
An Architectural Model for Service-Based Flexible Software

Keith Bennett, Jie Xu, Nicolas Gold, Malcolm Munro, and Zhuang Hong
Department of Computer Science

University of Durham, UK
keith.bennett@durham.ac.uk

Paul Layzell
Department of Computation

UMIST, UK
paul.layzell@umist.ac.uk

David Budgen* and Pearl Brereton
Department of Computer Science

Keele University, UK
d.budgen@cs.keele.ac.uk

* Address for correspondence

Abstract
The urgent need to change software easily to meet
evolving business requirements requires a radical shift in
the development of software, with a more demand-centric
view leading to software which will be delivered as a
service, within the framework of an open marketplace.
We describe a service architecture and its rationale, in
which components may be bound instantly, just at the
time they are needed and then the binding may be
disengaged. This allows highly flexible software services
to be evolved in “internet time”. The paper focuses on
early results: some of the aims have been demonstrated
and amplified through an experimental implementation
based on e-Speak, an existing and available technology. It
is concluded that technology such as e-Speak provides a
useful infrastructure that rapidly enabled us to demonstrate
the basic operation and viability of our approach.
Keywords: software evolution, service architectures,
process models

1. Objectives

Software maintenance has matured considerably over the
past 20 years, so that standards representing best practice
are emerging [1, 2]. Most approaches to software
maintenance derive from three basic process stages [10]:
understanding the existing software; modification of the
existing software; and revalidation of the modified
software.

In industrial practice, these three basic stages may
expand to incorporate many sub-stages. Empirically, this
process has been successful in supporting the

maintenance of large, risk-averse software systems (such
as safety critical and business critical systems). Although
the “applications backlog” has always been recognised as
a problem, users have become familiar with the activity
of new releases of software (perhaps every six to 24
months), in which groups of change requests,
enhancements and/or bug fixes have been aggregated and
made available by vendors. Procedures for “emergency
fixes” can be used to resolve urgent problems, though
these are a well known source of later difficulty. Even in
very mature software maintenance processes, the skills of
the maintainers and their system knowledge are usually
critical.

In [5], a new model of software maintenance was
described, in which it was argued that maintenance should
be categorised according to the phase of the maintenance
lifecycle. This is a more useful model with which to
address the needs of many modern businesses. The
internet age has ushered in a new era of highly dynamic
and agile organisations which must be in a constant state
of evolution if they are to compete and survive in an
increasingly global marketplace. These are operating in a
time-critical environment, rather than a safety critical
application domain. If a change or enhancement to
software is not brought to market sufficiently quickly,
thus retaining competitive advantage, the organisation
may collapse. This era poses significantly new problems
for software development, characterised by a shift in
emphasis from producing ‘a system’ to the need to
produce ‘a family of systems’, with each system being an
evolution from a previous version, developed and
deployed in ever shorter business cycles. In other words,

the evolution stage in the above model becomes central.
It may be that the released new version is incomplete, and
still has errors. If the product succeeds, it can be put on
an “emergency life support” to resolve these. If it misses
the market time slot, it probably will not succeed at all.

It is possible to inspect each activity of the software
evolution process and determine how it may be speeded
up. Certainly, new technology to automate parts may be
expected, supported by tools (for example, in program
comprehension, testing etc.). However, it is very
difficult to see that such improvements will lead to a
radical reduction in the time to evolve a large software
system. This prompted us to believe that a new and
different way is needed to achieve ultra rapid evolution;
we term this “evolution in internet time”. It is important
to stress that such ultra rapid evolution does not imply
poor quality, or software which is simply hacked together
without thought. The real challenge is to achieve very
fast change yet provide very high quality software.
Strategically, we plan to achieve this by bringing the
evolution process much closer to the business process.

