

Software Services and Software Maintenance

K. H. Bennett and J. Xu
Department of Computer Science

University of Durham, Durham DH1 3LE, UK
{Keith.Bennett, Jie.Xu @durham.ac.uk}

Abstract

Software services are being promoted as the next big
step forward in software engineering.. Inevitably, both
service vendor and service client programs will
require maintenance. We present a service
architecture that has been motivated by a long term
vision for software as something which is used, not
owned. This architecture is used to show how
evolution of software can be achieved. It uses the
marketplace to drive the process incrementally. We
summarise a new fault-tolerant private information
retrieval scheme for protecting users’ privacy and
ensuring service provision even in the presence of
intentional/unintentional service provider faults (e.g.
malicious failures). An implementation on a realistic
distributed database suggests only a modest
performance overhead.

1. Introduction

 Shirky [1] suggests that web services are focussed
on application program inter-operability (to aim to
repeat the success achieved by the web in document
access). Thus web services do not need to be invoked
by a browser, but by other application programs. The
most general form involves binding complex
programs together from component parts anywhere in
the world. General inter-operability has been tried
before, but with partial success, for example DCOM,
Corba, and RMI. With these, both the client and
server have to load the system; with web services, the
idea is to know nothing about the “other end” other
than what can be communicated via standard
protocols. So WSDL allows the description of a
service so that a call for it can be assembled and
invoked from elsewhere. In order to communicate
data in a system independent way, XML is used. A
UDDI registry allows service vendors to offer
services, and clients to locate and call them using
WSDL descriptions published along with service
identification information.

 It is inevitable that service offerings will evolve over
time, both in terms of their functionality, and also for
non-functional properties such as security,
performance, and cost. For example, a stock enquiry
service would want to add new query features as new
investment and financial instruments are introduced.
Similarly, such services tend to operate in competitive
marketplaces, and pricing strategies may have to
change very rapidly. Service users/clients will also
need to evolve software both intrinsically and to
exploit evolving services. In general, a service
offering itself may use sub-services to fulfil its
specification, so we have a natural recursive model
which supports supply chains.
 Our work on web services was motivated by studies
of long term user visions for software. This led us to a
general service architecture, guided extensively by the
needs of evolution. We explain how evolution and
maintenance are achieved in a market-place
framework (we use the term maintenance for all
forms of post-delivery support, and evolution
specifically for perfective changes i.e. those driven by
changes in requirements). Evolution addresses both
functional and non-functional attributes, and for client
and vendor organisations, web services raise
immediate problems of security, privacy and
prevention of malicious attack, when services
interoperate between autonomous organisations. Until
these problems are addressed and solved, the use of
web services will be severely restricted because no-
one will trust them.
 Non-functional properties like security pose
particular problems for evolution, since relevant
design decisions tend to be pervasive through the
system. We are exploring these issues by addressing
the protection of users’ privacy (and security) while
assuring service availability. We describe some early
results from research that is addressing these issues.
A novel fault-tolerant private information retrieval
(FT-PIR) scheme is presented that protects users’
privacy and ensures service provision even in the
presence of intentional and unintentional server faults
(e.g. malicious failures). An error detection algorithm
is introduced into this scheme to detect the corruption
resulting from attack with a high probability, thereby

identifying incorrect answers. The analytical and
experimental results show that the FT-PIR scheme
tolerates malicious server failures effectively and
prevents any information of users from being leaked
to the attacker. This new scheme does not rely on any
unproven cryptographic premise nor the availability of
tamper-proof hardware. An implementation of the FT-
PIR Scheme on a realistic distributed database
suggests a modest level of performance overhead.

2. Evolution

2.1. User requirements

 It is interesting to note that most published
definitions of web services concentrate on technical
issues [1]. For example, web services are defined in
[2] as self-contained self-describing modular
applications that can be published, located and
invoked across the web. The W3C consortium has a
definition which is similar but includes the use of
XML protocols [http://www.w3.org/2002/ws/]. A web
services client will then assemble or compose an
application from a series of web services (although
transactional costs may force an application partially
to be localised). In contrast, a more radical and
demand-led view has been provided in [3] and [4]. A
project to establish a ten year vision for software was
undertaken, and as part of this, a workshop was held
with colleagues from a number of cognate disciplines
to assess their current view of software [3]. This
enabled us firstly to identify deep seated and strategic
dissatisfaction with current software, and then identify
corresponding long term visions for new software to
overcome the problems.

