Timed Patterns: TCOZ to Timed Automata

J.S. Dong! P. Hao*! S.C. Qin' J. Sun' W. Yi?

1 National University of Singapore
{dongj s,haoping, ginsc, sunj }@comp .nus.edu.sg
2 Uppsala University, Sweden
yvi@docs.uu.se

Abstract. The integrated logic-based modeling language, Timed Communicat-
ing Object Z (TCOZ), is well suited for presenting complete and coherent re-
quirement models for complex real-time systems. However, the challenge is how
to verify the TCOZ models with tool support, especially for analyzing timing
properties. Specialized graph-based modeling technique, Timed Automata (TA),
has powerful mechanisms for designing real-time models using multiple clocks
and has well developed automatic tool support. One weakness of TA is the lack of
high level composable graphical patterns to support systematic designs for com-
plex systems. The investigation of possible links between TCOZ and TA may
benefit both techniques. For TCOZ, TA’s tool support can be reused to check
timing properties. For TA, a set of composable graphical patterns can be defined
based on the semantics of the TCOZ constructs, so that those patterns can be
re-used in a generic way. This paper firstly defines the composable TA graphi-
cal patterns, and then presents sound transformation rules and a tool for project-
ing TCOZ specifications into TA. A case study of a railroad crossing system is
demonstrated.

Keywords: Modeling and specification formalisms

1 Introduction

The specification of complex real-time systems requires powerful mechanisms for mod-
eling state, concurrency and real-time behavior. Integrated formal methods (IFM) are
well suited for presenting complete and coherent requirement models for complex sys-
tems. An important research agenda in IFM is the combination of Z/Object-Z [6] with
CSP/TCSP [13] such as Timed Communicating Object Z (TCOZ) [9], Circus [16] and
Object-Z + CSP [14]. However, the challenge is how to analyze and verify these mod-
els with tool support. We believe one effective approach is to project the integrated
requirement models into multiple domains so that existing specialized tools in these
corresponding domains can be utilized to perform the checking and analyzing tasks.
TCOZ is an integrated formal specification language which builds on the strengths
of the Object-Z and TCSP notations for modeling both the state, process and timing
aspects of complex systems. Rather than to develop a single tool support for TCOZ
from scratch, we believe a better approach is to reuse existing tools. The specialized
graph-based modeling technique, Timed Automata (TA) [1], is powerful in designing

* author for correspondence: haoping @comp.nus.edu.sg

real-time models with multiple clocks and has well developed automatic tool support
i.e., KRONOS [4] and UPPAAL [2]. However, one weakness of TA is the lack of high
level composable graphical patterns to support systematic designs for complex real-time
systems. The investigation of possible links between TCOZ and TA may be beneficial
to both techniques. For TCOZ, TA’s tool support can be reused to check real-time con-
straints. For TA, a set of composable graphical patterns can be defined based on the
semantics of the TCOZ constructs so that those patterns can be used as a generic frame-
work for developing complex TA design models.

This paper is organized as follows. Section 2 introduces TCOZ and Timed Au-
tomata. Section 3 presents a set of composable TA patterns with their formal definitions
(specified in Z). Section 4 presents the transformation rules with their correctness proof
and a Java tool for projecting TCOZ (in XML format) to TA (also in XML of UPPAAL).
Section 5 conducts a case study of a railroad crossing system. The last section gives the
conclusion.

2 TCOZ and TA

2.1 TCOZ

TCOZ is essentially a blending of Object-Z with TCSP, for the most part preserv-
ing them as proper sub-languages of the blended notation. The essence of this blend-
ing is the identification of Object-Z operation specification schemas with terminating
CSP [12] processes. Thus operation schemas and CSP processes occupy the same syn-
tactic and semantic category; operation schema expressions can appear wherever pro-
cesses appear in CSP and CSP process definitions can appear wherever operation defini-
tions appear in Object-Z. In this section we briefly consider various aspects of TCOZ. A
detailed introduction to TCOZ and its TCSP and Object-Z features may be found else-
where [9]. The formal semantics of TCOZ (presented in Z) is also documented [10].

