A Formal Soundness Proof of Region-based Memory
Management for Object-Oriented Paradigm*

Florin Craciurt, Shengchao Qin and Wei-Ngan Chih

! Department of Computer Science, Durham University, UK
{fl orin.craciun, shengchao. gi n}@ur ham ac. uk
2 Department of Computer Science, National University og@pore, Singapore
chi nasn@onp. nus. edu. sg

Abstract. Region-based memory management has been proposed as & viabl
alternative to garbage collection for real-time applicas and embedded soft-
ware. In our previous work we have developed a region typrémfce algorithm
that provides an automatic compile-time region-based mgmanagement for
object-oriented paradigm. In this work we present a forneainsiness proof of
the region type system that is the target of our region imiege More precisely,
we prove that the object-oriented programs accepted byemiom type system
achieve region-based memory management in a safe way. Téatanthe re-
gions follow a stack-of-regions discipline and regionslideation never create
dangling references in the store and on the program stagkc@uribution is to
provide a simple syntactic proof that is based on inductiwh fallows the stan-
dard steps of a type safety proof. In contrast the previofefysproofs provided
for other region type systems employ quite elaborate tegtas.

1 Introduction

Modern object-oriented programming languages providenatime system that auto-
matically reclaims memory using tracing garbage collec{@4]. A correct garbage
collector can guarantee that the memory is not collectimgetarly, and also that all
memory is eventually reclaimed if the program terminatesveler the space and time
requirements of garbage-collected programs are very dliffio estimate in practice.
Therefore many different solutions have been proposedefartime applications and
embedded software running on resource-limited platfoiithese solutions either com-
pletely omit the use of garbage collectors (e.g. JavaCaatigoim), or use real-time
garbage collectors [1], or use region-based memory managigerg. Real-Time Spec-
ification for Java (RTSJ) [3]).

Region-based memory management systems allocate eaclbjemdioto a program-
specifiedregion with the entire set of objects in each region deallocatedibaneously
when the region is deleted. Various studies have showneggaim-based memory man-
agement can provide memory management with good real-terfenmance. Individ-
ual object deallocation is accurate but time unpredictatitée region deletion presents
a better temporal behavior, at the cost of some space owkrbasa locality may also

* The work is supported in part by the EPSRC project EP/E02/1948

improve when related objects are placed together in the sagien. Classifying objects
into regions based on their lifetimes may deliver better mgmatilization if regions are
deleted in a timely manner.

The first safe region-based memory system was introducedfby dnd Talpin [22,
23] for a functional language. Using a region type inferesggtem, they have pro-
vided an automatic static region-based memory manageroeftéandard ML. More
precisely, their compiler can group heap allocations ieigions and it can statically
determine the program points where it is safe to deallodetedgions. Later, several
projects have investigated the use of region-based memamagement for C-like lan-
guages (e.g. Cyclone [13]) and object-oriented langua®yég.[These projects provide
region type checkers and require programmers to annotaitepitograms with region
declarations. The type checkers then use these declasdtorerify that well-typed
programs safely use the region-based memory.

In our previous work [8], we have developed the first automgion type infer-
ence system for object-oriented paradigm. Our compilesraatically augments unan-
notated object-oriented programs with regions type datitars and inserts region allo-
cation/deallocation instructions that achieve a safe mmgmm@anagement. In this paper
we provide the safety proof of our region type system thateéstarget of our previous
region inference algorithm.

In our work, we usdexically-scoped Top (youngest region)
regionssuch that the memory is or- Q o

illustrated in Fig. 1. Regions are

memory blocks that are allocated r3 b T

ganised as astack of regions as 4 \q

and deallocated by the construgt nori-dangling reference
letreg r in e, where the region r2 ij -

r can only be used to allocate obr possible dangling referenc
jects in the prograne. The older re-

gions (with longer lifetime) are allo- " 3/

cated at the bottom of the stack whilg \b

the younger regions (with shorter life- o 1O g

time) are at the top. The region life-
time relations are expressed using la
transitiveoutlive relation denoted by Fig. 1. Lexically-Scoped Regions

>. Thus, we can define the lifetime

constraintg 0=r 1Ar 1=r 2Ar 2=r 3Ar 31 4 on the regions of Fig. 1. Region lifetime
constraints (as shown in Fig. 2) are of two main formsr, andr;=r,. The constraint
r1>=r2 indicates that the lifetime of region is not shorter than that of,, while the
constraintr;=r> denotes that, andr. must be the same region. The equality can be
expressed as an outlive relation such thatrs iff r1>=r2 andra>=r;.

Dangling referenceare a safety issue for region-based memory management. Fig.
shows two kinds of references: non-dangling referencespasdible dangling refer-
ences. Non-dangling references originate from objecitsgplén a younger region and
point to objects placed either in an older region or insigeesdime region. Possible dan-
gling references occur when objects placed in an older nggint to objects placed in

Bottom (oldest region)

a younger region. They turn into dangling references wherytlunger region is deal-

located. Using a dangling reference to access memory ifaibsaause the accessed
memory may have been recycled to store other objects. Therava approaches to

eliminating this problem. The first approach allows the pangto create dangling ref-

erences, but uses an effect-based region type system toedahatithe program never

accesses memory through a dangling reference [22,23,.9Th8] second approach

uses a region type system to prevent the program from cgedéingling references at

all [5]. Our work has adopted the second approach.

Contributions. The main contribution of this paper is the soundness proafuofre-
gion type system for object-oriented paradigm. We prové dlia region type system
guarantees that well-typed programs use lexically-scopgidns and never create dan-
gling references in the store and on the program stack. Wade@ simple syntactic
proof based on induction (rather than a more elaborate @aetion machinery), that
follows the standard steps of a type safety proof [25]. Oualbstep dynamic seman-
tics decomposes high-level expressi@treg r in e into three intermediate opera-
tions: allocation of regiom on the stack, evaluation of prograsnand deallocation of
regionr . The difficulty is to prove that after deallocation of regiarthe store, the pro-
gram stack and the remaining code do not contain any refertenegionr and to the
objects stored in region. To prove that region deallocation is safe, we use the region
constraints of our type system and a syntactic conditiohwigaimposed to restrict the
valid intermediate code. However our syntactic restrictimes not restrict high-level
source code, it only defines the correct intermediate cowdtoh high-level code can
be evaluated.