Software vision

Interaction will be through natural forms
Software will meet necessary and
sufficient requirements

Software will be personalised
Software will be self-adapting
Software will be fine grained
Software will operate transparently

Figure 1 Vision from user rationale

 Figure 1 shows the categorisation of our analysis of
user dissatisfaction in terms of strategies to rectify
problems. Simply continuing with the current supply-
side model of software production was seen to be a

root cause of problems. Many problems could be
traced to the unacceptable cost of ownership of
software. The solution to addressing these issues was
envisaged to be moving software from something
which is owned, to something which is used. This is a
common business based definition of a service [5]; it
implies a demand-led view of software services. In
general, users have no interest in owning software;
they simply wish to use it to achieve the results they
require.
 As a pertinent example, users were very clearly
dissatisfied with the constant upgrade and fixes for
their software (for both commodity and bespoke
systems). Often the change was irrelevant to their
individual needs, suggesting that the granularity of
change was wrong. In other words, the cost of
upgrading had to be borne even when the changes or
enhancements were not needed. This is a consequence
of owning the software, and evolving the software is
one example of the cost of ownership. Of course, the
cost is not simply the cost of the new software; it is at
least as much concerned with the cost of re-
installation, training, and upgrading existing code and
databases to work with the new release. With a finer
grained structure, there is the potential to break down
the upgrade into smaller parts, with the possibility that
changes that are not needed do not have to be
purchased. This led us to the idea that cost of
ownership of software is a major problem for
maintenance and maintainability, and software as a
service looked to be a promising solution.
 With the service-based view, we see the application
structured as a set of sub-services of more appropriate
granularity. Instead of maintenance, sub-services are
replaced incrementally. Thus the latest or best version
of a sub-service is bound in at the time it is needed;
we do not have to wait to upgrade the whole
application. After use, we can discard that binding,
and form a new one next time the application is
required. If sub-services have improved in the interim,
we can bind to them instead. A useful analogy is with
the development of cities; cities do not evolve
according to some long term grand plan, but
incrementally change, according to current needs, by
replacement of buildings, utilities etc.

2.2. Business requirements

 We saw that efficient technological solutions to
describing, finding, binding and disengaging from
remote services were required at the point of need.
But a higher level, a more business oriented view is
needed if web services are to succeed. Most software
engineering techniques, including those of software
maintenance and evolution, are conventional supply-

side methods, driven by technological advance. This
works well for systems with rigid boundaries of
concern such as embedded systems. It fails for
applications where system boundaries are not fixed
and are subject to constant urgent change. These
applications are typically found in emergent
organisations - “organisations in a state of continual
process change, never arriving, always in transition”.

Examples are e-businesses or more traditional
companies which continually need to reinvent
themselves to gain competitive advantage It is not
viable to identify a closed set of requirements; these
will be forever changing and many will be tacit.
 Any commercial agreement between a service user
and a service supplier requires a set of terms and
conditions to proceed. Examples of such terms include
costs and payment, the legal and contractual
agreements (including how disputes are to be resolved
and matters of redress), warranties, and security.
Some of this may be formalised as a service level
agreement. Simply choosing a service on its
functional capabilities is inadequate. For example, a

data repository service will have to provide reliable
storage, but users will also require to know how
secure their data is, over what period can the data be
stored, what happens if the service supplier fails as
well as technical matters such as transactional
behaviour, performance and privacy.
 The ultra-late binding model with a high trajectory
of change needs such terms to be agreed at the point

of need, which might require multi-party negotiation.
Security (protection against threat) is such a key issue,
so we decided to use this as our first exemplar of
service-based non-functional attribute.

