Automatic Mapping from Statecharts to Verilog

Viet-Anh Vu Tran', Shengchao Qi and Wei Ngan Chih?

1 Vietsoftware Company, Hanoi, Vietham
tran. vu. viet.anh@i et sof t ware. com
2 Singapore-MIT Alliance

3 National University of Singapore
{gi nsc, chi nwn}@onp. nus. edu. sg

Abstract. Statecharts is a visual formalism suitable for high-leystem spec-

ification, while Verilog is a hardware description langudbat can be used for
both behavioural and structural specification of (hardyvaystems. This paper
implements a semantics-preserving mapping from Graplitatecharts to Ver-
ilog programs, which, to the best of our knowledge, is the éilgorithm to bridge

the gap between Statecharts and Verilog, and can be embéudetthe hard-

ware/software co-specification process [19] as a front-end

1 Introduction

Statecharts [6, 7] is a visual formalism catering for highel behaviourial specification
of embedded systems. Its hierarchical structure, orthalgaord broadcast communica-
tion features make the system specification compact andiwettio understand. It is
a very good candidate for executable specification in systesign [8]. Moreover, the
semantics of Statecharts has been extensively invedli§@té2, 14,15, 13] in recent
years. Some works also attempt to provide tools for forméifieation of Statecharts
specifications [4], [14], [20].

Verilog [22], [17]is a widely used language for hardwareatggion in industry [2],
[5], [11], [10] and also in research. Verilog is used to matelstructure and behaviour
of digital systems ranging from simple hardware buildingdd to complete systems.
Verilog semantics is based on the scheduling of events angrtipagation of changes.
One early attempt to investigate the semantics of Verilothéswork of Gordon [5]
which explains how top-level modules can be simulated.

A Verilog program (or specification, as it is more frequentiyerred to) is a de-
scription of a device or process rather similar to a compptegram written in C or
Pascal. However, Verilog also includes constructs spadifichosen to describe hard-
ware. One major difference from a language like C is thatlygrallows processes to
run in parallel. This is obviously very desirable if one istploit the inherently paral-
lel behaviour of hardware. In this work, we will make use o$t@act Verilog [10], [18],
that is described in the next chapter.

On the other hand, Verilog is a hardware description langulagt has been widely
used by hardware designers. Its rich features make it a gaodidate for low—level
system specifications. The formal semantics of Verilog wasdiven by Gordon [5] in
terms of simulation cycles. It has been thoroughly invedtd afterwards [25], [24].



As the advantages of Statecharts and Verilog in embeddéensydesign process
are complementary to each other, a natural question thaieaaised is, can we make
use of both of them in system design? That is, can we use 8tate@s the high level
specification, while use Verilog as the low level descripfiorhis question has mo-
tivated our work and this paper shall provide a positive arsy bridging the gap
between Statecharts and Verilog. The compilation fromeStarts to Verilog can be
embedded into the hardware/software co-specificationgssf19]. A mapping algo-
rithm will be given in the following sections, where the sdaess has been given in
Qin and Chin [18].

The rest of this paper is organized as follows. Sec 2 givesed introduction to
Statecharts and Verilog. Sec 3 presented the formal definti the mapping function,
followed by its implementation in Sec 4. Sec 5 illustratesrmapping results using two
examples, while Sec 6 concludes the paper.

2 Preliminaries

2.1 Formal syntax of statecharts

Statecharts is a specification language derived from fstdee machines. The lan-
guage is rather rich in features including state hieraretfty @ncurrency. Transitions
can perform nontrivial computations unlike finite-statectmaes where they contain at
most input/output pairs. In this section we will describat&tharts presented by David
Harel [6], [7], [9]-

Statechart diagrams capture the behaviour of entitiesht@pédynamic behaviour
by specifying their responses to the event occurrencescaly it is used for describ-
ing the behaviour of classes, but statecharts may alsoidesbe behaviour of other
model entities such as use cases, actors, subsystemsjapgrar methods.

We use a simple textual representation of Statechartsewhit system can auto-
matically translate a graphical representation to theutdxtepresentation. The state-
charts language we adopt has some features that are nohipireséML statecharts.
For example, broadcast communication is supported in awuage but not in UML
statecharts.

As already mentioned in previous section, Statechartstansible by hierarchy,
orthogonality or broadcast communication. In this paper,use the formal syntax of
statechart from [7] and [18]. The syntax of Statecharts fdenis defined as follows
(quoting from [18]):

S : a set of names used to denote Statecharts. This is expeckedlarge enough to
prevent name conflicts.

I, : a set of all abstract events (signals). We also introducthan setl7 . to denote
the set of negated counterparts of eventflin i.e. 11, =4 {€|e € II.}, wheree
denotes the negated counterpart of eveand we assume = e.

11, : a set of all assignment actions of the foore= exp.

o :Var — Valis the valuation function for variables, wheva:r is the set of all
variables,Val is the set of all possible values for variables. A snapshotdoiablesy
is o (7).



