

A Flexible Method for Segmentation in Concept Assignment

Nicolas Gold and Keith Bennett
Research Institute in Software Evolution.

Department of Computer Science,
University of Durham,

Durham, DH1 3LE, UK.
{N.E.Gold, Keith.Bennett}@durham.ac.uk

Keywords: Program Comprehension, Self-Organising Maps, Concept Assignment, Software Tools

Abstract
Software comprehension is one of the most expensive
activities in software maintenance and many tools have
been developed to help the maintainer reduce the time
and cost of the task. Of the numerous tools and
methods available, one group has received relatively
little attention: those using plausible reasoning to
address the concept assignment problem. This problem
is defined as the process of assigning descriptive terms
to their implementation in source code, the terms being
nominated by a maintainer and usually relating to
computational intent. It has two major research issues:

• Segmentation: finding the location and extent

of concepts in the source code.
• Concept Binding: determining which concepts

are implemented at these locations.

We present a new concept assignment method for
COBOL II: Hypothesis-Based Concept Assignment
(HB-CA). It employs a simple knowledge base to model
concepts, source code indicators, and inter-concept
relationships. The library and source code are used to
generate hypotheses on which segmentation and
concept binding are performed. An implementation of a
prototype tool is described, and the results from a
comprehensive evaluation using COBOL II sources
summarised.

1. Introduction

Software maintenance is an important part of the
software lifecycle, typically accounting for at least 50
percent of the total lifetime cost of a software system

[10]. Consequently, it is desirable to reduce the cost of
software maintenance whilst preserving the quality of
the software system, maintenance process, and
maintainer’s understanding.

Many authors have acknowledged the central role and
high cost of software comprehension within software
maintenance, either directly (e.g. [12], [16]), or
indirectly, as a consequence of software complexity
(e.g. [1]). A common approach to reducing the cost of
the maintenance process is the provision of automated
assistance to software maintainers. Expert maintainers
organise their knowledge around algorithms and
functional characteristics within their domain of
expertise [11]. The work presented here is aimed at
assisting expert maintainers with software
comprehension. Tilley and Smith claim that
maintainers most lack tools that automatically identify
algorithms, abstractions, and domain concepts in
software [17]. Evidence that higher-level semantic
knowledge reduces maintenance effort [13] strengthens
their case.

2. Concept Assignment

To meet the need for tools that identify algorithms,
abstractions, and domain concepts in programs, the
method described in this paper addresses the concept
assignment problem. The term was introduced by
Biggerstaff et al. to describe the problem of assigning
terms regarding computational intent to appropriate
regions of source code [3]. The emphasis of the work
presented here is on automatic concept assignment with
minimal user involvement, although the activity can
also be performed semi-automatically or manually. The

emphasis is particularly on plausible reasoning concept
assignment systems as these tend to have linear
computational growth with the length of the source
code under analysis [3].

There are two examples of existing plausible reasoning
concept assignment systems: DM-TAO (part of the
DESIRE toolset) [3], and IRENE [6]. These systems
adopt different approaches; DM-TAO has a complex
knowledge base and inference engine driven by a
connectionist network, IRENE uses rule-based concept
acquisition techniques to retrieve business knowledge
from COBOL programs.

Two major research issues can be identified within the
overall concept assignment problem:

• Segmentation: finding the location and extent
of concepts in the source code.

• Concept Binding: determining which concepts
are implemented at these locations.

Segmenting a program involves grouping pieces of
conceptual information generated from the source code.
Concept binding involves analysing these groups for the
most plausible concept assignment for each.

3. Hypothesis-Based Concept Assignment

The Hypothesis-Based Concept Assignment (HB-CA)
method is a three-part non-interactive process. It
operates on the procedure division of IBM COBOL II
programs (although a complete program is provided as
input). The decision to address only the procedure
division was taken to reduce the scope of the research
problem initially. We acknowledge that much useful
information can be derived from the data division and
future work may incorporate such analysis.

The three stages of HB-CA are: Hypothesis Generation,
Segmentation, and Concept Binding.

The flow of control and data is sequential. The process
begins with hypothesis generation from source code.
This is followed by segmentation of the hypotheses to
determine regions of conceptual focus in the program.
Finally, concept binding finds the dominant concept in
each segment.