2.3. Business level rationale

 As well as maintenance and evolution, a number of
business imperatives favour the introduction of web
services. In Figure 2, factors drawn from the popular
press are summarised. These are yet mostly untested,
and market momentum led by major vendors will be
needed (we can compare the situation with software
components, which offer a strong technical advantage
yet lack many of the very powerful commercial

Factor Explanation

Added value services A vendor can sell a product (e.g. a camera) and then offer support

services (e.g. printing) on a per use basis
From capital to
revenue

To move software charging from a capital to a revenue base, to
make it easier for customers to subscribe

Updates To avoid all the problems of service packs, upgrades etc for
maintenance changes

Piracy To stop copying of pirated software
New sales Planned obsolescence is a good way to keep business going.
Anti-trust It may be a way round anti-trust legislation, by allowing certain

external software components to be used.
Competition On the one hand, it could open opportunities for small enterprises

to enter a niche service market. On the other, established vendors
may not wish them to do so

Market structure Can be suitable for both commodity and bespoke software. Can be
per use or long term agreement. Can be value chain.

Functionality Sell “functionality” via the web to anyone regardless of platform,
language etc.

Customer loyalty Though brand names and trust – always use services by trusted
supplier

Integration Better integration of current systems using business process and
modelling.

Figure 2 Business drivers

advantages below; hence software components, while
technically attractive, remain only a small part of the
software market).

2.4. Maintainability

 We have been working in the field of software
maintenance for many years, and we are therefore
familiar with the aim, for new software, of making it
maintainable. Once delivered, it should be kept
maintainable. Thus maintainability refers to the ease
with which it is possible to maintain and evolve
software. How does the service model help
maintainability?
 Most existing work has sought technical solutions to
this. Some (for example by Lehman) has stressed
process aspects. Other work has identified “ilities”, for
example testability, comprehensibility, modularity,
and so on. Largely, this has been unsuccessful,
because (1) evolution is undertaken by humans, whose
skills are a crucial factor (2) evolution causes the
software to degrade (3) no adequate metrics currently
exist (4) the hard changes are those of which the
original designers cannot even conceive. A common
rule of thumb is that maintenance changes then tend to
be proportional to the size of the complete system, not
the change itself.
 In the service-based model, recall that at the point of
need, the best/cheapest/fastest/most recent service is
bound in and executed. This then rewards those
services which meet the needs of the market best, and
they will generate revenue; in contrast, those that fail
to achieve usage will be punished by the market. It
can be seen that this offers an extreme view of late
binding; where services are dynamically composed at
the instant of need and then disengaged afterwards. Of
course this raises the question of a service request for
which there is no offering in the marketplace.
Although in the long term there may be technological
help for automatic composition (e.g. using reflection),
currently we see this as a market failure; where the
market has been unable to provide the needs of a
purchaser.
 In this view, maintainability is not seen primarily as
a technical problem, but of a marketplace solution.
Services which adapt and change to become those that
other users require will succeed. It may benefit service
clients and service providers to enter longer term
agreements, to adopt current standards and to offer
warranties. The ultra-late binding model does not
imply simply an open market in which suppliers and
purchasers meet transitorily. Of course, individual
services are still made of software that must evolve
and be maintained, and conventional technical
solutions will be employed to accomplish change.

This becomes a supply side issue for vendors, and it is
in their interest to ensure change is achieved as
efficiently and smoothly as possible. Some
evolutionary changes will remain hard; in particular
simple changes which affect design decisions right
across the system. An example is security.
 To summarise, our vision is that software as
perceived by the user will have no installation, no
upgrades, no downtime, no unwanted features, no
vendor lock-in, and no maintenance.

3. Web services architecture

In this architecture we have three major groups of
service providers:

? ? Information service providers (ISPs): those
that provide information to other services e.g.
catalogue and ontology services.

? ? Contractor service providers (CSPs): those
that have the ability to negotiate and assemble
the necessary components/services to deliver
a service to the end-user.

? ? Software service providers (SSPs): those
software vendors that provide either the
operational software components/services
themselves, or descriptions of the components
required and how they should be assembled.

