Constructing Hardware/software Interface Using Protocol Converters

Shengchao Qin *
Department of Informatics
School of Mathematical Sciences
Peking University, Beijing, 100871, China
qinshc @pubms.pku.edu.cn

Zongyan Qiu
Department of Informatics
School of Mathematical Sciences
Peking University, Beijing, 100871, China
zyqiu@pku.edu.cn

Jifeng He t
International Institute for Software Technology
The United Nations University
UNU/IST, P.O.Box 3058, Macau, China
jifeng @iist.unu.edu

Abstract

Hardware/software partition is a critical phase in hard-

ware/software co-design. This paper proposes a hybrid par-
titioning framework, in which we design a set of protocol
converters to construct the interface component between the
hardware and software components, and reuse the formerly
well-built partitioning rules by introducing protocol con-
verters and rewriting them for this hybrid framework. The
hardware components generated by our partitioning pro-
cess are coded directly in Verilog HDL, which will greatly
facilitate the further compilation from it down to netlists.

Keywords: Hardware/software partition, protocol con-
verter, program algebra

1. Introduction

Hardware/software co-design is a design technique
which delivers computer systems comprising hardware and
software components. A critical phase of co-design pro-
cess is to partition the specification into hardware and soft-
ware parts. Meanwhile, an interface component should be
adopted to deal with the interactions between these parts.

Recently, some works have suggested the use of formal
methods for the partitioning process [1, 3, 15]. Balboni et al
([1]) adopt Occam as an internal model for the system ex-
ploration and partitioning strategy. Cheung ([3]) pursues the
structural transformation and verification within the func-
tional programming framework. However, neither has pro-

*Partially supported by NNSFC No. 69873003
ton leave from East China Normal University

0-7695-1287-9/01 $17.00 © 2001 IEEE

vided a formal proof for the correctness of the partitioning
process. In [15], Silva et al provide a formal strategy for
carrying out the splitting phase automatically, and presents
an correctness proof. However, their splitting phase delivers
many simple processes, and it’s rather difficult to cluster and
join these small processes into the target hardware and soft-
ware components. Furthermore, additional channels and
local variables introduced in the splitting to accommodate
huge number of parallel processes actually increase the data
flow between the hardware and software components.

Our former work ([13]) proposes a formal partitioning
approach to hardware/software partition within a high-level
communicating language, where both the hardware and
software components are coded in the language. Due to
this fact, an obvious gap exists in compiling the hardware
specification down to netlists. In this paper, we’ll bridge
this gap by partitioning the system’s specification into a
software component coded in a high-level communicating
language, a hardware component coded in a hardware de-
scription language (such as, Verilog), and as well an inter-
face component to manage the interactions between hard-
ware and software. A hardware component of this form
will facilitate hardware compilation. Rather than construct
all these components and the partitioning rules from scratch
and then verify them in program algebra, we define a set of
protocol converters (inspired by [2]), from which we obtain
the interface component. Moreover, we derive new parti-
tioning rules directly from those ones in [13] by introducing
protocol converters and rewriting them. We prove the cor-
rectness of the protocol converters by the algebra for hybrid
programming languages ([4]), which ensures the correct-
ness of all the new partitioning rules.

The algebraic approach advocated in this paper has been
successfully employed in the ProCoS project on “Provably
Correct Systems” [8, 6]. Sampaio showed how to reduce
the compiler design task to one of program transformation
by program algebra [14]. Ian Page et al made rapid advance
in the development of hardware compilation technique us-
ing an Occam-like language targeted towards Field Pro-
grammable Gate Arrays [12], and He Jifeng et al provided
a formal verification of the hardware compilation scheme
within the algebra of Occam programs [5].

The remainder of this paper is organized as follows. Sec-
tion 2 retrospects the original hardware/software partition-
ing framework and points out those parts that can be reused
in the work presented here. Section 3 proposes the hybrid
partitioning framework and poses the underlying architec-
ture. In section 4, we define the protocol converters and pro-
vide the theoretical foundation for them. Section 5 shows
how to gain the new partitioning rules from the original
ones. A simple conclusion is presented in section 6.

2. Original Framework for Hardware/software
Partitioning

This section is a brief introduction to our approach on
hardware/software partitioning proposed in [13], which pro-
vides shades of results that can be reused, and can be re-
garded as a starting point of this work.

