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Abstract 

The dependability issue including fault tolerance and 

security is a basic stumbling block to the practical and 

commercial application of the mobile code technology. 

This short paper introduces the SeCode approach to 

fault-tolerant and secure execution of mobile code. The 

research focus is on the development of a method and an 

architectural framework to support mobile code against 

unintentional/intentional faults and malicious attacks 

from its operating environment. The proposed approach 

makes no assumption about the operating environment 

(i.e. remote hosts) for mobile code. It integrates work on 

fault tolerance and security within a well-defined formal 

system model, and offers a powerful ability to detect and 

identify faulty hosts and malicious attacks by means of 

redundant data structures with advanced fault diagnosis 

and cryptography techniques.  

1. Introduction 

Traditionally, security models, fault tolerance and 

security policies for large distributed systems have taken 

a “host-central” view so that the emphasis has been on 

protecting hosts, and making hosts reliable and fault-

tolerant. This has worked very well for traditional client-

server models, but is no longer adequate for envisaged 

approaches for the next generation of distributed 

computing based on mobile code. In a mobile code 

system, protection and fault tolerance must be provided 

for both hosts and mobile code. Especially, effective and 

feasible solutions must be developed to protect mobile 

code against malicious attacks from hosts. 

With mobile code, we aim to move the code so that it 

is local to the associated resources needed. The gain is in 

terms of performance (locality), late binding, 

reconfiguration (resource location is not built into the 

application) and scalability. Specific application 

examples include mobile e-commerce, online purchasing 

and delivery, and Web access for retrieval of real-time 

information such as stock quotes, flight and reservation 

information, navigational maps, and weather reports. 

However, if mobile code is to be used for serious 

industrial applications, it is imperative that security and 

fault tolerance architectures are used a priori, otherwise 
users will not be able to trust the system [6].  

There are in general two categories of research issues 

related to mobile code fault tolerance and security: i) 

protecting hosts against malicious and/or faulty mobile 

code, and ii) protecting mobile code against malicious 

and/or faulty hosts. Considerable efforts have been 

focused on the former problem, while the latter is still not 

well understood. Existing approaches and techniques for 

protecting code are limited to several separate areas such 

as tamper/failure detection, fault-tolerant execution and 

privacy preservation [2].  

Fault-tolerant mobile code systems are usually based on 

replication and voting techniques to mask the effects of 

faulty or malicious hosts, and use cryptography techniques 

(e.g. digital signatures and the secret sharing scheme) to 

maintain the confidentiality of mobile code, authenticate 

their origin, and verify their integrity [3][4][9]. Most of 

existing solutions require the provision of system-level 

mechanisms (e.g. those supporting replication, reliable 

detection, and voting) at each remote host [5][7][8]. They 

generally do not scale well and thereby are not applicable 

in actual settings, such as the Internet. 

In reality, the operating environment for mobile code is 

often large-scale and potentially non-trustworthy [6]. We 

have been developing a new approach, named SeCode, 

that does not require any system-level support for 

replication, detection and voting at any remote host. Our 

approach can detect corrupted results and reconstruct the 

expected results out of a threshold number of correct 

pieces of results, thereby tolerating faults and/or attacks 

from malicious remote hosts. 

2. The SeCode Approach 

Mobile code is defined here as executable code which 

is dispatched, which uses remote resources, and which 

reports back on its results. We consider a large-scale and 

dynamic network environment composed with a large 

number of hosts. Those hosts may provide high-level 

services, including information databases, interfaces to 

intelligent devices (e.g. sensors and display), and 

brokering services. Suppose that a local host (the origin) 

containing a user application needs remote resources. It 

therefore dispatches executable code to a set of m remote 

hosts, denoted by H = {H1, H2, …, Hm}, to acquire the 

resources. Special services provided by our SeCode 

system will split the user request R at the local host into k 



©2001, Erica Y. Yang, Jie Xu, Keith Bennett 

sub-requests, which are independent from each other. 

These sub-requests contain some redundancy so that any 

k - t out of k sub-requests are mathematically equivalent 

to the original request R (where t is the threshold number 

of faults and/or attacks). Instead of dispatching a single 

piece of mobile code, the system will send k pieces of the 

code, denoted by C = {C1, C2, …, Ck}, that carry the sub-

requests respectively to remote hosts. The expected 

results for the request R can be derived from the results 

returned as long as at least k - t sub-requests have been 

met, thereby effectively tolerating faults and/or attacks 

from malicious remote hosts.  

The information resources (e.g. databases) at remote 

hosts can be modelled in different ways. We start with a 

simple model used in [1] and view the resources available 

at each remote host Hj as a binary string of length kj.  

These strings are represented as follows: 

 

 

 

The user application at the local host first creates an 

index set i = {i1, i2, … , im}, where ij  {1, 2, …, kj} and  

j = 1, 2, …, m. The index ij is used to indicate the user’s 

interest in the specific value of the bit xj
ij at the host Hj. 

For the purpose of fault tolerance and security, the 

system also uses a set of random numbers, r = {r1, r2, …, 

rm} where rj is of length Lrj and j = 1, 2, …, m, to produce 

a set of queries, Q = {Q1, Q2, …, Qm}. In particular, for a 

given remote host Hj, k sub-queries are generated based 

on the index ij and the random number rj, that is, 

 

 

 

 

For a given piece of code Ci, m sub-queries, {Q
1
i, Q

2
i, 

…, Q
m

i} where i = 1, 2, …, k, are carried and executed at 

m remote hosts respectively. All the answers returned 

from the remote hosts can be represented as follows: 

 

 

 

 

It is important to notice that for a given Aj, there are in 

fact k candidate answers available. The intended result 

can be derived from the k answers, provided that at least 

k – t candidate answers contain the correct results. In 

other words, our system is designed to tolerate up to t 

faults and/or attacks. For each of m remote hosts, the 

intended and final answer can be reconstructed using the 

following reconstruction functions:  

 

 

 

3. The SeCode System Architecture 

Figure 1 outlines an architectural framework for our 

system. Any host that sends mobile code to remote hosts 

contains four key components (or services). The request 

manager is responsible for generating sub-requests from a 

user request, and the mobile code dispatcher is responsible 

for producing the corresponding pieces of the code and 

sending them to remote hosts. The mobile code collector 

will collect the returning objects and results, and the result 

manager will finally reconstruct the desirable results based 

on all the information and data back from remote hosts, 

and perform a diagnosis algorithm for identifying faulty 

hosts and malicious attacks.  

Figure 1. The SeCode System Architecture 

We have taken a system approach rather than a 

programming language approach. Our strategy is to build 

fault tolerance and security into the system (or platform) 

and applications themselves, rather than attempt to 

introduce reliability and security patches afterward. The 

development of a sound architectural framework is the 

essential part of our approach. Within this framework, the 

infrastructure services (e.g. fault tolerance and security) 

will be provided and incorporated into mobile code 

platforms so as to facilitate the fault-tolerant and secure 

execution of mobile code.  
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