 SSPs register services in an electronic service
marketplace, using ISPs. A service is a named entity
providing either (a) operational functionality, in which
case its vendor is a Component Provider, or (b) a
composition template, in which case its vendor is a
Solution Provider (see detailed explanation below).
A service consumer/client, which may be the end user
or another service, will specify a desired service
functionality. A Contractor Service Provider (CSP),
which acts as a broker to represent the client interests
in the marketplace, will then search the marketplace
for a suitable service through a discovery process
involving ISPs. Assuming such a service exists (i.e. a
match can be made), the service interface is passed to
the CSP, which is responsible (again on the fly) for
satisfying the user needs with the service found. This
will either involve interpreting this service’s
composition template and recursively searching for
the sub-services specified there, or using the atomic
service that actually delivers a result.
 The CSP/broker will discover and use the most
appropriate sub-services that meet the composition
criteria at the time of need. This may involve
negotiation of non-functional attributes with candidate
services. Note that the service composition (the design
activity) is not undertaken by the client or user, but the

templates are supplied by SSPs in the marketplace.
Service providers may themselves use sub-services, so
the model is inherently recursive.
 It is important to distinguish binding and service
composition. The design of a composition is a highly
skilled task that is not yet amenable to automation,
and there is no attempt at on-the-fly production of
designs in our model. However, we can foresee the
use of variants or design patterns in the future. We call
this design a composition template. We can populate
the composition template with services from the
marketplace that will fulfill the composition. Our
architecture offers the possibility of locating and
binding such services as the service is executed. There
is no concept of producing an entire executable for an
application; instead, the application is constructed on
the fly at the time of need from sub-services.
 Prototype implementations are described in [7]. Our
model has been termed a “pay per use” approach,
because the user might be charged each time a service
is bound as used. This is only one possibility. For
example, a client organization may use a preferred
supplier and pay on an agreed monthly or annual fixed
cost. This can be much more attractive, since revenue
costs are predictable. Also, preferred suppliers may
have production processes that have been approved by
the client, so issues of quality of service do not need
to be negotiated on every use. This illustrates very
clearly why the terms and conditions are so central to
a web services approach [6], and why there is much to
be done in developing web protocols such as WSDL
to address such concerns.

4. Security and web services

Many security-critical information systems are now
becoming accessible via the Internet. Examples of
online provision include on-line census information,
real-time stock information, and health data (e.g. see
[4]). The information in such systems is usually stored
in a number of backend databases. From a user’s
viewpoint, there are at least two fundamental
requirements: privacy protection and a desirable level
of service availability. While attempting to meet these
requirements, a system has to cope with software
bugs, operator mistakes, and malicious attacks ? the
common causes of service interruption.

Protecting the privacy of a user is concerned with a
method for protecting the identity of the information
the user is interested in (i.e. the intention) against any
attacks occurring during communications and on the
information system side. For example, when querying
an online stock information system, an investor is
usually reluctant to reveal the specific stock of interest
to any other parties including the operators who

manage the system. This problem is called Private
Information Retrieval (PIR). There are at least two
basic requirements of such a system: high-degree
privacy protection (particularly on the user side); and
high availability of services. Malicious faults
(resulting from malicious attacks), software bugs, and
network unavailability, are common causes of
problems. Existing approaches generally address the
problems separately. There is little existing work that
suggests a coherent solution to them.
 These information sources are excellent potential
applications for web services; instead of providing
them simply as data sources to be queried, they can be
provided as distributed services which can be invoked
remotely by application programs, thereby enhancing
their functionality and versatility.

A private information retrieval (PIR) scheme
addresses the problem of enabling a user to retrieve
data from a backend database without exposing the
user's intention to the databases. This seemed to us to
be a good initial problem through which to consider
non-functional negotiated attributes in service-based
architectures with autonomous distributed databases.
It is also of major practical importance. Applications
include access to financial databases, design of new
drugs by pharmaceutical companies, and storage of
very long lived highly confidential medical data. The
first PIR scheme was introduced by Chor et al [11] in
1995, and since then it has become the subject of a
significant amount of work. Existing PIR schemes and
their variations assume that the databases always
deliver correct answers to users' queries. There is no
tolerance to the loss of answers, and no capability to
detect or tolerate any incorrect answers. However, in
reality, situations such as faulty database servers,
malicious administrators (who may tamper with and
maliciously interfere with data) and/or network
partitions (resulting in some servers being unavailable
or stopped) are very common. Although the
replication of databases is a common way to improve
service availability, it often suggests a high level of
security risk for the overall system (although some
replication proposals do provide certain level of
protection). Once part of a system is corrupted, an
attacker can gain information about the user’s queries
and can arbitrarily manipulate users’ queries and the
answers to the queries.

