Automated Verification of Shape and Size
Properties via Separation Logic

Huu Hai Nguyen!, Cristina David?, Shengchao Qin®, and Wei-Ngan Chin!-?

! Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University of Singapore
3 Department of Computer Science, Durham University
{nguyenh2,davidcri,chinwn}@comp.nus.edu.sg shengchao.qin@durham.ac.uk

Abstract. Despite their popularity and importance, pointer-based pro-
grams remain a major challenge for program verification. In this pa-
per, we propose an automated verification system that is concise, precise
and expressive for ensuring the safety of pointer-based programs. Our
approach uses user-definable shape predicates to allow programmers to
describe a wide range of data structures with their associated size prop-
erties. To support automatic verification, we design a new entailment
checking procedure that can handle well-founded inductive predicates
using unfold/fold reasoning. We have proven the soundness and termi-
nation of our verification system, and have built a prototype system.

1 Introduction

In recent years, separation logic has emerged as a contender for formal reasoning
of heap-manipulating imperative programs. While the foundations of separation
logic have been laid in seminal papers by Reynolds [17] and Isthiaq and O’Hearn
[10], new automated reasoning tools based on separation formulae, such as [2,
8], are beginning to appear. Several major challenges are faced by the designers
of such reasoning systems, including key issues on automation and expressivity.
This paper’s main goal is to raise the level of expressivity and verifiability that
is possible with an automated verification system based on separation logic. We
make the following technical contributions towards this overall goal :

— We provide a shape predicate specification mechanism that can capture a wide
range of data structures together with size properties, such as various height-
balanced trees, priority heap, sorted list, etc. We provide a mechanism to
soundly approximate each shape predicate by a heap-independent invariant
which plays an important role in entailment checking (Secs 2 and 4.1).

— We design a new procedure to check entailment of separation heap con-
straints. This procedure uses unfold/fold reasoning to deal with shape def-
initions. While the unfold/fold mechanism is not new, we have identified
sufficient conditions for soundness and termination of automatic unfold/fold
reasoning to support entailment checking, in the presence of user-defined
shape predicates that may be recursive. (Secs 3.1, 4 and 5)

— We have implemented a prototype verification system with the above features
and have also proven both its soundness and termination (Secs 6 and 7).

2 User-Definable Shape Predicates

Separation logic [17,10] extends Hoare logic to support reasoning about shared
mutable data structures. It adds two more connectives to classical logic : sep-
arating conjunction %, and separating implication —«. hy * ho asserts that two
heaps described by h; and hs are domain-disjoint. hy —xho asserts that if the
current heap is extended with a disjoint heap described by h;, then hs holds in
the extended heap. In this paper we use only separating conjunction.

We propose an intuitive mechanism based on inductive predicates (or rela-
tions) to allow user specification of shapely data structures with size properties.
Our shape specification is based on separation logic with support for disjunctive
heap states. Furthermore, each shape predicate may have pointer or integer pa-
rameters to capture relevant properties of data structures. We use the following
data node declarations for the examples in the paper. They are recursive data
declarations with different number of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right; node3 parent }

We use p::c{v*) to denote two things in our system. When c is a data name,
p::c{v*) stands for singleton heap p—|[(f : v)]* where £* are fields of data decla-
ration c¢. When c is a predicate name, p::c(v*) stands for the formula c(p, v*).
The reason we distinguish the first parameter from the rest is that each predi-
cate has an implicit parameter self as the first one. Effectively, self is a “root”
pointer to the specified data structure that guides data traversal and facilitates
the definition of well-founded predicates (Sec 3.1). As an example, a singly linked
list with length n is described by :

11(n)=(self=nullAn=0)V(3i,m, q-self:node(i, q)*q::11{(m)An=m+1) invn>0

The second parameter n captures a derived value that is computed rather
than taken directly from the heap state. The above definition asserts that an 11
list can be empty (the base case self=null) or consists of a head data node
(specified by self:inode(i,q)) and a separate tail data structure which is also
an 11 list (q::11{m)). The * connector ensures that the head node and the tail
reside in disjoint heaps. We also specify a default invariant n>0 that holds for all
11 lists. Our predicate uses existential quantifiers for local values and pointers,
such as i,m,q.

A more complex shape, doubly linked-list with length n, is described by :

d11(p,n)=(self=nullAn=0)V(self::node2(_, p,q)*q::d11l(self,n—1))invn>0

The d11 shape predicate has a parameter p that represents the prev field of
the first node of the doubly linked-list. It captures a chain of nodes that are to
be traversed via the next field starting from the current node self. The nodes
accessible via the prev field of the self node are not part of the d11 list. This

example also highlights some shortcuts we may use to make shape specification
easier. We use underscore - to denote an anonymous variable. Non-parameter
variables in the RHS of the shape definition, such as q, are considered existen-
tially quantified. Furthermore, terms may be directly written as arguments of
shape predicate or data node.

