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Abstract

The study of constraint satisfaction problems definable
in various fragments of Datalog has recently gained con-
siderable importance. We consider constraint satisfaction
problems that are definable in the smallest natural recursive
fragment of Datalog - monadic linear Datalog with at most
one EDB per rule. We give combinatorial and algebraic
characterisations of such problems, in terms of caterpillar
dualities and lattice operations, respectively. We then apply
our results to study graph H-colouring problems.

1 Introduction

The constraint satisfaction problem (CSP) provides a
framework in which it is possible to express, in a natural
way, many combinatorial problems encountered in artificial
intelligence and computer science. A constraint satisfaction
problem is represented by a set of variables, a domain of
values for each variable, and a set of constraints between
variables. The aim in a constraint satisfaction problem is
then to find an assignment of values to the variables that
satisfies the constraints.

It is well known (see, e.g., [5, 11, 21]) that the constraint
satisfaction problem can be recast as the following funda-
mental problem: given two finite relational structures A and
B, is there a homomorphism from A to B? The CSP is NP-
complete in general, and the identifying of its subproblems
that have lower complexity has been a very active research
direction in the last decade (see, e.g., [5, 11, 13, 21, 23]).
One of the most studied restrictions on the CSP is when
the structure B is fixed, and only A is part of the input.
The obtained problem is denoted by CSP(B). Examples
of such problems include k-SAT, GRAPH H -COLOURING,
and SYSTEMS OF EQUATIONS (e.g., linear equations).

A variety of mathematical approaches to study prob-
lems CSP(B) has been recently suggested. The most ad-
vanced approaches use logic, combinatorics, universal al-
gebra, and their combinations (see [4, 5, 20, 21]). The logic

programming language Datalog and its fragments are ar-
guably some of the most important tools for solving CSPs.
In fact, all problems CSP(B) that are known to be tractable
can be solved via Datalog, or via the “few subpowers prop-
erty” [18], or via a combination of the two. Furthermore,
for every problem CSP(B) that is currently known to be-
long to NL or to LOGSPACE, the complement of CSP(B)
can be defined in linear Datalog and symmetric Datalog,
respectively (see [4, 6, 9]). The algebraic approach to the
CSP was recently linked with non-definability in the above
fragments of Datalog [23].

The definability of CSP(B) in Datalog and its fragments
is very closely related with homomorphism dualities (see,
e.g., [4]) that were much studied in the context of graph ho-
momorphisms (see [15]). Roughly, a structure B has dual-
ity (of some type) if the non-existence of a homomorphism
from a given structure A to B can always be explained by
the existence of a simple enough obstruction structure (i.e.,
one that homomorphically maps to A but not to B). The
types of dualities correspond to interpretations of the phrase
“simple enough”. The most important duality is probably
bounded treewidth duality which is equivalent to definabil-
ity in Datalog (see [4]). However, structures with this prop-
erty are not (yet) characterised, and this property is not even
known to be decidable. More success has been obtained
for some particular cases of bounded treewidth duality such
as finite duality [22, 25] and tree duality [7, 11]. Both of
these properties are known to be decidable, and have nice
logical, combinatorial, and algebraic characterisations (see
the above papers or [4]). For example, they correspond to
definability in first-order logic and in monadic Datalog, re-
spectively. The simplest of trees are paths, and the concept
of path duality was also much used to study graph homo-
morphism (see [16, 17]), and in this paper we argue that, in
the setting of general relational structures, a slightly more
general notion of caterpillar duality is more natural, and
we give concise logical, combinatorial, and algebraic char-
acterisations of structures having this form of duality (see
Section 3).

The problems CSP(B) with B being a digraph H are
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actively studied in graph theory under the name of H-
colouring [15]. Recently, algebraic and logical approaches
to the CSP were applied to solve well-known open prob-
lems (or to give short proofs of known results) about H-
colouring (see, e.g., [1, 2, 3]). We also apply our findings to
obtain new results about H-colouring in Section 4.

2 Preliminaries

2.1 Basic definitions

A vocabulary is a finite set of relation symbols or predi-
cates. In what follows, τ always denotes a vocabulary. Ev-
ery relation symbol R in τ has an arity r = ρ(R) > 0
associated to it. We also say that R is an r-ary relation sym-
bol. A τ -structure A consists of a set A, called the universe
of A, and a relation RA ⊆ Ar for every relation symbol
R ∈ τ where r is the arity of R. All structures in this paper
are assumed to be finite, i.e., structures with a finite uni-
verse. Throughout the paper we use the same boldface and
slanted capital letters to denote a structure and its universe,
respectively.

A homomorphism from a τ -structure A to a τ -structure
B is a mapping h : A → B such that for every r-
ary R ∈ τ and every (a1, . . . , ar) ∈ RA, we have
(h(a1), . . . , h(ar)) ∈ RB. We denote this by h : A → B.
We also say that A homomorphically maps to B, and write
A → B if there is a homomorphism from A to B and
A �→ B if there is no homomorphism. Now CSP(B) can be
defined to be the class of all structures A such that A → B.
The class of all structures A such that A �→ B will be
denoted by co-CSP(B). A number of examples of combi-
natorial problems representable as CSP(B) or co-CSP(B)
for a suitable structure B can be found in [4, 5, 21].

A retract of a structure B is an induced substructure B′

of B such that there is a homomorphism h : B → B′ sat-
isfying h(b) = b for all b ∈ B′. A structure is a core if it
has no proper retracts, and a core of a structure is its retract
that is a core. It is well known that all cores of a structure
are isomorphic, so we will call any structure isomorphic to
a core of B the core (of B), denoted core(B). Obviously,
the problems CSP(B) and CSP(core(B)) coincide.