The hardware/software partitioning approach is pursued
within a parallel communicating language, denoted by L,
which contains the following syntactic elements:

1. Sequential Process:
S = PC (primitive command)
| S; S (sequential composition)
| if bSelse S (conditional)
| S S (non-deterministic choice)
| while b S (iteration)
| (¢ S)] (gS) (guarded choice)

where PC == (z:=¢€) | skip | chaos | cle | c?z
and g is skip or a communication eventc!eord? z.

2. Parallel Program:
=S| P| P|varzeP

In later discussions, we adopt Var(P) and Chan(P) to
denote the set of variables and channels employed by P,
respectively.

Our former hardware/software partitioning process is il-
lustrated in Figure 1. The specification to be partitioned is a

142

Specification

Hw/sw partition

.

L

c-¢ Hardware
Interface, _ ©2' component

S I A

ﬁ—L

{ Software
|
|
i

cr cr®

ca

component

Figure 1. The original hardware/software par-
titioning process

sequential program within the language £. A collection of
syntax-based partitioning rules has been developed to par-
tition the specification into hardware and software compo-
nents.

It is required that both the hardware and software com-
ponents satisfy the handshaking protocol [9, 10] and enjoy
specially-chosen forms of our language L.

The software component is chosen from the sequential
subset of £. It is a member of the set of processes C P(B),
for a given set of channels B = {crj,ca; | j € I}, where
the set CP(B) is the minimal set generated by following
rules:

(1). acommunicating process C, which does not use any
channel in B, but Chan(C) D B.

(2). crjle; C; ca; 7z, where C is a member of CP(B)
not interacting via any channel in B.

(3). Ci;Cz, or Cy N Cy or if bCrelseCy, or
(91 C1)[(g2 C2), where both g; and C; lie in CP(B), for
i=1,2.

(4). while b C, where C is a member of CP(B).

The hardware component is chosen from the set of pro-
cesses Hy (B'), for a given set of channels B' = {cr’;, ca) |
j € I}, and the set of data variables V = {z;,y; | 7 € I}.
The set Hy (B') is composed by the processes of the form:

DE = pX o ([e (ersy; My; cally;; X)|skip)

where none of M; mentions channels in B’. The commu-
nicating process Del represents a digital device which of-

fers a set of services, each of which responds to a request

from its environment on an input channel cr; by running the
corresponding program M and defivering the result to the
output channel ca’; afterwards.

To simplify the interface design, in [13], we confined
the interactions between the hardware and software compo-
nents to the communications along the channels from the set
B. However, in general, the hardware component is chosen
from Hy (B'), which employs a different set of channels
B'. Thus, an explicit interface component is needed to deal
with the interaction between hardware and software. Such
an interface is of the form

c—c(B,B") =4 :
pX o ([(eri i ery o5 cal ? ys; cai ys; X) | skip)
which passes the request along a channel cr; into the cor-
responding channel cr}, then delivers the acknowledgement
from a channel caj back into ca;. The notion c-c means
“from channel-based to channel-based”.

The syntax-based hardware/software partitioning rules
were developed in two different styles: the bottom-up and
top-down one. We illustrate some as follows.

Bottom-up Rule for Sequential Composition

SplitB(Si, Ci, D), 1=1,2
Var(Sy) = Var(S2)
Chan(C1) = Chan(C3)
SplitB(Sl;Sz, Cl;Cg, D)

Bottom-up Rule for Conditional

Spl'ltB(S“ Civ D)7 1= 172
Var(Sl) = Vll’I‘(Sg)
Chan(Cy) = Chan(Cs)
Var(b) C Var(Ch)

Splitp(if bS5y else Sz, if bC else Cy, D)

Bottom-up Rule for Iteration

Splitg(S, C, D)
Var(b) C Var(C)
Splitg(while b S, whilebC, D)

Bottom-up Rule for Non-deterministic Choice
Splitg(S;, C;, D), i =1,2
Var(S1) = Var(S:)
Chan(Cy) = Chan(Cy)
Splitg(S; NSy, C; M Cs, D)

Top-down Rule for Sequential Composition

SplitBi(Si, Ci, D,), T = 1,2
Var(S:) = Var(S,)
Chan(S;) = Chan(Ss)
consist(Dy, D3)

Splitg,up, (S1; 82, Cy; Ca, union(Dy, D))