User-definable shape predicates provide us with more flexibility than some
recent automated reasoning systems [1, 3] that are designed to work with only a
small set of fixed predicates. Furthermore, our shape predicates can describe not
only the shape of data structures, but also their size properties. This capability
enables many applications, especially to support data structures with sophisti-
cated invariants. For example, we may define a non-empty sorted list as below.
The predicate also tracks the length, the minimum and maximum elements of
the list.

sortl(n,min,max) = (self::node(min,null) Amin=max A n=1)
V (self:node(min, q) * q::sortl{n—1,k,max) Amin<k) inv min<max An>1

The constraint min<k guarantees that sortedness property is adhered between
any two adjacent nodes in the list. We may now specify (and then verify) the
following insertion sort algorithm :

node insert(node x, node vn) where

x::sortl(n, sm,1g) * vn:node(v,_) %> res:sortl(n+1,min(v,sm),max(v,1lg))
{ if (vn.val<x.val) then { vn.next:=x; vn }

else if (x.next=null) then { x.next:=vn; vn.next:=null; x }

else { x.next:=insert(x.next,vn); x }}

node insertion sort(node y) where y::11{n) An>0 %> res:sortl(n,_, _)
{ if (y.next=null) theny
else { y.next:=insertion sort(y.next); insert(y.next,y) }}

We use the notation ®,, = ®,, to capture a precondition ®,, and a post-
condition &,, of a method. We also use an expression-oriented language where
the last subexpression (e.g. e; from ej;e;) denotes the result of an expression.
A special identifier res is also used in the postcondition to denote the result of
a method. The postcondition of insertion_sort shows that the output list is
sorted and has the same number of nodes as the input list.

3 Automated Verification

In this section, we first introduce a core object-based imperative language and
then propose a set of forward verification rules to systematically check that
preconditions are satisfied at call sites, and that the declared postcondition is
successfully verified (assuming the precondition) for each method definition.

3.1 Language

We provide a simple imperative language in Figure 1. Our language is strongly
typed and we assume programs and constraints are well-typed. The language

supports data type declaration via datat, and shape predicate definition via
spred. For each shape definition, we also declare a heap-independent invariant
mo over the parameters {self,v*} that holds for each instance of the predicate.

P = tdecl" meth* tdecl ::= datat | spred

datat ::= data c¢ { field" } field ==t v tu=c|T

T = int | bool | float | void

spred ::= ¢(v*) = @ inv mg

meth ::=t mn ((t v)*) where ®@,, +> D, {e}

e =null | k" |v | v.f | vi=e | vi.f:=v2 | new c(v*)
| ex;es | t vy e | mn(v*) | if v then e; else ey
| while v where &, > P,, do e

e = V(T -kAT)* = YAP

o = wv1=v2 | v=null | vi#vs | v#null | 1Ay

K n=emp | v:e{v”) | K1 * K2

A =@ | A1VA, | ANT | A1xAs | Jv-A

¢ u=bla|diAd2 | p1V2 | ¢ | v | Vv @

b im=true | false | v | by=b2 a::=81=82 | $1<82

s =Ky | B xs | s1452 | —s | maz(s1,82) | min(s1,sa)

Fig.1. A Core Imperative Language

Each method meth and while loop is declared with pre- and post-conditions
of the form &,, %> &,,. For simplicity, we assume that variable names declared
in each method are all distinct and that parameters are passed by-value. Primed
notation is used to capture the latest value of variables and may appear in the
postcondition of loops. For example, a simple loop with pre/post conditions is
shown below :

while x<0 where true*— (x>0Ax'=x) V (x<0Ax'=0) do { x:=x+1 }

Here x and x’ denote the old and new values of variable x at the entry and exit
of the loop, respectively.

The separation constraints we use are in a disjunctive normal form &é. Each
disjunct consists of a *-separated heap constraint k, referred to as heap part, and
a heap-independent formula m, referred to as pure part. The pure part does not
contain any heap nodes and is presently restricted to pointer equality /inequality
~ and Presburger arithmetic ¢. Furthermore, A denotes a composite formula
that could always be normalised into the @ form (see Figure 3). The semantic
model for the separation constraints is left in the technical report [15].

Separation constraints are used in pre/post conditions and shape definitions.
In order to handle them correctly without running into unmatched residual heap
nodes, we require each separation constraint to be well-formed, as given by the
following definitions:

Definition 3.1 (Accessible) A variable is said to be accessible w.r.t. a shape
predicate if it is a parameter or it is a special variable, either self or res.