Timing and Channels: In TCOZ, all timing information is represented as real val-
ued measurements. TCOZ adopts all TCSP timing operators, for instance, timeout and
wait. In order to describe the timing requirements of operations and sequences of op-
erations, a deadline command has been introduced. If OP is an operation specification
(defined through any combination of CSP process primitives and Object-Z operation
schemas) then OP e DEADLINE ¢ describes the process which has the same effect as
OP, but is constrained to terminate no later than ¢ (relative time). If it cannot terminate
by time ¢, it deadlocks. The WAITUNTIL operator is a dual to the deadline operator.
The process OP ¢ WAITUNTIL ¢ performs OP, but will not terminate until at least time
t. In this paper, when the term TCOZ timing constructs is mentioned, it means TCSP
constructs with extensions, i.e., DEADLINE and WAITUNTIL .

CSP channels are given an independent, first class role in TCOZ. In order to support
the role of CSP channels, the state schema convention is extended to allow the declara-
tion of communication channels. Contrary to the conventions adopted for internal state
attributes, channels are viewed as shared (global) rather than as encapsulated entities.
This is an essential consequence of their role as communication interfaces between ob-
jects. The introduction of channels to TCOZ reduces the need to reference other classes
in class definitions, thereby enhancing the modularity of system specifications.

Active Objects and Semantics: Active objects have their own thread of control,
while passive objects are controlled by other objects in a system. In TCOZ, an identifier
MAIN (non-terminating process) is used to determine the behavior of active objects of
a given class.The MAIN operation is optional in a class definition. It only appears in
a class definition when the objects of that class are active objects. Classes for defining
passive objects will not have the MAIN definition, but may contain CSP process con-
structors. If ob; and ob, are active objects of the class C, then the independent parallel
composition behavior of the two objects can be represented as 0b ||| ob2, which means
ob1 MAIN ||| oba.MAIN.

The details of the blended state/event process model forms the basis for the TCOZ
denotational semantics [10]. In brief, the semantic approach identifies the notions of
operation and process by providing a process interpretation of the Z operation schema
construct. Operation schemas are modeled by the collection of those sequences of up-
date events that achieve the state change described by the schema. This means that there
is no semantic difference between a Z operation schema and a CSP process. It therefore
makes sense to also identify their syntactic classes.

A Railroad Crossing Gate Example: The use of TCOZ is illustrated by a railroad
crossing gate class as following (later a case study on this system will be conducted).
The essential behaviors of this railroad crossing gate are to open and close itself ac-
cording to its external commands (events) up and down. A free type GateS is used to
capture the status of a gate:

GateS ::= ToUp | Up | ToDn | Down

— Gate
—Init
status : GateS status = Up
up, down : chan -
—Raise
_Lower A(status)
A(status) ,
status’ = ToUp
status’ = ToDn
~Up
_Down A(status)
A(status) ;
- status’ = Up

status’ = Down

Open = up — (Raise « WAITUNTIL 1; Up) ¢ DEADLINE 2
Close = down — Lower ® DEADLINE 1; Down
MAIN = 1 G e Close; Open; G

The interface of the gate class is defined through channels up and down. The DEADLINE

and WAITUNTIL expressions are used here to capture its timing properties, which con-
strain that the gate takes less than 1 time unit to come down and between 1 and 2 time
units to come up.

2.2 Timed Automata

Timed Automata [1, 3] are finite state machines with clocks. It was introduced as a
formal notation to model the behavior of real-time systems. Its definition provides a
general way to annotate state-transition graphs with timing constraints using finitely
many real-valued clock variables. The set of clock constraints ¢(X) is defined by the
following grammar:

pi=x<clc<x|x<c|lc<x|piAp2

A timed automaton A is a tuple (S, Sy, X, X, I, E), where S is a finite set of states;
So is a set of initial states and a subset of S; 3 is a set of actions/events; X is a finite
set of clocks; I is a mapping that labels each location s in § with some clock constraint
in &(X); E, a subset of $ x § x ¥ x 2% x &(X), is the set of switches. A switch
(s,s",a, \, &) represents a transition from state s to state s’ on input symbol a. The set
A gives the clocks to be reset with this transition, and § is a clock constraint over X that
specifies when the switch is enabled.