T : a set of transitions, which is a subset®fx 27Uy MU B x S,
whereJ3. is the set of boolean expressions.

A term-based syntax of statecharts was introduced in [18][&4], [15]. We re-
introduce it here for the benefit of the reader. TheXeis a set of Statecharts terms
that is constructed by the following inductively defined dtions.

Basic:S — SC

Basic(s) = |

Or:S x [8C] x T —SC

Or(s, [pl;"'apla"'apn]7pl7T) =df |[S : [pl;-"apla"'apn]7pl7T]|
And:S x 2%¢ —sC

And(sa{pla"ﬂpn}) —df |[S : {plaapn}”

Note that:

—Basic(s) : denotes a basic statechart named

—0x(s, [p1, ...y D15 --s Dnl, D1, T) : rEPresents afr -statechart with a set of sub-states
{p1,..-,pn}, Wherep; is the default sub-state; is the current active sub—stafg,is
composed of all possible transitions among immediate tatlessofs.

—And(s, {p1, ..., pn }) is anAnd-statechart named which contains a set of orthogonal
(concurrent) sub-statd®1, ..., pn } -

In this paper we use sub-state interchangeable as chilfi@n-state. Correspond-
ingly, we use children and region 8hd-state interchangeably. For statecharts that we
adopted in this work, we shall assume that efcti-state will have at least two regions.
Furthermore, each region shall be@n-state.

We shall take the textual representation of statecharte@ms idata for our core
mapping program. Our front-end algorithm will translategjnic charts to textual rep-
resentation automatically. As an example, we give belovwrgkd graphical Statechart
and its corresponding textual representation.

PO = |[ S1: P1, P2 ]|
Pgl PL =|[ S2: [ Pla, Plb ], Pla, t1 ]|
t1: a (true) P2 = |[ S3: [ P2a, P2b, P2c ], P2a, t2, t31]]
Pla = |[ S4 1|
Plb = |[ S5 ]|
= P2a = |[ S6 ]|
P2b = |[ S7 ]|
P2a P2c = |[ S8 ]|
t21b (true)
5ob tszc(”“e) tl=<Pla, a, , true, Plb >
t2 =< P2a, b, , true, P2a >
t3 =< P2b, ¢, , true, P2c >
Fig. 1. A simple example of a Statechart and its textual repregentat
2.2 \Verilog

Verilog is a hardware description language that has beeslyigsed in industry. Al-
though the Verilog IEEE standard [22] was released aroungéars ago, the formal



semantics based on simulation cycles [5] has not been madktigated until recently,
e.g. [11], [10]. In our work, we shall use a behaviourial ttusf Verilog introduced in
[10] and [18]. This more abstract version of Verilog can bedu® express designs at
various levels of hardware behaviour. Such an abstracjdesin be gradually refined
into an equivalent counterpart in the Verilog HDL which caovide a closer match
to the underlying architecture of the hardware. This preceay be repeated until the
design is at a sufficiently lower level such that the hardveendce can be synthesised
from it. There are two main features in abstract Verilog #rat not present in Verilog
HDL, namely guarded choice extension and recursion. Theslagon from general
guarded choices to parallel composition in normal Verigdhievable, although non-
trivial. The conversion of recursion to iteration is hartet there exists standard con-
version techniques to realise some subsets of them. Fartiierfor bounded recursion,
it is possible to inline the abstract Verilog code so as toaesrecursion.

A Verilog program can be a parallel or a sequential proceggyitdy parallel process
may contain sequence processes, not vice-versa. Hereraeecstegories of syntactic
elements:

1. Parallel process
P:=S|P|P
where,S is a sequential process.
2. Sequential process can be formally described as follpwin

S = PC (primitive command) | S;S (sequential composition)
| s < b > S (condition) | b x S (iteration)
| (b&g S) ] ... [] (b&g S) (guarded choice) | fix X o S (recursion)

where b is boolean condition, and
PC ::= skip | sink | L | — n (output event) | v = ex (assignment)
g u=— n|Q(zx =0v) (assignment guard))
| #1 (time delay) | eg (event control)
eg ==nleg&egleg& —eg
n =7 v (valuerising) | | v (value falling) | e (a set of abstract events)

Recall that a Verilog program can only be a parallel procésiseatop level, a se-
quential process cannot contain a parallel process. Howenst real systems contain
many parallel processes possibly organised hierarchidallsolve this restriction, we
shall use algebraic laws [10] to expand a parallel procdssaiisequential one.

Here are some simple code examples:

— (e& (= f) sink) [] (g & (— h) sink)

—uXe(e(f X))
— (a& (= e) sink) || (b& (= f) sink)

3 Semantic-Preserving Mapping

Our algorithm that takes as input graphical statechartgy@nérates as output Verilog
code is based on the theoretical result presented in [18.fApping algorithm works
in a top-down manner starting from the root of the statechad then moving to its



children. Each time, we consider the input statechart (gech of Statecharts) as a
singleton statechart and continue until no further appliea

We present the mapping functidnas originally proposed in [18] which produces
result based on the type of the source statechart:
Definition of mapping function L:

L :S8C — Verilog

maps any statechart description into a corresponding dgerirocess. It keeps un-
changed the set of variables employed by the source déescripe.,

Vsc € SC e vars(L(sc)) = vars(sc)
and it is inductively defined as follows.