 In this paper we present a new fault model for
databases within a web services architecture, and
introduce a fault-tolerant (or attack-tolerant) approach
to private information retrieval that guarantees both
users’ privacy and service availability in the presence
of malicious server faults. Our scheme uses replicated
databases to achieve both fault tolerance and a
controlled level of communication complexity. Our

work also demonstrates the practical feasibility of
applying PIR to a realistic database system that
consists of up to nine replicas, each of which keeps
46,000 records. It provides significant experimental
results and performance analysis by simulating a
variety of attacks on databases and on the results
returned to the user. Our scheme works as follows.
We assume that the database access to each database
is provided through a data access service (DAS). By
replicating databases on k separate nodes and limiting
the communications capability of replicas, the PIR
scheme can protect users' privacy when no more than t
databases are in collusion. The user attempts to
retrieve some information from k replicated databases,
and initiates this by issuing a request to a data access
service. Instead of sending a query to one of the
replicates, the DAS sends k redundant sub-queries to
all k . These sub-queries are generated by k query
functions based on the original query. Upon receiving
a sub-query, a replica will construct a sub-answer
based on a predefined answer function and send the
answer back to the data access service. Let f be the
maximum number of faulty replicas. We show in [12]
that k ? (t + 1) + f . This condition guarantees both
the existence of a correct result and tolerance to up to f
fail-stop servers. To sum up, the major contributions
are as follows:

? ? a new system model for fault-tolerant
distributed database systems is developed,
with the protection of users' privacy,
applicable to service based architectures;

? ? a novel fault-tolerant private information
retrieval (FT-PIR) scheme is presented,
which guarantees both service availability
and protects users' privacy. The failure model
under investigation is the most disruptive
one: malicious failures.

? ? the design and implementation of an FT-PIR
enabled distributed database system is
described. Previous PIR research has
concentrated on theoretical feasibility by
modelling the information stored in the
servers as binary bit strings. Our work
demonstrates the practical feasibility of
applying both PIR scheme and FT-PIR
schemes to a realistic database system and
provides preliminary experimental results.
The performance overhead introduced by the
FT-PIR scheme is extremely modest in
comparison with the PIR scheme.

 The theoretical basis, assumptions and system
model are given in full in [12]. Here we summarise
the implementation and concentrate on recent results.

5. Implementation

 We assume that all issues of SQL query
interpretation are handled at the user end. The system
comprises the following key parts. Each database
replica has a single database, comprising (in our
experiment) up to 46000 records of the same length.
Each replica provides externally to its DAS a mapping
table, which enables the record to be located by its
index i given its key.

Step 1 – accept inputs: the DAS takes three inputs
from the user program: an intention, ? , a schema,
denoted by s, and a security parameter b. ? is typically
the key of an intended record, e.g. a patient’s name,
and s is the specific field names. As b increases, the
security of the system improves.
Step 2 – look up a mapping table: The data access
service then looks up its mapping table to find the
index i of ? . In order to provide secure and reliable
services, a replica can also regularly publish the
mapping table for its clients.
Step 3 – generate a random index set: we now
generate a random index set RIS with size b, where the
only condition is that i must be in the set. So RIS
consists of i and other b-1 randomly selected indices.
Since we use randomisation here, even given the same
i, the RIS generated each time has a high probability to
be different.
Step 4 – generate queries: using i and a set of
random numbers r, a set of query functions Q1, … , Qk
is used to generate queries, one for each replica 1..k.
Step 5 – send requests: a requestj sent to replicaj
consists of RIS, s, and Qj, where j = 1, … , k.
Step 6 – generate a view: using RIS, the replicatej
program selects records from DBj and forms a view.
The view is generated at runtime and will be
destroyed after the operation. Two consecutive views
are independent of each other. A view is a two
dimensional concept, with b as the number of records
selected.
Step 7, 8 – compute and send back an answer:
based on the view and Qj, the replicaj program takes
the selected data from executing the query, and uses
answer function Aj to compute an answerj; answerj is
then sent back to the client.
Step 9, 10 – reconstruct and return a result: based
on t+1 correct answers (answerj1, … , answerjt+1), the
reconstruction function R reconstructs the intended
Result? and sends it back to the user. The function R
can be executed as soon as (t+1) answers are returned.
This is defined as the meaning of correct. Each result
reconstructed is subject to the validation of the
verification algorithm, which is summarised very
briefly. Although it is difficult to develop a perfect

