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Summary. In the last decades a lot of research has been devoted to smoothing
in the sense of nonparametric regression. However, this work has nearly exclusively
concentrated on fitting regression functions. When the conditional distribution of
y|x is multimodal, the assumption of a functional relationship y = m(x) + noise
might be too restrictive. We introduce a nonparametric approach to fit multifunc-
tions, allowing to assign a set of output values to a given x. The concept is based
on conditional mean shift, which is an easily implemented tool to detect the lo-
cal maxima of a conditional density function. The methodology is illustrated by
environmental data examples.
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1 Introduction

A typical definition of ’Nonparametric regression’ is the following [5]:

“Given observations from an explanatory variable X and a response variable Y,

construct a function, a ”smoother”, which at point x estimates the average value

of Y given that X = x. ”

Specifically, given a set of i.i.d. random variables (X1, Y1), . . . , (Xn, Yn)
sampled from a population (X,Y ) ∈ R2 with joint density f(x, y), one usually
assumes a model of the type Y = m(X) + ε, with some noise ε. Thereby
m : R −→ R is a smooth function relating X and Y in a suitable way, which
may be generally expressed as

m(x) = Ω(Y |X = x). (1)

The choice of the operator Ω(·) is quite crucial. The most popular settings
are the expectation Ω(·) = E(·) or the median Ω(·) = Med(·). Nonparamet-
ric regression in the sense of mean or median smoothing has been maturely
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treated in the last decades. However, as already indicated by the definition
given above, these techniques are restricted to the assumption of a functional
relationship between predictor and response. When the conditional distribu-
tion of Y |X is multimodal, this simple functional model may not adequately
capture the essential relation between predictor and response, and the appli-
cation of a mean or median smoother might blur important features of the
data.

Another candidate for Ω(·) is the mode operator. Modal regression has
been proposed by Scott [8] and others, but has yet not been elaborated to
construct a nonparametric multi-valued smoothing routine. It is the intention
of this paper to fill this gap.

The mode differs from the mean and the median in one important aspect.
While the conditional mean and median always represent a single value, a
conditional density function can have several conditional maxima, which may
be interpreted as local modes, being defined by

local Mode(Y |X = x) = arg max
a∈U

fY |X(a|x)

where U (in the unidimensional case) is a closed interval and the maximum is
taken from the interior of the interval. When the conditional distribution of the
data is multimodal, then the data cannot be described properly by a function.
Therefore it is assumed that the underlying relation R ⊂ R2 decomposes
into several (almost everywhere smooth) branches, which are defined by the
operators

Ω(j)(·) = jth localMode(·),
where j = 1, . . . , p is a suitable enumeration of the branches (e.g. from bottom
to top). The underlying relation has the form

R = {(x,Ω(j)(Y |X = x)); x ∈ R, j = 1, . . . , p},
and the counterpart to model (1) is given by the multifunction

M(x) = {Ω(j)(Y |X = x)|1 ≤ j ≤ p}.
The rest of this paper is organized as follows. Section 2 introduces our

approach to estimate conditional modes, which is based on a simple condi-
tional mean shift procedure. Section 3 gives some real data examples. Section
4 treats the evaluation of the relevance of the estimated branches, and the
paper finishes with a conclusion in Section 5.

2 Conditional modes and densities

According to Samanta & Thavaneswaran [7], the conditional density f(y|x) =
f(x, y)/f(x) can be estimated by

f̂(y|x) =
1
h2

n∑

i=1

wi(x)K2

(
Yi − y

h2

)
,
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where

wi(x) = K1

(
Xi−x

h1

)
/

n∑

j=1

K1

(
Xj−x

h1

)
. (2)

For a given x, they show that the maximizer

ym(x) = argmax
y

f̂(y|x),

called sample conditional mode, is a consistent and asymptotically normally
distributed estimator for the conditional mode under some regularity con-
ditions. However, it remains the problem of how to find the maxima of the
conditional density estimates. A grid search would be on principle possible,
but is computationally demanding and is not straightforwardly implemented
when all local conditional modes (rather than the global one) are required.
Thus, we will not pursue this idea further, but use a simpler, faster, and more
elegant procedure. Let us assume that K2 belongs to a special class of radi-
ally symmetric kernel functions satisfying K2(·) = ckk((·)2), with ck being
a strictly positive constant. The function k(·) is called the profile of K2. By
considering

∂f̂(y|x)
∂y

=
2ck

h3
2

n∑

i=1

wi(x)k′
((

Yi − y

h2

)2
)

(y − Yi)

and setting this expression to zero one obtains for the mode estimator ym the
equation

ym =

n∑
i=1

wi(x)k′
((

Yi−ym

h2

)2
)

Yi

n∑
i=1

wi(x)k′
((

Yi−ym

h2

)2
) .