— For a statechartc = |[s]| constructed byBasi ¢, L maps its input into an idle
programsinkwhich can do nothing but let time advance, i.e.,
L(sc) =45 Sink
— For a statechartc = |[s : {p1, ..., pn}]| cOnstructed byAnd, L maps its input into
a parallel construct in Verilog.
L(sc) =ar [1<i<n L(pi)

— For a statechartc = |[s : [p1,...,pn], 1, T]| constructed byOr, we defineL
by exhaustively figuring out the first possible transitiofiseif any, otherwise it
returnssink

sink if T*(sc) =0
L(se) =ar {P otherwise
where .
P =g []Oﬁkgor-depﬂ'{scz ({br, & g%, & (&o<j<k hj) & g2 L(resc(my, sc)) |
v € T'(activeF(sc)) A src(my) = active* 1 (sc) A
h; = &{~gt | T € T(active’~1(sc)) A sre(t) = active’ (sc)}}

and
active®(sc) =g sc
activel (sc) =g active(sc)

active'™! (sc) =g active(active®(sc))

For each statechart, we always assume each of its variahtebdunded range,
and the set of possible events is finite, which implies thatst of its configurations
is finite. Therefore, the set of configurations (under tiémsirelation) forms a well—
founded quasi order, which indicates the mapping funcfiagsterminating.

Following are some formal notations used in the above defimifirstly, the func-
tion or-depth: SC — N to calculate the “or—depth” of a statechart, which is defiagd
follows:

- for a statechartéc = |[s]| constructed bpasic, or-depth{sc) =4 0;

- for a statechartc = [[s : [p1, ..., pn], p1, T']| constructed by , or-depth{sc) =4
or-depttp;) + 1;

- for a statecharic = |[s : {p1, ..., pn }]| constructed byAnd, or-depth{sc) =4

1.

The or-depthof an Or -chart just records the depth of the path transitively aldsg
activeOr -sub-states. We stop going further oncefard-state is encountered. Tloe-
depthof anAnd-chart is simply 1.



Secondly, the source and target state functieng,r) andtgt(7), respectively repre-
sent the source and target state of a transitio@iven a transitiom = &1<x<m7i, €
T, wherer;, € T*(p;, ), for1 < k < m, andis, ..., i, IS a permutation of, ..., n, we
define its source and target state as follow:

sre(T) =g (q1,---,qn), Whereg;, = sre(r,), forl < k < m, andg;, =
active(p;, ), form < k <m;

tgt(t) =g (r1,...,mn), Wherer;, = tgt(r,), forl < k < m, andr;, =
active(p;, ), form < k < n.

Note thatT™(p) contains all possible transitions insigealong its transitive ac-
tive sub-state chain, i.e€L*(p) =4 {7 | 7 € T A sre(r) = pi} U T*(p;). And
active(sc) denotes a current active sub-statesof With anOr -statecharkc = |[s :
[p1s--s0n), p1, T)|, We haveactive(sc) = p;. With an And-statechartsc = |[s :
{p1,..-,pn}]|, we have the active state as a vector of the active statesesé tbon-
stituents, i.e.active(sc) =qr (active(pr), ..., active(py)).

Thirdly, we need to know the resulting statechart after aditéon is taken. When a
transitionT occurs, any involved statechart can have changes in itssitize) active
sub-states. We use a function:

resc:T x SC — SC
to return the modified statechart after performing a tréomsih a statechart. It is defined
inductively with regard to the type of the statechart.

- for aBasi c-statecharkc, and any transitiom, resc(r, sc) =g sc;
- for anCOr -statechartc = |[s : [p1, ..., pnl, p1, T]|, @nd a transition,

5Cl—a2d(tgt(r)if T € T A sre(t) = pi;
T‘eSC(T, SC) =df Sc[l'—n'esc(r,pl)] 5 ifreT™ (pl)7
sc, otherwise.

- for anAnd-statechartc = |[s : {p1, ..., p»}]|, @nd a transition,

ser, if T = &1<p<mmiy, € T(sc);

resc(7, sc) —df {sc otherwise
, .

wheresc, = sclq1/p1,-..,qn/pn) is the statechart obtained frose via re-
pIaCingpi by i, for 1 S 7 S n, Qi = reSC(Tik7pik)’ for 1 S k S m, and
Gi, = Pip, form <k <n.