verification function, we are able to design a function
that can identify an incorrect result with a very high
probability. Full details of Q, A and R are given in
[12].

6. Results

 This section describes experiments to explore the
effectiveness and practicability of the new
implementation in the presence of various categories
of malicious attacks, and relationship between various
parameters.
 We start by describing the detailed evaluation
criteria of the new FT-PIR implementation. The key
independent variables are: the number of replicas k,
the actual undetected error rate e, and the size of a
view b. In general, we are concerned with the
measured overheads of the various stages within FT-
PIR. The number of replicas indicates the number of
faults the scheme can tolerate. When malicious faults
occur, the verification algorithm at a DAS can detect
invalid results. Since this algorithm is probabilistic,
there is a small probability that the reconstructed
result is actually not a correct one, which is called an
undetected error. The percentage of undetected errors
in successful reconstructions is called the undetected
error rate.
Computation in the implementation is performed over
a dynamic generated view rather than the entire
database. The view size b is decided by the user and is
independent of the actual size of the database. This
modification has two benefits: 1) it reduces the need
for high communication bandwidth and 2) it makes
the security of the system adjustable.
 Our experiments only simulate malicious attacks on
data. Although an attacker can also target server
programs or communication links, the effect on the
problem we consider is the same, i.e., data is tampered
with or observed by the attacker. The experiments
were conducted by performing attacks on the server
side. The attacks can occur before or after query
processing. The first type of attack targets databases
while the latter ones target views and answers.
Imagine that three DAS-side threads T1, T2, and T3
respectively communicate with three replicas. To
simulate the attack on database, T1 sends a request to
corrupt DB1 by randomly populating some data into
the database before sending the request for processing
a query. Later, replica1 delivers a wrong answer. From
any two answers, the main program can reconstruct a
result and thus there are three possible result
combinations. However, only the answers from
replica2 and replica3 can be used to get the correct
result.

 The DAS machine in our laboratory is a time-
sharing Sun Sparc E450 with 4 250Mhz processors
running SunOS 5.8. Up to nine replica machines were
used and they have the same specification as follows:
400 MHz Pentium IIs running RedHat Linux (6.0 or
7.2), 3Com EtherLink XL 10Mbit Ethernet NIC, 64
Mbytes RAM, and a 4 Gigabyte hard disk. The DAS
machine resides in the campus LAN; the replica
machines are connected by a 10MBit/sec Ethernet
LAN which directly connects to the campus LAN.
The network delay, measured using the ping
command, is always less than 10ms.
 The software used is: Sun J2SDK 1.4.0, MySQL
3.23, and MySQL JDBC Driver mm.mysql-2.0.4.
Each replica hosts a MySQL database which can be
3000 records for some experiments, and 46,000
records for others. The use of a large database aims to
demonstrate the scheme on practical size databases.
The point-to-point communication channels between
replicas and DAS are implemented using TCP/IP
sockets. Current web service technology (such as
websphere or .NET) has not been used in these
experiments; our experience with them showed they
would add a small systematic overhead to all results,
whereas the experiments presented here show the cost
of FT-PIR.
 Unless otherwise specified, the standard parameter
settings are: e = 0.03, and b = 10. e is set to be 0.03
because the verification algorithm is shown not to
work properly when e is less than 0.03 in the current
implementation [12]. b is decided mainly to save
experiment time.
 Although these server machines have nearly same
specifications, they have been used for more than 3
years. To avoid the effect of the potential inconsistent
performance of them, we make sure that each server
has the same probability to be faulty by corrupting its
data in turn in separate runs. For example, in the five-
server case, any three answers can be used to
reconstruct a result. Ten runs are carried out. In each
run, the data of every two servers out of five will be
corrupted.