We will now define structures that play an important role
in this paper - trees and caterpillars, which are natural gen-
eralisations of the corresponding notions from graph theory.
Let A be a τ -structure. As in [25], the incidence multigraph
of A, denoted Inc(A), is defined as the bipartite multigraph
with parts A and Block(A), where Block(A) consists of
all pairs (R, a) such that R ∈ τ and a ∈ RA, and with edges
ea,i,Z joining a ∈ A to Z = (R, (a1, . . . , ar)) ∈ Block(A)
when ai = a. A structure A is said to be a τ -tree (or sim-
ply a tree) if its incidence multigraph is a tree (in particular,
it has no multiple edges). For a τ -tree A, we say that an

element of A is a leaf if it is incident to exactly one block
in Inc(A). A block of A (i.e., a member of Block(A)) is
said to be pendant if it is incident to at most one non-leaf
element, and it is said to be non-pendant otherwise. For
example, any block with a unary relation is always pendant.

In graph theory, a caterpillar is a tree which becomes a
path after all its leaves are removed. Following [24], we
say that a τ -tree is a τ -caterpillar (or simply a caterpil-
lar) if each of its blocks is incident to at most two non-
leaf elements, and each element is incident to at most
two non-pendant blocks. Informally, a τ -caterpillar has a
body consisting of a chain of elements a1, . . . , an+1 with
blocks B1, . . . , Bn where Bi is incident to ai and ai+1

(i = 1, . . . , n), and legs of two types: (i) pendant blocks in-
cident to exactly one of the elements a1, . . . , an+1, together
with some leaf elements incident to such blocks, and (ii)
leaf elements incident to exactly one the blocks B1, . . . , Bn.

Example 1. (i) If τ is the signature of digraphs then the τ -
caterpillars are the oriented caterpillars, i.e., digraphs ob-
tained from caterpillar graphs by orienting each edge in
some way.

(ii) Let B be a structure with B = {1, 2, . . . , 6},
one unary relation R1 = {2, 3}, one binary relation
R2 = {(1, 2), (2, 3), (3, 6)} and one ternary relation R3 =
{(3, 4, 5)}. The graph Inc(B) is shown on Fig. 1. The el-
ements 2 and 3 are the non-leaves, and (R2, (2, 3)) is the
only non-pendant block. In particular, B is a caterpillar.
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�������	
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�������	5

�������	1 �������	
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�������	3 �������	

(R3,(3,4,5))
�������	4

�������	

(R2,(3,6))

�������	
6

Figure 1. A caterpillar.

2.2 Datalog

We now briefly describe the basics of Datalog (for more
details, see, e.g., [8, 19]). Fix a vocabulary τ . A Datalog
program is a finite set of rules of the form t0 : − t1, . . . , tn
where each ti is an atomic formula R(xi1 , . . . , xik

). Then
t0 is called the head of the rule, and the sequence t1, . . . , tn
the body of the rule. The intended meaning of such a rule
is that the conjunction of the predicates in the body im-
plies the predicate in the head, with all variables not ap-
pearing in the head existentially quantified. The predicates
occurring in the heads of the rules are not from τ and are
called IDBs (from “intensional database predicates”), while
all other predicates come from τ and are called EDBs (from
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“extensional database predicates”). One of the IDBs, which
is usually 0-ary in our case, is designated as the goal predi-
cate of the program. Since the IDBs may occur in the bodies
of rules, each Datalog program is a recursive specification
of the IDBs, with semantics obtained via least fixed-points
of monotone operators. The goal predicate is assumed to
be initially set to false, and we say that a Datalog pro-
gram accepts a τ -structure A if its goal predicate evaluates
to true on A. In this case we also say that the program de-
rives the goal predicate on A. It is easy to see that the class
of structures accepted by any Datalog program is closed un-
der homomorphism (i.e., if A → B and A is accepted then
B is also accepted).

A Datalog program is called linear if each of its rules
has at most one occurrence of an IDB in its body, and it is
called monadic if each IDB in it is at most unary.

When using Datalog to study CSP(B), one speaks of
the definability of co-CSP(B) in Datalog (or its fragments).
Examples of Datalog programs defining classes of the form
co-CSP(B) can be found in [4, 6, 20].

2.3 Polymorphisms

Let f be an n-ary operation on B, and R a relation on
B. We say that f is a polymorphism of R if, for any tuples,
ā1, . . . , ān ∈ R, the tuple obtained by applying f compo-
nentwise to ā1, . . . , ān also belongs to R. In this case we
also say that R is invariant under f .

We say that f is a polymorphism of B if it is a polymor-
phism of each relation in B. It is easy to check that the n-
ary polymorphisms of B are precisely the homomorphisms
from the n-th direct power Bn to B. It is well known and
easy to verify that composition of polymorphisms of B is
again a polymorphism of B (see, e.g., [5]).

The notion of a polymorphism plays the key role in
the algebraic approach to the CSP. The polymorphisms of
a (core) structure are known to determine the complexity
of CSP(B) as well as definability of (the complement of)
CSP(B) in Datalog and the following fragments: monadic,
linear, symmetric (see [4, 23]). Many algebraic sufficient
conditions for definability of co-CSP(B) in various frag-
ments of Datalog are known (see [4]).

Let us now define several types of operations that will
be used in this paper. An n-ary operation f on B is called
idempotent if it satisfies the identity f(x, . . . , x) = x, and it
is called conservative if f(x1, . . . , xn) ∈ {x1, . . . , xn} for
all x1, . . . , xn ∈ B.

