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Abstract 
Software comprehension is one of the most expensive 
activities in software maintenance and many tools have 
been developed to help the maintainer reduce the time 
and cost of the task.  Of the numerous tools and 
methods available, one group has received relatively 
little attention: those using plausible reasoning to 
address the concept assignment problem.  This problem 
is defined as the process of assigning descriptive terms 
to their implementation in source code, the terms being 
nominated by a maintainer and usually relating to 
computational intent.  It has two major research issues:  

 
• Segmentation: finding the location and extent 

of concepts in the source code. 
• Concept Binding: determining which concepts 

are implemented at these locations. 
 

We present a new concept assignment method for 
COBOL II: Hypothesis-Based Concept Assignment 
(HB-CA).  It employs a simple knowledge base to model 
concepts, source code indicators, and inter-concept 
relationships.  The library and source code are used to 
generate hypotheses on which segmentation and 
concept binding are performed. An implementation of a 
prototype tool is described, and the results from a 
comprehensive evaluation using COBOL II sources 
summarised. 
 

1. Introduction 
 
Software maintenance is an important part of the 
software lifecycle, typically accounting for at least 50 
percent of the total lifetime cost of a software system 

[10].  Consequently, it is desirable to reduce the cost of 
software maintenance whilst preserving the quality of 
the software system, maintenance process, and 
maintainer’s understanding. 
 
Many authors have acknowledged the central role and 
high cost of software comprehension within software 
maintenance, either directly (e.g. [12], [16]), or 
indirectly, as a consequence of software complexity 
(e.g. [1]).  A common approach to reducing the cost of 
the maintenance process is the provision of automated 
assistance to software maintainers.  Expert maintainers 
organise their knowledge around algorithms and 
functional characteristics within their domain of 
expertise [11].  The work presented here is aimed at 
assisting expert maintainers with software 
comprehension.  Tilley and Smith claim that 
maintainers most lack tools that automatically identify 
algorithms, abstractions, and domain concepts in 
software [17].  Evidence that higher-level semantic 
knowledge reduces maintenance effort [13] strengthens 
their case. 
 
2. Concept Assignment 
 
To meet the need for tools that identify algorithms, 
abstractions, and domain concepts in programs, the 
method described in this paper addresses the concept 
assignment problem.  The term was introduced by 
Biggerstaff et al. to describe the problem of assigning 
terms regarding computational intent to appropriate 
regions of source code [3].  The emphasis of the work 
presented here is on automatic concept assignment with 
minimal user involvement, although the activity can 
also be performed semi-automatically or manually.  The 



 

 
  

emphasis is particularly on plausible reasoning concept 
assignment systems as these tend to have linear 
computational growth with the length of the source 
code under analysis [3]. 
 
There are two examples of existing plausible reasoning 
concept assignment systems: DM-TAO (part of the 
DESIRE toolset) [3], and IRENE [6].  These systems 
adopt different approaches; DM-TAO has a complex 
knowledge base and inference engine driven by a 
connectionist network, IRENE uses rule-based concept 
acquisition techniques to retrieve business knowledge 
from COBOL programs.   
 
Two major research issues can be identified within the 
overall concept assignment problem: 
 

• Segmentation: finding the location and extent 
of concepts in the source code. 

• Concept Binding: determining which concepts 
are implemented at these locations. 

 
Segmenting a program involves grouping pieces of 
conceptual information generated from the source code.  
Concept binding involves analysing these groups for the 
most plausible concept assignment for each. 
 
3. Hypothesis-Based Concept Assignment 

 
The Hypothesis-Based Concept Assignment (HB-CA) 
method is a three-part non-interactive process.  It 
operates on the procedure division of IBM COBOL II 
programs (although a complete program is provided as 
input).  The decision to address only the procedure 
division was taken to reduce the scope of the research 
problem initially.  We acknowledge that much useful 
information can be derived from the data division and 
future work may incorporate such analysis. 

 
The three stages of HB-CA are: Hypothesis Generation, 
Segmentation, and Concept Binding. 
 
The flow of control and data is sequential.  The process 
begins with hypothesis generation from source code.  
This is followed by segmentation of the hypotheses to 
determine regions of conceptual focus in the program.  
Finally, concept binding finds the dominant concept in 
each segment.   
 
Each stage uses a knowledge base termed the library. 
 
 

3.1 Knowledge Base 
 
It is anticipated that the maintainer, or some other 
person responsible for knowledge base maintenance, 
will construct the library, possibly using automated 
assistance such as that described in [15].  This would 
take place before the first use of HB-CA and the 
knowledge base content then could be improved as the 
maintainer gains experience.   
 