143

Top-down Rule for Conditional

SplitB', (Si, C;, Di), 1=1,2
Var(S,) = Var(S2), Chan(S;) = Chan(S2)
consist(D1,Ds), Var(b) C Var(Cy)
SplitBlUB2(if bS; else Ss, if b Cy else Ca, union(Dy, Ds))

where the predicate Splitg(S, C, D) is defined in [13],
which specifies that the process with C' and D in paral-
lel is a refinement of the specification S, the predicate
consist(Dy, D) indicates that D; and D, employ the same
set of variables and the same set of external channels, i.e.,
the channels not used for communications with the software
component. union(D;, D3) represents a digital device pro-
viding the union set of services supplied by both D; and
Ds.

The complete set of rules can be reached in [13). Based
on those rules and the new interface we will construct, we
can generate the new partitioning rules within a hybrid par-
allel language framework, where the software component is
written in a high level communicating language as above,
however, the hardware component is coded within a hard-
ware description language (HDL) as Verilog, which will fa-
cilitate the hardware synthesis.

3. The Hybrid Partitioning Architecture

This section presents our hybrid partitioning framework,
in which we will partition a specification coded in the se-
quential subset of £ into three components: a software com-
ponent owning the same form as that in our former work, a
hardware component written in the Verilog HDL, and an in-
terface component to tackle the interactions between hard-
ware and software.

It is worth noting that the hardware and software compo-
nent will adopt different communicating mechanisms, the
signal-based communicating mechanism and the channel-
based one respectively. Due to this fact, the partitioning
framework is called hybrid([4]), and the interface compo-
nent proves to be critical in the sense that it transforms in-
formation between two processes under different protocols.

For ease of understanding, we give the source language
and the target ones separately, instead of the whole frame-
work. Our source language is the sequential subset of the
language £ defined in Section 2.

The software component generated by our partitioning
process will own the same form as that in the original frame-
work, i.e, will be a member of the set of communicating
processes C P(B), for the given channel set B as defined
earlier, which communicates with the environment via com-
munications on channels.

However, the hardware component delivered by our par-
titioning process will enjoy a quite different form from that

in the approach described in Section 2. It will be a specially
chosen process from Verilog HDL, rather than a process in
L.

Given a set of signal variables E = {er;,ea; | i €
I} U{ter}, and a set of data variables V' = {z;,y; | i € I'},
we define a set of processes D(E, V), which is composed
by processes of the following form:

Dy =4
pX (e, (Qery; Mi(xi,y:); — eai; X) | (Qter; skip))

where @er; and — ea; are respectively an input signal and
an output signal in Verilog. The signal ter is used for syn-
chronized termination. Each M;(z;, y;) has input parameter
z; and output parameter y;, and is a member of the set of
Verilog processes M P(V'), which is constructed by the fol-
lowing rules:

(1). v := e, or skip, or chaos, where no signal variables
from E occur in v or e;

2). M;M’, or if bM else M', or whileb M, where
M,M' e MP(V).

The signal-driven process D§ represents a digital device
which offers a set of services to its environment, each of
them responds to a request from its environment via an in-
put signal er; by running the. corresponding program M,
then putting the result to variable y; and delivering an ac-
knowledgement through the output signal ea; afterwards.

Since the hardware and software components adopt dif-
ferent communication mechanisms, the interface compo-
nent to tackle their interactions should enjoy a hybrid form
and convert information between these two levels.

4. The Interface Component as a Protocol Con-
verter

This section pursues the construction of the interface
component. From the hybrid architecture mentioned above,
we know that the interface component plays an essential
role between the hardware and software as a protocol con-
verter ([2]). Rather than construct the interface straightfor-
wardly, we derive it indirectly from our original work by
splitting the interface process into two parallel ones, which
as well inspires us to obtain the complete set of partitioning
rules from that in [13] without redefining them from scratch.

4.1. Protocol Converters

We define several protocol converters in this subsection,
one of which will be adopted as the interface component
between hardware and software within our partition frame-
work.

144

First of all, we denote six sets that will be used frequently
in following discussions:

sets of channel names: B = {cr;,ca; | © € I}, and
B' = {crj,caj|i € I}

sets of signal variables: E = {er;,ea; | i € I} U {ter},
and E' = {er},ea} |1 € I} U {ter'}; :

sets of data variables: V = {z;,y; |t € I},and V' =
{zi,vili eI}

The protocol converters are defined as follows.