Definition 3.2 (Reachable) Given a heap constraint k = p::c(v*) * k1, node
p::c{v*) is reachable from a variable q if and only if the following relation holds:

reach(k,q,p::c(v*)) =g (p=q)V(k1=q::icg(..,T,..)%K2 A reach(ks, r, p::c(v*)))

Definition 3.3 (Well-Formed Constraint) A separation constraint @ is well-
formed if (i) every data node and shape predicate are reachable from their acces-
sible variables, (ii) it is in a disjunctive normal form \/(Fv*-kAYAP)* where K
is for heap nodes, v is for pointer constraint, and ¢ is for arithmetic formula.

The primary significance of the well-formed condition is that all heap nodes
of a heap constraint are reachable from accessible variables. This allows the
entailment checking procedure to correctly match up nodes from the consequent
with nodes from the antecedent of an entailment relation.

Arbitrary recursive shape relation can lead to non-termination in unfold/fold
reasoning. To avoid that problem, we propose to use only well-founded shape
predicates in our framework.

Definition 3.4 (Well-Founded Predicate) A shape predicate is said to be
well-founded if it satisfies four conditions, namely: (i) it is a well-formed con-
straint, (ii) the parameter self may only be bound to a data node and not a
predicate, (iii) only self is allowed to be bound to a data node and (iv) every
predicate is reachable from self.

Note that the definitions above are syntactic and can easily be enforced. Two
examples of well-founded shape predicates are treep — binary tree with parent
pointer, and avl — binary tree with near balanced heights, as follows :

treep(p) = (self=null) V (self:inode3(_,1,r,p) * l:treep(self)
*xr::treep(self)) inv true

avl(n,h) = (self=null An=0 Ah=0) V (self:node2(_,p,q) * p::avl{ns, hy)
xq::avl(ng, hy) An=1+n;+n,A h=14max(hs,hy) A —1<h;—hy<1) inv n,h>0

In contrast, the following three shape definitions are not well-founded.

foo(n) = self::foo(m) A n=m+1
goo() = self:node(.,) * q:goo()
too() = self:node(.,q) *q:node(.,_)

For foo, the self identifier is bound to a shape predicate. For goo, the heap node
pointed by q is not reachable from variable self. For too, an extra data node is
bound to a non-self variable. The first example may cause infinite unfolding,
while the second example captures an unreachable (junk) heap that cannot be
located by our entailment procedure. The last example is just a syntactic re-
striction to facilitate termination proof reasoning, and can be easily overcome
by introducing intermediate predicates.

FV—PRED [FV—VAR] [FV-NEW

[
XPureo(®) = [0/nulllmg Ai=(AAres=v') A;=(A=xres:c(vi,..,vy))

F c(v*) = @ inv 7o F{A}v{A:} F {A} new c(v1,..,vn) {A1}
[FV-ASSIGN] [FV-CALL
F{A}e{A:} t mn((t; vi)j—,) where $p, %> Py, {..} € P
Ay=3Tres-(A1 A, v'=res) p=[vi/vi] Abp®,. % Ay As=(A1 x P,,)
F{A}vi=e {As} F{A} mn(vi..vn) {A2}
[FV-METH

V={vi.vn} W=prime(V) A=®,.Anochange(V) F{A}e{A1} @W-A))FP,,x Ay

F to mn(t: v1,..,tn vn) where &, +— B, {e}

Fig. 2. Some Forward Verification Rules

3.2 Forward Verification

We use P to denote the program being checked. With pre/post conditions de-
clared for each method in P, we can now apply modular verification to its body
using Hoare-style triples F {A;} e {As}. These are forward verification rules as
we expect A; to be given before computing A,. Some rules are given in Fig 2
while others are left in the technical report [15]. They are used to track heap
states as accurately as possible with path-, flow-, and context-sensitivity. For
each call site, [Fv—CALL] ensures that its method’s precondition is satisfied. For
each method definition, [Fv-METH] checks that its postcondition holds for the
method body assuming its precondition. A method postcondition may capture
only part of the heap at the end of the method, leaving the residue heap nodes
in A,. For each shape definition, [FVv—PRED] checks that its given invariant is
a consequence of the well-founded heap formula. The soundness of the forward
verification is also left in the technical report.

We now explain the operators/functions used in our verification rules. The
operator Ay,} in assignment rule is an instance of composition with update oper-
ators. Given a state Ay, a state change As, and a set of variables to be updated
X={x1,...,2,}, the composition operator @ x is defined as :

Ay ®x Ay =g T r1.rn - p1 A1 @ p2 Ay
where ry,...,r, are fresh variables; py = [r;/z}]y ; p2 = [ri/xs]

Note that p; and p, are substitutions that link each latest value of z} in Ay
with the corresponding initial value z; in A, via a fresh variable r;. The binary
operator @ is either A or x. Function nochange(V) returns a formula asserting
that the unprimed and primed versions of each variable in V are equal; prime(V)
returns the primed form of all variables in V. [e*/v*] represents substitutions
of v* by e*. A special case is [0/null], which denotes replacement of null by 0.
Normalization rules for separation constraints are given in Figure 3. XPure is
described in the next section.