There are two entities in the library: concepts, and 
indicators.  Concepts are the terms nominated by the 
maintainer to describe items or activities in the domain.  
Indicators are evidence for concepts expressed in the 
implementation language, in this case IBM COBOL II. 
 
The library encodes two types of relationship: Indicator-
Concept, and Concept-Concept. 
 
The indicator-concept relationship maps evidence for a 
concept to that concept.  Concept-concept relationships 
map concepts to others to form composites and 
specialisations. 
 
Indicators have a number of attributes: Name, Class, 
and Data.  The name is a string used within the library 
to identify the indicator and provide an abstraction from 
the actual data.  The class refers to the type of feature 
represented.  There are four classes: identifier, keyword, 
comment, and segment boundary.  This allows the 
indicator recognition process to filter indicators in the 
library for those appropriate to the search method being 
employed.  Segment boundaries are not represented 
explicitly in the library but are generated from the 
subroutine structure of the code being analysed.  The 
data is the actual evidence to be found in the source 
code.  Alternatively, it may be a reference to another 
container for the data.  The latter would be appropriate 
for complex indicators such as code fragments. 
 
Concepts have three attributes: Name, Type, and Level.  
The name is a string to identify the concept, i.e. the 
nominated descriptive term.  The type is either action 
or object.  Action concepts are those that do something 
(typically, the name of an action concept is a verb, e.g. 
Read).  Object concepts are those things on which 
action concepts operate (typically, the name is a noun, 
e.g. File).  The classification allows greater control of 
the concept binding search than if none were used.  
Additionally, in combination with the relationships 
described below, it can help to reduce the size of the 
knowledge base required to represent complex concepts.  
Concept typing is used by various methods including 



 

 
  

DM-TAO (see [3]).  The level is either primary or 
secondary.  Primary concepts represent the most 
general form of a particular concept; secondary 
concepts represent more specialised forms of primary 
concepts, e.g. File might be primary, MasterFile might 
be secondary.  This information is required to help the 
method degrade its performance gracefully in the event 
of conflicting evidence.  It allows the search methods to 
select a more general form of a concept if the evidence 
for specific versions is ambiguous. 
 
The indicator-concept relationship, termed indicates, is 
formed by joining indicators to the concepts for which 
they provide evidence.  
 
There are two concept-concept relationships in the 
library: composition, and specialisation.  Composition 
relationships are formed by joining primary action 
concepts to primary object concepts.  This forms an 
action:object structure (essentially a verb and noun 
construction) to convey more information to the 
maintainer  (e.g. Read:File rather than merely Read).  
Creating a composition of two primary concepts also 
produces a series of implied composites with all 
specialisations of the primary object concept.  These are 
not stored in the library but are used as required by the 
segmentation and concept binding methods.  
Specialisation relationships are formed by linking 
secondary concepts (i.e. specialisations) to primary or 
other secondary concepts.  Multiple inheritance is not 
permitted. 
 
3.2 Hypothesis Generation 
 
The hypothesis generation stage takes source code as its 
input.  Using information contained in the knowledge 
base, it scans the source code for indicators of various 
concepts.  When an instance is found and matched, a 
hypothesis for the appropriate concept is generated.  
Matching is performed using a variety of flexible 
criteria.  The resulting collection of hypotheses is 
ordered by the position of the indicators in the source 
code. 
 
3.3 Segmentation 

 
The segmentation stage takes the sorted hypotheses and 
attempts to break them into segments.  Initially, this is 
performed using hypotheses for primary segmentation 
points (COBOL II section boundaries).  Each of the 
initial segments is analysed to determine whether it has 
the potential to contain a number of smaller segments.  
If this is the case, a self-organising map is used to 

establish areas of conceptual focus within the segment.  
These areas are analysed and smaller segments created 
if necessary.  The output of the stage is a collection of 
segments, each containing a number of hypotheses.  
This stage is discussed in more detail below. 
 
3.4 Concept Binding 
 
Concept binding analyses each segment’s hypotheses to 
determine which concept has the most evidence.  It 
exploits relationships in the knowledge base to generate 
conclusions, and scores these on the basis of concept 
occurrence.  A number of disambiguation rules can be 
applied to choose between equally strong concepts.  
When a concept has been selected, the segment is 
labelled with the name of that concept.  After all 
segments have been analysed and labelled, the results 
form the overall output of the method. 
 

4. Flexible Segmentation 
 
HB-CA’s approach to segmentation is one of the most 
interesting parts of the process and merits more detailed 
discussion. 
 