In 1995, British Telecommunications plc (BT)
recognised the need to undertake long-term research
leading to different, and possibly radical, ways in which
to develop software for the future. Senior academics from
UMIST, Keele University and the University of Durham,
came together with staff at BT to form DiCE (The
Distributed Centre of Excellence in Software
Engineering). The outcome of this research is
summarised in Section 2 of the paper. This work
established the foundations for the research described in
this paper. In Section 3, we express the objectives of the
current phase of research in terms of the vision for
software - how it will behave, be structured and developed
in the future. From 1998, the core group of researchers
switched to developing a new overall paradigm for
software engineering: a service-based approach to
structuring, developing and deploying software. This new
approach is described in the second half of this paper. In
section 4, we describe a prototype implementation of the
service architecture, demonstrating its feasibility and
enabling us to elucidate research priorities. In addition,
we are exploring technologies in order to create a
distributed laboratory for software service experiments.

2. Developing a future vision

The method by which the DiCE group undertook its
research is described in [4]. Basically, the group
formulated three questions about the future of software:
How will software be used? How will software behave?
How will software be developed? In answering these
questions, a number of key issues emerged.

K1. Software will need to be developed to meet
necessary and sufficient requirements, i.e. for the
majority of users whilst there will be a minimum set of
requirements software must meet, over-engineered
systems with redundant functionality are not required.
K2. Software will be personalised. Software will
be capable of personalisation, providing users with their
own tailored, unique working environment which is best
suited to their personal needs and working styles, thus
meeting the goal of software which will meet necessary
and sufficient requirements.
K3. Software will be self-adapting. Software will
contain reflective processes which monitor and understand
how it is being used and will identify and implement
ways in which it can change in order to better meet user
requirements, interface styles and patterns of working.
K4. Software will be fine-grained. Future software
will be structured in small simple units which co-operate
through rich communication structures and information
gathering. This will provide a high degree of resilience
against failure in part of the software network and allow
software to re-negotiate use of alternatives in order to
facilitate self-adaptation and personalisation.
K5. Software will operate in a transparent manner.
Software may continue to be seen as a single abstract
object even when distributed across different platforms and
geographical locations. This is an essential property if
software is to be able to reconfigure itself and substitute
one component or network of components for another
without user or professional intervention.

Although rapid evolution is just one of these five
needs, it clearly interacts strongly with the other demands,
and hence a solution which had the potential to address all
the above factors was sought.

3. Service-based architecture

3.1 The problem

Most software engineering techniques, including those of
software maintenance, are conventional supply-side
methods, driven by technological advance. This works
well for systems with rigid boundaries of concern such as
embedded systems. It breaks down for applications where
system boundaries are not fixed and are subject to
constant urgent change. These applications are typically
found in emergent organisations—“organisations in
a state of continual process change, never arriving, always
in transition” [6]. Examples are e-businesses or more
traditional companies which continually need to reinvent
themselves to gain competitive advantage [7]. These
applications are, in Lehman’s terms, “E-type” [9]; the
introduction of software into an organisation changes the
work practices of that organisation, so the original

requirements of the software change. It is not viable to
identify a closed set of requirements; these will be forever
changing and many will be tacit.

Subsequent research by DiCE has taken a demand-
led approach to the provision of software services,
addressing delivery mechanisms and processes which,
when embedded in emergent organisations, give a
software solution in emergent terms—one with continual
change. The solution never ends and neither does the
provision of software. This is most accurately termed
engineering for emergent solutions.

We concluded that a “silver bullet”, which would
somehow transform software into something which could
be changed far more quickly than at present, was not
viable. Instead, we took the view that software is actually
hard to change, and this takes time to accomplish.
Hence, we needed to look for other solutions.

3.2 Service architecture

Currently, almost all commercial software is sold on the
basis of ownership (we exclude free software and open
source software). Thus an organisation buys the object
code, with some form of licence to use it. Any updates,
however important to the purchaser, are the responsibility
of the vendor. Any attempt by the user to modify the
software is likely to invalidate warranties. In effect, the
software is a black box that cannot be altered in any way,
apart via built-in parameters. This form of marketing is
known as supply-led. It is the same whether the software
is run on the client machine or on a remote server, or, if
the user takes on responsibility for in-house support or
outsources maintenance to an service supplier.