(ArVA) AT~ (ALAT)V (A2 A7) (MmAPL) A (12Ag2) ~ (V1AY2) A (P1/AP2)
(A1 V Ar)x A ~ (A x A)V (ArxA) (Fz-A)Aw ~ Jy - ([y/z]A A7)
(k1 A1) * (K2 AT2) ~ (K1*K2) A(T1AT2) Tz - A1) * Ao ~ Jy - ([y/z]Ar % As)
(Ii1/\7T1) (7T2) ~» Ii1/\(7T1/\7T2)

Fig. 3. Normalization Rules
3.3 Forward Verification Example

We present the detailed verification of the first branch of the insert function
from Sec 2. Note that program variables are primed in formulae whereas logical
variables unprimed. The proof is straightforward, except for the last step where
a disjunctive heap state is folded to form a shape predicate. The procedure to
perform the folding step is presented in Sec 4.
{x'::sortl{n,mi,ma) * vn'::node(v,_)} // precondition
if (vn.val < x.val) then {
{(x:node(mi,null) * vn'::node(v,) Ami=ma A n=1 A v<mi)
V (3q,k - x'::node(mi, q) * q::sortl(n—1,k, ma) * vn'::node(v, _)
Ami<k Ami<ma An>2 Av<mi)} // unfold and conditional
vn.next := Xx;
{(x':mode(mi,null) * vn'::node(v,x’) Ami=ma An=1A v<mi)
V (3q,k - x'::node(mi, q) * q::sortl(n—1,k, ma) * vn'::node(v, x')
Ami<k Ami<ma An>2 Av<mi)} // field update
vn
{(x::node(mi,null) * vn':node(v, x’) Ami=ma An=1 A v<mi A res=vn’)
V (3q,k - x'::node(mi, q) * q::sortl(n—1,k, ma) * vn'::node(v, x')
Ami<k Ami<ma An>2 A v<mi A res=vn')} // returned value

}

{res:sortl(n+1,min(v,mi), max(v,ma))} // fold to postcondition

4 Entailment

We present in this section the entailment checking rules for the class of con-
straints used by our verification system.

4.1 Separation Constraint Approximation

Entailment between separation formulae (detailed in section 4.2) is reduced to
entailment between pure formulae by successively removing heap nodes from the
consequent until only a pure formula remains. When the consequent is pure, the
heap formula in the antecedent is soundly approximated by function XPure,.
The function XPure,(®), whose definition is given in Fig 4, returns a sound
approximation of @ as formula ex i*-\/(Fv*-7)* where i* are (non-null) distinct
symbolic addresses of heap nodes of ¢. The function IsData(c) returns true if ¢
is a data node, while IsPred(c) returns true if ¢ is a shape predicate.
We illustrate how this function works by the following example :

XPure,, (p1::node(_, _) % pa::node(_, _))
= (ex il'(plzil A 11>O)) A (ex ig'(pgzig A 12>O))
= eXx il, ig'(plzil A i1>0 A p2:i2 A i2>0 A i1§éi2)

The following normalization rules are also used :

(ex I-¢1)V(ex J- o) ex IUJ - (1 V ¢2)
Jv-(ex I-9) ~ex I -(Jv-¢)
(ex I-p1)N(ex J- o) ex TUJ - g1 Ap2ANict je 17T

The ex i* construct is converted to 3¢* when the formula is used as a pure
formula. The soundness of XPure, is formalized by :

Lemma 4.1 (Sound Invariant). Given a shape predicate c(v*)=® inv m, we
have & |= Inv,(self::c(v*)) if XPureg(®) = [0/null]mg. my is said to be sound.
Proof: By structural induction on &.

Lemma 4.2 (Sound Abstraction). Given a separation constraint & where the
invariants of the predicates appearing in @ are sound, we have & = XPure, (D).
Proof : By structural induction on .