For example, the railroad crossing gate can be designed in Figure 1. The gate is open
in state Up and closed in state Down. It communicates with its controller through the
events up and down. The states ToUp and ToDown denote the opening and the closing
of the gate. The gate responds to the event down by closing within 1 time unit, and
responds to the event up within 1 to 2 time units.

ToDouwn

xl==1

xl:=0

xl==1

Tollp up?

x1==2

Fig. 1. The gate automaton

UPPAAL UPPAAL [2] is a tool for modeling, simulation and verification of real-
time systems. It consists of three main parts: a system editor, a simulator and a model
checker. The system editor provides a graphical interface of the tool, to allow easier
maintenance. Its output is an XML representation of time automatons. The simulator is
a validation tool which enables examination of possible dynamic executions of a sys-
tem during early design (or modeling) stages and thus provides an inexpensive mean of
fault detection prior to verification by the model checker which covers the exhaustive
dynamic behavior of the system. The model checker is to check invariant and bounded
liveness properties by exploring the symbolic state space of a system. UPPAAL is ap-
propriate for systems that can be modeled as a collection of non-deterministic processes
with finite control structure and real-valued clocks, communicating through channels or

shared variables. Typical application areas include real-time controllers and communi-
cation protocols in particular, those where timing aspects are critical.

3 Composable TA Patterns

High level real-time system requirements often need to state the system timing con-
straints in terms of deadline, timeout, waituntil and etc which can be regarded as com-
mon timing constraint patterns. For example, “task A must complete within ¢ time pe-
riod” is a typical one (deadline). TCOZ is a good candidate for specifying the require-
ments of complex real-time systems because it has the composable language constructs
that directly capture those common timing patterns. On the other hand, if TA is con-
sidered to be used to capture real-time requirements, then one often need to manually
cast those timing patterns into a set of clock variables with carefully calculated clock
constraints, which is a process that is very much towards design rather than specifica-
tion. One interesting question is the following: Can we build a set of TA patterns that
correspond to the TCOZ timing constructs? If such a set of TA patterns can be formu-
lated, then not only the transformation from TCOZ to TA can be readily achieved (one
objective of this paper), but also TA can sysmatically capture high level requirements
by utilizing those composable TA patterns.

Since the current semantics of TCOZ [10] is specified in Z, we define a set of com-
posable TA patterns also in the same meta notation Z. First of all, we give the definition
of TA in Z as follows.

[T, State, Event, Clock]

@ = (_ < _){(Clock x T) | (- > _){(Clock x T)) |
(= < 2){Clock x TV | (= > _){(Clock x T)) |
(A)(P x DY) | true

Transition = State X Label x State

Label = P Event x P Clock x &

—Sm
S : P State; i, e : State
1 : State +~ @
T : P Transition

i,e€ SANdoml =S
Vs,s' :state; | : label ® (s,1,s') € T = s,5' €S

There are four basic types, i.e., T, State, Event, and Clock, in which T is the set of
positive real numbers; @ defines the types of clock constraints, in which a true type is
added to represent the empty clock constraints; Label models transition conditions, in
which P Event is a set of enabling events, and PP Clock gives a set of clocks to be reset,
and @ specifies clock constraints. S74 defines a timed automaton, in which i and e rep-
resent its initial states and terminal states respectively; I defines local clock invariants
on states; and 7 models transitions.

Some TA patterns together with their formal definitions in Z are presented in Fig-
ure 2 - Figure 5, the rest can be found in the technical report [5]. In these graphical TA
patterns, an automaton A is abstracted as a triangle, the left vertex of this triangle or a
circle attached to the left vertex represents the initial state of A, and the right edge rep-
resents the terminal state of A. For example, Figure 2 demonstrates how two sequential
timed automatons A, Ao can be composed together. By linking the terminal state of Ay
with the initial state of Ao, the resultant automaton passes control from A; to As when
A7 goes to its terminal state. Figure 3 shows one of the common timing constraint pat-
terns — deadline. There is a single clock x. When the system switches to the automaton
A, the clock x gets reset to 0. The local invariant x <= ¢ covers each state of the timed
automaton A and specifies the requirement that a switch must occur before ¢ time unit
for every state of A. Thus the timing constraint expressed by this automaton is that A
should terminate no later than 7 time units.