4.1 The Segmentation Problem 
 
Segmentation is the problem of determining the 
location and extent of concepts within a piece of source 
code, to form segments that then can be labelled.  It is a 
difficult problem because the boundaries between 
concepts can be confused and fuzzy to the point where 
two concepts may interleave.  It presents a more 
difficult problem to plausible reasoning understanders, 
such as HB-CA, where this kind of information is not 
used.  Figure 1 shows an example fragment of source 
code with two clearly separated concepts. 
 

MOVE ‘EXAMPLE’ TO PRINT-LL. 
MOVE ‘13’ TO PRINT-CC. 
CALL ‘PRINT’ USING P-PRINTLINE. 
MOVE POLICY-NUM TO OUT-PNUM. 
MOVE SCHEME-REF TO OUT-SREF. 
CALL ‘WRITE’ USING OUT-REC. 

 
Figure 1: Example Code Fragment Showing Separated 

Concepts 
 
The first three lines indicate a Print concept; the last 
three indicate Write.  In this situation, it is clear where 
the boundary between concepts falls.  Figure 2 shows 
the same code but with the boundaries slightly blurred. 
 
 





 

 
  

SOMs have a two layer topology with an input layer the 
same size as the number of components in the input 
vectors, and an output layer usually in the shape of a 
two dimensional grid.  Each output node has the same 
number of vector components as input nodes [14].  
Every input node is connected to every output node.  
The output node vectors are initialised with random 
numbers.  Learning takes place through the repeated 
presentation of training data vectors.  There may be 
hundreds to thousands of repetitions.  When a training 
vector is presented, the Euclidean distance between the 
training vector and every reference vector stored in the 
output nodes is calculated.  The output node that is 
closest to the training vector is declared the winner, and 
its reference vector is updated to reduce its Euclidean 
distance to the input.  In addition, neighbouring nodes 
in the output layer are also moved proportionally closer 
to the input.  After many repetitions, this process results 
in the spatial organisation of the input data in clusters 
of similar, neighbouring regions [14].  Over the course 
of training, the size of the neighbourhood and the 
amount by which Euclidean distances are updated (the 
learning rate) decrease to zero. 
 
SOMs have many uses including natural language 
engineering [5], and the organisation of document 
collections [7]. 
 
4.4 SOMs for HB-CA 
 
The SOM is useful in HB-CA because of its ability to 
cluster similar data items automatically.  Spatial 
relationships in the segment’s hypotheses can be 
preserved allowing nearby, similar concepts to be 
clustered together.  Consequently, the fuzzy boundaries 
between areas of conceptual focus in the hypothesis list 
can be determined using the conceptual content of the 
list itself, rather than imposing an arbitrary division. 
 
Employing a self-organising map within HB-CA entails 
solving some additional problems.  First, the map must 
be automatically constructed and the data pre-processed 
into a vector form.  Second, the trained map must be 
automatically interpreted; a task often left to the user in 
other SOM applications. 
 
These are designed to ensure that a self-organising map 
will only be used if there is the potential to form 
clusters, i.e. the hypothesis list is big enough with a 
sufficient number of different concepts.   
 
To use the segment’s hypothesis list with a self-
organising map, it must first be turned into a vector 

representation.  A coding scheme must be devised 
whereby different concepts can be represented as 
vectors without implying any spatial relationship 
between them in a single dimension.  It is not possible 
(or sensible) to represent Read as 1, Print as 2, and 
Update as 3 in the same dimension, since the ordering 
relation on integers does not hold for concepts.  The 
solution to this problem arises from SOM work in 
natural language engineering and document 
classification.  Honkela [5] suggests the use of binary 
vector components to represent categorical data such as 
the hypotheses in HB-CA.  This is the approach that 
has been adopted. 

 
Having established the data encoding, the map itself 
must be defined.  The task of the SOM in HB-CA is to 
cluster hypotheses to enable automatic inspection of the 
output.  Consequently, the number of output neurons 
should be no more than necessary.  This creates a 
coarser granularity in the output space than might be 
used for visually inspected maps, but forces hypotheses 
into one of a few groups thus providing sufficient vector 
density at each neuron for it to be recognised as a 
cluster.   
 
The method used to generate the number of output 
neurons is based on the assumption of a perfectly 
clustered input list, e.g. 
 