Let us now consider a very different scenario. We
assume that our software is structured into a large number
of small components (see K1, K4, K5 above), which
exactly meet the user’s needs and no more. Suppose now
that a user requires an improved component C. The
traditional approach would be to raise a change request
with the vendor of the software, and wait (for several
months) for this to be implemented and integrated.

In our solution, the user disengages component C, and
searches the marketplace for a replacement C' which
meets the new needs. When this is found, it is bound in
instead of C, and used in the execution of the application.
Of course, this assumes that the marketplace can provide
the desired component. However, it is a well established
property of marketplaces that they can spot trends, and
make new products available when they are needed. The
rewards for doing so are very strong and the penalties for
not doing so are severe. Note that any particular
component supplier can (and probably will) use
traditional software maintenance techniques to evolve
their components. The new dimension is that they must

work within a demand-led marketplace. Therefore, if we
can find ways to disengage an existing component and
bind in an enhanced one, we have the potential to achieve
ultra-rapid evolution in the target system.

This led us to conclude that the fundamental problem
with slow evolution was because software is marketed as
a product, in a supply-led marketplace. By removing the
concept of ownership, we create a service—something
that is used, not owned. Thus the component-based
solution evolves into the much more generic one of
service-based software in a demand-led marketplace.

This service-based model of software is one in
which services are configured to meet a specific set of
requirements at a point in time, executed and disengaged
— the vision of instant service, conforming to the widely
accepted definition of a service:

“an act or performance offered by one party to
another. Although the process may be tied to a
physical product, the performance is essentially
intangible and does not normally result in ownership
of any of the factors of production” [8].

Services are composed out of smaller ones (and so on
recursively), procured and paid for on demand. This is a
radically new industry model, which could function
within markets ranging from a genuine open market
(requiring software functional equivalence) to a keisetzu
market, where there is only one supplier and consumer,
working together with access to each other’s information
systems to optimise the service to each other.

This strategy enables users to create, compose and
assemble a service by bringing together a number of
suppliers to meet needs at a specific point in time. An
analogy is selling cars: manufacturers no longer sell cars
from a pre-manufactured stock with given colour
schemes, features etc.; instead customers configure their
desired car from series of options and only then is the
final product assembled. This is only possible because
the technology of production has advanced to a state
where assembly can be undertaken sufficiently quickly.

Software vendors attempt to offer a similar model of
provision by supplying products with a series of
configurable options. However this provides extremely
limited flexibility—consumers are not free to substitute
functions with those from another supplier since the
software is subject to binding which configures and links
the component parts, making it very difficult to perform
substitution. The aim of this research is to develop the
technology which will enable binding to be delayed until
the execution of a system. This will enable consumers to
select the most appropriate combination of services
required at any point in time.

However late binding comes at a price, and for many
consumers, issues of reliability, security, cost and
convenience may mean that they prefer to enter into

contractual agreements to have some early binding for
critical or stable parts of a system, leaving more volatile
functions to late binding and thereby maximising
competitive advantage. The consequence is that any
future approach to software development must be
interdisciplinary, so that non-technical issues, such as
supply contracts, terms and conditions, and error recovery,
are addressed and built in to the new technology.

3.3 Bind once, execute once

A truly service-based role for software is far more radical
than current approaches, in that it seeks to change the
very nature of software. To meet users’ needs of
evolution, flexibility and personalisation, an open
market-place framework is necessary in which the most
appropriate versions of software products come together,
are bound and executed as and when needed. At the
extreme, the binding that takes place just prior to
execution is disengaged immediately after execution in
order to permit the ‘system’ to evolve for the next point
of execution. Flexibility and personalisation are achieved
through a variety of service providers offering
functionality through a competitive market-place, with
each software provision being accompanied by explicit
properties of concern for binding (e.g. dependability,
performance, quality, licence details etc).