Definition 4.1 (Protocol Converters) The process
c—c(B,B') is a converter between two communicat-
ing protocols on B and B', respectively:

c—¢(B,B') =4

uX e licr(ers 225 eri Y ags cal 7y cas L ys; X)
[skip

Similarly, the process s—s(E, E') converts a signal-driven

protocol concerned with signals on E into that with respect

to signals on E':

S—S(E,E’) =df
4X e (lic;(Qeri; — eri; @eaj; — eas; X)
[(@ter; > ter")
The two protocol converters to appear convert between
protocols on two different levels. The process c-sy (B, E)
converts a communicating protocol on B into a signal-
driven protocol on E, whereas the process s—cy (E, B) is
the reverse. The data variables from V are used to hold the
information delivered by communication events:
s-cv(E,B) =4

c-sv(B,E) =4
Ye lics(cri ? zi; — ery; @eay; ca; Lyi; X)
®) (skip; — ter)
licr(@ers; cri ' zi; ca; ? yi; —eas; X)
uX e ([(@ter; skip) B
Theorem 4.2 (Compositionality of Protocol Converters)
Each of the protocol converters mentioned above is a par-
allel composition of other two.

(1). c—c(B,B") c-sv(B,E) || s-cv(E,B'),
provided all variables in E and V' are local ones only
shared by c-sv (B, E) and s—cv (E, B');

(2). s-s(E,E") s—cv(E,B) || c-sy(B,E"),
provided all channels in B are local ones only shared by
s—cv(E, B) and c—sy (B, E');

(3) C—SV(B,E) C_C(B7BI) H C—Sv(Bl,E),
provided channels in B' are only used to perform commu-
nication between c—c(B, B') and c-sy (B', E);

cr |_er:
C c-c DB
ca L ca
cr er cr'
C c-s s-c pB
ca - ea ! ca'

Figure 2. Protocol converter and interface
derivation

(4). s—cv(E,B) s-s(E,E") || s—cv(E',B),
provided variables in E' are only shared by s-s(E, E') and

s—cv(E', B).

Theorem 4.2 explores the compositionality of protocol
converters. As a by-product, it inspires us the way to derive
the hybrid interface from the original one, and as well to
compose the new hardware component under Verilog from
that under L.

Theorem 4.3 (Hardware Derivation) The hardware com-
ponent on different levels (defined in last two sections) can
be derived from one another by protocol converters.

(1). D c-sv (B, E) || DE, provided signal vari-
ables from E are local ones only shared by c—sv (B, E) and
DE; :

(2). DE, = s—cy(E, B') || DE,, provided channels in
B' are only used by s—cy (E, B') and D{;: to arrange their
interactions. ()

Theorem 4.3 shows that the new hardware component
DE, in Verilog HDL can be constructed from the communi-
cating one D{?: and a protocol converter. As well it reveals
the way to generate the partitioning rules directly from the
original ones. The interface and hardware derivation pro-
cess is shown in Figure 2, where c—s denotes the new in-
terface component, the dotted-box represents the new hard-
ware component which hides those channels from B’.

4.2. Algebraic Proofs

We present the proofs for theorem 4.2 and 4.3 using pro-
gram algebra in this subsection.

D -

145

In addition to the algebraic laws mentioned in [13, 7, 4],
we investigate the following laws, which will be used in the
proofs later on.

The first law is an expansion law for the hybrid program-
ming language([4]).

HL1 (hgc-expan, hybrid guarded choice expansion)
LetG1 = [(9i; Pi), and G2 = [;¢; (hy; @Q;), where

gi and h; are of the form ch e, or ch 7 x, or skip, or output
event — ev, or input event @ew, forall ¢ € I and j € J.

Let g and h denote the disjunction of all input event guards
in G and G4, respectively. Then

G1 || G2 = |,_, (k+; R.), where the pairs {k,, R,) are
precisely all possibilities from the following:

()R, = P; || G, and

kr = gi = skipork, = g; = chleork, = g; =
ch ? z, where ch ¢ Chan(Gs), or

kr = g; =—ev, or

kr=g; A ~h,and g; = Qev
(2) R/,‘ = Gl ” Qj, and

k. = hj = skipork, = hj = chleork, = h; =

ch?z, where ch ¢ Chan(G1), or
kr = hj =—ev, or
kr =h; A —g,and h; = Qev

3R, =P || Q;, and
kr =g; A hj,and g; = Qev and h; = Qeu

4)R, =z :=¢;(P; || Q;), and k, = skip, and
gi =chle,and hj = ch?x, or

gi=ch?xz,andh; =chle O

The second and third laws deal with two special cases
with regard to signals .

