
©2001, Erica Y. Yang, Jie Xu, Keith Bennett

The SeCode Approach:

Towards Fault-Tolerant and Secure Execution of Mobile Code

Erica Y. Yang Jie Xu Keith Bennett

Department of Computer Science

University of Durham

South Road, Durham DH1 3LE, U.K.

Email: {Erica.Yang, Jie.Xu, Keith Bennett}@durham.ac.uk

Abstract

The dependability issue including fault tolerance and

security is a basic stumbling block to the practical and

commercial application of the mobile code technology.

This short paper introduces the SeCode approach to

fault-tolerant and secure execution of mobile code. The

research focus is on the development of a method and an

architectural framework to support mobile code against

unintentional/intentional faults and malicious attacks

from its operating environment. The proposed approach

makes no assumption about the operating environment

(i.e. remote hosts) for mobile code. It integrates work on

fault tolerance and security within a well-defined formal

system model, and offers a powerful ability to detect and

identify faulty hosts and malicious attacks by means of

redundant data structures with advanced fault diagnosis

and cryptography techniques.

1. Introduction

Traditionally, security models, fault tolerance and

security policies for large distributed systems have taken

a “host-central” view so that the emphasis has been on

protecting hosts, and making hosts reliable and fault-

tolerant. This has worked very well for traditional client-

server models, but is no longer adequate for envisaged

approaches for the next generation of distributed

computing based on mobile code. In a mobile code

system, protection and fault tolerance must be provided

for both hosts and mobile code. Especially, effective and

feasible solutions must be developed to protect mobile

code against malicious attacks from hosts.

With mobile code, we aim to move the code so that it

is local to the associated resources needed. The gain is in

terms of performance (locality), late binding,

reconfiguration (resource location is not built into the

application) and scalability. Specific application

examples include mobile e-commerce, online purchasing

and delivery, and Web access for retrieval of real-time

information such as stock quotes, flight and reservation

information, navigational maps, and weather reports.

However, if mobile code is to be used for serious

industrial applications, it is imperative that security and

fault tolerance architectures are used a priori, otherwise
users will not be able to trust the system [6].

There are in general two categories of research issues

related to mobile code fault tolerance and security: i)

protecting hosts against malicious and/or faulty mobile

code, and ii) protecting mobile code against malicious

and/or faulty hosts. Considerable efforts have been

focused on the former problem, while the latter is still not

well understood. Existing approaches and techniques for

protecting code are limited to several separate areas such

as tamper/failure detection, fault-tolerant execution and

privacy preservation [2].

Fault-tolerant mobile code systems are usually based on

replication and voting techniques to mask the effects of

faulty or malicious hosts, and use cryptography techniques

(e.g. digital signatures and the secret sharing scheme) to

maintain the confidentiality of mobile code, authenticate

their origin, and verify their integrity [3][4][9]. Most of

existing solutions require the provision of system-level

mechanisms (e.g. those supporting replication, reliable

detection, and voting) at each remote host [5][7][8]. They

generally do not scale well and thereby are not applicable

in actual settings, such as the Internet.

In reality, the operating environment for mobile code is

often large-scale and potentially non-trustworthy [6]. We

have been developing a new approach, named SeCode,

that does not require any system-level support for

replication, detection and voting at any remote host. Our

approach can detect corrupted results and reconstruct the

expected results out of a threshold number of correct

pieces of results, thereby tolerating faults and/or attacks

from malicious remote hosts.

2. The SeCode Approach

Mobile code is defined here as executable code which

is dispatched, which uses remote resources, and which

reports back on its results. We consider a large-scale and

dynamic network environment composed with a large

number of hosts. Those hosts may provide high-level

services, including information databases, interfaces to

intelligent devices (e.g. sensors and display), and

brokering services. Suppose that a local host (the origin)

containing a user application needs remote resources. It

therefore dispatches executable code to a set of m remote

hosts, denoted by H = {H1, H2, …, Hm}, to acquire the

resources. Special services provided by our SeCode

system will split the user request R at the local host into k

©2001, Erica Y. Yang, Jie Xu, Keith Bennett

sub-requests, which are independent from each other.

These sub-requests contain some redundancy so that any

k - t out of k sub-requests are mathematically equivalent

to the original request R (where t is the threshold number

of faults and/or attacks). Instead of dispatching a single

piece of mobile code, the system will send k pieces of the

code, denoted by C = {C1, C2, …, Ck}, that carry the sub-

requests respectively to remote hosts. The expected

results for the request R can be derived from the results

returned as long as at least k - t sub-requests have been

met, thereby effectively tolerating faults and/or attacks

from malicious remote hosts.

The information resources (e.g. databases) at remote

hosts can be modelled in different ways. We start with a

simple model used in [1] and view the resources available

at each remote host Hj as a binary string of length kj.

These strings are represented as follows:

The user application at the local host first creates an

index set i = {i1, i2, … , im}, where ij  {1, 2, …, kj} and

j = 1, 2, …, m. The index ij is used to indicate the user’s

interest in the specific value of the bit xj
ij at the host Hj.