Related Work. In the original effect-based region type system, Tofte aalgim [23,
21,2] and later Christiansen and Velschow [9], in their oegcalculus for object-
oriented languages make use of co-induction to prove thadsmss. Their proof re-
quires co-induction partly because they prove two properét the same time: type
soundness and translation soundness. The latter propgatamtees that there exists
a semantic relation between source program and its regiontated counterpart. Our
safety theorems are only focused on the problem of type sms®j]thus are simpler to
prove. A co-inductive definition is required in their prodé@ because they use a big-
step semantics where certain information is lost when ihgjet region from the store,
as discussed in [15, 7]. Our system uses a small-step opeabsiemantics instrumented
with regions which makes the consistency definition and tieefeeasier. Calcagno [6]
uses a stratified operational semantics to avoid co-indiiatithe proof of safety prop-
erties of a simple version of Tofte and Talpin’s region chlsuwhile Helsen et al. [15,
14] introduces a special constant for defunct regions iir thig-step semantics which
makes the soundness proof simpler. A similar proof with asirthe safety proof of
Niss [19], that in addition to a simple functional languagatiles an imperative calcu-
lus, and like our proof avoids explicit co-induction by ugistore typing. Cyclone [13]
also has an effect system used for a soundness proof andataeserco-induction. Els-
man [12] refines Tofte and Talpin’s region type system in otddorbid the dangling
references and proves by induction the safety for a smaditfoimal language. There
are many differences between his proof and ours. His probased on a small-step
contextual semantics [17], while in our proof we explicithpdel the heap as a stack of

t = cn{rt) | prim{) | L (region types
prim ::= int | boolean | void

p u=rirzre | ri=re | true | o1 A2 (region constraints)
P ::=def (region annotated program)
def ::= classcni (r*) extendscm (r*) where
{(tf)* meth} (region annotated class declaratioh
meth:= t mn(r*)((t v)*) where ¢ {e} (region annotated method
e uz=null | k|v|vf|]v=e]|vf=e (region annotated expression

e1;es | {(tv)e} | newen(r)(v*)
| v.mn(r*)(v™) | if vthene; elsees | while v e

| letregrine (region declaration)

cn € class names r € region variable names

mn € method names k € integer or boolean constants
f € field names v € variable names

Fig. 2. The Syntax of Region-Annotated Core-Java

regions and we use a consistency relation between the atatidynamic semantics. In
addition Elsman uses a syntax-directed containment oelati express the regions of
the program values and also to force the stack disciplinesffions’allocation and deal-
location. In our case the region requirements and the ordeng regions are expressed
by the region constraints of the type system. However weialpose a syntactic con-
dition to restrict the valid intermediate (non-source)grams. Boudol [4] refines Tofte
and Talpin’s region calculus to a flow-sensitive effectdzhsegion type system, that
explicitly records the deallocations effects. He providessmple proof for a functional
language by means of a subject reduction property up to atioal Although his sim-
ulation is half-bisimulation, his proof does not employ ioduction. In contrast our
region type system is a flow-insensitive calculus. Howewersyntactic restriction on
intermediate code has a similar role as the flow-sensitiedl@t=ation effect. Our type
system is similar to SafeJava’s type system of Boyapati labut in addition we sup-
port the region subtyping principle [13]. However SafeJdwas not provide a formal
proof for its region type system.

Outline. The paper is organized as follows. Section 2 introducesythtas of our re-
gion calculus. Section 3 presents our region type systeriie \@ection 4 defines the
dynamic semantics of our region calculus. Section 5 extdmstatic semantics to in-
termediate expressions, while Section 6 presents the sesadheorems. A brief con-
clusion is given. The technical report [11] contains theadebf our inductive proofs.

2 Region Calculus

Our region calculus is designed by annotating with regiodava-like object-oriented
language, named Core-Java [10]. The full syntax of the regimnotated Core-Java
language is given in Fig. 2. Core-Java is designed in the samiealist spirit as the
pure functional calculus Featherweight Java [16]. Despstexpression-oriented syn-
tax, Core-Java supports imperative features.

Each class definition is parameterized with one or more reggio form aregion
type For instance, a region typa(ri, ..., 7,,) IS a class namen annotated with region
parameters;...r,. Parameterization allows us to obtain a region-polymarpjpe for
each class whose fields can be allocated in different regidresfirst region parameter
r1 IS special: it refers to the region in which the instance ologé this class is allocated.
The fields of the objects, if any, are allocated in the othgrmsr:...r,, which should
outlivethe region of the object. This is expressed by the constidini(r; = 1), which
captures the property that the regions of the fields{inr,,) should have lifetimes no
shorter than the lifetime of the region (namely of the object that refers to them. This
condition, callecho-dangling requiremenprevents dangling references completely, as
it guarantees that each object never references anothertabja younger region. In
general the class invariang, of a class consists of the no-dangling requirement for
the region type of the current class, the no-dangling requénts for the fields’ region
types, and the class invariant of the parent class We do ngatreeregion parameters
for primitive types, since primitive values can be copied atored directly on the stack
or they are part of an object. In order to keep the same natatie useprim() to denote
a region annotated primitive type. Although null values afebject type, they are
regarded as primitive values. The type of a null value is teshby 1 .

The region subtyping principlellows

an object from a region with longer life- [RegSub]
time to be assigned to a location where |a o=(1=21) ANy (2i=3;)
region with a shorter lifetime is expected. Fen(z) <:cn(d1. n), @

This principle is illustrated by the subtyp;
ing rule [Regsub] of Fig. 3. This rule relies
on the fact that once an object is allocate
in a particular region, it stays within the
same region and never migrates to another
region. This property allows us to apply cor [N
variant subtyping to the region of the curt F L<:en(z1.,), true
rent object. However, the object fields ar
mutable (in general) and must therefore use Fig. 3. Region Subtyping Rules
invariant subtyping to ensure the soundness

of subsumption. The other two rulesupciass] and [Nui1] from Fig. 3 denote the class
subtyping and the fact that a null value can be assigned tobjegt, respectively.

[SubClass]
classcn(ry..,) extendscn' (r1..,).. € P/
n>m>p b (zr.m)y<ien’{z)), ¢

Fen(ry n)<en’(z)), ¢

o

Every method is decorated with zero or more region parasieteese parameters
capture the regions used by each method’s parametersdinglthi s) and result. For
simplicity, no other externally defined regions are madelalke for a method. Thus,
all regions used in a method either are mapped to these regi@meters or are lo-
calised by et r eg in the method body. Each method also has a method precamditio
expressed as aregion lifetime constraint that is congigtigmthe operations performed
in the method body. The method precondition also contaieslhss invariants of its
parameters including the receiver and its result. The mgtanethods of a subclass can
override the instance methods of the superclass.