Lemma 4.1 en-

sures that a sup- (c(v*) =@ inv my) € P

phed invariant that Inu —elv* _ 1£.0 11

passes [FV-PRED] o(pic{v)) = [p/self, 0/mulllmo

is a semantic conse- (c{v*) = & inv mg) € P

quence of the pred- Invy (p::e{v*)) = [p/self, 0/null] XPure,_1(P)

icate. Lemma 4.2
asserts that it is PPuren(V(Fv*-kAm)*) =g V(Iv*-XPure,(k)A[0/null]r)’

safe to approximate XPure,(emp) =g true
an antecedent by

using XPure if all IsData(c) fresh i
the predicate in- XPure, (p::c{v*)) =g ex i-(p=iAi>0)
variants are sound. IsPred(c) fresh i* Invy(p:c(v*)) = ex j* - \/(Fu*-7)*

They also allow the —
possibility of ob- XPuren(pc(v*)) =g exi* - [i*/j*]\/ (u*-m)*

taining a more pre- XPuren (k1 * K2) =qf XPure,(k1) A XPure,(k2)
cise invariant by ap-
plying XPure one or Fig. 4. XPure : Translating to Pure Form

more times. For ex-
ample, when given a pure invariant n>0 for the predicate 11(n), a single applica-
tion returns ex i-(self=0An=0V self=iAi>0An>0) which is sound and more
precise, as it relates the nullness of the self pointer with the size n of the list.
The invariants associated with shape predicates play an important role in
our system. Without the knowledge m>0, the entailment x::node(_, y) *y::11(m) I
x::11{(n) An>1 would not have succeeded due to n>1. Without the more precise
derived invariant using XPure for predicate 11, the entailment x::11(n) An>0
x#null would not have succeeded either.

[ENT—EMP] [ENT-MATCH]

p=[0/nu1l] XPuren (p1::¢{v1)*K1 *mn)if@?z p=[vi /v3]
XPure, (k1%k)Apmi=>p3 Vomry K1AT NfreeEqn(p, V)I—V_{w;} p(KaAms) ¥ A
KiAT1 Y o * (K1 AT1) p1c{vi)xkiATIEY (p2:ic(vd) xKaATa) % A

[ENT-FOLD]
IsPred(c2)AIsData(ci) (A", k", 7w")€fold” (p1::c1{vi yxk1AT1, pai:ca{vi))
XPure, (p1::c1(vi)*K1%m1) =>p1=p> (7%, 7rc)=split$,v2 } (") ATATUHE (KaAmaATe) ¥ A

prici{(vi)* k1 AT (p2iica (vl YxkaATra) * A

[ENT-UNFOLD | [ENT-LHS—OR]
XPuren (p1::c1{vy)*K1%m1)=>p1=p2 IsPred(ci)AIsData(cz) ARy Ag x Ay
unfold(pi::c1(v]))*k1 AT1EY (p2iica (U3) kK2 Ama) * A Aokt Az * As
prc1 (vl)xk1 ATIEY (p2iica (V) #kaATa) ¥ A AV AR Az % (AsV Aj)
[ENT-RHS—EX] [ENT-LHS-EX
[ENT-RHS—OR] A1y (w/v]A2) « A [w/v] Ak Ay A
ARS Ay« AR freshw A=3 w- As fresh w
All—{‘}(AgvAg)*Afze{2’3} A A v Ay)x Ag Ju- ApA x A

Fig. 5. Separation Constraint Entailment

4.2 Separation Constraint Entailment
We express the main procedure for heap entailment by the relation

AAl—"ijC *AR

which denotes k * A F3IV-(k x Ag) * Ag.

The purpose of heap entailment is to check that heap nodes in the antecedent
A 4 are sufficiently precise to cover all nodes from the consequent Ac, and to
compute a residual heap state Ag. k is the history of nodes from the antecedent
that have been used to match nodes from the consequent, V' is the list of existen-
tially quantified variables from the consequent. Note that k and V are derived.
The entailment checking procedure is invoked with k = emp and V' =). The en-
tailment checking rules are given in Fig 5. We discuss the matching rule in what
follows, and leave unfold/fold rules to Sec 5.

The procedure works by successively matching up heap nodes that can be
proven aliased. As the matching process is incremental, we keep the successfully
matched nodes from antecedent in x for better precision. For example, consider
the following (valid) proof:

(((p=null An=0) V (p#null An>0)) An>0 Am=n) = p#null
R = (n>0 Am=n)
n>0 Am=n by.114) pAnull xR
p:11{(n) An>0F p::11(m) A p#null xR

Had the predicate p::11(n) not been kept and used, the proof would not have
succeeded. Such an entailment would be useful when, for example, a list with
positive length n is used as input for a function that requires a non-empty list.