The functiona2d(sc) is used to change the active sub-stateofnto its default
sub-state, and the same change is applied to its new activstate. This function is
defined as:

- a2d(|[s]]) =ar I[s]l
- a’2d(|[ : [pla "'apn]vplvT”) =df |[S : [pla ...,pn],GQd(pl),TH
- a2d(|[s : {p1, - u}ll) =ar |[s : {a2d(p1), ..., a2d(pn)}]]

The substitutionscy;.,,, . for anOr -statechartc = |[s : [p1, ..., pa], p1, T is defined
by scficsp,) =ar |5 ¢ [P1s s pa]s P T

S
S



4 Implementation

Our implementation consists of two parts: a statecharbeddalled Statechaik, is
a stencil of MS Visio) and a mapping program from statechatd abstract Verilog
(called AMSV-Automatic Mapping of Statechart into Verilog

Statechart Mapping Code abstract
drawing (AMSv) generation Verilog
(Statechart_E) (AMSV)

texture
representation

Fig. 2. Structure of the implementation.

Fig. 2 shows the stages of using our system. Users first deindfatecharts, using
Statechark, which also automatically generates the corresponditgdérepresenta-
tions. AMSV will then generate abstract Verilog code fromttel representation of
these statecharts. In next two sections, we will discusstebatechare, AMSV, and
some other techniques used in the system.

4.1 Statechart editor

StatecharE is built with three main purposes:

— First, of course is for editing Statechart diagrams. Théoedhould be convenient
to use and easy to draw.

— Second, it should also be easy to export textual represemttstatechart. This is
used by the mapping algorithm which converts statechastract Verilog.

— Last, it should be easy to save the statecharts to otherigedfitrmats (like bmp,
iPg, ps, eps, etc) This is important for portability and focdmentation.

From these requirements, we built Stateclads an add-on/embedded stencil in
Microsoft Visio. We make use of MS. Visio because Visio is ayygowerful graphical
editor tool for drawing diagrams. Visio also supports maraptical formats for export-
ing our diagrams. Moreover, using Visio, we can not only dsd&techart components
but also other shapes from suitable drawing types or s&encil

Features of Statechaft:

— A menu namedbtatecharis added to the menu bar of Visio. This menu contains
two functions, namelyGenerate statechagndAdd new statechart pagé&he first
function is used to export the current statechart to a téfiteaThis file is used as
input for the mapping program which to transform to abstktlog. The second
function is used to add a new page for current statechartatiaglTo enable this
menu and its functions, users must allow a macro to be aat@gten opening the
stencil.



— A set of masters is added to the stencil and this is used fataating statecharts.
It consists of a state master, a default master (commonlfkinal of states), 8 tran-
sition masters (to help build complex statecharts), anticadthorizontal separators
for And-state.

— Each master is accompanied by a program written in VisuaicBas Application
(VBA) to check data, events and perform actions of each maSteme masters
are linked to a window to allow input of needed data. This paogalso partially
checks the supplied data such as duplicate name, etc.

— We also allow users to build hierarchical statecharts. £Js@n easily extend a given
statechart by adding a new page (using the second functiomeimu Statechart
and continue to extend the current statechart in a hiergathianner in the new
page. Note that thgeneratefunction will read all components in all pages of the
statechart.

4.2 AMSYV - Core mapping program

The second part, called AMSV (Automatic Mapping of Statethdo Verilog), is es-
sentially a Java program.

DFS algorithm As presented in section 3, the mapping algorithm has to déhl w
each stateBasi ¢, And, andOr states. It can construct the corresponding Verilog
code after the mapping algorithm has been applied to astdtthe source statechart.
Nevertheless, how do we traverse all states of the inpwtddtatt? In the AMSV, we
make use of depth—first—search (DFS) algorithm [3] to redidtates of the statechart.
However, DFS works on each tree of nodes. To apply DFS we lwakecbnstruct
the source statechart into a tree of states. Fig. 3 showsaamp& of hierarchy tree (b)
for a simple statechart (a). Here, dashed arrows denotéildeen of anAnd-state (like
arrow from PO to P1, P2), while the doted arrows point to th&vasub-states ofr -
state (like arrow from P1 to P3 or P2 to P6). The solid arroypsasent the transitions.

Fig. 3. Hierarchy tree. a) Statechart example, b) hierarchy tregcaDFS route.

After reconstructing each statechart into a hierarchy tueeapply a recursive func-
tion which maps each statechart to abstract Verilog. At ¢iaod, we only consider one
state, called the current state. Through this recursivetiom, we apply the mapping



algorithm to all states of the source statechart to obtanildgeprocess code. These
codes are kept in a hash table for latter use. After that, weegéhe output code (from
sub-states or from target states of all transitions to threeati state) to generate final
abstract Verilog process.

For example, in the Fig. 3, first we start from the root state(P0). After that, we
invoke the function itself if it is possible to go to currenat®’s children (P1, P2) or
target states of transitions (P3 to P4, P5). A systematicafidinding the next state is
described below. Fig. 3 ¢ shows the route taken by our DF&ttsaV:

— each state is the target of transition: If there exists aawysition from the current
state, go to the target state of the transition. Like tréosstfrom P3 to P4 or P5.
The information of the transition will be memorized to geateroutput code. If
there are more than one transitions from current state ggeoit one by one. The
order between these transitions is not important.

— each state is a child of theénd-state: If the current state &nd-state, go to all
children. Like from PO to P1 or P2. Information of childrentivat And-state will
be memorized during code generation, as acquired by thiogdanguage.