Consider therai r class in Fig. 4. As there are two fields in this class, a distinc
region is introduced for each of theng, for f st field andr 3 for snd field. ThePai r

object is placed in the regiani. To ensure that everyai r instance satisfies the no-
dangling requirement, the region lifetime constrai@t-r 1Ar 3>r 1 is added to the

class invariant.

class Pair(rl,r2,r3) extends Qbject(rl)
where r2>rl1 A r3=rl1 {
Qbj ect (r2) fst;
Obj ect (r3) snd;

voi d setSnd(r1,r2,r3,r4)(ject(rd) o)
where r4>r3Ar2>riAr3>rl
{snd=o0; }
void swap(rl,r2,r3)() where r2=r3Ar2>rl
{ nj ect (r2) tnp=fst;fst=snd; snd=tnp}
Pair(r5,r6,r7) exalloc(rl, r2,r3,r5,16,r7)()
where r7>r5Ar6=r5Ar2>r1Ar3>rl
{letregr in {
Pair(r7,r7,r7) p4,
Pair(r,r,r) p3;
Pair(r5,r6,r7) p2;
Pair(r,r,r) pl;

p4 = new Pair(r7,r7,r7)(null,null);
p3 = new Pair(r,r,r)(p4,null);

p2 = new Pair(r5r6,r7)(null, p4);
pl = new Pair(r,r,r)(p2,null);

pl.setSnd(r,r,r,r)(p3); p2} }

Fig. 4. Region-Annotated Core-Java Program

Consider theset Snd,
swap, andexal | oc meth-
ods of thePair class. A
set of distinct region param-
eters are introduced for the
methods’ parameters, and
the results, as shown in
Fig. 4. The receiver regions
are taken from the class def-
inition. Moreover, the meth-
ods’ region lifetime con-
straints are based on the
possible operations of the
respective methods. For ex-
ample, due to an assign-
ment operation and region
subtyping, we have 4-r 3
for set Snd, while r2=r3
is present due to the swap-
ping operation on the re-
ceiver object in theswap
method. Though thewap
method’s region constraint
is exclusively on the regions
of the current object, we as-

sociate the constraint with the method. In this way, onlysthobjects that might call
the method are required to satisfy this constraint. Thesdlasriants of methods’ pa-
rameters (including the receiver and their result) are atkted to the methods’ region
constraints. Thexal | oc method’s body introduces a local regiorusing! et r eg.

Since thep1 andp3 objects do not escape from theal | oc method’s body, they are
stored in the local region. Thep2 andp4 objects escape through the method result,
therefore they are stored in the method result’s regi@nandr 7, respectively.

3 Region Type System: Static Semantics

Our region type system guarantees that region-annotateddava programs never cre-
ate dangling references. To avoid variable name duplicati®@ assume that the local
variables of the blocks and the arguments of the functioasiaiquely renamed in a
preprocessing phase. A part of region type checking ruleslapicted in Fig. 5, with
some auxiliary rules in Fig. 6 (a complete description ofisagype system is given
in [11]). Judgments of the following forms are employed:

— F P denoting that a programis well-typed.

RC—PROG] [Rc—cLAsS]

WFClassefP) def= classcn(ri..,)extendsc(ri..,m)
P = def, .. def, where ¢ {field, , meth .}
FieldsOncédef,) i = 1..n r1 & U, reg(field;)
MethodsOncgdef) i = 1..n p=ri =1 i=2.n R={r,...,m}
P+ InheritanceOKdef) ¢ = 1..n P;{this: cn(r1..)}; R ¢ Fmemmeth i =1..¢
Plerdef i =1..n P; R; ¢ e field, @ =1..p
EFp P tgef def

[RC—METH] RC—EB]|
I'=T+ :t)j1.p R=RU{ri,...,rn} P;R ¢ Fiypet’
@ =@ Ao P;R; ¢ Fypetj, 7 =0.p I'=r"+(v:t)
P;I";R;¢" Fe:t P;R; ¢ Ft <:to P;I";Roke:t
P; I'; R o Fmetnto mM{r1..m) ((t; v;)j:1..p)Wherepo {e} P; IRk {(tv)e}:t
[RC—NEW
[R07VAR] P; R; © Fiype Cn<7'1__n> ﬁ9|d|i5t(0n<7'1__n>) = (ti fi)izl..p
(v:t)yer (vi:t)) el PRt <t i
P,IRpkwv:t P; ;R o - newen(ri..n)(vi, .., vp) : CN(r1.n)
[RC—INVOKE RC—LETR|
(vo:cn{at)) € I' P;R; ¢ Fypecn(a™) a = fresh)
(tmn{ats" ") ((t; vi)i1..n)where o {e}) € cn(a™) ' =9 AN, (' =a)
(W :t)iim €l ateER p=['""T—a"] P; I';RU{a}; ¢’ F [r—ale : t
p=ppo P;ReFti<pt; i=1.n reg(t) C R
P; IR ¢ F vo.mn{ata’'t)(v]..v}) : pt P; "R o letregrine:t

pt, pp, pe region substitution on a type, a constraint, and an expessi
fresh() returns one or more new/unused region names

Il
=
=

Fig. 5. Region Type Checking Rules

— P erdefdenoting that a class declaratigefis well-formed.

— P;I";Rp Fmetn methdenoting that a methodethis well-defined with respect to the
programp, the type environment, the set of live region®, and the region con-

strainte.

— P;I';Rpke:t denoting that an expressieris well-typed with respect to the program

P, the type environmernt, the set of live regionr, and the region constraint

— P; R ¢ Fype t denoting that a typeis well-formed, namely, the regions of the type
are from the set of the live regios and the invariant of the types satisfied by

the constraint context.

— P;RFenstr t, ¢ denoting that the regions of the typare from the set of the live

regionsR, while ¢ is the invariant of the type

— P;R; ¢ Heid field denoting that the type of a fiefiéld is well-formed with respect to

Fype judgment.

— P;R ¢ I t<:t’ denoting that the typeis a subtype of the typg, namely both types
are well-formed and the region constraint of the subtypielgtion (defined in

Fig. 3) is satisfied by the constraint context

The rule[rc-pProc] denotes that a region-annotated program is well-typed if al
declared classes are well-typed. The predicates in theipeeaane used to capture the

standard well-formedness conditions for the object-deiéprograms such as no dupli-
cate definitions of classes and no cycle in the class hieganghduplicate definitions
of fields; no duplicate definitions of methods; and soundmésdass subtyping and
method overriding.

The rule[rc-cLass] in- reg({H)=ae{} reg({v:r(r*) YUl =ged{r" }Ureg(I")
dicates that a class is well{
formed if all its fields and reg((r"))=dedr"} reg((r(r") f))=cer{r"}

methods are well-formed, and reg(ri=r2)=de{r1,72} reg(ri=ra)=de{r1,72}
the class invariantensures the reg(true)=cer{} reg(v1Ap2)=ceeq(p1)Ureg(ps)
necessary lifetime relations
among class region parame| :
ters. In addition, the rule doeg C1aSSCcMi (11..n) ExtendsCry (r1m). {(ti fi)i:1..p- }EP

not allow the first region of (=fieldlist(p e (r1..m)) p=[ri—ai]i

fieldlist(Object(r)) =gef|]

the class to be used by the re- fieldlist(cm (z1..n))=del +[(p i) fili-,
gion types of the fields. Us-) - -)
ing the first region on a field Fig. 6. Auxiliary Region Checking Rules

would break the object (re-
gion) subtyping (ruleRegsub] of Fig. 3). Functionreg(field,) returns the region vari-
ables of a field type (see Fig. 6).