For the purpose of fault tolerance and security, the

system also uses a set of random numbers, r = {r1, r2, …,

rm} where rj is of length Lrj and j = 1, 2, …, m, to produce

a set of queries, Q = {Q1, Q2, …, Qm}. In particular, for a

given remote host Hj, k sub-queries are generated based

on the index ij and the random number rj, that is,

For a given piece of code Ci, m sub-queries, {Q
1
i, Q

2
i,

…, Q
m

i} where i = 1, 2, …, k, are carried and executed at

m remote hosts respectively. All the answers returned

from the remote hosts can be represented as follows:

It is important to notice that for a given Aj, there are in

fact k candidate answers available. The intended result

can be derived from the k answers, provided that at least

k – t candidate answers contain the correct results. In

other words, our system is designed to tolerate up to t

faults and/or attacks. For each of m remote hosts, the

intended and final answer can be reconstructed using the

following reconstruction functions:

3. The SeCode System Architecture

Figure 1 outlines an architectural framework for our

system. Any host that sends mobile code to remote hosts

contains four key components (or services). The request

manager is responsible for generating sub-requests from a

user request, and the mobile code dispatcher is responsible

for producing the corresponding pieces of the code and

sending them to remote hosts. The mobile code collector

will collect the returning objects and results, and the result

manager will finally reconstruct the desirable results based

on all the information and data back from remote hosts,

and perform a diagnosis algorithm for identifying faulty

hosts and malicious attacks.

Figure 1. The SeCode System Architecture

We have taken a system approach rather than a

programming language approach. Our strategy is to build

fault tolerance and security into the system (or platform)

and applications themselves, rather than attempt to

introduce reliability and security patches afterward. The

development of a sound architectural framework is the

essential part of our approach. Within this framework, the

infrastructure services (e.g. fault tolerance and security)

will be provided and incorporated into mobile code

platforms so as to facilitate the fault-tolerant and secure

execution of mobile code.

Reference
[1] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private

Information Retrieval,” J. of the ACM, 45(6), pp. 965-982, Nov. 1998.

[2] W. Jansen, “Countermeasures for Mobile Agent Security,” Computer
Communications, Elsevier Science BV, Nov. 2000.

[3] D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen, and D.

Zagorodnov, “NAP: Practical Fault tolerance for Itinerant
Computations,” in Proc. 19th IEEE ICDCS, Austin, Texas, Jun. 1999.

[4] L. L. Kassab and J. Voas, “Towards Fault-Tolerant Mobile Agents,”

in Workshop on Distri. Comput. on the Web, Rostock, Germany, 1999.
[5] A. Mohindra, A. Purakayastha and P. Thati, “Exploiting Non-

determinism for Reliability of Mobile Agent Systems,” in Proc. of 30th

IEEE FTCS, New York, USA, 2000.
[6] G. P. Picco, “Mobile Agents: An Introduction,” in the Journal of

Microprocessors and Microsystems, (A. Corradi ed)., 25(2), Elsevier

Science, Apr. 2001.
[7] L. M. Silva, V. Batista and J. G. Silva, “Fault-Tolerant Execution of

Mobile Agents,” in Proc. of DSN’2000, New York, USA, 2000.

[8] M. Strasser and K. Rothermel, “System Mechanisms for Partial

Rollback of Mobile Agent Execution,” in Proc. of ICDCS’2000, Taipei,

Taiwan, 2000.

[9] B. S. Yee, “A Sanctuary for Mobile Agents,” in Secure Internet
Programming, vol. 1603, (J. Vitek and C. Jensen, eds), Springer-Verlag,

pp. 261-274, 1999.

H1: x
1 = x1

1 x
1

2 … x1
k1; x

1
i {0, 1}

H2: x
2 = x2

1 x
2

2 … x2
k2; x

2
i {0, 1}

 ……

Hm: xm = xm
1 x

m
2 … xm

km; xm
i {0, 1}

Q1 = {Q1
i(i1, r1) | i = 1, 2, …, k;}

Q2 = {Q2
i(i2, r2) | i = 1, 2, …, k;}

 ……

Qm = {Qm
i(im, rm) | i = 1, 2, …, k;}

A1 = {A1
i(x

1, Q1
i(i1, r1) | i = 1, 2, …, k}

A2 = {A2
i(x

2, Q2
i(i2, r2) | i = 1, 2, …, k}

 ……

Am = {Am
i(x

m, Qm
i(im, rm) | i = 1, 2, …, k}

R1(i1, r1, A
1
1(x

1, Q1
1(i1, r1)), …, A1

k(x
1, Q1

k(i1, r1))) = x1
i1

R2(i2, r2, A
2
1(x

2, Q2
1(i2, r2)), …, A2

k(x
2, Q2

k(i2, r2))) = x2
i2

 ……

Rm(im, rm, Am
1(x

m, Qm
1(im, rm)), …, Am

k(x
m, Qm

k(im, rm))) = xm
im

Q11 Q12 Q1m

Q21 Q22 Q2m

Qk1 Qk2 Qkm

request manager

mobile code dispatcher

request

C1

C2

Ck

(local host)user application

C1, C2 ... Ck

result manager

mobile code collector

result

C1, C2 ... Ck

Internet

host 1 host 2 host m

(pieces of code)