A software component is simply a reusable software
executable. Our serviceware clearly includes the software
itself, but in addition has many non-functional attributes,
such as cost and payment, trust, brand allegiance, legal
status and redress, security etc. Establishing a binding
requires us to negotiate across all such attributes, at the
extreme just before execution. This is seen as imperative
in a business to business e-commerce environment.

4. Service implementation – prototype
and results

4.1 Aims and the model

The purpose of this prototype was to test ideas about
dynamically bound services at run-time within the
flexible software service architecture. An earlier
experimental prototype concentrated on the problem of
service binding with limited negotiation [12]. We describe
here a new experiment that has been undertaken using e-
Speak, a technology being developed by HP [11].

The theoretical model is as follows: vendors register
services in an electronic service marketplace. A service is
a named entity providing either operational functionality
or a composition template (see below). A service
consumer searches the marketplace for a suitable service.
Assuming such a service exists (i.e. a match can be

made), the service interface is passed to a broker service,
which is responsible (again on the fly) for utilizing the
sub-services from the marketplace. This will either
involve interpreting composition templates for sub-
services, or using a service that actually delivers a result.
The broker will discover and use the most useful sub-
service that meets the composition criteria at the time of
need. Note that the service composition (the design
activity) is not undertaken by the client or user, but the
templates are supplied by vendors in the marketplace.

It can be seen that the architectural model offers an
extreme view of late binding; services are dynamically
composed at the instant of need and then disengaged
afterwards. Of course this raises the question of a service
request for which there is no offering in the marketplace.
Although in the long term there may be technological
help for automatic composition (e.g. using reflection),
currently we see this as a market failure; the market has
been unable to provide the needs of a purchaser.

It is important to distinguish binding and service
composition. For example, we may wish to compose a
payroll service from sub-services such as “obtain tax
codes”, or “print payslips”. The design of this
composition is a highly skilled task which is not yet
automatable, and there is no attempt at on-the-fly
production of designs. However, we can foresee the use
of variants or design patterns in the future. We call this
design a composition template. Once it exists, we can
populate the composition template with services from the
marketplace which will fulfill the composition. Our
architecture offers the possibility of locating and binding
such services (possibly following some negotiation) as
the payroll service is executed. There is no concept of
producing an entire executable for an application; instead,
the application is constructed on the fly at the time of
need from sub-services. So from one use of the service to
the next, we could replace (i.e. evolve) a “print payslips”
service to an “email payslips” service as long as it retains
a similar external service offering.

Our first experimental system demonstrated the
capability of service binding and limited service
negotiation [12]. The objectives of the current prototype
were to investigate two further aspects of the above
theoretical model: service discovery, and service binding.

4.2 The e-Speak system

Our choice of e-Speak was triggered by its availability
from the HP web site. It offers a comprehensive
infrastructure for distributed service discovery, mediation
and binding for internet based applications, and the
following advantages as an experimental framework:

• A basic name-matching service discovery
environment, with an exception mechanism if no

service can be found.
• Issues of distribution and location are handled

through virtualisation.
• It is based on widely used systems such as Java

and XML.
It also has the following drawbacks:

• The dynamic interpretation of composition
templates and subsequent binding in our theoretical
model need to be implemented outside the core e-
Speak system.
• The discovery mechanism does not support a

more flexible scheme than name matching.
• It intercepts all invocations of services and

clients, potentially resulting in supplier lock-in for
organizations using the system.

4.3 The prototype implementation

Our first prototype addressed the service binding and
negotiation issues, so it was decided to develop a second
prototype to explore discovery and binding using a
commercial platform.

A simple client application was implemented on the e-
Speak platform. The application requests a high-speed
printing service with a specified speed requirement.