seqcom : Sta X Sta — S
Al o q A A A

VA1,A2 : S1a @
seqcom(A1,A2) =
SZ=A1.SUA2.S,
iZAri,e=Age,] = AT UA,
T ;ALTUAQ.TU {(Al.e, (’7’,@7
true),A2.i)} |

Fig. 2. Sequential Composition

deadline : Spa X T — St

@i, VA :Sm; t:T; 3x: Clock; ip : State

deadline(A, 1) =

A SZASU{io},i Zio,e = Ae,
I={s:ASe (s,x <=t ANAI(s))},
Fig. 3. Deadline T =ATU{(@i, (T, {x},true),A.i)})

These timed composable patterns can be seen as a reusable high level library that
may facilitate a systematic engineering process when TA is used to design the timed
systems. Furthermore, these patterns provide an interchange media for transforming
TCOZ specifications into TA designs.

Composing TA Patterns

New patterns can be composed from the existing ones. For example, given a specifica-
tion “Task A’ is repeated every o time units provided that A’ is guaranteed to terminate

waituntil : Sta X T — Sa

@L:(L =t VA :Spm; t:T; 3x: Clock; ig,eo : State ®
waituntil(A,t) = {

SZASU {io, e()},

l.2 io,e = eo,I 2A.I,
T=ATU{(Ae, (r,9,x >=1),¢),

(@, (7, {x}, true),A.0)})

Fig. 4. Waituntil

recursion : Sta X State — Sta

VA :Sm; so: State | so € AS e
@ () >GD recursion(A, so) = {
SZAS,iSAieZAe, 1= Al
T = {s: State,l : Label | (s,1,50) € A.T
o (s,1,i)} U A.T — {s : State,

Fig. 5. Recursion
l: Label | (s,1,s0) € A.T o (s,1,50)})

before 7y time unit”, obviously, the TA model of this specification can be seen as a
new pattern which can be composed by three existing patterns - deadline, waituntil
and recursion, as shown in Figure 6, in which clock x is used to give time constraints
for both the deadline pattern and the waituntil pattern, assuming A is the automaton
equivalent to the TCOZ process A’.

PeriodicRepeat : Sta X T — St

. YA,Ao : Sm; to: T; eo : State | eo = Ao.e
. 7;2;:} A Ao = waituntil(deadline(A, to), 1) ®
PeriodicRepeat(A, ty) = recursion(waituntil

(deadline(A, t0), t0), e0)

Fig. 6. Periodic Repeat

According to the definition of deadline, waituntil and recursion patterns, the resul-
tant automaton can be derived as follows:

A(P) = PeriodicRepeat(A, to) = {
S=A.SU{io,e0},i = io, e = eo,
I={s:ASe(s,x<=1tg NAI(s))},
T = {(i, (1, {x}, true),A.D)} U {A.e, (T, 0,x >=10),i)} U A.T — {A.e, (1,9,
X >= to),@o)} D

4 Transformation Rules, Correctness & Tool

In this section, we will define a set of rules for mapping TCOZ to Timed Automata
and provide the correctness proof for this transformation. A Java tool to automate the
transformation process is implemented and illustrated.

4.1 Mapping TCOZ Processes into TA Patterns

Since the timed composable patterns are defined according to TCOZ process constructs,
the transformation rules are straightforward:

Definition 1. We define the mapping function A from TCOZ processes to TA as follows.

- IfP = SKIP, then A(P) = (| S = {io, e0},i = io,e = e0,] = &, T = {(i, (1, D, true),
e}

— IfP = STOP, then A(P) = (S = {io,e0},i = in,e = €0, = &, T =2 |

- IfP = a@t — Py, thenA(P) = tprefix(a, t, A(Po))

— IfP = Py e DEADLINE?, then A(P) = deadline(A(Po),t)

— IfP = Po @ WAITUNTIL, then A(P) =waituntil(A(Po), 1)

— IfP = WAIT¢, then A(P) = wait(t)

- IfP = P11>{t} P2, then A(P) = timeout(A(P1), A(P2),1)

— IfP = P1V{t} P2, then A(P) =tinterrupt(A(P1), A(P2),1)

— IfP = uN e P(N), then A(P) = recursion(A(P(N)),N)

— IfP = P1; Pa, then A(P) = seqcom(A(P1), A(P2))