Each stage uses a knowledge base termed the library.

3.1 Knowledge Base

It is anticipated that the maintainer, or some other
person responsible for knowledge base maintenance,
will construct the library, possibly using automated
assistance such as that described in [15]. This would
take place before the first use of HB-CA and the
knowledge base content then could be improved as the
maintainer gains experience.

There are two entities in the library: concepts, and
indicators. Concepts are the terms nominated by the
maintainer to describe items or activities in the domain.
Indicators are evidence for concepts expressed in the
implementation language, in this case IBM COBOL II.

The library encodes two types of relationship: Indicator-
Concept, and Concept-Concept.

The indicator-concept relationship maps evidence for a
concept to that concept. Concept-concept relationships
map concepts to others to form composites and
specialisations.

Indicators have a number of attributes: Name, Class,
and Data. The name is a string used within the library
to identify the indicator and provide an abstraction from
the actual data. The class refers to the type of feature
represented. There are four classes: identifier, keyword,
comment, and segment boundary. This allows the
indicator recognition process to filter indicators in the
library for those appropriate to the search method being
employed. Segment boundaries are not represented
explicitly in the library but are generated from the
subroutine structure of the code being analysed. The
data is the actual evidence to be found in the source
code. Alternatively, it may be a reference to another
container for the data. The latter would be appropriate
for complex indicators such as code fragments.

Concepts have three attributes: Name, Type, and Level.
The name is a string to identify the concept, i.e. the
nominated descriptive term. The type is either action
or object. Action concepts are those that do something
(typically, the name of an action concept is a verb, e.g.
Read). Object concepts are those things on which
action concepts operate (typically, the name is a noun,
e.g. File). The classification allows greater control of
the concept binding search than if none were used.
Additionally, in combination with the relationships
described below, it can help to reduce the size of the
knowledge base required to represent complex concepts.
Concept typing is used by various methods including

DM-TAO (see [3]). The level is either primary or
secondary. Primary concepts represent the most
general form of a particular concept; secondary
concepts represent more specialised forms of primary
concepts, e.g. File might be primary, MasterFile might
be secondary. This information is required to help the
method degrade its performance gracefully in the event
of conflicting evidence. It allows the search methods to
select a more general form of a concept if the evidence
for specific versions is ambiguous.

The indicator-concept relationship, termed indicates, is
formed by joining indicators to the concepts for which
they provide evidence.

There are two concept-concept relationships in the
library: composition, and specialisation. Composition
relationships are formed by joining primary action
concepts to primary object concepts. This forms an
action:object structure (essentially a verb and noun
construction) to convey more information to the
maintainer (e.g. Read:File rather than merely Read).
Creating a composition of two primary concepts also
produces a series of implied composites with all
specialisations of the primary object concept. These are
not stored in the library but are used as required by the
segmentation and concept binding methods.
Specialisation relationships are formed by linking
secondary concepts (i.e. specialisations) to primary or
other secondary concepts. Multiple inheritance is not
permitted.

3.2 Hypothesis Generation

The hypothesis generation stage takes source code as its
input. Using information contained in the knowledge
base, it scans the source code for indicators of various
concepts. When an instance is found and matched, a
hypothesis for the appropriate concept is generated.
Matching is performed using a variety of flexible
criteria. The resulting collection of hypotheses is
ordered by the position of the indicators in the source
code.

3.3 Segmentation

The segmentation stage takes the sorted hypotheses and
attempts to break them into segments. Initially, this is
performed using hypotheses for primary segmentation
points (COBOL II section boundaries). Each of the
initial segments is analysed to determine whether it has
the potential to contain a number of smaller segments.
If this is the case, a self-organising map is used to

establish areas of conceptual focus within the segment.
These areas are analysed and smaller segments created
if necessary. The output of the stage is a collection of
segments, each containing a number of hypotheses.
This stage is discussed in more detail below.

3.4 Concept Binding

Concept binding analyses each segment’s hypotheses to
determine which concept has the most evidence. It
exploits relationships in the knowledge base to generate
conclusions, and scores these on the basis of concept
occurrence. A number of disambiguation rules can be
applied to choose between equally strong concepts.
When a concept has been selected, the segment is
labelled with the name of that concept. After all
segments have been analysed and labelled, the results
form the overall output of the method.

