] A.W.Roscoe and C.A.R. Hoare, “Laws of Occam
Programming”, Theoretical Computer Science, Vol
60: 177-229, 1988.

[16] Augusto Sampaio, “An Algebraic Approach to
Compiler Design”, World Scientific, (1997).

(171 L. Silva, A. Sampaio and E. Barros, “A Nor-
mal Form Reduction Strategy for Hardware/software
Partitioning”, Formal Methods Europe (FME) 97,
LNCS, 1313, 624-643, (1997).