Note that the dependence of ym ≡ ym(x) on x is suppressed for notational
ease. Let g(·) = −k′(·) and consider g as a kernel profile belonging to a kernel
function G(·) = cgg((·)2). When K2 is the Gaussian kernel, then G is Gaussian
as well. By use of G and of the weight function (2) one obtains

ym =

n∑
i=1

K1

(
Xi−x

h1

)
G

(
Yi−ym

h2

)
Yi

n∑
i=1

K1

(
Xi−x

h1

)
G

(
Yi−ym

h2

) . (3)

This equation cannot be solved analytically, but the solution ym can be ob-
tained iteratively by calculating a series of local means. Let µ(ym) denote
the right side of equation (3). An important tool is the so-called mean shift
µ(y)− y, which for a mode ym takes the value zero. For a given starting point
y0, Comaniciu & Meer [2] show that the sequence (y`)`=0,1,2,... defined by

y`+1 = µ(y`) (4)
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converges to a nearby mode ym, which is a fixed point of (4). To account for
multimodal conditional distributions, one applies the mean shift procedure as
follows:

Algorithm: Nonparametric multi-valued regression.
For a given x,

1. Choose a set of starting points y
(1)
0 (x) < . . . < y

(P )
0 (x).

2. For j = 1, . . . , P : Set ` = 0. Iterate

y
(j)
`+1(x) = µ(y(j)

` (x))

until convergence is reached, resulting in estimates ŷ
(1)
m (x), . . . , ŷ(P )

m (x)
3. The estimator for M(x) is the random set

M̂(x) = {ŷ(1)
m (x), . . . , ŷ(P )

m (x)},
where the values ŷ

(j)
m (x) are not necessarily distinct.

Note that the algorithm does not require do calculate the conditional den-
sities themselves. The set M̂(x) is ordered, i.e. ŷ

(1)
m (x) ≤ . . . ≤ ŷ

(P )
m (x). This

follows immediately from the properties of the mean shift, as the series of
local means converges to a nearby conditional mode ([2], Theorem 1). This
ordering makes it easy to identify the branches.

The choice of the number P of starting points depends on the number
p of branches one expects. To be certain that all modes are discovered, one
has to install a sufficiently large number P ≥ p of starting points. Each point
gives an iteration process, which will find a conditional mode within its basin
of attraction. The choice P > p certainly implies that some branches will
be found more than once, but for a sufficiently high number of iterations
(usually, about 30 is enough) all estimates belonging to the same branch will
be approximately equal. If one may assume that the data are bimodal, it is
sufficient to start one mean shift procedure from the bottom and one from
the top of the data cloud.

3 Examples

Firstly, we consider a speed-flow diagram as frequently used in transportation
engineering (see e.g. [3]) for a Californian uninterrupted highway (“freeway”)
having 4 lanes, where only the lane 2 is considered here (Fig. 1, data from
University of Berkeley). The speed is measured in miles per hour, and the
flow in vehicles per lane per hour. Each point represents an average speed and
hourly flow rate for data collected over a 30-seconds interval. For uncongested
traffic, there is no significant association between traffic flow and speed - this
is the big cluster at the top. When the traffic gets too dense, however, speed
may be considerably diminished due to congestion, yielding the less dense
data points at the bottom.
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Looking at Fig. 1, one notices that the speed v cannot be described as
a function v(q) of the flow q. Thus, any attempt on modelling data of this
type has been based on modelling the traffic flow as a function q(v). How-
ever, traffic speed prediction (which is of interest e.g. to construct Intelligent
Transportation Systems, ITS) would require exactly the opposite setting, i.e.
v = v(q). Fig. 1 (bottom) shows the results of a multimodal regression ac-
cording to the presented algorithm, using Gaussian kernels with bandwidths
h1 = 100 and h2 = 4. The starting points are chosen constant w.r.t. x, i.e.
y
(1)
0 (x) ≡ y

(1)
0 = min{Y1, . . . , Yn} and y

(2)
0 (x) ≡ y

(2)
0 = max{Y1, . . . , Yn}. The

estimated curve is superior to the estimates based on a local mean or the
local median (Fig. 1 top), which do not take account for the data points in
the bottom of the plot, which obviously carry some information and cannot
be discarded.
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Fig. 1. Speed-flow diagram for lane 2 with local smoothers based on the conditional
mean, median (top) and mode (bottom). In the bottom also the antiprediction curve
(see Section 4) is plotted.