- IfP = P1 N Py, then A(P) = intchoice(A(P1), A(P2))

- IfP = Py O Py, then A(P) = extchoice(A(P1), A(P2))

- IfP = P1 |[X]| P2, then A(P) = A(P1) || A(P2)

In these mapping rules, channels, events and guards in a TCOZ model are viewed
as triggers which cause the state transitions. They match the definition of actions and
timed constraints in Timed Automata, thus, they are directly projected as transition con-
ditions. Note that UPPAAL also adopts channels as its synchronization mechanism for
the interaction between automatons, which is equivalent to the approach taken in TCOZ.
Clock variables will be generated in the target automaton to guard its transition if the
process of TCOZ to be translated has any timing constraints such as the DEADLINE.
For example, the translation rule on the DEADLINE primitive, P, ® DEADLINE ¢ de-
scribes the process which has the same effect as Py, but is constrained to terminate no
later than ¢.

The above rules apply to all the TCOZ time primitives and its basic composition
of events, guards and processes, through which all the important dynamic information
with time constraints in TCOZ specification can be completely translated into timed
automata. The following provides the transformation rules for TCOZ classes/objects:

— In UPPAAL, every object is represented by an automaton. To fully represent be-
haviors of all the instances of a class, every instance (object) of a TCOZ class is
projected as a timed automaton.

— The INIT schema in TCOZ class is used to appoint one of those identified states to
be an initial state. It will not be projected as a new state because it does not trigger
any transition.

— Each operation schema in a TCOZ class is projected as an atomic state in its asso-
ciated automaton instead of a triangle.

4.2 Correctness

This subsection is devoted to the soundness proofs for our mapping rules from TCOZ
processes to structuralized Timed Automata. We shall prove that any source process
in TCOZ and its corresponding target Timed Automaton preserve the same semantics
under a bisimulation equivalence relation.

The operational semantics for TCOZ processes is captured by the labelled transition
system (LTS)

TStcoz = (C, 2T UT, —)
where C = P x T is the set of configurations. A configuration ¢ = (P,t) comprising

process P and time ¢ denotes a state in the transition system. X7 is the set of possible
communication events including the silent event 7. While —;C (C x (X7 UT) x C) is
the set of transitions. The operational rules are given in our technical report [5].

In order to derive observable behaviors of TCOZ processes, we define a new abstract
transition system as follows:

TS2coz = (C, ZUT, =)

Note that the set of configurations remains the same as that in 7S, but the transition
relation abstracts away from internal actions. That is, for any states c, ¢,

a, 7~ T* a T* /
c=1c¢ =dci1,ca-¢c—]c1 —1Cc2 —] ¢
B ;) o~ T . 5 T
c=1c¢ =3dci1,ca-¢c—]c1 —1Cc2 —] ¢

where the relation —7 is the sequential composition of zero or finite number of —;.
Now we construct an abstract transition system for our target formalism, Timed
Automata. A “normal” transition system associated with timed automata ([1, 3]) can be

TS’;A = (87S07 27U T7 —)2)

Notice that S = S x V denotes all possible states of the transition system. Each state is
composed of a state of the timed automaton and a clock valuation (interpretation). The
initial state so = (i, vo) comprises the initial state i and a zero valuation vo. While the set
— C 8§ x (X7UT) x S comprises two kinds of transitions: a time passing move or
an action move (Please refer to [5] for more details).

Based on TS%,, a new abstract transition system is defined as follows.

TS2, = (S, 50, X UT, =)

The only difference from 7S, lies in the transition relation =,C S x (X UT) x S,
which abstracts away from all internal (7) actions. That is, for states s, s’,

T T
s =95 S 351,505 —5 51 —o0 53 —5 s
S > T * [T * _/
s=o 8 = 51,525 —5 851 —2 82 —5
Now we define a bisimular relation between 7525 and 752, as below:

Definition 2 (Bisimulation). The relation ~C C x S between states of TS%co, and
states of TS%, is defined as follows, for any c € C and s € S, ¢ ~ s if and only if the
following conditions hold:

(1) c =1 ¢’ implies there exists s’ such that s => s, and ¢’ ~ §';

(2) s =>4 5" implies there exists ¢’ such that c =>1 ¢, and ¢’ ~ 5.