4. Flexible Segmentation

HB-CA’s approach to segmentation is one of the most
interesting parts of the process and merits more detailed
discussion.

4.1 The Segmentation Problem

Segmentation is the problem of determining the
location and extent of concepts within a piece of source
code, to form segments that then can be labelled. It is a
difficult problem because the boundaries between
concepts can be confused and fuzzy to the point where
two concepts may interleave. It presents a more
difficult problem to plausible reasoning understanders,
such as HB-CA, where this kind of information is not
used. Figure 1 shows an example fragment of source
code with two clearly separated concepts.

MOVE ‘EXAMPLE’ TO PRINT-LL.
MOVE ‘13’ TO PRINT-CC.
CALL ‘PRINT’ USING P-PRINTLINE.
MOVE POLICY-NUM TO OUT-PNUM.
MOVE SCHEME-REF TO OUT-SREF.
CALL ‘WRITE’ USING OUT-REC.

Figure 1: Example Code Fragment Showing Separated

Concepts

The first three lines indicate a Print concept; the last
three indicate Write. In this situation, it is clear where
the boundary between concepts falls. Figure 2 shows
the same code but with the boundaries slightly blurred.

SOMs have a two layer topology with an input layer the
same size as the number of components in the input
vectors, and an output layer usually in the shape of a
two dimensional grid. Each output node has the same
number of vector components as input nodes [14].
Every input node is connected to every output node.
The output node vectors are initialised with random
numbers. Learning takes place through the repeated
presentation of training data vectors. There may be
hundreds to thousands of repetitions. When a training
vector is presented, the Euclidean distance between the
training vector and every reference vector stored in the
output nodes is calculated. The output node that is
closest to the training vector is declared the winner, and
its reference vector is updated to reduce its Euclidean
distance to the input. In addition, neighbouring nodes
in the output layer are also moved proportionally closer
to the input. After many repetitions, this process results
in the spatial organisation of the input data in clusters
of similar, neighbouring regions [14]. Over the course
of training, the size of the neighbourhood and the
amount by which Euclidean distances are updated (the
learning rate) decrease to zero.

SOMs have many uses including natural language
engineering [5], and the organisation of document
collections [7].

4.4 SOMs for HB-CA

The SOM is useful in HB-CA because of its ability to
cluster similar data items automatically. Spatial
relationships in the segment’s hypotheses can be
preserved allowing nearby, similar concepts to be
clustered together. Consequently, the fuzzy boundaries
between areas of conceptual focus in the hypothesis list
can be determined using the conceptual content of the
list itself, rather than imposing an arbitrary division.

Employing a self-organising map within HB-CA entails
solving some additional problems. First, the map must
be automatically constructed and the data pre-processed
into a vector form. Second, the trained map must be
automatically interpreted; a task often left to the user in
other SOM applications.

These are designed to ensure that a self-organising map
will only be used if there is the potential to form
clusters, i.e. the hypothesis list is big enough with a
sufficient number of different concepts.

To use the segment’s hypothesis list with a self-
organising map, it must first be turned into a vector

representation. A coding scheme must be devised
whereby different concepts can be represented as
vectors without implying any spatial relationship
between them in a single dimension. It is not possible
(or sensible) to represent Read as 1, Print as 2, and
Update as 3 in the same dimension, since the ordering
relation on integers does not hold for concepts. The
solution to this problem arises from SOM work in
natural language engineering and document
classification. Honkela [5] suggests the use of binary
vector components to represent categorical data such as
the hypotheses in HB-CA. This is the approach that
has been adopted.

Having established the data encoding, the map itself
must be defined. The task of the SOM in HB-CA is to
cluster hypotheses to enable automatic inspection of the
output. Consequently, the number of output neurons
should be no more than necessary. This creates a
coarser granularity in the output space than might be
used for visually inspected maps, but forces hypotheses
into one of a few groups thus providing sufficient vector
density at each neuron for it to be recognised as a
cluster.

The method used to generate the number of output
neurons is based on the assumption of a perfectly
clustered input list, e.g.