An n-ary operation f is called totally symmetric if
f(x1, . . . , xn) = f(y1, . . . , yn) whenever {x1, . . . , xn} =
{y1, . . . , yn}.

A ternary operation f is called a majority operation if it
satisfies f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all
x, y.

A binary associative commutative idempotent operation
is called a semilattice operation. We will say that two binary
operations f and g on B are lattice operations if each of
them is a semilattice operation and, in addition, they satisfy
the absorption identities: f(x, g(x, y)) = g(x, f(x, y)) =
x. It is well known (see, e.g., [12]) that semilattice op-
erations are in one-to-one correspondence with partial or-
ders in which every two elements have a greatest lower
bound (which is the result of applying the operation). Sim-
ilarly, lattice operations are in one-to-one correspondence
with partial orders in which every two elements have both
a greatest lower bound and a least upper bound. The sim-
plest example of lattice operations are the operations min
and max with respect to any fixed linear order on B.

2.4 Dualities

A comprehensive treatment of dualities for the CSP can
be found in the survey [4].

Definition 2. A set O of τ -structures is called an
obstruction set for B if, for any τ -structure A,
A → B if and only if A′ �→ A for all A′ ∈ O.

If the set O can be chosen to consist of nicely behaved
structures such as paths, caterpillars, trees, or structures of
bounded pathwidth or of bounded treewidth, then B is said
to have path (caterpillar, tree, bounded pathwidth, bounded
treewidth, respectively) duality. A structure with a finite
obstruction set is said to have finite duality.

It is known (see [4]) that a structure B has one of the
following forms of duality: finite, tree, bounded pathwidth,
bounded treewidth if and only if co-CSP(B) is definable in
the following fragments of Datalog, respectively: recursion-
free, monadic, linear, full.

Structures with tree duality were characterised in sev-
eral equivalent ways in [11]. To state the result, we need
the following construction: for a τ -structure B, define a τ -
structure U(B) whose elements are the non-empty subsets
of B, and, for each r-ary R ∈ τ , we have (A1, . . . , Ar) ∈
RU(B) if and only if, for each j = 1, . . . , r and each
a ∈ Aj , there exists (a1, . . . , ar) ∈ RB such that aj = a.

Theorem 3. [11, 7] Let B be a structure. The following
conditions are equivalent:

1. B has tree duality;

2. co-CSP(B) is definable by a monadic Datalog pro-
gram with at most one EDB per rule;

3. U(B) admits a homomorphism to B;

4. for every n ≥ 1, B has an n-ary totally symmetric
polymorphism.

309



If B is a core then the above conditions are equivalent to
the following:

5. B is the core of a structure with a semilattice polymor-
phism.

It is known that any structure with finite duality has a fi-
nite obstruction set consisting of trees [25]; such structures
are charactersied in many equivalent ways in [22]. The sit-
uation when these trees can be chosen to be caterpillars was
considered in [24].

Theorem 4 ([24]). Let B be a core structure with finite
duality. Then B has an obstruction set consisting of cater-
pillars if and only if B has a majority polymorphism.

3 Caterpillar duality

3.1 A characterisation

The main result of this paper is a characterisation of
structures with caterpillar duality in the spirit of Theorem 3.
First, we need to give some definitions.

Let k, n be positive integers. We call a (kn)-ary opera-
tion f on B k-block symmetric if it satisfies the following
condition:

f(x11, . . . , x1k, . . . , xn1, . . . , xnk) =
= f(y11, . . . , y1k, . . . , yn1, . . . , ynk)

whenever {S1, . . . , Sn} = {T1, . . . , Tn} where, for all i,
Si = {xi1, . . . , xik} and Ti = {yi1, . . . , yik}. Note that if
k = 1 or n = 1 then f is totally symmetric.

We will often use the following notation for
k-block symmetric operations. For (not neces-
sarily distinct) subsets S1, . . . , Sn of B, with
at most k elements each, let f(S1, S2, . . . , Sn)
denote f(x11, . . . , x1k, . . . , xn1, . . . , xnk) where
Si = {xi1, . . . , xik} for all i. Also, for l ≤ n, let
f(S1, . . . , Sl) denote f(S1, . . . , Sl, . . . , Sl). It is clear
that f(S1, . . . , Sl) is well defined and depends neither on
the order of the sets Si nor on the number of repetitions
of those sets. Therefore, we will also write f(S) for a
family of non-empty subsets S = {S1, . . . , Sl} to denote
f(S1, . . . , Sl).

If a k-block symmetric operation f satisfies
f(S1, S2, . . . , Sl) = f(S2, S2, S3, . . . , Sl) whenever
S2 ⊆ S1, we call it an absorptive k-block symmetric
operation (or k-ABS operation, for short). The most typical
example of such an operation is as follows.

Example 5. (i) It is easy to check that, for any fixed linear
order on B and any positive integers k, n, the operation

f(x11, . . . , x1k, . . . , xn1, . . . , xnk) =
= min(max(x11, . . . , x1k), . . . ,max(xn1, . . . , xnk)).

is a k-ABS operation.
(ii) More generally, if (B,�,	) is a lattice (i.e., �,	 are

lattice operations in infix notation) then it is easy to check
that, for any k, n, the operation

f(x11, . . . , x1k, . . . , xn1, . . . , xnk) =
= (x11 	 . . . 	 x1k) � . . . � (xn1 	 . . . 	 xnk).

is a k-ABS operation.

For an r-ary relation R on B and a number 1 ≤ m ≤ r,
let prm(R) = {am | (a1, . . . , am, . . . , ar) ∈ R}.