Another feature of the entailment procedure is exemplified by the transfer
of m=n to the antecedent (and subsequently to the residue). In general, when a
match occurs (rule [ENT-MATCH]) and an argument of the heap node coming
from the consequent is free, the entailment procedure binds the argument to
the corresponding variable from the antecedent and moves the equality to the
antecedent. In our system, free variables in consequent are variables from method
preconditions. Hence these bindings act as substitutions that have to be kept in
antecedent to allow subsequent program state (from residual heap) to be aware
of their values. This process is formalized by the function freeEqn below, where
V is the set of existentially quantified variables :

freeEqn([u; Jvi]"=y, V) =4 let m; = if v; € V then true else v;=u; in \|_; T

For soundness, we perform a preprocessing step to ensure that variables appear-
ing as arguments of heap nodes and predicates are i) distinct and ii) if they are
free, they do not appear in the antecedent by adding (existentially quantified)
fresh variables and equalities. This guarantees that the generated substitutions
are well-defined. It also guarantees that the formula generated by freeEqn does
not introduce any additional constraints over existing variables in the antecedent,
as one side of each equation does not appear anywhere else in the antecedent.
An additional outcome is that the order of picking nodes from the consequent
for matching does not matter.

5 Unfold/Fold Mechanism

Unfold/fold operations can be used to handle well-founded inductive predicates
in a deductive manner. In particular, we can unfold a predicate that appears in
the antecedent that matches with a data node in the consequent. Correspond-
ingly, we fold a predicate that appears in the consequent if it matches with a
data node in the antecedent. The well-founded condition is sufficient to ensure
termination.

5.1 Unfolding a Shape Predicate in the Antecedent

We apply an unfold operation on a predicate in the antecedent that matches
with a data node in the consequent. Consider :

x:11(n)An>3 F (Jr-x:node(.,r)*r::node(_, y)Ay#null) x Ay

where Ay captures the residual of entailment. For the entailment to succeed, we
would unfold the 11(n) predicate in the antecedent twice to allow the two data
nodes on the consequent to be matched up. This would result in the following
reduction towards a residual state :

Jdqi-x:mode(_, q1)*q1::11{n—1)An>3 F (Jr-x::node(_, r)*r::node(_, y)Ay#null) * Ay
q1::11(n—1)An>3 F (q1::node(_, y) A y#null) = Ay
Jq2-q1::node({_, qa)*qe::11(n—2)An>3 - qq::node(_, y)AyF#null * Ay
q2::11{(n—2)An>3Aqs=y F y#£null = Ag

Note that due to the well-founded condi- [UNFOLDING]

tion, each unfolding exposes a data node that c(v)=P e P

matches the data node in the consequent. pe1d(p:c(v*)) =y |p/self]®
Thus a reduction of the consequent imme-

diately follows, which contributes to the termination of the entailment check. A
formal definition of unfolding is given by the rule [UNFOLDING].

5.2 Folding a Shape Predicate in the Consequent

We apply a fold operation when a data node in the antecedent matches with a
predicate in the consequent. An example is :

x::node(1, q1)*qs::node(2, null)*y::node(3,null) F x:11(n)An>1xAg

The fold step may be recursively applied but is guaranteed to terminate for
well-founded predicate as it will reduce a data node in the antecedent for each
recursive invocation. This reduction in the antecedent cannot go on forever.
Furthermore, the fold operation may introduce bindings for the parameters of
the folded predicate. In the above, we obtain n=2 which may be transferred to
the antecedent if n is free, but kept in the consequent otherwise. Since n is indeed
free, our folding step would finally derive :

y:mode(3,null) An=2 F n>1xAy

The effects of folding may seem similar to unfolding the predicate in the conse-
quent. However, there is a subtle difference in their handling of bindings for free
derived variables. If we choose to use unfolding on the consequent instead, these
bindings may not be transferred to the antecedent. Consider the example below
where n is free :

z=null F z:11(n) An>—1xAy
By unfolding the predicate 11{n) in the consequent, we obtain :

z=null I (z=nullAn=0An>—1)V(dqg-z::node(_, q)*q::11(n—1)An>—1) * Ay

There are now two disjuncts in the consequent. The second one fails because it
mismatches. The first one matches but still fails as the derived binding n=0 was
not transferred to the antecedent.

When a fold to a predicate po::co(v3) is performed, the constraints related
to variables v; are important. The split function projects these constraints out
and differentiates those constraints based on free variables.

splity* (NI) =
let nf, w§ = if FV(x}) Nv} = 0 then (true,true)
else if FV(x!) NV = () then (7], true) else (true,)

in (/\7:1 ﬂ-g’ ?:1 ﬂ-lc)

A formal definition of [FOLDING]
folding is specified by rule c,<”*)545 epP Wi=Vi—{v",p}
[FOLDING]. Some heap nodes ~ KATHY, 3 [p/self] @« {(A;, ki, Vi, mi) Hy
from r are removed by the fold® (A, piic(v*)) =ap {(Air i3 Wermi) Vg
entailment procedure so as
to match with the heap formula of predicate p::c{(v*). This requires a special
version of entailment that returns three extra things: (i) consumed heap nodes,
(ii) existential variables used, and (iii) final consequent. The final consequent is
used to return a constraint for {v*} via IW;-m;. A set of answers is returned
by the fold step as we allow it to explore multiple ways of matching up with its
disjunctive heap state. Our entailment also handles empty predicates correctly.