Read, Read, Read, Print, Print, Print,
Update, Update, Update

With a minimum vector density per cluster of 3, the
maximum number of achievable clusters is 3. If the list
is less than perfectly clustered, the number of achieved
clusters will be 3 or less since the best case (perfect
clustering on input) cannot achieve more. Each output
node in the map represents one cluster (once trained, it
will trigger for several input vectors) and therefore in
this example, the output layer would contain 3 nodes.
A problem for this method can be illustrated by
examining what might be considered a worst-case
scenario. Assume an input list of the form:

Read, Write, Read, Write, Read, Write, Read, Write,
Read, Write

This data is ambiguous since it could be described as
having no dominant concept (and hence no clustering).
Alternatively, it could be split in half (two output
nodes), the first half being dominated by Read and the
second by Write. With still more subdivision possible it
is hard to say how the data should be clustered, or to

to which they may have no conceptual affiliation, and
adding entire invalid clusters to their neighbours
without considering the content of either. When
considering the problems the latter may cause, it is
worth recalling that the SOM has associated the
hypotheses in an invalid cluster, and consequently the
neighbouring valid cluster gains a conceptually
coherent group of hypotheses. Concept binding then
could be hampered by both the general “noise” of
unrelated individual hypotheses, or worse, it could be
led in a completely different direction by conceptually
coherent, but unrelated, groups of hypotheses.
Increased SOM usage creates more opportunities for the
reallocation algorithms to be employed. Hypothesis 2 is
thus confirmed.

5.3 Possible Solutions

The reallocation algorithms would benefit from further
research. One approach might be to use conceptual
information from the hypotheses of invalid clusters, to
bind them to conceptually similar neighbours. This
might require some preliminary concept binding.
Alternatively, the principle of preserving all of the
original hypotheses could be rejected and invalid
clusters ignored. Another idea might be to limit the
number of hypotheses that can be added to a valid
cluster, or limit the cluster size itself.

Another approach to improving the quality of
segmentation might be to change the controlling
parameters, rec_thresh and min_vd, which for these
investigations were set to 1 and 3 respectively.
Increasing rec_thresh would cause a reduction in the
number of initial segments and hence concept
assignments made (since more evidence would be
required). Those segments that pass the threshold
would be larger, having a reasonable amount of
evidence. Smaller values of rec_thresh would allow
more initial segments to be considered and increase the
number of concept assignments. Given that smaller
segments have been observed to produce more accurate
concept assignment, smaller values of rec_thresh
should produce more accurate results overall. The
disadvantage of having smaller segments is that each
hypothesis carries more weight (by representing a
larger proportion of the body of evidence) than in larger
segments. Consequently, a misleading indicator can
cause greater problems. Individual hypotheses in larger
segments have less influence on the overall concept
assignment, so increasing rec_thresh may ensure that a
reasonable body of evidence is considered, rather than
just a few hypotheses.

Increasing min_vd would increase the number of
invalid clusters by forcing valid clusters to contain more
evidence. Decreasing min_vd may improve the quality
of segmentation, but the resulting segments could be so
small (since only one or two hypotheses for a concept
would be required) that concept assignment would
become pointless. There would no longer be a
significant body of evidence to consider. A balance
must be struck when setting the parameters, to make
best use of the library on the source code being studied.

5.4 Average Performance

The overall performance of HB-CA is promising,
achieving high mean and median accuracies as shown
in Table 1.

 forced_specialisation =
True

forced_specialisation =
False

Mean
Accuracy

84%, σ = 14 88%, σ = 11

Mean Strict
Accuracy 56%, σ = 19 56%, σ = 21

Median
Accuracy

89% 89%

Median
Strict

Accuracy
50% 56%

Table 1: Average Accuracy Values for HB-CA

6. Conclusions

We have presented a successful plausible-reasoning
concept assignment method for COBOL II. It exhibits
linear computational growth with the length of program
under analysis. It can be applied to monolithic or
poorly structured code, using the conceptual structure of
the program to create segments for concept binding.
The method shows a high degree of accuracy even with
a simple knowledge base.

Despite theoretical claims that the accuracy should not
decrease with longer programs, investigations indicate
that such programs cause a wider variation in accuracy
and a general drop in concept assignment performance.
This is attributed to the greater use of SOMs when
analysing larger programs, and the poorer quality of
segmentation that can result.

Investigation of the cause of SOM-related segmentation
problems revealed that the hypothesis reallocation
algorithms are largely to blame for poor performance.
This is not surprising given their naïve nature and