Let B be a τ -structure. We construct a structure C(B)
as follows: the elements of C(B) are the families of non-
empty subsets of B; for each r-ary relation RB, we have
(S1, S2, . . . , Sr) ∈ RC(B) if, for all j, m = 1, . . . , r, we
have

1. prm(RB) ∈ Sm, and

2. prm(RB∩(Bj−1×S×Br−j)) ∈ Sm for each S ∈ Sj .

Note that the empty family belongs to the universe of C(B),
but it never appears in any tuple in a relation in this struc-
ture.

Theorem 6. Let B be a structure. The following conditions
are equivalent:

1. B has caterpillar duality;

2. co-CSP(B) is definable by a linear monadic Datalog
program with at most one EDB per rule;

3. C(B) admits a homomorphism to B;

4. for every k, n ≥ 1, B has a kn-ary k-ABS polymor-
phism.

If B is a core then the above conditions are equivalent to
the following:

5. B is the core of a structure with lattice polymorphisms.

The proof of Theorem 6 will follow from subsequent
lemmas in this section.

For the sake of brevity, we will say that a linear monadic
Datalog program with at most one EDB per rule is a cater-
pillar program. For a given structure B and a given frag-
ment of Datalog, there is a standard way of constructing the
canonical program for B in the given fragment of Datalog
(see, e.g., [4, 11]). The canonical caterpillar program for
a structure B is constructed as follows: let S0, S1, . . . , Sp

be an enumeration of unary relations on B (i.e., subsets
of B) that can be expressed by a first-order ∃∧-formula
over B. Assume that S0 is the empty relation. For each
Si, introduce a unary IDB Ii. Then the canonical caterpil-
lar program for B involves the IDBs I0, . . . , Ip and EDBs
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R1, . . . , Rn, and contains all the rules (whose body contains
at most one EDB and at most one IDB) with the following
property: if every Ii in the rule is replaced by Si and ev-
ery Rs by RB

s , then every assignment of elements of B to
the variables that satisfies the conjunction of atomic formu-
las in the body must also satisfy the atomic formula in the
head. Finally, include the goal predicate G along with the
rule G : − I0(x).

Note that B is not accepted by the canonical program
(for itself). Indeed, by construction, a derivation of G on B
could be translated into a chain of valid implications which
starts from an atomic formula and finishes with the empty
(i.e. false) predicate, which is impossible. This implies the
following fact.

Fact 7. If the canonical caterpillar program for B accepts
a structure A then A �→ B.

We now relate caterpillar duality with caterpillar Datalog
programs.

Lemma 8. For any structures A and B, if there exists a
caterpillar C such that C → A and C �→ B then the
canonical program for B accepts A.

Proof. Since the class of structures accepted by any Dat-
alog program is closed under homomorphism, it suffices to
show that C is accepted by the program. Clearly, this is the
case when Inc(C) has no non-leaves (i.e., the total num-
ber of tuples in relations in C is 1) because we must have
RB = ∅, where RC is the only non-empty relation in C,
and then the program has the rule I0(x1) : −R(x1, . . . , xr).

Now let D be an arbitrary caterpillar with a total of at
least two tuples in its relations, and let a be a non-leaf in
Inc(D) which has at most one other non-leaf at distance
two from it. Informally, this means that a is at one of the
two extremes of the body of the caterpillar D. We claim
that the canonical program can derive (on D) the fact Ij(a)
where Ij is the IDB corresponding to a set Sj = {h(a) |
h : D → B}. This claim implies the lemma, since I0

corresponds to the empty set.
We prove the claim by induction on the total number of

tuples in relations in D. If this number is two then Inc(D)
has two blocks Z1 = (Ri, ā1) and Z2 = (Rt, ā1) where
i and t may coincide and tuples ā1 and ā2 share exactly
one element – the non-leaf a. Assume without loss of
generality that a appears in the first coordinate in ā1 and
in the second coordinate in ā2, and let S1 = pr1(RB

i ),
S2 = pr2(RB

t ), and S3 = S1 ∩ S2. Then the canoni-
cal program has the rules I1(x1) : −Ri(x1, x2, . . . , xri

)
and I3(x2) : −Rt(x1, x2, . . . , xrt

), I1(x2). It is clear that
S3 = {h(a) | h : D → B}, and that I3(a) is derived on D
if and only if D → B. This proves the base of induction.

Assume now that the claim holds for all caterpillars in
which the total number of tuples is less than that in D. Fix

a non-leaf a satisfying the assumptions of the claim. Then
we can choose a pendant block Z1 = (Ri, ā1) such that a
is the only non-leaf in ā. Without loss of generality assume
that a appears in the first component in ā1. Let D′ be the
caterpillar obtained from D by removing ā1 from RD

i (and
all leaves in ā1 from D). We consider two cases depending
on whether or not a becomes a leaf in D′.

If a is still a non-leaf in D′ (that is, Z1 was not the only
pendant block incident to a in Inc(D)) then, by the induc-
tion hypothesis, the canonical program can derive (on D′)
the fact Ip(a) where Ip is the IDB corresponding to a set
Sp = {h(a) | h : D′ → B}. Let Sj = Sp ∩ pr1(RB

i ).
It is clear that Sj = {h(a) | h : D → B}, while
the canonical program derives (on D) Ij(a) via the rule
Ij(x1) : −Ri(x1, x2, . . . , xri), Ip(x1).