7. Results Analysis

 The experimental results presented in this paper are
mainly focused on the behaviour of the system in the
presence of malicious attacks, and concentrate on the
performance of functions Q, A and R [12].

The graphs in figures 3 and 4 investigate relationships
between the time taken to perform reconstruction and
the total processing time. In fault-free situations, the
reconstruction time is always below 51% of the total

processing time. However, it is clearly shown that the
time taken to perform reconstruction becomes the
dominant factor in the total processing time in the
faulty situations. When more than three replicas were
used, it is observed that 47% to 97% of the total
processing time was spent on performing
reconstruction process.

Figure 5 investigates the effectiveness of the
verification algorithm. The dashed line is the preset
undetected error rate used to perform the experiments.
The solid lines are the actual undetected error rate
observed. It is shown that using three replicas can
deliver good actual undetected error rate since 2% to
15% less undetected errors were observed compared
with the preset undetected error rate.
 It is demonstrated in Figure 6 that as the preset
undetected error rate increases, it takes less time to
perform reconstruction in faulty situations.
Respectively, 28%, 29%, 74% and 80% less time are
needed to perform reconstruction when e is changed
from 0.1 to 0.5 for three, five, seven and nine replicas.

Figure 3 - the time taken to perform
reconstruction & the total processing time in
fault-free situations, (b=10, e=0.03, n=3000)
vs. no. of servers

Figure 4 - the time taken to perform
reconstruction & the total processing time in
faulty situations (b=10, e=0.03, n=3000) vs.
no. of servers

Figure 5- preset vs. actual undetected error
rate in faulty situations (b=10, n=3,000)

Figure 6 – preset undetected error rate vs. the
time taken to perform reconstruction in faulty
situations (b=10, n=3,000)

Figure 7 - the time taken to process queries in
faulty situations (e=0.03, n=3,000)

Figure 8 - the time taken to process queries in
fault-free situations (e=0.03, n=3,000)

The key graphs in figure 7 and 8 show a similar
pattern of query processing time in fault-free and
faulty situations when the view size b changes. First, it
is clearly that faulty status of the system does not
affect the query processing process as b increases. On
the other hand, both graphs show that the view size
400 seems to be the optimal size of views as the query
processing time increases dramatically for view size
greater than 400.
It is also observed that the time taken to prepare query
increases as b increases, but the time spent on
performing reconstruction is fairly stable since
reconstruction is on the client side and is independent
of size of b.

8. Conclusion

We have presented a service based architecture,
motivated primarily by improving the quality of
software to users in a demand-led, market based
solution. This is based on ultra-late binding, when the

software needed is assembled, bound, called and
disengaged at the time of need. We believe that the
full potential of web services will only be exploited
when terms and conditions (the non-functional
properties) can be incorporated fully into service
models so that business drivers, as well as technical
issues, can be addressed. A clear implication is that
terms and conditions must also be negotiated and
agreed at the point of need. We have identified a key
property to be security; if this is not addressed, web
services will be highly restricted in their application.
Within the service model, we have explored a new
approach to privacy in a personal information retrieval
scenario, which is intended to fit within our late
binding model.
 To the best of our knowledge, our work is the first
to consider the practical implementation issues of the
theoretical PIR model in a real database system and
also the first to provide a practical application of the
FT-PIR scheme, including its application for
malicious attack. It is also aimed at an ultra-late
binding web service model. We have demonstrated its
effectiveness against a variety of malicious attacks
through significant experimental studies. It is shown
that the implementation exhibits good performance.
 Our work differs from recent studies in two aspects:
1) other research considers only the problem of
protecting servers without considering the security
issues of the client side. Our work fills in the gap by
considering the problem of protecting users against
malicious servers. 2) other results were not done in the
presence of faults (including both fail-stop and
malicious). That may be because simulating
(malicious) attacks is a non-trivial task.