— state is sub-state @ -state: Just go to active state and continue as before. For
example, P3 and P6 are the active states of P1 and P2.

Recursion During the traversal to the states of a given statechad, possible for a
transition to re-occur. This may be due to non-terminatinsolve this problem we
use a boolean array to remember all states which the prograralfeady encountered.
If a program reaches a marked state, it just uses that int@m generate a loop, and
then go back to previous state. This is meant to terminatewasize transition.

Parallel expansion Recall from early discussion in Sec 2, we shall take into anto
the parallel expansion &nd-state. Whenever afind-state is reached, all information
(guards, conditions, etc) of the children of a current séaiteused for expansion. The
only exception is when the current state is the root. In thsecwe generate Verilog
code from all its children and gather it using the paralleémtion (). This situation
was discussed in [23].

5 Examples

In this section, we illustrate the mapping algorithm via tbkowing examples: a CD
player and a washing machine.

5.1 CD-player

Specification Fig. 4 shows the graphical statechart of a CD-player. It@iosttwo or-
thogonal regions?lay control(Pl ayCt r ) andTrack information(Tr ackCt r ), which
are used to control the playing mode and record the trackrimdton respectively. The
first region contain$t op, Pl ay, Pause sub-states to control the playing mode,



while the second one contains only a sub-stategck. Three buttonsNext , Pr ev,
andsel ect a track, are associated with tHieg ack state. The variable ct (that is,
current track) is used to keep record of the current posidfdhe CD being played. We
assumet is initially 0 whenever the CD-player is switched on.

In this model,St op and Tr ack are respectively two default sub-states of two
orthogonal regions. So when the CD-Player is switched oth bbthem are entered
simultaneously. Upon the arrival of eveBRtay_pressed(that is, thePl ay button is
pressed), transitiotil is taken and statl ayi ngCt r is entered, where the default
sub-statePl ayi ng becomes active. Transitiortd and¢3 are used to alter between
statePl ayi ng andPaused. Transition t2 connects staf® ayi ngCt r with state
St op. When the control is in statel ayi ngCt r (eitherPl ayi ng or Paused), and
t2 is enabled, it will yield theSt op state (that is, the CD-player will stop).

In the orthogonal statdr ackCt r, upon the arrival of eventblextpressedor
Prev_pressedthe variablect (current track) will be changed according to the event.
Conditions(ct > 1) and(ct < Max(track)) are used to check the range of #teThe
transitiont7 is taken if users select any track in the range.

CD-Player-ON

PlayCtr B — TrackCtr
\ PlayingCtr

Rt Playing t5: Next_pressed / ct=ct+1
(ct<max(track))

[S41=10 /10919 Moeu] /)

t6: Prev_pressed /

S’oﬁ Paused ct=ct-1 (ct>1)
SO

(T+010en)xew>10>0)

3: Play_pressed
(true)
(eruy)
passald asned 1

Fig. 4. CD player with track information (ct).

For simplicity, we only added track information in this spgeation of a CD-player.
A real CD-player may contain other functionalities, liken&r, forward, rewind, etc. We
can add these setting as parallel regions in a similar way.

After drawing the statechart specification in Stateclate following textual rep-
resentation is automatically generated:

CD-Player-ON = |[ S1: { PlayCr, TrackCr } ]|

PlayCr = |[ S2: [ Stop, PlayingCr ], Stop, { t1, t2 } 1|
TrackCr = |[ S3: [ Track ], Track, { t5, t7, t6 } ]|
Stop = |[ $4 ]|

Pl ayingCtr = |[ S5: [ Playing, Paused ], Playing, { t3, t4 1} ]|
Playing = |[ S6 ]|
Paused = |[ S7

I 11
Track = |[ S8 ]|

< Stop, { Play_pressed }, { ct=11}, true, PlayingCr >
< PlayingCr, { Stop_pressed }, { ct=11}, true, Stop >

tl
t2



t3 = < Paused, { Play_pressed }, { }, true, Playing >

t4 = < Playing, { Pause_pressed }, { }, true, Paused >

t5 = < Track, { Next_pressed }, { ct=ct+1 }, ct<max(track),
Track >

t7 = < Track, { Track_select }, { ct=trsl }, O<ct<max(track)+1,
Track >

t6 = < Track, { Prev_pressed }, { ct=ct-1 1}, ct>1, Track >

The first 8 lines are information of states. The rest are itians.

Result The textual representation given in last section is takethasnput of our
algorithm AMSYV, the output we obtain is the following codeabstract Verilog:

Resul t:
L_PlayCtr || L_TrackCr

Wher e:
L PlayCtr = fix X0. ( L_Stop )
L_TrackCr = fix X2. (
( ( ( Next_pressed & @ ct=ct+1 ) & ( ct<max(track) ) X2 )
[T ( Track_select & @ ct=trsl ) & ( O<ct<max(track)+l ) X2 ) )
[T ( Prev_pressed & @ ct=ct-1) & ( ct>1) X2) ) )
L_ Stop = ( ( Play_pressed & @ ct=1) )
( ( Stop_pressed & @ ct=1) X0 ) [] fix X1L. ( L_Playing ) ) )
L_Playing = ( ( Pause_pressed & not Stop_pressed )
( ( ( Play_pressed & not Stop_pressed ) X1 )
[T ( Stop_pressed & @ ct=1) X0 ) ) )

note that we us¢ix (rather tharnu) to denote the recursioi._state is the correspond-
ing result fromstate.