The following theorem shows that our mapping rules preserve the bisimulation rela-
tion between the source and target transition systems. Since the two transition systems
employ the same set of observable actions (events), the theorem thus demonstrates that
each source TCOZ process and its corresponding target timed automaton are semanti-
cally equivalent under the bisimulation relation.

Theorem 1 (Correctness). For any TCOZ process P and its corresponding timed au-
tomaton A(P), (P,t) = (i, vg) for some t, where i is the initial state of A(P), vo is the
zero valuation.

Proof By structural induction on process P.

— P = SKIP, or P = STOP. The proof is trivial.

— P = WAIT#,. We know A(P) = wait(tg). We show the condition (1) holds in
Definition 2. The condition (2) can be demonstrated similarly. The process P can
perform a time passing move (9). The automaton wait(to) can also advance a cor-
responding J-step.

If § < 1o, (P, t) moves to (WAIT(ty — 6), 1+), while (i, vo) moves to (wg, vo +9).
By hypothesis, we know (WAIT(tg — 8),7 + 0) & (wp, vo + J).

If 6 = 1o, both (P,#) and (i,vo) moves to their terminal states and preserve the
bisimulation as well.

— Other cases are presented in the report [5] due to space constraints. O

4.3 Implementation

The translation process can be automated by employing XML/XSL technology. In our
previous work [15], the syntax of Z family languages, i.e., Z/Object-Z/TCOZ, has been
defined using XML Schema and supported by the ZML tool. As the UPPAAL tool can
read an XML representation of Timed Automata, the automatic projection of the TCOZ
model (in ZML) to TA model (in UPPAAL XML) can be developed as a tool in Java.

The tool takes in a TCOZ specification represented in XML, and outputs an XML
representation of a Timed Automata specification which has its own defined style file
DTD by UPPAAL. The transformation is achieved firstly by implementing a ZML
parser, which will take in a ZML specification and build a virtual model of the sys-
tem in the memory. A TA interface is then built according to the UPPAAL document
structure, e.g. each TA document contains multiple templates and each template con-
tains some states, their transitions and transition conditions. A transformation module
is built to get information from the ZML parser, apply the right transformation rule and
feed the outcome of the transformation to the TA interface. Note that TCOZ process ex-
pression can be defined recursively, i.e, a process expression may contain one or more
other process expressions, our transformation modules are built to take care of all valid
TCOZ specifications and the transformation rules are applied recursively. The outcome
of our transformation tool is UPPAAL’s XML representation of TA, which is ready to
be taken as input for verification and simulation.

5 Case Study : Railroad Crossing System

In this section, we will use a Railroad Crossing System (RCS) specified in TCOZ as
a driving example to illustrate our approach to model-checking TCOZ models of real-
time systems. The concept of the Railroad Crossing Problem was primarily evolved by
Heitmeyer [7] and used as a case study in many formal systems. It is a system which
operates a gate at a railroad crossing safely. Based on the above features, we define
some assumptions and constraints as follows:

1. The train sends a signal to the controller at least 3 time units before it enters the
crossing, stays there no more than 2 time units and sends another signal to the
controller upon exiting the crossing.

2. The controller commands the gate to lower exactly 1 time unit after it has received
the approaching signal from the train and commands the gate to rise again no more
than 1 time unit after receiving the exiting signal.

3. The gate takes less than 1 time unit to come down and between 1 and 2 time units
to come up.

5.1 TCOZ Model of RCS

According to the requirement description, an RCS consists of three components: a cen-
tral controller, a train, and a gate to control the traffic. The basic types for the status of
the train and controller are defined as follows:

TrainS ::= Toln | In | Out
ControllerS ::= Trln | TrOut | GtClose | GtOpen

The TCOZ specification of Gate class has been presented in Section 2, the following
provides the formal specification of Train and Controller class.

Train: The basic behavior of the train component is to communicate with controller
with its passing information.