 Whilst the theoretical model assumes that a service
name also describes the required functionality, e-Speak
assumes that a client application knows the name of a
previously existing service before it contacts the e-Speak
system. A theoretical client does not necessarily expect to
find the required service in the marketplace; an e-Speak
client does. The client connects itself to e-Speak and asks
it to find the named service. The dynamic behaviour
supported by e-Speak is essentially:

• Using the service name to locate a (remote)
server that provides that service.
• Locating an appropriate server for the desired

implementation if several exist.
• Returning an exception to the client, if the

service is no longer available.
It is not possible for e-Speak to locate a service for the
client just based on the description of the client's request;
it must be a precise name of the service. Note that the
theoretical model assumes that the name is equivalent to
the description and does support this.

The e-Speak approach allows a single registration and
discovery mechanism for both composite and leaf
services. This supports our recursive model (Section 3.2)
for service composition. The key to the implementation
is a class, written outside e-Speak, called DGS
(Dynamically Generated Service). When a service
composition template is returned from the discovery
process, the DGS interprets it to invoke sub-services.

For the client application that requests a printing

service, the e-Speak engine first attempts to locate a
single printing service on a remote host. However, no
specification of a single printing service satisfies the
speed requirement from the client at the point of need,
although a service composition does meet the
requirement. Therefore, instead of returning the stub of a
single service back to the client, a service composition
template is returned.

In this case, the client application invokes the service
by sending the composition template to DGS (note that,
normally, the client would use the stub of a service to
invoke, via e-Speak, the service on a remote host.) DGS
serves as a broker and actually invokes three sub-services
provided on three distributed printers A, B and C. Under
the control of DGS, the original printing task is executed
in parallel on the three printers, in a coordinated fashion.
The required printing speed is therefore achieved by this
composed service.

4.4 Prototype results and conclusions

The purpose of the prototype was to explore the
feasibility of using a commercial platform, e-Speak, to
build two aspects of our architectural model: the dynamic
binding and service discovery.

The e-Speak system allows services to be registered
and discovered through vocabularies. It does not support
the much more powerful and flexible on the fly discovery
and binding required by our model. We had to implement
this using an external object (the DGS). We also need to
extend this to support negotiation on non-functional
aspects, which needs to be undertaken outside e-Speak.

Support for dynamic service binding is provided, but
for our purposes, the great majority of the functionality
in interpreting compositions has to be undertaken by
another external object: a broker. e-Speak does not have
the concept of composition templates or patterns, so
these also belong externally.

e-Speak does enable a recursive service structure to be
used, with fine grain services at the leaves.

5. Future research issues

Using the results of both prototypes, we have identified a
number of major issues that need to be addressed.

Although e-Speak has saved a considerable amount of
coding time, and allowed us to explore some of the issues
surrounding software service delivery, we do not feel that
in its current form, it is an appropriate platform for the
distributed laboratory. In addition to further work on the
core research issues, we will continue to explore
emerging platforms for service-based environments.

Requirements for software need to be represented in
such a way that an appropriate service can be discovered

on the network (handled by ontology). The requirements
must convey therefore both the description and intention
of the desired service. Given the highly dynamic nature
of software supplied as a service, the maintainability of
the requirements representation becomes an important
consideration. However, the aim of the architecture is not
to prescribe such representation, but support whatever
conventions users and service suppliers prefer.

Automated negotiation is another key issue for
research, particularly in areas where non-numeric terms
are used e.g. legal clauses. Such clauses do not lend
themselves to offer/counter-offer and similar approaches.
In relation to this, the structure and definition of profiles
and terms needs much work, particularly where terms are
related in some way (e.g. performance and cost). Also we
need insight to the issue of when to select a service and
when to enter negotiations for a service. It is in this area
that multi-disciplinary research is planned.

Dynamic binding at the point of need is a third issue
that warrants research into the performance, security and
fault tolerance implications of service based software.

Finally, many issues need to be resolved concerning
mutual performance monitoring and claims of legal
redress should they arise.