Here we can see that theRlayCtrl and LTrackCtr are processes which are running
in parallel, where the recursive identifiers X0, X1, X2 regaet three loop points.

5.2 Washing machine

Specification In this subsection, we discuss a washing machine with fitangefunc-
tions;Ti mer ,Hot wat er,Ri nse | evel ,Water | evel ,andPre-wash.Fig.5
shows the user interface of the washing machine. Fig. 6 ghestatechart specifica-
tion of the washing machine corresponding to the interfadéle Fig. 7 zooms into
the sub-stat®\ashi ng- Ct r . Statechart in Fig. 6 contains six parallel regions corre-
sponding to five setting functions and the washing progréfsh-Ctj. Each setting
region contains a sub-statechart to change the value afritgibn. For example, in the
Ti mer - Ct r region, the variablem denotes the time that the washing machine has to
wait before it starts to wash. It can be changed bg or Dec buttons. Other variables
hw (hot water)rl (rinse level)wl (water level) anghw (pre-wash) are similar, and can
be changed via pressing corresponding buttons. The defalukes of these variables
are shown in Fig. 5 with black circleg¢ = 0, rl = 0, wl = 0, andpw = 0) and
default timer is 0.



@ No @ Normal | @ Light @ Cold
O Yes i Half O Mediumi O warm
O Full O Extra i (O Hot

Fig. 5. Interface of the washing machine.

Washing-machine-ON

Rinse-Ctr
Wash-Ctr t7: Rinse-pressed /
rl=1 (true)

t1: Start { washing=true

Hotwater-Ctr

Q. Water-Ctr t10: Water-
2 pressed / wi=1

Normal

t4: Hot-vater /
hw=0 grue)

Timer-Ctr
Prewash-Ctr

t5: imer-increase / tm=tm+1 t13: Pre-wash / pw=1

(tm<10 & washing=false) (washing=false)

TN
ez @y s

t6: timer-decrease / tm=tm-1 t14: Pre-wash / pw=0

(tm>1 & washing=false) (washing=false)

Fig. 6. Main statechart of a washing machine.

TheWashi ng- G r is anOr -state as given in Fig. 7. The statheck- wai t is
activated once statdashi ng- Ct r is entered. Iftm is greater than 0, the machine
keeps waiting fotm time before the control moves By e- wash state. The transition
t18 calculates the value of the variahleishtime based on th@re-washsetting. For
example, ifpw is 0 thenwashtime = 1. The variablevashtime is used to keep record
of the time that the clothes have been washed so far. It is&ed as follows:

washtime = 0: if pw = 1, need pre-wash.

washtime = 1: if pw = 0, no need pre-wash, need powder, no spin.
washtime = 2 or 3: wash without powder, spin.

washtime > 3: finish.

Upon finishing, the machine beeps to inform the user.
The textual representation generated from Statedh#tprinted in [23].



Check-wait

t17: / gheck-pre-wash

t18: / washtime=1-pw (true)

- o
Washing 20: /gef’POWder-m
(Wash'ﬂrrme:l)

: |/ check-wl
w=1)

t26: /ptart-wash

t28: / washtimeSwashtime+1 (true)

t29: / start-spin (washtime>1)

Spin
t31: [/ Beep-finish
25
(washtime=4) 20 | ew )
B ime

Wash-end

Fig. 7. Statechart ofMshi ng- Ct r in the washing machine.

Result We then run the AMSV algorithm to generate the Verilog progfar the
washing machine. We only give some part of the target code her

First of all, let us regarifashi ng- Ct r as a basic state (before we zoom into it). We
have the following Verilog program:

Resul t:

L_Wash-Ctr || L_Timer-Cr || L_Water-Cir || L_Prewash-Cr ||
L_Hotwater-Cr || L_Rinse-Cr

Wher e:

L_Wash-Ctr = L_ldle
L Idle = ( Start & @ washing=true ) sink )
L Timer-Cr =
fix X0. ( ( ( tiner-increase & @ tmrtm+l ) &
( tnmc10 & washing=false ) X0 )
[T ( tiner-decrease & @ tnmrtm1l ) &
( tmpl & washing=false ) X0 ) )

L_Water-Ctr = fix X1. ( L_Nornal )

)

L Normal = ( ( Water-pressed & @ w=1) ) L_Half )
L Half = ( ( Water-pressed & @ W =2 ) )
( Water-pressed & @ w=0) X1 )
| =

L_Light = ( ( Rinse-pressed & @ r



L Medium= ( ( Rinse-pressed & @ rl=2) )