—Train
_Pass
status : TrainS A(status)
in, out : chan ,
status’ = In
_Init .
_ Exit
status = Out
A(status)
_Approach
PP status’ = Out
A(status)

status’ = Toln

Trainy, = in — (Approach ¢ WAITUNTIL 3; Pass) @ DEADLINE 5
Traing. = out — Exit
MAIN = puT o Traini,; Traineu; T

Central Controller: The central controller is the crucial part of the system, ac-
tively communicating with the train, light and gate. The Controller class is modeled as
follows:

— Controller
_INIT
status : ControllerS status = TrOut
up, down, in, out : chan
_Arrive — GateClose
A(status) A(status)
status’ = Trin status’ = GtClose
_Leave — GateOpen
Al(status) A(status)
status’ = TrOut status’ = GtOpen
Traing, = in — Arrive; Traingy = out — Leave
Close = down — GateClose; Open = up — GateOpen
MAIN = 11 C o (Train;, « DEADLINE 1) @ WAITUNTIL 1; Close; Train, e
DEADLINE 1; Open; C

The attribute status keeps the records of the train’s passing information in the sys-
tem. When the train sends an in signal, the status of the controller changes from TrOut
to TrIn. When the train has passed the crossing and sent an out signal to the controller,
the status of the controller changes from TrIn to TrOut. The main processes of the con-
troller are receiving the train passing information and manipulating the gate operations
at the same time. If the gate is open then instructions on closing the gate will be sent to
the Gate. On the other hand, when the train has passed the gate, the controller will open
the gate.

RCS Configuration: After specifying individual components, the next step is to
compose them into a whole system. The overall system is a composition of all the
communicating components.

RCSystem

t : Train; g : Gate; c : Controller

MAIN = H(t in,out ¢ up,down g)

Two essential properties of RCS are: first, the gate is never closed at a stretch for more
than a stipulated time range (suppose 10 time units); second, the gate should be down
whenever a train is crossing. These properties can be formally expressed as:

RCSystem o [J(g.status = ToDn — (<1 g.status = Up)
RCSystem e t.status = In = g.status = Down

5.2 Translation

In this section, we show how the given translation rules can be applied to map TCOZ
specification into Timed automatons.

First of all, for the whole RCS system, three automatons can be identified in the
Timed Automata model, i.e., gate, train and controller.

We use the gate class as an example to show the identification of the states, transi-
tions, guards and synchronization mentioned above. According to the translation rules
for TCOZ classes/objects, four states can be identified through the static view of Gate
class, it has four operation schema, each one is mapped into a state, namely, Up,
ToDown, Down, and ToUp as shown in Figure 1, among which Up is the initial state as
indicated by the INIT schema in the Gate class. Synchronization and clock conditions
on the transitions are constructed by transforming the Open and Close process of Gate
class according to the translation rules on DEADLINE and WAITUNTIL primitives. A
clock is generated to guard the atomic process Lower to be finished no later than 1 time
unit, then it is reused to guard Raise and Up process to meet their timing constraints by
resetting its value to 0. The initial and terminal states generated for every non-atomic
process due to those translation rules, if they are linked by a transition with a 7 event,
are incorporated into one state to simplified the resultant automaton.

This gate automaton can be automatically generated by our translation tool and
visualized in UPPAAL as “process gate” in Figure 7. In the same way, we can get the
train and controller automatons as “process train” and “process controller”.

=10l x|

File Templates WYiew Queries Options Help

Systern Editor Simulator |Vermer

. 3
process train process gate [E4 simulation Contral —|ol x|

s101 Enabled Transitions
xl==1

L 5100

Mext Reset
x==3 x1==1
Simulation Trace

{102 Trace File:

Prey. iz Replay

open Save Randam

| 1 K 1

Slow Fast

et HLTE

aaaaaaa

gate.xl = train.x0
controller.x2 = train.x0
controller.x2 = gate.xl

Fig. 7. Simulation

5.3 Model-checking RCS

Now we can use the UPPAAL tool to simulate the system as well as to model-check
some invariants and real-time properties. In UPPAAL correctness criteria can be speci-
fied as formulas of the timed temporal logic TCTL [8], for which UPPAAL implements
model-checking algorithms.

From a safety critical perspective, the key point of the RCS is to provide guaranteed
safety and efficient services. These properties can be formally interpreted from our
model as:

— safety properties - The properties state that whenever the train is in, the gate is
down. It can be translated into the TCTL formula in UPPAAL as follows:

A[] train.s2 imply gate.s102

— efficient service properties - the gate is never closed at a stretch for more than 10
time units. To verify this property, we add a clock x to record the time the gate takes
to reopen itself:

gate.sl1l01l --> (gate.sl1l00 and gate.x<=10)

UPPAAL verified that these properties actually hold for this given model.