The rule[rc-meTH] checks the well-formedness of a method declaration. Each
region type is checked to be well-formed, that means itoregare in the current set of
live regions and its invariant is satisfied by the currentstint context. The method
body is checked using the type relation for expressions thattthe gathered type has
to be a subtype of the declared type.

Our type relation for expressions is defined in a syntaxetiefashion. Take note
that region constraints of the variables are not checkeledt tises [rc-var]), but
at their declaration site§qc-£s]). The region invariant of an object is also checked
when that object is createfkc-~ew]). In the rule for object creatiorifc-~new]), the
functionfieldlist(cn(z1. ,,)) returns a list comprising all declared and inherited fielfls o
the classn(z:..,) and their region types according to the regienss,, of the classn
(see Fig. 6). They are organized in an order determined bgahstructor function.

The rule[rc-1nvvoke] is used to check a method call. It ensures that the method re-
gion parameters are live regions and the method preconditisatisfied by the current
constraint context ag=pyo. A substitutionp is computed for the method'’s formal re-
gion parameters. The currentarguments are also checkedstdltypes of the method’s
formal parameters.

The rule[rc-LETR] IS USed to check a local region declaration. The local exwas
is checked with an extra live regian(that is a fresh region), and an extra constraint
A\, cr(r"=a) that ensures that newly introduced region is on the top oféfisn stack.
The rule uses a region substitution on the expressions.tNat¢he region substitutions
on expressions, constraints and types are defined as edp€htegathered region type
of the local expression is checked to contain only live regi@fromR exceptinga).
This guarantees that the localized regiodoes not escape. Functiesy(t) returns all
region variables of (see Fig. 6).

4 Dynamic Semantics

In this section we define the dynamic semantics of our regadcutus. Our dynamic
semantics rules use runtime checks to throw an error andoia dile execution, when-
ever the evaluation of a region-annotated Core-Java pmogias to create a dangling
reference. In Section 6 we prove that those runtime cheekedundant for well-typed
programs, namely the evaluation of a well-typed regionegated Core-Java program
never creates a dangling reference. The dynamic semastitefined as a small-step
rewriting relation from machine states to machine statemnag&hine state is of the form
(w, IT)[e], wherew is the heap organized as a stack of regiamds the variable en-
vironment, anct is the current program. Our dynamic semantics was inspiyeithd
previous work on abstract models of memory management fidBtegion-based mem-
ory management [9, 13]. The following notations are used:

Region Variables r,a € RegVar

Offset: o € Offset

Locations: Lor (r,0) € Location=RegVa Offset

Primitive Values k| null € Prim

Values: ¢ € Value= Prim w Location

Variable Environment IT € VEnv= Var —, Value

Field Environment V' € FEnv= FieldName—y, Value

Object Values cn(r*)(V) € ObjVal = ClassNamex (RegVay™ x FEnv
Store: w € Store= []|[r—RgriStore

Runtime Regions Rgn e Region= Offset—fn ObjVal

Regions are identified by region variables. We assume a deraloty infinite set of
region variablesRegVar The storew is organized as a stack, that defines an ordered
map from region variables,to runtime region®gn The notatiorjr—Rgrw denotes a
stack with the regiom on the top, whilg] denotes an empty store. The store can only
be extended with new region variables. A runtime redtgnis an unordered finite map
from offsets to object values. We assume a denumerablytaBet of offsetsDffsetfor
each runtime regioRgn

The set of values that can be assigned to variables and fielilsnioted byalue
Such a value is either a primitive value (a constant or a ralli®) or it is a location in
the store. A location consists of a pair of a region variableé an offset.

An object value consists of a region typ&r*), and a field environment mapping
field names to value$’ is not really an environment since it can only be updatedgnev
extended. An update of fieldlwith values is written asv +{ f—d}.

The variable environmerit is a mapping/ar —s, Valug while the type environment
I" that corresponds to the runtime variable environment s alniapping/ar —n Type
To avoid variable name duplication, we assume that the lemahbles of the blocks
and the arguments of the functions are uniquely renamed ia@@cessing phase.

Notationf: A —g, B denotes a partial function from to B with a finite domain,
written A = dom(f). We writef+{a — b} for the function likef but mappinga to b (if
acdom(f) and f(a)=c then(f+{a+— b})(a)=b). The notation{} (or) stands for an un-
defined function. Given a function 4 —g, B, the notatiorf— C denotes the function
f, : (A—C) —n B such that/xe(A—C)-f, (x)=f(x).

We require some intermediate expressions for the smatdlegteamic semantics to
follow through. The intermediate expressions help our ptoase simpler induction
techniques rather than a more elaborate co-induction machiThe syntax of inter-
mediate expressions is thus extended from the originalessgn syntax, as follows:

ex=...|(r,0)|ret(v,e)|retr(r,e)

The expressionet (v, e) is used to capture the result of evaluating a local blockher t
result of a method invocation. The variable associated wéthdenotes either a block
local variable or a method receiver or a method parametés.vEhniable is popped from
the variable environment at the end of the block’s evaluatin the case of a method
invocation there are multiple nestedt s which pop off the receiver and the method
parameters from the variable environment at the end of thgd&s evaluation. The
expressionmet r (r, e) is used to pop off the top regionpf the store stack at the end of
expressiore evaluation.

Dynamic semantics rules of region annotated Core-Javahanersin Fig. 7 and
Fig. 8. The evaluation judgment is of the form:

(@,)[e] (=, II') [¢/]

wherew (') denotes the store before (after) evaluation, whilef7’) denotes the vari-
able environment before (after) evaluation. The stor@ganized as a stack establishes
the outlive relations among regions at runtime. The fumotid(c) returns the outlive
relations for a given store. The functialom(w) returns the set of the store regions,
while the functionlocationdom(w) returns the set of all locations from the store. They
are defined as follows:

ord([r1—Rgn|[r2—Rgn, @) =del(r2=r1) Aord([r2—Rgn,] =)

ord([r—Rgr) =gertrue ord([]) =def true

dom([r—Rgnw@)=de{r }udomww) dom([r—0|w)=de{r tudom(ww) dom([])=gefd

locationdom(w)=ger{ (r, 0) | w=ww1[r—Rgriw2 A Rgn=Al A ocdom(Rgn) }
Notationw(r)(0) denotes an access into the regiaat the offseb, as follows:

w@(r)(0)=deRgN0) where w=w[r—Rgnw:

We define the meaning ob-dangling referencesroperty at runtime. The property
refers to two kinds of references: (1) references from eignvironment to store
locations, and (2) references from store locations to aiteee locations. Note that the
notion ofno-dangling referencesas introduced in Fig. 1, and a reference is formalized
as a locatiorr, o).