Consider the case when a becomes a leaf in D′. This
means that Z1 was the only pendant block incident to a
in Inc(D). Let Z2 = (Rt, ā2) be the (only) other block
incident to a (both in Inc(D) and Inc(D′)). Note that
this block was non-pendant in D, but becomes pendant in
D′. Assume without loss of generality that a appears in
the first coordinate in ā2, while the single non-leaf in ā2

(in D′), say a′, appears in the second component in ā2.
By the induction hypothesis, the canonical program can
derive (on D′) the fact Ip(a′) where Ip is the IDB cor-
responding to the set Sp = {h(a′) | h : D′ → B}.
Let Sq = pr1(RB

t ∩ (B × Sp × Brt−2)) and Sj =
Sq ∩ pr1(RB

i ). It is easy to check that Sj = {h(a) |
h : D → B}, while the program derives (on D) Ij(a)
via the rules Iq(x1) : −Rt(x1, x2, . . . , xrt

), Ip(x2), and
Ij(x1) : −Ri(x1, x2, . . . , xri

), Iq(x1).

Lemma 9. A structure B has caterpillar duality if and only
if co-CSP(B) can be defined by a caterpillar program.

Proof. Suppose that co-CSP(B) is defined by a caterpillar
program. This means that a structure A satisfies A �→ B if
and only if A is accepted by the program.

If A �→ B then the program derives the goal predicate
on A. Reading the derivation from the end to the beginning
we obtain

G : − I0(a0)
I0(a0) : − Ri1(. . . , a0, . . . , ai, . . .), Ij1(ai)
Ij1(ai) : − Ri2(. . . , ai, . . . , aj , . . .), Ij2(aj)

...
Ij(l−1)(ap) : − Ril

(. . . , ap, . . . , aq, . . .), Ijl
(aq)

Ijl
(aq) : − Ril+1(. . . , aq, . . .).

Consider a substructure A′ of A such that, for any R ∈ τ
and any ā, we have ā ∈ RA′

if and only if R(ā) appears in
the above derivation. Now modify the structure A′ by giv-
ing new names to the occurrences of each element in such a
way that in the obtained structure we have the following:
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• there is no repetition of elements in any tuple in any
relation, and

• if two tuples (possibly in different relations) share an
element then this element appears in the heads of all
rules between the rules corresponding to the two tu-
ples.

Call the obtained structure C. It is clear that C is a caterpil-
lar. We also have that C homomorphically maps to A′ (via
reverse renaming) and hence to A, but not to B because the
program still derives the goal predicate on C. Hence, B has
caterpillar duality.

Conversely assume that B has caterpillar duality, i.e. for
any structure A we have A → B if and only if all cater-
pillars that homomorphically map to A also map to B. We
claim that the canonical caterpillar program for B defines
co-CSP(B). By Fact 7, the canonical program never ac-
cepts a structure that homomorphically maps to B. Now
let A ∈ co-CSP(B) be arbitrary. By assumption, there is
a caterpillar C such that C → A and C �→ B. It follows
from Lemma 8 that the program accepts A.

Corollary 10. If co-CSP(B) is definable by some caterpil-
lar program then it is definable by the canonical one.

Lemma 11. A structure A is not accepted by the canonical
caterpillar program for B if and only if A → C(B).

Proof. Assume first that A → C(B) and show that A is
not accepted by the canonical program. Since the class of
structures accepted by any Datalog program is closed un-
der homomorphism, it suffices to show that C(B) is not
accepted by the canonical program. We will show by in-
duction on the length of derivation that whenever the fact
Ij(S) is derived by the program, we have Sj ∈ S where Sj

is the subset of B corresponding to Ij .
Assume first that Ij(S) is derived by an introductory rule

(i.e., one whose body contains no IDB and R ∈ τ is the
EDB in the rule), that is, we have Ij(S) : −R(. . . , S, . . .)
where S appears in the m-th component in the tuple on the
right. Note that this tuple belongs to RC(B). Then, by the
definition of the canonical program Ij corresponds to the
subset prm(RB) of B, which must be contained in S by the
definition of C(B).

Assume now that Ij(S) is derived by a rule Ij(S) :
−R(. . . , S, . . . ,T, . . .), Il(T). Assume without loss of gen-
erality that Sj is the smallest set such that Ij can be in
the head of this rule. By the induction hypothesis, we
have Sl ∈ T. Assume that S appears in the m-th com-
ponent and T in the k-th component in the EDB of the
rule. Again, by the definition of the program, we have
Sj = prm(RB ∩ (Bk−1 × Sl × Br−k)) where r is the
arity of R. Then we must have Sj ∈ S by the definition of
C(B).

Assume now that C(B) is accepted by the canonical pro-
gram. Then the program can derive I0(S) for some S. Then,
as we just proved, the empty set S0 belongs to S which is
impossible by the definition of C(B).

Conversely, assume A is not accepted by the program.
Hence the program stabilizes without deriving the goal
predicate. Recall that every IDB Ij in the canonical pro-
gram corresponds to a subset Sj of B. For every element
a ∈ A, consider the family Sa = {Sj | Ij(a) is derived }
of subsets of B. It is easy to see that the family is non-
empty for any a that appears in a tuple in a relation in A.
Moreover, since the goal predicate is not derived, I0(a) is
not derived either, and so each subset in a non-empty Sa is
non-empty. It is straightforward to check that the mapping
h : A → C(B) given by h(a) = Sa is a homomorphism
from A to C(B).

Lemma 12. For any structure B, co-CSP(B) is definable
by a caterpillar program if and only if C(B) admits a ho-
momorphism to B.

Proof. Suppose that co-CSP(B) is definable by a caterpil-
lar program. Then it is definable by the canonical one, by
Corollary 10. By Lemma 11, C(B) is not accepted by the
canonical program, and hence C(B) → B.