( Rinse-pressed & @ rl=0) X4 ) )
L_Prewash-Cr = fix X2. ( L_Pre-wno )
L Pre-wno = ( ( Pre-wash & @ pw=1l ) & ( washing=false ) )

( Pre-wash & @ pw=0 ) & ( washing=false ) X2 ) )

L_Hotwater-Cr = fix X3. ( L_Cold )
L Cold = ( ( Hot-water & @ hw=1 ) ) L_Warm)
LWarm= ( ( Hot-water & @ hw=2 ) ) ( Hot-water & @ hw=0 ) X3 ) )
L Rinse-Ctr = fix X4. ( L_Light )

Thesi nk process irL_I dl e is used to denote théashi ng- Ct r | process, as we
regard it as a basic state. On the other hand, if we congdlehi ng- Ct r as a stand-
alone statechart, the corresponding code for it is as fallow

Resul t:
L Check-wait =
((( &@ tinmer-cal ) & ( tmr0 ) ) L_V&it )
[1 ( ( & @ check-pre-wash ) & ( tme0 ) ) L_Pre-wash ) )
L_Start-washing =
( ( ( fill-water & ( washtine!=1) ) L_water-in
( & @ rewash ) & ( washtime<4 ) X0 ) )
[T ( ( & @ get-powder-in ) & ( washingtine=1) ) L_Powder-in
( & @ rewash ) & ( washtine<4 ) X0 ) )
L Wit =( ( & @ check-pre-wash ) & ( tme0 ) )
L Pre-wash = ( ( & @ washtime=1l-pw) )
fix X0. ( ( ( & @ rewash ) & ( washtine<4 ) X0 )
[1 L_Start-washing ) ) )

)
L_Pre-wash )

L water-in =
(((( & @ check-w ) & ( hw=0) ) L_cold-w
( & @ rewash ) & ( washtine<4 ) X0 ) )
[T ( ( & @ check-Wl ) & ( hw=2 ) ) L_hot-w
( & @ rewash ) & ( washtine<4 ) X0 ) ) )
[1 ( ( & @ check-w ) & ( hw=1) ) L_warmw
( & @ rewash ) & ( washtine<4 ) X0 ) ) )
Lcold-w=( ( & @ start-wash ) ) L_washing
( & @ rewash ) & ( washtine<4 ) X0 ) )
Lwarmw=( ( & @ start-wash ) ) L_washing
( & @ rewash ) & ( washtine<4 ) X0 ) )
L hot-w=( ( & @ start-wash ) ) L_washing
& @ rewash ) & ( washtine<4 ) X0 ) )
L washing = ( ( & @ washtime=washtinme+l ) ) L_water-out
( & @ rewash ) & ( washtine<4 ) X0 ) )
L water-out = ( ( & @ start-spin) & ( washtinme>1) ) L_Spin
(& @ rewash ) & ( washtime<4 ) X0 ) )
L_Powder-in = ( ( fill-water ) L_water-in
( & @ rewash ) & ( washtime<4 ) X0 ) )
L_Spin = ( & @ Beep-finish ) & ( washtinme=4 ) sink
( & @ rewash ) & ( washtime<4 ) X0 ) )

—~

In the final code, thei nk processirL_| dl e is replaced by the proceksCheck- wai t .



6 Conclusion

In this paper we proposed an automatic mapping algorithmatestate high-level Stat-
echarts into low-level Verilog specifications. Our alglonit has been proved sound ear-
lier [18].

The system that we have built in Java provides a graphiceifate for users to
draw their statecharts in MS Visio. Our mapping algorithmsttranslates the graph-
ical representation into a textual representation, and tfemerates the corresponding
Verilog programs.

Some of related works on connecting Statecharts with ottvendlisms are pre-
sented in [1,4, 16, 21, 20]. Beauvais et.al. [1] and Seshé §21] translate STATEM-
ATE Statecharts to synchronous langua§amaland Esterelrespectively, aiming to
use supporting tools provided in the target formalisms domfal verification purposes.
However, all these translations are based on the informna@eécs [9] lacking correct-
ness proofs. The authors of [4, 16] transform variants ofeSterts into hierarchical
timed automata and use tools (UPPAAL, SPIN) to model cheateSharts properties.
More recently, a translation from Statecharts to B/AMN ipaged in [20]. However,
no correctness issue has been addressed. In comparistrantsiation from Statecharts
to Verilog in this paper aims at code generation for systesigihe The mapping func-
tion that we implement in this paper is constructed basedondl semantics for both
the source and target formalisms and has been proven to l@mtesapreserving [18].

Our compilation from Statecharts into Verilog can be used &snt-end of hard-
ware design or hardware/software co-design. After traingjahe input statechart spec-
ification into abstract Verilog code, we can proceed to obl@miver level descriptions,
as a prelude to hardware implementation, or we can pass tfileg/specification to a
hardware/software partitioning system [19].