Definition 1. (live location) A location(r, o) is live with respect to a storeg, if r €

dom(w).
Definition 2. (no-dangling)

1. A variable environmentr is no-danglingwith respect to a stores if for all v
€ dom(I1),II(v) is either a primitive value, or a live locatiofr, o) with respect
to w.

2. A runtime storew is no-danglingif each regionr, € dom(ww) contains only ref-
erences to regions older than itself, that means that fothelacation (r1,0) €
location dom(z) containing an object value (r1)(o)=cn(r1..,,)(V), that object value
satisfies th@on-dangling requirement for a classich thabrd(w)= A,., , (ri=r1)

D-VAR] D-FD]

v € dom(IT]) II(vV)=(r,0) w=wi|[r—Rgnw: Rgno)=cn{a™)(V)
(@,) V= (=, I) 11 (V)] (@,) V= (w, IH{[V(f)]
[D-—AsseN1] [D-—AssaN2]
lhs =v | v.f vedom(IT) II'=IT+{v—d}
(w,) [— (=, IT') [€]] 6=(r1,01) A ri€domw)
(w,)[lhs = e]— (', [I')[lhs = €] (o, [I)[v = §]—(w, II')[()]
D—ASSGN3|
[D-ASSGN2-DANGLERR] I(V)=(a,0) w=w|a—Rgiw: Rgno)=cn(a™)(V)
v € dom(I7) Rgri=Rgn+{o—cn{a™)(V+{f—d})} @' =w1[a—Rgr]w:
0=(r1,01) A ri¢gdom(w) 5=(r1,01) A ord(w)=-(r1>fieldregion(cn{a™), f))
(w, IT)[v=0]—dangl i ngerr (w,) |v.f= 0]— (=, IT)]()]

[D—ASSGN3-DANGLERR]
11(v)=(a,0) w=wila—Rgriw: Rgro)=cn(a")(V)
d=(r1,01) A = (ord(w)=(r1 =fieldregion(cn{a™), f)))
(w, II)|v.f = d]—dangl i ngerr

D-NEW]|
classcn(ri..,) extendsc(...) where pin {...} € P ord (@)= pinv
w=wi[ri—Rgiws V={fi=II(V1),..., fo—=II(v,)} fieldlist(cn{ri.)=t f,)i1..p
if I1(v;)=(r}, 0;) thenord (ew)=-(r;=fieldregion(cn(ri..n), fi)) i=1..p
ogdomRgn Rgri=Rgn: {o—cn(ri) (V)} w'=w1[ri—Rgr]w>
(@, 1) [newen(ry n)(Vi.p)]— (@, IT)[(r1, 0)]

[D-NEW-DANGLERR]
classcn(ri..,) extendsc(...) where piny {...} € P
V={fi=II(V1), ..., fo—TI(vp)} fieldlist(cn{ri. »))=(t f,)i1.p
=(ord(@)=pinv) V (Fie{l..p} - I (vi)=(r{, 0;) A
—(ord(w)=-(r;=fieldregion(cn(ri..»), fi)))
(w, IT)[newcn(ry.) (Vi..p)]—dangl i ngerr

D—INVOKE]
{at,a*"}cdom(=)
(Vo) = (a1,0) = (a1)(0) = cn(@a")(V)

(to mn{@a™r"*)((tv)1. ,)wherey {e}) € cn(a™)
ni=fresh() i = 0..p p=[r""—a"| H'=I+{n—II(Vi)i0.p}
€=ret (no,ret (ng,..ret (n, [this—no][vi—n;]%, pe)))
(o,) Vo.mn(@" @) (V.)| — (=, 1T [€]

[D-INVOKE-DANGLERR]|
—(r*edom(w))
(@ II)[v.mn{r ") (v")]—dangl i ngerr

Fig. 7. Dynamic Semantics for Region-Annotated Core-Java: Part |

D—EB]| [D-RET1]

n=fresh() I1I'=I1+{(n—init(t))} €=ret (n,e) (w, I [—{w’, IT")[¢]

(@, I)[{(tV) e}]—(=,IT") €] (w, I)[r et (v, e)]—(=’, IT')[r et (v, €)]
D—-RET2

(w, I)[r et (v, 0)]— (o, I[I—{V})[d]

[D-LETR]
a=fresh()
(w, IT)[letregr in €]—([a—0]w, II)[r et r (a, [r—ale)]

D-RETR1]
(@,)] — (=, IT') [€]
(w, I)[retr (ae)]— (=, II')[retr (a¢€)]

D-RETR2|
(6=(r,0))=(redom(w))
well - (I1(v)=(r,0))=(redom(w))
V(r1, o)€locationdom@) - (w(r1)(0)=cn(ri..n)(V))=(ri...cdom(z)A
vf e domV) . V()=(ry,or) A ryedom(w))
(la—Rgnw, II)[retr (a,d)]—(w, I1)[I]

[D-RETR2-DANGLERR]
ﬁ(a:a1)\/
=((0=(r,0))=(redom(w))) V =((VYvell - (II(v)=(r,0))=(redom(w))))
V=(V(r1, 0)€locationdom(w) - (w(r1)(0)=Ccn(ri..n)(V))=(r1...€dom(w)A
vf € domV) . V(f)=(ry, o) A ryedom(w)))
([a—Rgnw, II)[retr (a1, d)]—dangl i ngerr

D—IF1] [D-1F2]
I1(v)=true I (v)=false
(w, I)[if vthene elsee;|—(w, IT)[e1] (o, IT)[if vthene, elsee;]— (w, IT)[e2]
[D-LoOP1] [D-LoOP2]
I1(v)=true I (v)=false

(w, IT)|while v d—(w, IT)[e;while ve (w, IT)[while v €—(w, IT)()]
[D—sEQ1] [D—sEQ2]
(@,) [@]— (=", IT")[¢]
(@, I)[er; &) — (', II")[€h €] (oo, IT)[01; €)= (e, IT)[e]
[D-NULLERR1] [D-NULLERRZ2] [D-NULLERRS3]
I (v)=nul | I (v)=nul | I (v)=nul |

(w,) [vi—nul l err (@,)vf=4d]—nullerr (o, II)[vmna®)(u")]—nullerr

Fig. 8. Dynamic Semantics for Region-Annotated Core-Java: Part Il

and the current values of the fields are either primitives eferences to regions
older than those expected by the region tgpe: ...), as follows:

vf e domV) . V(f)=(ry,or) ord(w)=-ry>-fieldregior(cn(ri...),f)
Functionfieldregior(cn(r: ..}, f) computes the region type of the class fteldd then
returns its first region where the field is expected to be store

The dynamic semantics evaluation rules may yield two péessilmtime errors, namely:
Error ::=nul | err | dangl i ngerr

The first erromul | err is due to null pointers (by accessing fields or methods of null
objects). The second errdangl i ngerr is reported when a store updating operation
or a variable environment updating operation creates algrgference. Our dynamic
semantics rules use runtime checks to guarantee ttat@ i nger r error is reported
(and the execution is aborted) whenever the program evafutiies to create a dan-
gling reference. There are five situations that require aogting reference checks at
runtime:

— Creation of a new object valuRule [p-~ew] checks whether the class invariant
holds,ord(w)=-¢inv (Mainly whether the fields regions...,, outlive the region-
of the object). The initial value of a field is also checkedécstored in a region that
outlives the expected region of that fiel-fieldregion(cn{r1...,), f;). The function
fieldlist(cn(r1..,,)) is defined in Fig. 6.