HL2 (eg-elim, event guards elimination)

Let P = G| (@ev; @), where G is a guarded choice, and
ev is not a shared variable between P and its environment,
then P = G. O

HL3 (self-trig)

Let P =— ev; ((Qev; Q) | G), where ev is not shared by
the environment of P, and none of guards in G mentions
ev, then P = skip; Q. 0

The following lemma is needed later in the proof of the-
orem 4.3.

Lemma 4.4 Let P = M; Py, where M € MP(V), and G
be a guarded choice construct not containing output guards
of the kind — e, where all guards in G are only shared by

P and G, then we have
P||G = M;(P | G).

It can be proved by a simple structural induction on M.

Now we can prove the theorems mentioned in last
subsection.

The proof of theorem 4.2
(1). For brevity, we denote c—sy(B,E) as c-s and
s—cy (E, B’} as s—c.
RHS
{(hgc-expan), (eg-elim)}
= [(cri Tzs; ((— ers; Qeas; ca; Lyi; s || s—c)) | skip
{(hgc-expan), (eg-elim), (self-trig)}
ﬂie! (cri 7xi; skip; ((Qeay; ca; ! yy; c-s) I
(erilzi;cal 7y — eas; s—c))) | skip
{(hgc-expan), (eg-elim)}
licr (cri ? x5 skip; crilz; ((Qeas;ca;lyise—s) |}
(ca;; ? yi; — eas; s—))) | skip
{(hgc-expan), (eg-elim)}
= |ier(eri?aserilai;cal Tys; ((Qeag; cailys;c-s) ||
(—eai; s—))) | skip
{(hgc-expan), (eg-elim), (self-trig)}
lies (cri ?ziserilaica; T yi; skip; ((cailyize-s) ||
s—c)) | skip
{(hgc-expan), (eg-elim)}
lies (ers ?mis cril oy cal
s—¢)) | skip
{unique fixed point for guarded recursion}
= LHS
(2)-(4). Similar to (1).

?y;; skip;ca; tys; (c=s ||

The proof of theorem 4.3

(1). For brevity, we denote c-sy (B, E) as c-s.
RHS
{(hgc-expan), (eg-elim)}

= l; iel (eri7zy; ((_)
DE)) | (skip; (= ter || DE)))

{(hgc-expan), (eg-elim), (self-trig)}
licr (eri 2oy skip; ((Qeas; caslys; c—s) [
(M (zi,yi); ~ eai; D)) | (skip; skip)

{Lemma 4.4}
= ey (eri 7 xi; skip; Mi(z4,y:); ((Qeas; caslys; c-s) ||

er;; Qeay; caly;;c-s) ||

(~>eas; DEY) | ship

{(hgc-expan), (eg-elim), (self-trig)}
= lics (cri ? @i; Ma(w4, y:); skip;
D)) [skip

{(hgc-expan), (eg-elim)}

= lier (ers 7z Mi(zs, ys); skip; caslys;
DE)) | skip

{unique fixed point for guarded recursion}
= LHS
(2). Similar to (1).

(caitysic=s) |

(c=s |l

O

5. Partitioning Rules in the Hybrid Framework

This section aims to generate hardware/software parti-
tioning rules within the hybrid framework from those ones
in [13] by using protocol converters.

To specify the partitioning rules, we introduce a new
predicate Splitg (S, C, c-sy, DE) which is defined by:

Splits (8, C, c-sv, DE) =4
Splitg (S, C, (c-sv (B, E) || DE))

where the predicate Splitg is defined in [13] and is ex-
plained in section 2.

The following lemma is directly from theorem 4.3.