In order to provide the concrete Verilog programs to useargjré works include
guarded choices elimination and the replacement of the ethectures of abstract Ver-
ilog, so that the AMSV can generate also concrete Verilogigam. This should make
our tool especially useful for hardware designer.

References

1. J.-R. Beauvais, et. al. A Translation of Statecharts gm&iDC+. Technical report, IRISA,
1997.

2. J.P.Bowen, J.-F. He, and Q.-W. Xu. An Animatable Openati®emantics of the VERILOG
Hardware Description Language. Pmoc. ICFEM2000: 3rd IEEE International Conference
on Formal Engineering Methods, IEEE Computer Society R¥a¥, UK, September 2000.

3. T.H. Cormena, C. E. Leiserson, R. L. Rivest, and C. Steinoduction to AlgorithmsMIT
Press; 2nd edition, September 2001.

4. A.David, M. Oliver Mdller, and Wang Y. Formal Verificatiof UML Statecharts with Real-
time Extensions. IrProc. of Fundamental Approaches to Software Engineenmgnber
2306 in Springer LNCS, 2002.

5. M. J. C. Gordon. The Semantic Challenge of Verilog HDL.Pimc. Tenth Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer t3driess pages 136-145,
June 1995.



© 00~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Harel. Statecharts: A Visual Formalism for Complex t8yss. Science of Computer
Programming 8, 1987.

. D. Harel. On Visual Formalism&€ommunications of the ACN1(5), 1988.
. D. Harel and E. Gery. Executable Object Modeling with &harts Computey 30(7), 1997.
. D. Harel and A. Naamad. The STATEMATE Semantics of StatdshACM Transactions

on Software Engineering and Methodology4), October 1996.

J.-F. He. An Algebraic Approach to the VERILOG Programgni In Proc. of 10th An-
niversary Colloquium of the United Nations University /dmtational Institute for Software
Technology (UNU/IIST)Springer, 2002.

J.-F. He and H. Zhu. Formalising Verilog. Rvoc. IEEE International Conference on
Electronics, Circuits and Systems, IEEE Computer Societgglebanon, December 2000.
J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Conguaithxiomatization of State-
charts.Theoretical Computer Scienck01, 1992.

Q. Long, Z.Y. Qiu, and S.C. Qin. The Equivalence of Statets. Ininternational Confer-
ence on Formal Engineering Methgdsimber 2885 in Springer LNCS, Singapore, Novem-
ber 2003.

G. Luttgen, M. von der Beeck, and R. Cleaveland. A Cortiposl Approach to Statecharts
Semantics. Technical Report 200012, NASA/CR20002100BASE Report, March 2000.
A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivaien of Statecharts. [fth Interna-
tional Conference on Concurrency Theory (CONCUR'@&imber 1119 in Springer LNCS,
Pisa, Italy, August 1996.

E. Mikk, Y. Lakhnech, M. Siegel, and G. Holzmann. Impletiey Statecharts in
Promela/SPIN. Ithe 2nd IEEE Workshop on Industrial-Strength Formal Speatifon Tech-
niques IEEE Computer Society, 1999.

Open Verilog International (OVIVerilog Hardware Description Language Reference Man-
ual.

S.C. Qin and W.N. Chin. Mapping Statecharts to Verilog Hardware/Software Co-
Specification. In K. Araki, S. Gnesi, and D. Mandrioli, ed#pFormal Methods: Inter-
national Symposium of Formal Methods Eurppelume 2805, pages 282—-299. Springer,
2003.

S.C. Qin, J.F. He, Z.Y. Qiu, and N.X. Zhang. Hardware8affe Partitioning in Verilog. In
International Conference on Formal Engineering Methatamber 2495 in Springer LNCS,
Shanghai, China, October 2002.

E. Sekerinski and R. Zurob. Translating Statecharts.tolBB. Butler, L. Petre, , and
K. Sere, editorsProc. of the 3rd International Conference on Integratedrfat Methods
number 2335 in Springer LNCS, Turku, Finland, 2002.

S. Seshia, R. Shyamasundar, A. Bhattacharjee, and $abkar. A Translation of State-
charts to Esterel. In J. Wing, J. Woodcock, and J. Davietes]FM99: World Congress on
Formal Methodsnumber 1709 in Springer LNCS, 1999.

IEEE Standard.|[EEE Standard Hardware Description Language based on thdog®
Hardware Description Languagel995.

V.-A. V. Tran. Automatic Mapping from Statecharts to Ny. Master’s Thesis, School of
Computing, The National University of Singapore, 2004.

H. Zhu, J. P. Bowen, and J.-F. He. Deriving Operationah&wics from Denotational Se-
mantics for Verilog. Technical report, Technical Report£8ISM-01-16, South Bank Uni-
versity, London, UK, June 2001.

H. Zhu, J. P. Bowen, and J.-F. He. From Operational SeéasantDenotational Semantics for
Verilog. InProc. CHARME 2001: 11th Advanced Research Working Conteren Correct
Hardware Design and Verification Methagdsumber 2144 in Springer LNCS, Livingston,
Scotland, September 2001.