— Updating of an object’s fieldRule [p-assans] checks whether the region of
the new locations=(r1,01) outlives the expected region for the object figld
r1~fieldregioncn(a™), f).

— Updating a variable from the variable environmeRtile[p-assaenz] checks whether
the new locatior=(r1, 01) assigned to a variable is live, namely its region is in the
current storey; edomw).

— Deallocation of a regionRule [p-reTr2] checks whether the regianis on the
top of the store stack. Then it checks whether a refereneednes not escape
neither through the value result nor through the program variable environment
IT, nor through the object values of the stase Note that when a new region is
allocated, in rulgp-LeTr], a fresh region name is used in order to avoid region
name duplication in the store.

— Calling a methodRule [p-invoke] checks whether the method’s region argu-
ments are in the current store and then prepares the vagabionment for the
method’s body execution.

The corresponding rulés—-NEw-DANGLERR], [D-ASSGN3-DANGLERR]|, [D—ASSGN2
—DANGLERR], [D-RETR2-DANGLERR/|, aNd[D-INVOKE-DANGLERR] generate a
dangl i ngerr error due to the failure of their runtime checks. In the rlilesassanz],
[p-asscens], and[p-Loorz] the resulf) denotes the singleton value of typed. Note
that the typevoid is assumed to be isomorphic to typet. In rule [p-es], the locally
declared variable is assigned, with the help of the fundtionan initial value according

to its type as follows: init (£) —er caset of

boolean — false
int — 0
cn(ri.n) — null

5 Extended Static Semantics

In this section we extend our static semantics rules froni@e8s to include the new in-
termediate constructions introduced by the small-steaohia semantics rules in Sec-
tion 4.

First we define avalid programusing a novel syntactic conditioralid(e), that re-
stricts the places where the intermediate constructiorysaoeur in a program.

Definition 3. (valid program)
1. A program is avalid programif all the program’s classes are valid classes.
2. Aclassis avalid classf all the class’s methods are valid methods.

3. A method is aalid methodf the method’s body is a valid block expression such

thatretvarge)=0 andretregge)=0.
4. Expressior is a valid expressiorif the predicatevalid(e) holds, wherevalid(e) is
defined as follows:

valid(e) =qer case e of

{(tv) e} — retvarg(e)=0 A retregge)=0

lhs=e — retvarg(e)Nvars(lhs)=0 A valid(e)

e1; e — retreggez)=0 A retvarg(e2)=0 A valid(e;)
Aretvarger)nvars(ez) =0 A retregge1)Nreggez) =0

if vthen e, elsees — retregge1)=0 A retvarge;)=0

Aretregge2)=0 A retvargez)=0
whileve | letregrin e — retregge)=0 A retvarge)=0

ret(v,e) — Vv ¢ retvarge) A valid(e)
retr(r,e — 1 & retregge) A valid(e)
otherwise — true

This condition does not restrict source-level region dalsusince intermediate con-
structions are generated during the program evaluatiornuce language Core-Java
program is by default a valid program since it does not conday intermediate ex-
pression. The above condition is based on the functiarss), retvarge), regge), and
retregge) which are defined as follows:

Definition 4. 1. The functiorvars(e) computes the set of all program variables which
occur in the expressiog excepting those variables introduced by e’s block subex-
pressions, as follows:

vars(e) =ger case e of

ret(v,e) — {v} U vars(e)

{(tv) ¢} — vars(e) \ {v}
retr(r,e)|letregrine — vars(e)
vf=e|v=e|whileve — {v}Uvarse)

v.f| v — {v}

if vthen e; elsees — {v}Uvarge) Uvars(e;)
€1, e2 — vars(e;) U vars(ez)
newen(rt)(v*) — {v'}

v.mn{v*)(v*) — {viu{v'}

otherwise — 0

2. The functiometvarge) computes the set of all program variables which occur in the
ret subexpressions of the expresseas follows:

retvarge) =qer case e of

ret(v,e) — {v} Uretvarge)
retr(r,e) |vf=e|v=e|{(tv)e} — retvarge)

whileve | letregrin e — retvarg(e)

er; e | if vthene; elsees — retvarge;) U retvarge;)
otherwise — 0

3. The functiorregge) computes the set of all region variables which occur in the
expressiore, excepting those regions introduced by e’s letreg subssjoas, as
follows:

regge) =def case e of

{(tv) ¢ — reg(t) U regse)
retr(r,e — {r}Uregge)
letregrine — regge) \ {r}

ret (v,e) |vwf=e|v=-e|whileve — regge)

(r,0) — {r}

if vthene; elsees | e1 ; ez — regge;) Uregge:)
newcen(rt)(v) | v.mn{rT)(v*) — {rT}

otherwise — 0

where reg(t) is defined in the Figure 6.
4. The functioretregge) computes the set of all region variables which occur in the
retr subexpressions of the expressias follows:

retregge) =der case e of

retr(r,e — {r} U retregqe)
ret(v,e)|vi=e|v=e|{(tv)e} — retregge)

whileve | letregrin e — retregge)

er; e | if vthene; elsees — retregge;) U retregge;)
otherwise)

In order to describe the type of each location, we introdustoge typing This
ensures that objects created in the store during run-tieéyae-wise consistent with
those captured by the static semantics. Store typing isettionally used to link static
and dynamic semantics [20]. In our case, it is denoted@’bgs follows:

X € StoreType= RegVarinOffset—iin Type

The judgments of static semantics are extended with stpiegyas follows:
P;IRp; X et

For a store typing” : R—i,O—inType a regionr, a location(r, o), and a type we also
introduce the following notations:
dom X)=R X(r)(o)=f(0), where f=X(r)
locationdom X)) =gef{ (r, 0) | redom X)) A f=X(r) A f£0 A ocdom(f)}
Y —r=qetX1 such that X1 : (R—{r})—inO—ninTypeA Vr'e(R—r) - X1 (r')=2(r")
Y+r=qetX2 such that X5 : (RU{r})—inO—sinTypeA Xa(r)=0 AVr'€R - Xa(r")=2(r")
Y —(r,0)=detX3 such that X3 : R—inO—in Type
ATER A X3(r)=2(r)—{o} AVr'€(R—7) - Z5(r')=2(r")
2+((T, O) : t):def24 such that Xy : RAﬁnOAfinType
ATER A X4(r)=2(r)+{o—t} AVr'e(R—7) - Z4(r')=2(1")

RC—LOCATION]| RC—ObjVal|
P; R; v Fiype Cn<7'1__n> fieldlist(cn(rl__n>) = (ti fi)izl..p
t PR X HV(E,):ti PRt <ty i=l.p
r,o): t P; IR o; X = en(ri.) (V) : en(ri.)

