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Abstract. Region-based memory management has been proposed as a viable
alternative to garbage collection for real-time applications and embedded soft-
ware. In our previous work we have developed a region type inference algorithm
that provides an automatic compile-time region-based memory management for
object-oriented paradigm. In this work we present a formal soundness proof of
the region type system that is the target of our region inference. More precisely,
we prove that the object-oriented programs accepted by our region type system
achieve region-based memory management in a safe way. That means, the re-
gions follow a stack-of-regions discipline and regions deallocation never create
dangling references in the store and on the program stack. Our contribution is to
provide a simple syntactic proof that is based on induction and follows the stan-
dard steps of a type safety proof. In contrast the previous safety proofs provided
for other region type systems employ quite elaborate techniques.

1 Introduction

Modern object-oriented programming languages provide a run-time system that auto-
matically reclaims memory using tracing garbage collection [24]. A correct garbage
collector can guarantee that the memory is not collecting too early, and also that all
memory is eventually reclaimed if the program terminates. However the space and time
requirements of garbage-collected programs are very difficult to estimate in practice.
Therefore many different solutions have been proposed for real-time applications and
embedded software running on resource-limited platforms.These solutions either com-
pletely omit the use of garbage collectors (e.g. JavaCard platform), or use real-time
garbage collectors [1], or use region-based memory management (e.g. Real-Time Spec-
ification for Java (RTSJ) [3]).

Region-based memory management systems allocate each new object into a program-
specifiedregion, with the entire set of objects in each region deallocated simultaneously
when the region is deleted. Various studies have shown that region-based memory man-
agement can provide memory management with good real-time performance. Individ-
ual object deallocation is accurate but time unpredictable, while region deletion presents
a better temporal behavior, at the cost of some space overhead. Data locality may also
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improve when related objects are placed together in the sameregion. Classifying objects
into regions based on their lifetimes may deliver better memory utilization if regions are
deleted in a timely manner.

The first safe region-based memory system was introduced by Tofte and Talpin [22,
23] for a functional language. Using a region type inferencesystem, they have pro-
vided an automatic static region-based memory management for Standard ML. More
precisely, their compiler can group heap allocations into regions and it can statically
determine the program points where it is safe to deallocate the regions. Later, several
projects have investigated the use of region-based memory management for C-like lan-
guages (e.g. Cyclone [13]) and object-oriented languages [9, 5]. These projects provide
region type checkers and require programmers to annotate their programs with region
declarations. The type checkers then use these declarations to verify that well-typed
programs safely use the region-based memory.

In our previous work [8], we have developed the first automatic region type infer-
ence system for object-oriented paradigm. Our compiler automatically augments unan-
notated object-oriented programs with regions type declarations and inserts region allo-
cation/deallocation instructions that achieve a safe memory management. In this paper
we provide the safety proof of our region type system that is the target of our previous
region inference algorithm.
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Fig. 1.Lexically-Scoped Regions

In our work, we uselexically-scoped
regionssuch that the memory is or-
ganised as astack of regions, as
illustrated in Fig. 1. Regions are
memory blocks that are allocated
and deallocated by the construct
letreg r in e, where the region
r can only be used to allocate ob-
jects in the programe. The older re-
gions (with longer lifetime) are allo-
cated at the bottom of the stack while
the younger regions (with shorter life-
time) are at the top. The region life-
time relations are expressed using a
transitiveoutlive relation, denoted by
�. Thus, we can define the lifetime
constraintsr0�r1∧r1�r2∧r2�r3∧r3�r4 on the regions of Fig. 1. Region lifetime
constraints (as shown in Fig. 2) are of two main formsr1�r2 andr1=r2. The constraint
r1�r2 indicates that the lifetime of regionr1 is not shorter than that ofr2, while the
constraintr1=r2 denotes thatr1 andr2 must be the same region. The equality can be
expressed as an outlive relation such thatr1=r2 iff r1�r2 andr2�r1.

Dangling referencesare a safety issue for region-based memory management. Fig.1
shows two kinds of references: non-dangling references andpossible dangling refer-
ences. Non-dangling references originate from objects placed in a younger region and
point to objects placed either in an older region or inside the same region. Possible dan-
gling references occur when objects placed in an older region point to objects placed in



a younger region. They turn into dangling references when the younger region is deal-
located. Using a dangling reference to access memory is unsafe because the accessed
memory may have been recycled to store other objects. There are two approaches to
eliminating this problem. The first approach allows the program to create dangling ref-
erences, but uses an effect-based region type system to ensure that the program never
accesses memory through a dangling reference [22, 23, 9, 13]. The second approach
uses a region type system to prevent the program from creating dangling references at
all [5]. Our work has adopted the second approach.