6 Soundness of Entailment

The following theorems state that our entailment check procedure(given in Fig. 5)
is sound and terminating. Proofs are given in the technical report [15].

Theorem 6.1 (Soundness) If entailment check AjFAq x A succeeds, we have:
for all s, h, if s,h = Ay then s,h |E Ay x A.

Theorem 6.2 (Termination) The entailment check AjkAs x A always termi-
nates.

7 Implementation

We have built a prototype system using Objective Caml. The proof obligations
generated by our verification are discharged by our entailment checking proce-
dure with the help of Omega Calculator [16].

Programs Verification Programs Verification
Time (sec) Time (sec)
Linked List (size/length) Binary Search Tree (min, max, sortedness)
delete 0.09 insert 0.20
reverse 0.07 delete 0.38
Circular List (size, cyclic structure) Priority Queue (size, height, max-heap)
delete 0.09 insert 0.45
count 0.16 delete_max 7.17
Doubly Linked List (size, double links) ||[AVL Tree (size, height-balanced)
append 0.16 insert | 5.06
flatten (from tree) 0.30 Red-Black Tree (size, black-height-balanced)
Sorted List (size, min, max, sortedness)|| insert | 1.53
delete 0.13 2-3 Tree (height-balanced)
insertion_sort 0.27 insert | 24.41
selection_sort 0.41 Perfect Tree (perfectness)
bubble_sort 0.64 insert | 0.26
merge_sort 0.61 Complete Tree (completeness)
quick_sort 0.59 insert | 1.50

Fig. 6. Verifying Data Structures with Arithmetic Properties

Fig 6 summarizes a suite of programs tested. These examples use complicated
recursion and data structures with sophisticated shape and size properties. They
help show that our approach is general enough to handle interesting data struc-
tures such as sorted lists, sorted trees, priority queues, various balanced trees,
etc. in a uniform way. Verification time of a function includes time to verify
all functions that it calls. The time required for shape and size verification is
mostly within a couple of seconds. The average annotation cost (number of an-
notations/LOC ratio) for our examples is around 7%.

We have also investigated the precision/cost tradeoff of using XPure, and
settled on n = 1 as the default. XPurey fails for many examples, while XPure,
incurs substantial overheads without increasing precision for our examples.

8 Related Work

Separation Logic. The general framework of separation logic [17,10] is highly
expressive but undecidable. Likewise, [13] formalised the proof rules for handling
abstract predicates (with scopes on visibility of predicates) but provided no au-
tomated procedure for checking the user supplied specifications. In the search
for a decidable fragment of separation logic for automated verification, Berdine
et al. [1] supports only a limited set of predicates without size properties, dis-
junctions and existential quantifiers. Similarly, Jia and Walker [11] postponed
the handling of recursive predicates in their recent work on automated reasoning
of pointer programs. Our approach is more pragmatic as we aim for a sound and
terminating formulation of automated verification via separation logic but do
not aim for completeness in the expressive fragment that we handle. On the
inference front, Lee et al. [12] has conducted an intraprocedural analysis for loop
invariants using grammar approximation under separation logic. Their analysis
can handle a wide range of shape predicates with local sharing but is restricted
to predicates with two parameters and without size properties. A recent work
[8] has also formulated interprocedural shape inference but is restricted to just
the list segment shape predicate. Sims [20] extends separation logic with fixpoint
connectives and postponed substitution to express recursively defined formulae
to model the analysis of while-loops. However, it is unclear how to check for en-
tailment in their extended separation logic. While our work does not, address the
inference/analysis challenge, we have succeeded in providing direct support for
automated verification via an expressive shape and size specification mechanism.
Shape Checking/Analysis. Many formalisms for shape analysis have been
proposed for checking user programs’ intricate manipulations of shapely data
structures. One well-known work is Pointer Assertion Logic [14] by Moeller and
Schwartzbach where shape specifications in monadic second-order logic are given
by programmers for loop invariants and method pre/post conditions, and checked
by their MONA tool. For shape inference, Sagiv et al. [19] presented a param-
eterised framework, called TVLA, using 3-valued logic formulae and abstract
interpretation. Based on the properties expected of data structures, program-
mers must supply a set of predicates to the framework which are then used to
analyse that certain shape invariants are maintained. However, most of these

techniques were focused on analysing shape invariants, and did not attempt to
track the size properties of complex data structures. An exception is the quan-
titative shape analysis of Rugina [18] where a data flow analysis was proposed
to compute quantitative information for programs with destructive updates. By
tracking unique points-to reference and its height property, their algorithm is
able to handle AVIL-like tree structures. Even then, the author acknowledged
the lack of a general specification mechanism for handling arbitrary shape/size
properties.