Conversely, suppose that C(B) → B. By Fact 7, each
structure from CSP(B) is not accepted by the canonical
caterpillar program for B. On the other hand, if a structure
A is not accepted by the program then we have A → C(B)
by Lemma 11, and so A → B. Hence, co-CSP(B) is defin-
able by the canonical caterpillar program for B.

Lemma 13. The relations in C(B) are invariant under lat-
tice operations.

Proof. We show that every relation in C(B) is in-
variant under set intersection and set union operations,
which are easily seen to be lattice operations. Let RC(B)

be an r-ary relation in C(B) and take arbitrary tuples
(S1, . . . , Sr), (T1, . . . ,Tr) ∈ RC(B).

It follows directly from the definition of C(B) that for
all j, m = 1, . . . , r we have

1. prm(RB) ∈ Sm ∩ Tm, and

2. prm(RB ∩ (Bj−1 × S ×Br−j)) ∈ Sm ∩ Tm for each
S ∈ Sj ∩ Tj .

It follows that (S1 ∩ T1, . . . , Sr ∩ Tr) ∈ RC(B). The fact
that (S1∪T1, . . . , Sr∪Tr) ∈ RC(B) can be verified equally
easily.

Lemma 14. A structure B has a kn-ary k-ABS polymor-
phism for all k, n if and only if C(B) → B.
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Proof. Let h : C(B) → B be a homomorphism. By
Lemma 13, the structure C(B) has polymorphisms which
are set-theoretic union and intersection operations. Since
composition of polymorphisms is again a polymorphism, it
follows that C(B) also has the k-ABS polymorphisms

fk,n(X1, . . . , Xn) = (
⋂

X1) ∪ (
⋂

X2) ∪ . . . ∪ (
⋂

Xn),

where Xi = {xi1, . . . , xik}. By Lemma 11, there exists
a homomorphism g : B → C(B). It is straightforward
to check that the operations h(fk,n(g(x1), . . . , g(xkn))) are
k-ABS polymorphisms of B.

Conversely, let f be a kn-ary k-ABS polymorphism of
B with k = ρ · |B| and n = ρ(2|B| − 1), where ρ is
the maximum of the arities of the relations in B. Define
a map h : C(B) → B by the rule h(S) = f(S) for non-
empty S and set h(∅) arbitrarily. Let us now show that h
is a homomorphism. By the properties of f , h is clearly a
well-defined function. Take an arbitrary (say, r-ary) rela-
tion R ∈ τ and fix (S1, . . . , Sr) ∈ RC(B). We need to show
that (h(S1), . . . , h(Sr)) ∈ RB.

Let Ŝi = {X ∩ pri RB | X ∈ Si}. It immediately fol-
lows from the definition of the structure C(B) that we have
Ŝi ⊆ Si for all 1 ≤ i ≤ r, and also that (Ŝ1, . . . , Ŝr) ∈
RC(B). Since f is absorptive, we have f(Ŝi) = f(Si).
Therefore, we can without loss of generality assume that
each Si contains only subsets of pri RB.

For a set S ∈ Si, construct a (k × r)-matrix M i
S whose

entries are elements from B and such that

1. each row of M i
S is an element of RB, and

2. for any 1 ≤ m ≤ r, the set of entries in the m-th
column is prm(RB ∩ (Bi−1 × S × Br−i)).

Let us show that this is possible. Recall that S ⊆ pri(RB).
Divide the matrix into r submatrices of |B| consecutive
rows. For 1 ≤ m ≤ r, the rows of the m-th submatrix are
tuples (from RB) whose i-th coordinate belongs to S and
whose m-th coordinates cover all of prm(RB ∩ (Bi−1 ×
S × Br−i)).

Now construct a matrix M with kn rows and r columns,
as follows. It is divided into n layers of k consecutive rows,
each layer is a matrix M i

S for some 1 ≤ i ≤ r and some
S ∈ Si, and each matrix of this form appears as a layer. By
the choice of n, this is possible.

It remains to notice that the operation f applied to the
i-th column of M gives the value f(Si), and, since f
is a polymorphism of B and every row of M is in RB,
we have (f(S1), . . . , f(Sr)) ∈ RB, as required. Thus
(h(S1), h(S2), . . . , h(Sr)) ∈ RB. We conclude that h :
C(B) → B.

Remark 15. If a structure B has kn-ary k-ABS poly-
morhism for k = ρ · |B| and n = ρ(2|B| − 1), where ρ
is the maximum of the arities of the relations in B, then, for
any k, B has k-ABS polymorphisms of all arities divisible
by k.

Proof. (of Theorem 6).
(1) ⇔ (2) follows from Lemma 9.
(2) ⇔ (3) follows from Lemma 12.
(3) ⇔ (4) follows from Lemma 14.
Assume now that that B is a core. If condition (3) holds

then we have homomorphisms B → C(B) (by Lemma 11)
and C(B) → B implying, since B is a core, that B is the
core of C(B). The structure C(B) has lattice polymor-
phisms by Lemma 13, so (3) implies (5). On the other hand,
(5) implies (4) because any structure with lattice polymor-
phisms has the required k-ABS polymorphisms (see Ex-
ample 5) which can be transferred to B as in the proof of
Lemma 14.

Theorem 16. The problem of checking whether a given
structure has caterpillar duality is decidable, but NP-hard.

Proof. Decidability of the problem immediately follows
from condition (3) of Theorem 6. We now prove, by reduc-
tion from 3-SAT, that the problem is NP-hard even when
restricted to digraphs. Let Tn be the transitive tournament
on n vertices. It is shown in the proof of Theorem 6.1
of [22] that, given an instance I of 3-SAT, one can con-
struct in polynomial time a digraph H such that (i) Tn is
the core of H if and only if I is satisfiable, and (ii) either
Tn is the core of H or else H does not have tree duality. It
remains to say that the directed path on n+1 vertices forms
an obstruction set for Tn [15], so Tn has caterpillar duality.