Acknowledgements
 We wish to acknowledge the support of the UK
Engineering and Physical Sciences Research Council.
Much of the research has been undertaken within the
stimulating environment of the Pennine Research
Group (www.service-oriented.com), a group
comprising software engineers from the Universities
of Keele, UMIST and Durham, and we wish to thank
all colleagues who have directly or indirectly
influenced our research

References

1. Shirky C. Web services and context horizons.
IEEE Computer, September 2002, page 98 – 100,
vol.35, no. 9.

2. Berfield A., Crysanthis P. K., Tsamardinos I.,

Banerjee S., and Pollack M. E. A scheme for
integrating E-services in establishing virtual
enterprises. Proc. 12th. Int. Workshop on Research

Issues in data Engineering: Engineering e-
Commerce/e-Business Systems. Pp. 134 – 142,
Feb. 2002.

3. Bennett K. H., Munro M., Brereton O. P. Budgen

D., Layzell P. J., Macaulay L., Griffiths D. G. &
Stannet C. The future of software. Comm. ACM,
vol.42, no. 12, Dec. 1999 , pp. 78 – 84.

4. Glover G., Bradley S., and Bennett K. H. (authors)

http://www.dur.ac.uk/service.mapping/

5. C.Lovelock, S.Vandermerwe, B.Lewis, Services
Marketing, Prentice Hall Europe, 1996, ISBN
0134558413

6. Bennett K. H.,.Layzell P. J., Budgen D., Brereton

O. P., Macaulay L., Munro M., Service-Based
Software: The Future for Flexible Software, IEEE
APSEC2000, The Asia-Pacific Software
Engineering Conference, 5-8 December 2000,
Singapore, IEEE Computer Society Press, 2000.

7. Bennett K. H., Gold N. E., Munro M., Xu J.,

Layzell P. J., Budgen D., Brereton O. P. and
Mehandjiev N. Prototype Implementations of an
Architectural Model for Service-Based Flexible
Software. Proc. Thirty-Fifth Hawaii International
Conference on System Sciences (HICSS-35),
edited by Ralph H. Sprague, Jr. p.76, 2002,
Published by IEEE Computer Society, CA, ISBN
0-7695-1435-9 (Proceedings contain 316 pages
with the paper abstracts only, plus a CD-ROM
with the full PDF text for each paper.)

8. Bennett K. H., Munro M., Gold N. E., Layzell P.

J., Budgen D. and Brereton O. P. An Architectural
Model for Service-Based Software with Ultra
Rapid Evolution. Proc. International Conf. On
Software Maintenance, Florence 2001, IEEE
Computer Society press, ISBN 0-7695-1189-9 pp.
292-300.

9. Bennett K. H., Munro M., Gold N. E., Xu K,

Hong Z., Layzell P. J., Budgen D. and Brereton O.
P. An Architectural Model for Service-Based
Flexible Software. Proc COMPSAC 2001
(Computer Software and Applications). IEEE
Computer Society Press ISBN 0-7695-1372-7, pp.
137-142.

10. E.Y. Yang, J. Xu and K.H. Bennett, A fault-

tolerant approach to secure information retrieval,
in Proc. 21st IEEE International Symposium on
Reliable Distributed Systems, Osaka, Oct. 2002.

11. B. Chor, O. Goldreich, E. Kushilevitz, and M.

Sudan, Private Information Retrieval, Proc. 36th
Annual Symposium on Foundations of Computer
Science (FOCS’95), Milwaukee, Wisconsin, USA,

23-25 Oct. 1995, pp. 41-51. Journal version: J. of
the ACM, vol. 45, no. 6, 1998, pp. 965-981.

12. E.Y. Yang, J. Xu and K.H. Bennett, Private

information retrieval in the presence of malicious
faults, in Proc. 26th IEEE International
Conference on Computer Software and
Applications (COMPSAC2002), Oxford, Aug.
2002.