Size Properties. In another direction of research, size properties have been
most explored for declarative languages [9,22,6] as the immutability property
makes their data structures easier to analyse statically. Size analysis was later
extended to object-based programs [7] but was restricted to tracking either size-
immutable objects that can be aliased and size-mutable objects that are una-
liased, with no support for complex shapes. The Applied Type System (ATS) [5]
was proposed for combining programs with proofs. In ATS, dependent types for
capturing program invariants are extremely expressive and can capture many
program properties with the help of accompanying proofs. Using linear logic,
ATS may also handle mutable data structures with sharing. However, users must
supply all expected properties, and precisely state where they are to be applied,
with ATS playing the role of a proof-checker. Comparatively, we use a more
limited class of constraint for shape and size analysis but supports automated
modular verification.

Unfold /Fold Mechanism. Unfold/fold techniques were originally used for pro-
gram transformation [4] on purely functional programs. A similar technique
called unroll/roll was later used in alias types [21] to manually witness the iso-
morphism between a recursive type and its unfolding. Here, each unroll/roll step
must be manually specified by programmer, in contrast to our approach which
applies these steps automatically during entailment checking. In [1], an auto-
mated procedure that uses unroll/roll was given but it was hardwired to work
for only 1seg and tree predicates. Furthermore, it performs rolling by unfolding
a predicate in the consequent which would miss bindings on free variables. Our
unfold /fold mechanism is general, automatic and terminates for heap entailment
checking.

9 Conclusion

We have presented a new approach to verifying pointer-based programs that
can precisely track shape and size properties. Our approach is built on well-
founded shape relations and well-formed separation constraints from which we
have designed a sound procedure for heap entailment. We have implemented a
verification system that is both precise and expressive. Qur automated deduction
mechanism is based on the unfold/fold reasoning of user-definable predicates
that has been proven to be sound and terminating.

Acknowledgement

We thank the reviewers for their insightful comments. This work is supported
by the Singapore-MIT Alliance and NUS research grant R-252-000-213-112.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with Separation
Logic. In APLAS. Springer-Verlag, November 2005.

J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In FMCO, Springer LNCS 4111, 2006.

J. Bingham and Z. Rakamaric. A Logic and Decision Procedure for Predicate
Abstraction of Heap-Manipulating Programs. In VMCAI Springer LNCS 3855,
pages 207-221, Charleston, U.S.A, January 2006.

. R.M. Burstall and J. Darlington. A transformation system for developing recursive

programs. Journal of ACM, 24(1):44-67, January 1977.

C. Chen and H. Xi. Combining Programming with Theorem Proving. In ACM
SIGPLAN ICFP, Tallinn, Estonia, September 2005.

W.N. Chin and S.C. Khoo. Calculating sized types. In ACM SIGPLAN PEPM,
pages 62-72, Boston, United States, January 2000.

W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen. Verifying Safety
Policies with Size Properties and Alias Controls. In ACM SIGSOFT ICSE, St.
Louis, Missouri, May 2005.

A. Gotsman, J. Berdine, and B. Cook. Interprocedural Shape Analysis with Sep-
arated Heap Abstractions. In SAS, Springer LNCS, Seoul, Korea, August 2006.
J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In ACM POPL, pages 410-423. ACM Press, January 1996.

S. Isthiag and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In ACM POPL, London, January 2001.

L. Jia and D. Walker. ILC: A foundation for automated reasoning about pointer
programs. In 15th ESOP, March 2006.

O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In ESOP. Springer Verlag, April 2005.
M.J.Parkinson and G.M.Bierman. Separation logic and abstraction. In ACM
POPL, pages 247-258, 2005.

A. Moeller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In ACM
PLDI, June 2001.

H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automated Verification of Shape
and Size Properties via Separation Logic. Technical report, SoC, Natl Univ. of
Singapore, July 2006. avail. at http://www.comp.nus.edu.sg/~ nguyenh2/papers/
vmcai07-report.pdf.

W. Pugh. The Omega Test: A fast practical integer programming algorithm for
dependence analysis. Communications of the ACM, 8:102-114, 1992.

J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
IEEE LICS, Copenhagen, Denmark, July 2002.

R. Rugina. Quantitative Shape Analysis. In SAS, Springer LNCS, Verona, Italy,
August 2004.

S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24(3), May 2002.

E-J. Sims. Extending separation logic with fixpoints and postponed substitution.
Theoretical Computer Science, 351(2):258-275, 2006.

D. Walker and G. Morrisett. Alias Types for Recursive Data Structures. In TIC,
Springer LNCS 2071, pages 177-206, 2000.

H. Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University, 1998.