Lemma 5.1 We have

Splitg(S, C, DBY implies SplitE (S, C, c-sv, DE). O

"Based on this lemma, we generate al] bottom-up tules

146

straightforwardly as follows.
Bottom-up Rule for Sequential Composition

SplitE (S;, Ci, c-sv, DE), i =1,2
Var(S;) = Var(S2)
Chan(Cy) = Chan(C>)

Splitg(S1; S2, C1;Ce, c-sv, DE)

Bottom-up Rule for Conditional

Splits(S;, Ci, c-sy, DE), i =1,2
Var(S1) = Var(S:)
Chan(C,) = Chan(C>)
Var(b) C Var(C)

Splits (if b S, else Sy, if bCy else Ca, c-sy, D

)
Bottom-up Rule for Iteration

Split5(S, C, c~sy, DE), Var(b) C Var(C)
Splits (while b S, while bC, c-sy, DE)

When Var(b) N Var(D) # @, we will introduce a local vari-
able Ib, and rewrite the conditional and iteration into the
forms

var [be (Ib:=b; if IbS; else S3), and
var b e (Ib := b; whilelb(S; Ib:= b))
respectively by the laws in [13].

Bottom-up Rule for Non-deterministic Choice

Split5(S;, Ci, c-syv, DE), i =1,2
Var(S1) = Var(S>)
Chan(Cy) = Chan(Cs)

Splirg(sl Il Sz, Cl M Cf_), c-Sy, Dg)

Bottom-up Rule for Guarded Choice

Splits (S;, Ci, c-sy, DE), i =1,2
Var(S;) = Var(S,)
Chan(Cl) = Chan(C’z)
Var(g;) C Var(Cy), Chan(g;) C Chan(C1), i = 1,2

Splitg (g1 S1)1(g2 S2), (91 C1)(g2 Cs), c-sv, DE)

Before presenting the top-down partitioning rules, we intro-
duce some notations and abbreviations which will be fre-
quently used in the forthcoming rules.
Let
E; =4 {erj,ea; |jeL;}U{ter}, i=1,2
B; =g {crj,ca;|jel},i=1,2
Vi =4 {zj,y; 17 €L}, i=1,2
For simplicity, from now on, we will always assume that
EiNE; = {ter},ByNB; =0, Vi NV, =0.

Given c-sv, (B;, E;), fori = 1,2, we define
=S =df C—SV]UVQ(Bl U By, By U E-_)).

Given

Ei _ o voy lier(@ery Mi(z;,y;); > eaj; X)
Dyl = nXef | (Qter; skip)
fori = 1,2, we define

Elear(D‘%) =af Var(Dgi‘)\(Ei uW),

),

D = merge(Dﬁl,D@’) =4f

X e (ﬂie]lulz (@CT'Z'; 1‘/.[1(1,‘“ yl)7 —ea;; X))

s [(Qter; skip) ’

Now it’s time to present the top-down rules in our new par-
titioning framework.

147

Top-down Rule for Sequential Composition

Splitg(S;, Ci, c-sv;, D), i=1,2
Var(S1) = Var(S,)
Chan(C1) = Chan(C>)
ExiVar(Dy') = ExIVar(Dy?)
Splitg: 52 (S1; S2, C1; Ca, c=s, D)

Top-down Rule for Conditional

Splith (S;, Ci, c-sv,, DE), i=1,2
Var(Sy) = Var(S2)
Chan(Cy) = Chan(C»)
Elear(Dﬁ‘) = Elear(D‘%)
Var(d) C Var(Cy)
(if b Sy else Sz, if bC else Ca, c~s, D)

L ElUFES
Splitg. OBa

Top-down Rule for Non-deterministic Choice

Split5(S;, Ci, c-sv;, Dﬁ‘), i=1,2
Var(S;) = Var(Ss)
Chan(C1) = Chan(C>)
ExiVar(Dy}) = ExiVar(Dy?)
Splitg} 052 (S1 M Sa, C1 N Cy, c-s, D)

Top-down Rule for Guarded Choice

Splitg (S, Ci, c-sv,, D{%), 1=1,2
Var(S1) = Var(S2)
Chan(Cy) = Chan(C2)
ExlVar(Dy}) = ExIVar(Dy?)
Var(g;) C Var(Cy), Chan(g;) C Chan(C4), i = 1,2

Splitgi 552 (91 S1)(g2 S2), (91 C)l(g2 C2), c=s, D)

6 Conclusion

Hardware/software partition is a critical phase, and as
well a challenging issue in hardware/software co-design
process. One possible way is to cope with the specification
of hardware, software and the interface between them sepa-
rately, but this approach can hardly ensure that the compo-
sition of the three separate specifications satisfy the original
requirement. In this sense, the co-specification of hardware,
software and their interface has its superiority. In [13], we
proposed a formal model for hardware/software partition
within Occam algebra, in which a collection of provable
partitioning rules have been explored. In that model, the in-
teractions between hardware and software components ap-
pear very simple, due to the fact that they are both coded
within the same high level communication language, which,
on the other hand, reflects there exists a wide gap between
our hardware component and the low level hardware de-
scription needed in later hardware synthesis phase.