RC—RET] [suBSUMPTION]
vell P,IiR ;Y Fe:t P IsRe;YFe:t PRt <t
P, Rp; X Eret(v,e):t P,IRp; X kHe:t
[RC-RETR]
acR R=R-lreg(e)—{a} o= A, ..y, (r=a)
reg(t)CR; reg(I'—lvar(e)) CR. P, IR p; X Fe:t
P,IRp; X Fretr(ae) :t

Fig. 9. Region Type Checking Rules for Valid Intermediate Exprassi

The judgments of the new intermediate expressions are megbé Fig. 9. They
assume that the expressions are valid with respect to thaifdeaii 3. The first two
rules[rc-rocarion] and[rc-objvai] are used to type the store, either a location or an
object value (i.e. a location’s content). Ruile-—objvail] preserves the same invariants
as those of the rulirc—-~new]. Rule [rc-rET] €NSures that the variable to be popped
off, vis in the current environment. The subsumption rulgeussumprion] simplifies
the next theorems and their proofs.

Rule [rc-rETR] is similar to rule[rc-LETR], DUt it takes into account the evalu-
ation of the expressionet r (r,e). The first check ensures that the region to be deallo-
cated,ais in R. The R, denotes the regions from which are different thaa and are
not younger thama. Note thatireg(e) denotes the regions which are younger thafihe
second check ensures that our type system uses only lgxécalped regions such that
the region to be deallocatealjs always on the top of the regions stack. The third and
the fourth check ensure that the regeand the regions younger thardo not escape
either through the result or through the live variables eftilpe environment. Note that
Ivar(e) denotes the local variables of the expressiamhich are deallocated from the
variable environment during the evaluationecof

The rules from Fig. 9 are using the functidrar(e), Ireg(e), andlloc(e) which are
defined as follows:

Definition 5. Using the evaluation rules from Fig. 7 and Fig. 8

1. The functionvar(e) estimates the set of variables which may be popped off frem th
variable environmentr during the evaluation of the valid expressiefinote that
onlyr et (v, e) may affectrr), as follows:

Ivar(e) =qer case e of
ret(v,e) — {v} U lvar(e)
retr(r,e) |Ins=e|e;e; — lIvar(e)
otherwise — 0

2. The functionreg(e) estimates the set of regions which may be popped off from the
storew during the evaluation of the valid expressieiinote that onlyretr (r, e)
may affecto), as follows:

Ireg(e) =der case e of

retr(r,e — {r} U lreg(e)
ret(v,e) |Ihs=e|e;e. — lreg(e)
otherwise — 0

3. The functionloc(e) estimates the new location which may be created into an-exist
ing region during one evaluation step of the valid exprassi¢note that onlynew
may create a new location), as follows:

lloc(e) =qer case e of

newcn(ri, .., r»)(V*) — {(r1,0)}
ret(v,e)|retr(r,e)|lhs=e|e;er — lloc(e)
otherwise — 0

where the offset of the regionr is the offset where the next allocationviis done.

6 Soundness Theorems

In this section we prove the soundness of our region calcokraely that a valid pro-
gram well-typed by our type system never creates danglifegerces. We use a syn-
tactic proof method [25], based on a subject reduction #ma@nd a progress theorem.

First we define the consistency relationship between thie stad dynamic seman-
tics, namely a relationship between what we can estimatenapite-time and what can
happen during run-time execution.

Definition 6. (consistency relationship)

A run-time environmenz, I7) is consistentvith a static environmentl’, R, ,),
written I', R, o, X7 = (o, IT), if the following judgment holds:

dom(I")=dom(II) Y e domIl) - P; IRy p; X - IT(V) - I'(V) reg(I")CR
locationdom(X')=locationdom(w) dom(X)=dom(w) R=domw)
ord(w)=-¢ V(r,o0)€locationdomw) - P; I'; R, ¢; X'+ w(r) (o) : X(r)(o)

Note thatew(r)(0) returns an object valuan(r*)(V) whose type ign(r*). In our instru-
mented operational semantics an object value and its typstared together.

The subject reduction theorem ensures that the region sypeeserved during the
execution of a valid program, as follows:
Theorem 1. (Subject Reduction):

valid(e) P;IR ;X Fe:t
I'Rp, X F (w, 1)
(w, IT)[e] — (@', IT")[€]

then there exist’, I'’, R, and¢’, such that

(2’—(Ireg(e’)—|reg())) (lloc(e)— IIoc()) = X—(Ireg(e)—Ireg(€))
(Ivar(Y)—Ivar(e)) = I'—(lvar(e)—Ivar(€¢'))
R —(Ireg(€)—reg(e)) = R~ (Ireg(e) —Ireg(€))
~(regle)Ieg(e)) = - (req(e)—reg(<)
r 7R,7) ’ ':< >
valid(e’) P;T";R;¢'; E’}—e

Proof: By structural induction or. The detailed proofis in [11].

Although the hypothesis of the above theorem contains dnatvan relation, the proof
does not use the run-time checks associated with the ei@iuaties to prove that
the result of the evaluation (result and dynamic envirornisnvell-typed, valid and
consistent.

The progress theorem guarantees that the execution oftapraljram cannot gen-
eratedangl i nger r errors, by proving that those run-time checks are redunidarat
well-typed valid program (the run-time checks are provedhegystatic semantics).

Theorem 2. (Progress) If
valid(e) P; IR ;X Fe:t
I'R g, X F (w,II)
then either
e eis avalue, or

o (w, IT)[e]—nul | err or
o there existw’, I1’, € such that{w, I1)[e] — (', II')[€].

Proof: By induction over the depth of the type derivation for exgiese. The detailed
proofisin [11].