3.2 Caterpillar duality vs. path duality

One can define τ -paths as τ -caterpillars with at most two
pendant blocks. Say, if τ is the signature of digraphs then τ -
paths are oriented paths (i.e., digraphs obtained from paths
by orienting each edge in some way). One can also define
path dualities in a natural way, and obtain a characterisa-
tion similar to conditions (1)-(3) of Theorem 6. However,
the fragment of Datalog arising from this connection is not
very natural and it does not seem to have a natural equiv-
alent algebraic condition such as conditions (4) and (5) of
Theorem 6. Since paths and caterpillars are very close struc-
turally, it is natural to ask whether caterpillar duality and
path duality are equivalent properties.

Proposition 17. There exist digraphs that have caterpillar
duality, but not path duality.
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Proof. Let C be an arbitrary core digraph that is an ori-
ented caterpillar, but not a path. By results of [25], there
exists a structure B such that C is the obstruction set for B,
that is, for any digraph G, we have either C → G or else
G → B. Clearly, B has caterpillar duality. We claim that
it does not have path duality. Suppose, for a contradiction,
that it does. Then, since C �→ B, there is an oriented path P
such that P → C and P �→ B. The latter property implies
that C → P, in which case C must be the core of P, which
is impossible.

4 Applications to list H-colouring

In the list H-colouring problem for a fixed (di)graph H,
one is given a (di)graph G, and, for each vertex v of G,
a list Lv of possible target vertices in H. The question is
whether there is a homomorphism h : G → H such that
h(v) ∈ Lv for each vertex v of G. It is well known (and
easy to see) that this problem is exactly CSP(Hu) where
Hu is the structure obtained by expanding the (di)graph H
with unary relations U where U runs through all non-empty
subsets of H . It is easy to see that the polymorphisms of
Hu are exactly the conservative polymorphisms of H.

Recall that a (di)graph is called reflexive it contains all
loops, and irreflexive if it contains no loop.

4.1 List H-colouring for undirected graphs

All graphs in this subsection are undirected. It was
shown in [10] that, for a reflexive graph H, the list H-
colouring problem is solvable in polynomial time if H is
an interval graph and NP-complete otherwise. Recall that
a (reflexive) graph is called an interval graph if its vertices
can be represented by intervals (on the real line) in such a
way that two vertices are adjacent if and only if the corre-
sponding intervals intersect.

Assume now that H = (H, E) is a reflexive interval
graph. By modifying the proof in [10], it is possible to show
directly that the structure Hu (as above) has caterpillar du-
ality. We give a short proof of this fact using Theorem 6.

Theorem 18. For every k and n, the graph H has a con-
servative k-ABS polymorphism of arity kn.

Proof. Fix an interval representation of H. We can without
loss of generality assume that the endpoints of the intervals
representing vertices of H are pairwise distinct [10]. Given
an interval u ∈ V , we denote by l(u) and r(u) the left and
right endpoints of u, respectively.

Let k, n ≥ 1 be arbitrary. Define two functions on H ,
Minl and Maxr, as follows:

Minl(u1, . . . , un) = ui such that l(ui) = min
j

l(uj),

Maxr(u1, . . . , uk) = ui such that r(ui) = max
j

r(uj).

Note that the functions are well defined because the in-
tervals in H cannot have the same endpoints.

Let S1, S2, . . . , Sn be sets of vertices of H (i.e., sets
of intervals) with at most k elements each. We obtain
from them a new sequence of sets, as follows: for each
j = 1, . . . , n such that Sj properly contains some set Si,
choose Si so that Si is minimal with this property and re-
place Sj by Si. Break ties arbitrarily. Call the obtained sets
S′

1, S
′
2, . . . , S

′
n.

Define an operation h : Hnk → H as follows:

h(x11, . . . , x1k, . . . , xn1, . . . , xnk) =
= Minl(Maxr(S′

1), . . . , Maxr(S′
n))

where, for 1 ≤ i ≤ n, Si = {xi1, . . . , xik}, and S′
i is

obtained as described above. Note that the set {S′
1, . . . , S

′
n}

depends only on {S1, . . . , Sn}. This and the (obvious) fact
that the operations Maxr and Minl are totally symmetric
implies that the operation h is well defined and also that it
is a k-block symmetric operation.

Let us show that h is absorptive. We now can use nota-
tion h(S1, S2, . . . , Sn) since h is k-block symmetric. As-
sume that S2 ⊂ S1. Then S′

1 = Si for some i > 1. Note
that, by construction, we have S′

i = Si. Assume without
loss of generality that i = 3. Then we have

h(S1, S2, . . . , Sn) =
= Minl(Maxr(S′

3), Maxr(S′
2), . . . , Maxr(S′

n)),

and

h(S2, S2, S3, . . . , Sn) =
= Minl(Maxr(S′

2), Maxr(S′
2), . . . , Maxr(S′

n)).

The right-hand sides of the above equations are the same
(since Minl is totally symmetric), so the left-hand sides are
equal as well, as required.

It is obvious that h is conservative. It remains to show
that it is a polymorphism of H. For all 1 ≤ i ≤ n and
1 ≤ l ≤ k, let sil and til be intervals in V that intersect
(i.e., adjacent in H). Also let Si = {si1, . . . , sik} and Ti =
{ti1, . . . , tik} for 1 ≤ i ≤ n. We need to show that the
intervals s = h(S1, . . . , Sn) and t = h(T1, . . . , Tn) also
intersect.