In this paper, we refine the original partition approach
and try to produce the hardware component coded directly
in Verilog HDL. We adopt a hybrid partitioning framework,
in which our partitioning process generates from the origi-
nal system specification (a high level source program) three
components: the software component in the high level com-
munication language, the hardware component coded in
Verilog HDL, and a hybrid interface component to cope
with their interactions. Rather than construct partitioning
rules in the new framework from scratch and then verify
them, we introduce a set of protocol converters, from which
we derive the new rules directly from the well-built ones
in [13], and generate the new interface component together
with the new hardware component.

Such an approach owns at least two merits: firstly, the
original proved partitioning rules in our former model can
be reused, and the proofs for the new rules become straight-
forward; secondly, the new hardware component is directly
coded in Verilog HDL, which will facilitate the compila-
tion from it down to the low level synthesizable descrip-
tion. However, the further synthesis of the interface com-
ponent is still a challenging issue, which should be part of
our future work. As other future work, we shall reconfigure
and reorganize the hardware component so as to optimize
it and reuse its sub-components. Certain algebraic transfor-
mations shall be conducted to link our hardware component
with the hardware speciﬁcatioh to be compiled in [11] using
Verilog algebra.

References

{11 A. Balboni et al, “Partitioning and Exploration Strate-
gies in the TOSCA Design Flow”, In Proceedings of
Fourth International Workshop on Hardware/Software
Codesign, 62-69, IEEE Computer Society Press,
(1996).

Geoffrey Brown, Wayne Luk and John O’Leary, “Re-
targeting a Hardware Compiler using Protocol Con-
verters”, in Formal Aspects of Computing, 8: 209-237,
1996.

T. Cheung, “A Multi-level Transformation Approach
to Hardware/Software Co-design”, In Proceedings of
Fourth International Workshop on Hardware/Software
Codesign, 10-17, (1996).

He Jifeng, “Hybrid Parallel Programming and Imple-
mentation of Synchronised Communication”, In 18th
International Symposium on Mathematical Founda-
tions of Computer Science, Lecture Notes in Computer
Science 711, 537-546, (1993).

He Jifeng, I. Page and J. Bowen, “A Provable Hardware
Implementation of Occam”, Lecture Notes in Computer
Science 711, 693-703, (1993).

[2]

[3]

[4]

(5]

148

[6] He Jifeng and I. Bowen, “Specification, Verification
and Prototyping of an Optimised Compiler”’, Formal
Aspect of Computing 6, 643-658, (1994).

[7] He Jifeng and Zhu Huibiao, “Formalising Verilog”, in
the proceedings of the IEEE conference ICECS’2K,
Lebanon, December 2000.

[8] He Jifeng et al, “Provably Correct Systems”, Lecture
Notes in Computer Science 863, 288-335, (1994).

[9] He Jifeng, “Converting Programs into Delay Insen-
sitive Circuits”, Technical Report, Programming Re-
search Group, Oxford University Computing Labora-
tory, 1994,

[10] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall, 1985.

[11] Juliano Iyoda and He Jifeng, “Towards an Algebraic
Synthesis of Verilog”, UNU/IIST Research Report 2138,
Macao SAR, China, April, 2001.

[12] Ian Page and Wayne Luk, “Compiling Occam into FP-
GAs”, in FPGAs, eds., Will Moore and Wayne Luk,
271-283, Abingdon EE&CS books, (1991).

[13] Qin Shengchao and He Jifeng, “An Algebraic Ap-
proach to Hardware/software Partitioning”, in the pro-
ceedings of the IEEE conference ICECS 2K, the IEEE
press, Lebanon, December 2000.

[14] Augusto Sampaio, “An Algebraic Approach to Com-
piler Design”, World Scientific, (1997).

[15] L. Silva, A. Sampaio and E. Barros, “A Normal Form
Reduction Strategy for Hardware/software Partition-
ing”, Formal Methods Europe (FME) 97, Lecture Notes
in Computer Science, 1313, (1997) 624-643.