We conclude with the following soundness theorem for regiomotated Core-Java.
The theorem states that if a valid program is well-typed anglvaluated in a run-time
environment consistent with the static environment, tteilteof a finite number of
reduction steps (denoted by*) is (1) either an error different from a dangling error,
(2) or avalue, (3) or that the program diverges (namely affarite number of reduction
steps there still exists one more reduction step). The atialunever reports dangling
errors, namely the program never creates dangling refesenc

Theorem 3. (Soundness) Given a well-typed valid Core-Java progPardef- and the
main function(void main(void){ey })P, wheree, is a well-typed valid closed term (with-
out free regions and free variables), such thetvargeo)=0 A retreggeo)=0 and P; I'y;
Ro; v0; Yo F & : void, wherely=0), Ry=0, po=true, and =0 . Starting from the initial
run-time environmentwo, I1o), Wherewo=|], I1ob=0, such that

I, Ro, o, Xo F (w0, IIo). Then either

(1) (w0, Io)[en] —* nul l err

or there exist a stores, a variable environmentz, a values, a type environment, a
set of region®, a region constrainty, a store typing® such that

(2) <w07HO>[eO] =" <W,H>[5] 'R p, Y E <W,H> P; ;R ¢; 2 = 6 = void
or for a storew, a variable environmentz, a valid expressiom, a type environment,
a set of regiong, a region constrainy, a store typing® such that

(wo, ITo)[eo] =" (w0, IT)[e] IR ¢, X F (w,) P;I';R ;X e:void valide)

there exist a stores’, a variable environmentl’, an expressior’, a type environment
I, a set of region®, a region constraint’, a store typing~’ such that

(3) (w, II)[g — (=, T[] I'"'R,0 2 k(' I PI";R;¢0 ;5 Fe void valid(e")

Proof: The proof is an induction on the number of the reduction stéfescan repeat-
edly use the progress theorem (Theorem 2) to prove that thereeduction step and
then the preservation theorem (Theorem 1) to prove thattidéime environment after
evaluation is still well-typed and the evaluation resultasid.

7 Conclusion

We have considered a region calculus consisting of an ebjgemnted core language
annotated with regions. We have defined the dynamic sensdntiour region calculus
based on a simpler small-step rewriting relation. Some®f#gion calculus construc-
tions (e.g.l et reg) are firstly evaluated to intermediate constructions. &ftae the
static semantics must also be extended to include thesentesmiediate constructions.
We have used a novel syntactic conditioal{d(e) to restrict the places where the
intermediate constructions may occur in a program. Thigitmm does not restrict
source-level region calculus, since intermediate constms are generated during the
program evaluation. Our dynamic semantics is instrumewni#id runtime checks to
guarantee that a specidéngl i ngerr error is reported whenever the program eval-
uation tries to create a dangling reference. We have definéchportant consistency
relationship between the static and dynamic semanticom $¢ping technique is used
to ensure that objects created in the store during run-timéy/ae-wise consistent with
those captured by the static semantics. We have proventimelisess of the region cal-
culus by using a syntactic proof method [25], based on stibgeltiction and progress.
The subject reduction theorem ensures that the region tiypevalid program is pre-
served during the evaluation. The progress theorem guesititat the evaluation of a
valid program cannot generatangl i nger r errors (namely those runtime checks are
redundant for a well-typed valid program). We have proveth ftioeeorems in a modular
fashion using just a simple induction. This simple soundmEsof adds confidence to
our region-based memory inference and execution systems.

References

1. David F. Bacon, Perry Cheng, and V. T. Rajan. A real-timeébgge collector with low
overhead and consistent utilization. ACM Symposium on Principles of Programming Lan-
guages (POPL)pages 285-298, 2003.

2. L. Birkedal and M. Tofte. A constraint-based region ieface algorithmTheoretical Com-
puter Science258(1-2):299-392, 2001.

3. G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, Bardin, and M. Turnbull. The
Real-Time Specification for JavAddison-Wesley, 2000.

4. Gerard Boudol. Typing safe deallocationBHuaropean Symposium on Programming (ESOP)
pages 116-130, 2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

. C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Owvmipr$ypes for Safe Region-
Based Memory Management in Real-Time JavaAGM Conference on Programming Lan-
guage Design and Implementation (PLDpges 324—-337, 2003.

. C. Calcagno. Stratified operational semantics for safeti/correctness of the region calcu-
lus. INACM Symposium on Principles of Programming Languages (PQ#lges 155-165,
2001.

. C. Calcagno, S. Helsen, and P. Thiemann. Syntactic typeds@ss results for the region
calculus.Information and Computatiqri73(2):199-221, 2002.

. Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and MagtirRinard. Region inference
for an object-oriented language. ACM Conference on Programming Language Design and
Implementation (PLDIl)pages 243-254, 2004.

. M. V. Christiansen and P. Velschow. Region-Based Memoaypagiement in Java. Master’s

Thesis, Department of Computer Science (DIKU), UniversitCopenhagen, 1998.

Florin Craciun, Hong Yaw Goh, and Wei-Ngan Chin. A framekfor object-oriented pro-

gram analyses via Core-Java. IEEE International Conference on Intelligent Computer

Communication and Processing (ICCPages 197-205, Cluj-Napoca, Romania, 2006.

Florin Craciun, Shengchao Qin, and Wei-Ngan Chin. A Fdr®oundness Proof of

Region-based Memory Management for Object-Oriented Rgrad Technical report,

Department of Computer Science, Durham University, UK.rilAB008. Available at

http://www.durham.ac.uk/shengchao.qgin/paperstaigproof. pdf.

Martin Elsman. Garbage collection safety for regiosdstamemory management. ACM

Workshop on Types in Language Design and ImplementatioRl{Thages 123134, 2003.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, an@keney. Region-Based Mem-

ory Management in Cyclone. IACM Conference on Programming Language Design and

Implementation (PLDI|)pages 282-293, 2002.

S. HelsenRegion-Based Program SpecializatidPhD thesis, Universitat Freiburg, 2002.

Simon Helsen and Peter Thiemann. Syntactic type sosadoethe region calculu€lec-

tronic Notes in Theoretical Computer Sciendé(3), 2000.

A. lgarashi, B. Pierce, and P. Wadler. Featherweigh:JaWinimal Core Calculus for Java

and GJ. InACM Conference on Object-Oriented Programming Systensguages, and

Applications (OOPSLApages 132-146, 1999.

Gregory MorrisettCompiling with TypesPhD thesis, Carnegie Mellon University, 1995.

J. Gregory Morrisett, Matthias Felleisen, and Robempia Abstract Models of Memory

Management. IMCM Conference Conference on Functional Programming Laggs and

Computer Architecture (FPCApages 6677, 1995.

H. Niss. Regions are imperative. Unscoped regions and controliseasnemory manage-

ment PhD thesis, University of Copenhagen, 2002.

B. PierceTypes and Programming Languagé&he MIT Press, 2002.

M. Tofte and L. Birkedal. A region inference algorithACM Transactions on Programming

Languages and Systems (TOPLAX)(4):734-767, 1998.

M. Tofte and J. Talpin. Implementing the Call-By-Valdecalculus Using a Stack of Re-

gions. INACM Symposium on Principles of Programming Languages (POftges 188—

201, 1994.

M. Tofte and J. Talpin. Region-based memory managenhgiormation and Computatign

132(2):109-176, 1997.

Paul R. Wilson. Uniprocessor garbage collection teples. Ininternational Workshop on

Memory Management (IWMMpages 1-42, 1992.

Andrew K. Wright and Matthias Felleisen. A Syntactic Apgch to Type Soundnesisifor-

mation Computation115(1):38-94, 1994.