Read, Read, Read, Print, Print, Print,  
Update, Update, Update 

 
With a minimum vector density per cluster of 3, the 
maximum number of achievable clusters is 3.  If the list 
is less than perfectly clustered, the number of achieved 
clusters will be 3 or less since the best case (perfect 
clustering on input) cannot achieve more.  Each output 
node in the map represents one cluster (once trained, it 
will trigger for several input vectors) and therefore in 
this example, the output layer would contain 3 nodes.  
A problem for this method can be illustrated by 
examining what might be considered a worst-case 
scenario.  Assume an input list of the form: 
 

Read, Write, Read, Write, Read, Write, Read, Write, 
Read, Write 

 
This data is ambiguous since it could be described as 
having no dominant concept (and hence no clustering).  
Alternatively, it could be split in half (two output 
nodes), the first half being dominated by Read and the 
second by Write.  With still more subdivision possible it 
is hard to say how the data should be clustered, or to 









 

 
  

to which they may have no conceptual affiliation, and 
adding entire invalid clusters to their neighbours 
without considering the content of either.  When 
considering the problems the latter may cause, it is 
worth recalling that the SOM has associated the 
hypotheses in an invalid cluster, and consequently the 
neighbouring valid cluster gains a conceptually 
coherent group of hypotheses.  Concept binding then 
could be hampered by both the general “noise” of 
unrelated individual hypotheses, or worse, it could be 
led in a completely different direction by conceptually 
coherent, but unrelated, groups of hypotheses.  
Increased SOM usage creates more opportunities for the 
reallocation algorithms to be employed.  Hypothesis 2 is 
thus confirmed. 
 
5.3 Possible Solutions 
 
The reallocation algorithms would benefit from further 
research.  One approach might be to use conceptual 
information from the hypotheses of invalid clusters, to 
bind them to conceptually similar neighbours.  This 
might require some preliminary concept binding.  
Alternatively, the principle of preserving all of the 
original hypotheses could be rejected and invalid 
clusters ignored.  Another idea might be to limit the 
number of hypotheses that can be added to a valid 
cluster, or limit the cluster size itself. 
 
Another approach to improving the quality of 
segmentation might be to change the controlling 
parameters, rec_thresh and min_vd, which for these 
investigations were set to 1 and 3 respectively.  
Increasing rec_thresh would cause a reduction in the 
number of initial segments and hence concept 
assignments made (since more evidence would be 
required).  Those segments that pass the threshold 
would be larger, having a reasonable amount of 
evidence.  Smaller values of rec_thresh would allow 
more initial segments to be considered and increase the 
number of concept assignments.  Given that smaller 
segments have been observed to produce more accurate 
concept assignment, smaller values of rec_thresh 
should produce more accurate results overall.  The 
disadvantage of having smaller segments is that each 
hypothesis carries more weight (by representing a 
larger proportion of the body of evidence) than in larger 
segments.  Consequently, a misleading indicator can 
cause greater problems.  Individual hypotheses in larger 
segments have less influence on the overall concept 
assignment, so increasing rec_thresh may ensure that a 
reasonable body of evidence is considered, rather than 
just a few hypotheses. 

Increasing min_vd would increase the number of 
invalid clusters by forcing valid clusters to contain more 
evidence.  Decreasing min_vd may improve the quality 
of segmentation, but the resulting segments could be so 
small (since only one or two hypotheses for a concept 
would be required) that concept assignment would 
become pointless.  There would no longer be a 
significant body of evidence to consider.  A balance 
must be struck when setting the parameters, to make 
best use of the library on the source code being studied.   
 
5.4 Average Performance 
 
The overall performance of HB-CA is promising, 
achieving high mean and median accuracies as shown 
in Table 1. 
 

 forced_specialisation = 
True 

forced_specialisation = 
False 

Mean 
Accuracy 

84%, σ = 14 88%, σ = 11 

Mean Strict 
Accuracy 56%, σ = 19 56%, σ = 21 

Median 
Accuracy 

89% 89% 

Median 
Strict 

Accuracy 
50% 56% 

 
Table 1: Average Accuracy Values for HB-CA 

 
6. Conclusions 
 
We have presented a successful plausible-reasoning 
concept assignment method for COBOL II.  It exhibits 
linear computational growth with the length of program 
under analysis.  It can be applied to monolithic or 
poorly structured code, using the conceptual structure of 
the program to create segments for concept binding.   
The method shows a high degree of accuracy even with 
a simple knowledge base. 
 
Despite theoretical claims that the accuracy should not 
decrease with longer programs, investigations indicate 
that such programs cause a wider variation in accuracy 
and a general drop in concept assignment performance.  
This is attributed to the greater use of SOMs when 
analysing larger programs, and the poorer quality of 
segmentation that can result.   
 
Investigation of the cause of SOM-related segmentation 
problems revealed that the hypothesis reallocation 
algorithms are largely to blame for poor performance.  
This is not surprising given their naïve nature and 