6 Conclusion

TCOZ and TA lie at each end of the spectrum of formal modeling techniques. TCOZ is
good at structurally specifying high level requirements for complex systems, while TA
is good at designing timed models in simple clock constraints but with highly automatic
tools support.

The investigation on the strengths and links between those two modeling techniques
leads us to an interesting research result, i.e., timed composable patterns (reminiscence
of ‘design patterns’ in object-oriented modeling). In this paper, these patterns are for-
mally defined in Z and the process algebra-like compositional nature are preserved in
the graphical representations. These timed composable patterns

— not only provide a proficient interchange media for transforming TCOZ specifica-
tions into TA designs

— but also provide a generic reusable framework for designing real-time systems in
TA alone.

One possible future work would be to encode those timed patterns as icons in the
model checker tool, such as UPPAAL, so that the complex timed models can be built
systematically in UPPAAL.

Since TCOZ is a superset of TCSP, one consequence of this work is that a semantic
link and a practical translation tool from TCSP to TA has been achieved so that TA tools
i.e. UPPAAL can also be used to check TCSP timing properties. In this context, this
work complements the recent pure theoretical investigation [11] on the expressiveness
of TCSP and closed timed automata.

Acknowledgements

We would like to thank Hugh Anderson, Sun Jing and Wang Hai for their helpful com-
ments on this work.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183—
235, 1994.

J. Bengtsson, K. G. Larsen, F. Larsson, and P. Pettersson avd Y. Wang. UPPAAL - a tool
suite for automatic verification of real-time systems. In Hybrid Systems Il1: Verification and
Control, pages 232-243. Springer, 1996.

. Albert M. K. Cheng. Real-time systems : scheduling, analysis, and verification. John Wiley

and Sons, 2002.

. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems I11:

Verification and Control, pages 208-219. Springer, 1996.

. J. S. Dong, P. Hao, S. C. Qin, J. Sun, and W. Yi. TCOZ to Timed Automata. Technical

Report TRC6/03, School of Computing, National University of Singapore, 2003.
http://nt-appn.comp.nus.edu.sg/fm/tcoz2ta/tr.zip.

. R. Duke, G. Rose, and G. Smith. Object-Z: a Specification Language Advocated for the

Description of Standards. Computer Standards and Interfaces, 17:511-533, 1995.

. C. L. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A Case Study in Formal

Verification of Real-Time Systems. In Proceedings of RTSS’94, Reai-Time Systems Sym-
posium, pages 120-131, San Juan, Puerto Rico, December 1994. IEEE Computer Society
Press.

. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-

time systems. Information and Computation, 111(2):193-243, 1994.

. B.Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transactions on Software

Engineering, 26(2):150-177, February 2000.

B. Mahony and J. S. Dong. Deep Semantic Links of TCSP and Object-Z: TCOZ Approach.
Formal Aspects of Computing, 13(2):142-160, 2002.

J. Ouaknine and J. Worrell. Timed CSP = Closed Timed Automata. In Proceedings of
EXPRESS 02, volume 38(2) of ENTCS, 2002.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe. Timed
CSP: Theory and practice. In J. W. de Bakker, C. Huixing, W. P. de Roever, and G. Rozen-
berg, editors, Real-Time: Theory in Practice, volume 600 of Lect. Notes in Comput. Sci.,
pages 640-675. Springer-Verlag, 1992.

G. Smith. An integration of real-time object-z and csp for specifying concurrent real-time
systems. In M. Butler, L. Petre, and K. Sere, editors, IFM 2002, page 267C285. Springer-
Verlag, 2002.

J. Sun, J. S. Dong, J. Liu, and H. Wang. A formal object approach to the design of zml.
Annals ol Software Engineering, 13:329-356, 2002.

J. Woodcock and A. Cavalcanti. The Semantics of Circus. In ZB 2002: Formal Specification
and Development in Z and B, volume 2272 of Lecture Notes in Computer Science, pages
184-203. Springer-Verlag, 2002.