We have s = Minl(Maxr(S′
1), . . . , Maxr(S′

n)) and t =
Minl(Maxr(T ′

1), . . . , Maxr(T ′
n)). Hence, s = Maxr(S′

i)
for some i and t = Maxr(T ′

j) for some j. It is easy to see
that i and j can be chosen so that Si = S′

i and Tj = T ′
j .

Since Si = S′
i, and T ′

i ⊆ Ti we know that every interval in
T ′

i intersects some interval in S′
i. Similarly, every interval

in S′
j intersects some interval in T ′

j .
Suppose, for a contradiction, that s ∩ t = ∅. As-

sume first that t precedes s, i.e. r(t) < l(s). Since
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s = Minl(Maxr(S′
1), . . . , Maxr(S′

n)), we have l(s) ≤
l(Maxr(S′

j)). Since Maxl(S′
j) ∈ S′

j , it intersects some
interval tj ∈ T ′

j . In particular, we have l(Maxr(Sj)) <
r(tj). By combining the three above inequalities, we obtain
r(t) < l(s) ≤ l(Maxr(Sj)) < r(tj), which contradicts the
fact t = Maxr(T ′

j). If r(s) < l(t) then the argument is
symmetric.

Thus h is a polymorphism and the theorem is proved.

Corollary 19. For a reflexive graph H, either Hu has
caterpillar duality or CSP(Hu) is NP-complete.

Remark 20. If H is the reflexive claw (i.e., the complete
bipartite graph K1,3 with loops) then it is easy to check that
Hu does not have lattice polymorphisms, even though it is
the core of a structure with such polymorphisms (by Theo-
rem 6).

Remark 21. By using results from [22], one can show that,
for a reflexive graph H, Hu does not have finite duality
unless the graph H is complete.

4.2 List H-colouring for directed graphs

All graphs in this subsection are directed and, unless
specified otherwise, irreflexive (i.e., loopless). It was shown
in [17] that every oriented path has path duality (that is it
has an obstruction set consisting of oriented paths). Since
every oriented path is a caterpillar, every oriented path has
caterpillar duality. We will show how to generalise this re-
sult to a much wider class of digraphs which, in particular,
includes all oriented caterpillars. A directed acyclic graph
(DAG) G is called layered (or balanced) if each vertex u of
G can be assigned a positive integer l(u), the level of u, so
that every arc (u, v) of G satisfies l(u) + 1 = l(v). Every
layered DAG can be embedded into the plane in such a way
that each vertex u lies on the horizontal line y = l(u), and
the arcs are straight lines. If, in addition, the embedding
can be arranged in such a way that the arcs never cross each
other then the graph is called a planar layered DAG. It is
easy to see that every oriented caterpillar is a planar layered
DAG.

Theorem 22. If H is a planar layered DAG then Hu has
caterpillar duality.

Proof. Fix a planar layered embedding of H into the plane
such that the vertices lie on horizontal lines (as described
above) and consider the following total order on H: u < v
if and only if either (i) l(u) < l(v) or else (ii) l(u) = l(v)
and u is to the left of v.

Let min and max be the lattice operations with respect
to the above order. We now show that they are poly-
morphisms of H. Let (a1, b1) and (a2, b2) be arcs in

H. We need to show that (min(a1, a2), min(b1, b2)) and
(max(a1, a2), max(b1, b2)) are also arcs in H. We con-
sider the former case, the latter is similar. Assume without
loss of generality that min(a1, a2) = a1. If l(a1) < l(a2)
then l(b1) < l(b2) so min(b1, b2) = b1 and we are done.
If l(a1) = l(a2) then l(b1) = l(b2) and we again have
min(b1, b2) = b1 because otherwise the arcs (a1, b1) and
(a2, b2) would cross. By Example 5 and Theorem 6, we are
done.

Reflexive digraphs that admit polymorphisms min and
max with respect to some linear ordering of the vertices
were characterised in [14]. Obviously, if H is such a di-
graph then Hu has caterpillar duality.

Now let H be a reflexive digraph, and let Hc denote the
structure obtained from H by adding all unary relations of
the form {a}, a ∈ H . The problem CSP(Hc) is known
in graph theory as one-or-all list H-homomorphism prob-
lem, and it is equivalent to the so-called H-retraction prob-
lem [10, 15]. It is easy to see that the polymorphisms of Hc

are the idempotent polymorphisms of H. Note that if τ is
the signature of Hc then a τ -path is an oriented path each
of whose ends may belong to a unary relation.

Theorem 23. For any reflexive digraph H , the following
are equivalent:

1. Hc has caterpillar duality;

2. Hc has tree duality and a majority polymorphism;

3. Hc has path duality.

Proof. Clearly, (3) implies (1). Let us show that (1) im-
plies (2). Caterpillar duality trivially implies tree duality.
By Theorem 6, Hc has a 6-ary 2-ABS polymorphism f . It
is easy to check that f(x, y, z, x, y, z) is a majority poly-
morphism of Hc. Finally, let us show that (2) implies (3).
Let τ be the signature of Hc (i.e. one binary and |H| unary
relations). Let A a τ -structure such that A �→ Hc. By
the tree duality of Hc, there exists a τ -tree T that is ho-
momorphic to A, but not to Hc. Take T to be minimal,
that is, any proper substructure of T is homomorphic to
Hc. Then, since Hc has a majority polymorphism, Theo-
rem 1.17 of [26] implies that at most two elements of T are
in unary relations in T. This, the fact that H is reflexive,
and the minimality of T imply that T is in fact a path.
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