Secondly, we consider a data set which does not seem to be a candidate for
the presented procedure at the first glance. The Old Faithful Geyser data (data
set faithful in R package datasets), describing the waiting time (in minutes)
between eruptions and the duration of the eruption for the Old Faithful geyser
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in Yellowstone National Park, Wyoming, USA, have been frequently used to
illustrate the performance of smoothers or density estimators; see e.g. [6]. The
data and a local mean smoother (loess) are shown in Fig. 2.
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Fig. 2. Old Faithful Geyser data with loess smoother, modal regression and an-
tiprediction curve.

Though the loess smoother seems to do a good job, it raises some problems,
as also observed by Hennig [4] considering another version of the Old Faithful
data. For instance, given a waiting time of x = 68, the loess prediction would
be ŷ = 3.37. Regarding the plot in more depth, one notices that this value is
in fact very unlikely. There is hardly any observed eruption duration in the
interval from about 2.5 to 3.5 minutes. However, it seems to be appropriate
to assume that there are two regimes, one with low waiting times and low
eruption durations, and other one with higher ones, where a certain overlap
between these regimes is likely. A modal regression applying the presented
procedure (h1 = 5, h2 = 0.27) yields the solid lines in Fig. 2, which unveil the
two-regime-structure of the data set.

4 Relevance, Antiprediction and Classification

A crucial point is the evaluation of the relevance of a conditional mode. Intu-
itively, the probability mass between the neighboring valleys surrounding the
mode is a useful measure for the relevance of a mode. Fig. 3 (left) illustrates
this concept for the speed-flow data given a flow of 1300 vehicles/hour. The
area between the left border and the valley contains an estimated probability
of 0.072, and the second mode corresponds to the probability 0.928. Thus, one
would infer here

M̂(1300) =
{

28.06 with estimated prob. 0.072
59.44 with estimated prob. 0.928

To estimate these probabilities, one has to find the lows of the valleys and
to integrate over the estimated conditional densities between them. Without
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Fig. 3. Left: Estimated conditional density at a flow of 1300 vehicles/hour. Modes
and antimodes are indicated by short solid and dashed vertical lines, respectively.
Right: Probabilities of the branches of smooth multimodal regression curves in de-
pendence of flow.

too much effort one can do the search for the minimum and the integration
simultaneously. For a given (local) mode ym at x, one descends from the
(local) maximum f(ym|x) in small steps of length δ, say, to the right (steps
k = 0, 1, 2, . . .) as well as to the left (steps k = −1,−2, . . .), and augments the
integral in each step by δ · f(ym + kδ|x) until the minimum is reached, i.e the
sequence (f(ym +kδ|x))k stops to fall. Note that the number of steps until the
next minimum to the left and to the right do not need to be the same. This
integral is usually surprisingly accurate, as the approximation errors on the
left and on the right side of the maximum tend to cancel out. The choice of δ is
not very crucial, because it is not a tuning parameter, but only influences the
accuracy of the approximation. Fig. 3 (right) shows the probabilities obtained
in this manner for the speed-flow data. At a flow of 1620 vehicles/hour, the
dashed line rises rapidly and merges with the solid one, as the components
are no longer separated beyond this point. This is certainly not a sign for a
suddenly rising probability of congested traffic.

If one stores, for a given value x, the positions of the minima found while
calculating the above integrals, one obtains a vector of conditional antimodes.
An antimode can be seen as an antiprediction - a value that is likely not to
be seen. Connecting the conditional antimodes in x-direction, one obtains a
nonparametric antiregression or antiprediction curve, i.e. a curve describing
where the data are not to be expected.

In the case of speed-flow data, one observes that this curve (Fig. 1 bottom)
is useful to classify the data into observations coming from the congested or
uncongested regime, as long as a division is possible. The antiprediction curve
for the Geyser data is plotted in Fig. 2 (dashed-dotted line) and classifies the
data into regimes with high and low eruption duration.
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5 Conclusion

We showed that the consideration of the conditional mode rather than the
conditional mean or median is useful when the data can be assumed to be
associated to several, possibly in x- and y- direction overlapping, regimes. We
demonstrated how smooth modal regression curves can be calculated easily
by means of a conditional mean shift procedure. We also showed how modal
regression may be used to identify areas of transition between regimes.

Though being a simple 2-dimensional problem, the task of multi-valued
regression has received little attention yet. However, it should be noted that
there exist approaches to parametric multi-valued [10] and cluster-wise [4]
regression, and some related contributions from computer scientists in the
context of inverse mapping problems [1]. Further, there exist nonparametric
multi-valued regression methods for the simpler case that it is known a priori
which point belongs to which branch [9]. We remark finally that the exten-
sion of the presented method to multivariate predictors is straightforward by
employing multivariate kernels in (2).
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