6. Conclusions

We have presented a radical and innovative architectural
approach to achieving ultra rapid evolution, which is one
of five key requirements identified for 21st century
software. This still assumes a software maintenance
approach and technology based on that used currently.
However, it postulates a completely different software
marketplace, which is demand-led, not supply-led.
Software is marketed as a service which is used, not
owned. A consumer, or supply chain service vendor
integrates a number of such services to provide added
value. However, the supply services are bound just before
execution and disengaged afterwards, so a service can be
replaced by an improved one when needed. By binding in
such services, not when software is bought, but when it
is executed, the software may be continually adapted to
meet user requirements.

Of course, this raises many problems, and to start to
answer these, a prototype implementation has been built
using e-Speak. Binding to a service at the last minute
requires automatic resolution, not only of functional
attributes, but also (perhaps mainly) non-functional
aspects too. Also we cannot impose a grand universal
scheme on service suppliers and users; in a marketplace,
each must be free to adopt their own ways of business.

The prototype has given us some insight into the
issues involved in specifying and delivering service-based
software. We have used e-Speak to support an

experimental prototype and it has formed a useful and
appropriate infrastructure for some aspects of our model.
In addition, it enabled us to construct the prototype in
weeks rather than months. An advantage was that e-Speak
did not impose a particular business model on our system
(apart from that implied in its service model). It has
confirmed that the basic concept of software as a service
is feasible, and has highlighted areas for future research.

Acknowledgements

We wish to acknowledge the support of the Leverhulme
Trust, British Telecom plc, and the UK Engineering and
Physical Sciences Research Council (EPSRC).

References

[1] IEEE Standard for Software Maintenance (IEEE Std 1219-
1998) in IEEE Standards, Software Engineering, Vol 2 ,
Process Standards, 1999 Edition, IEEE 1999. ISBN
0738115606
[2] International Standard: Information Technology -
Software Maintenance ISO/IEC 14764:1999
[3] Bennett K. H.,.Layzell P. J., Budgen D., Brereton O. P.,
Macaulay L., Munro M., “Service-Based Software: The Future
for Flexible Software”, in Proceedings of APSEC2000, The
Asia-Pacific Software Engineering Conference, Singapore,
IEEE Computer Society Press, 2000, pp214-221.
[4] Bennett K. H., Munro M., Brereton O. P. Budgen D.,
Layzell P. J., Macaulay L., Griffiths D. G. & Stannet C. “The
future of software”. Comm. ACM, vol.42(12), Dec. 1999,
pp. 78 – 84.
[5] Bennett K. H. and Rajlich V. T. “A staged model for the
software lifecycle”. IEEE Computer, vol. 33(7), July 2000,
pp. 66 –71.
[6] Truex D.,Baskeville R. and Klein H., “Growing Systems
in Emergent Organizations”, Comm.ACM, Vol.42(8),
August 1999, pp117-123.
[7] Cusumano M. & Yoffe D., Competing on Internet Time –
Lessons from Netscape and its Battle with Microsoft, Free
Press (Simon & Schuster) 1998
[8] Lovelock C., Vandermerwe S., Lewis B., Services
Marketing, Prentice Hall Europe, 1996
[9] Lehman M. M. “Programs, lifecycles and the Laws of
Software Evolution”. Proc. IEEE, vol. 68(9), September
1980.
[10] Bennett K. H., Cornelius B. J., Munro M., Robson D. J .
“Software Maintenance”, in The Software Engineer's
Reference Manual (Ed. J. McDermid), Butterworth , 1990.
[11] Hewlett Packard. The e-Speak system is documented on
http://www.e-speak.hp.com/ (valid March 2001)
[12] Bennett K. H., Gold N. E., Munro M., Layzell P. J . ,
Budgen D., Brereton O. P . “An architectural model for
service based software with ultra rapid evolution”. Submitted
to IEEE ICSM 2001 (Florence, 2001)