Contributions. The main contribution of this paper is the soundness proof ofour re-
gion type system for object-oriented paradigm. We prove that our region type system
guarantees that well-typed programs use lexically-scopedregions and never create dan-
gling references in the store and on the program stack. We provide a simple syntactic
proof based on induction (rather than a more elaborate co-induction machinery), that
follows the standard steps of a type safety proof [25]. Our small-step dynamic seman-
tics decomposes high-level expressionletreg r in e into three intermediate opera-
tions: allocation of regionr on the stack, evaluation of programe, and deallocation of
regionr. The difficulty is to prove that after deallocation of regionr, the store, the pro-
gram stack and the remaining code do not contain any reference to regionr and to the
objects stored in regionr. To prove that region deallocation is safe, we use the region
constraints of our type system and a syntactic condition that we imposed to restrict the
valid intermediate code. However our syntactic restriction does not restrict high-level
source code, it only defines the correct intermediate code towhich high-level code can
be evaluated.

Related Work. In the original effect-based region type system, Tofte and Talpin [23,
21, 2] and later Christiansen and Velschow [9], in their region calculus for object-
oriented languages make use of co-induction to prove the soundness. Their proof re-
quires co-induction partly because they prove two properties at the same time: type
soundness and translation soundness. The latter property guarantees that there exists
a semantic relation between source program and its region-annotated counterpart. Our
safety theorems are only focused on the problem of type soundness, thus are simpler to
prove. A co-inductive definition is required in their proof also because they use a big-
step semantics where certain information is lost when deleting a region from the store,
as discussed in [15, 7]. Our system uses a small-step operational semantics instrumented
with regions which makes the consistency definition and the proof easier. Calcagno [6]
uses a stratified operational semantics to avoid co-induction in the proof of safety prop-
erties of a simple version of Tofte and Talpin’s region calculus, while Helsen et al. [15,
14] introduces a special constant for defunct regions in their big-step semantics which
makes the soundness proof simpler. A similar proof with oursis the safety proof of
Niss [19], that in addition to a simple functional language handles an imperative calcu-
lus, and like our proof avoids explicit co-induction by using store typing. Cyclone [13]
also has an effect system used for a soundness proof and does not use co-induction. Els-
man [12] refines Tofte and Talpin’s region type system in order to forbid the dangling
references and proves by induction the safety for a small functional language. There
are many differences between his proof and ours. His proof isbased on a small-step
contextual semantics [17], while in our proof we explicitlymodel the heap as a stack of



t ::= cn〈r+〉 | prim〈〉 | ⊥ (region types)
prim ::= int | boolean | void
ϕ ::= r1 � r2 | r1 = r2 | true | ϕ1 ∧ ϕ2 (region constraints)
P ::= def∗ (region annotated program)
def ::= classcn1〈r

+〉 extendscn2〈r
+〉 whereϕ

{(t f)∗ meth∗} (region annotated class declaration)
meth::= t mn〈r∗〉((t v)∗) whereϕ {e} (region annotated method)
e ::= null | k | v | v.f | v = e | v.f = e (region annotated expression)

| e1 ; e2 | {(t v) e} | newcn〈r+〉(v∗)
| v.mn〈r∗〉(v∗) | if v then e1 elsee2 | while v e
| letreg r in e (region declaration)
cn ∈ class names r ∈ region variable names
mn ∈ method names k ∈ integer or boolean constants
f ∈ field names v ∈ variable names

Fig. 2. The Syntax of Region-Annotated Core-Java

regions and we use a consistency relation between the staticand dynamic semantics. In
addition Elsman uses a syntax-directed containment relation to express the regions of
the program values and also to force the stack discipline forregions’allocation and deal-
location. In our case the region requirements and the order among regions are expressed
by the region constraints of the type system. However we alsoimpose a syntactic con-
dition to restrict the valid intermediate (non-source) programs. Boudol [4] refines Tofte
and Talpin’s region calculus to a flow-sensitive effect-based region type system, that
explicitly records the deallocations effects. He providesa simple proof for a functional
language by means of a subject reduction property up to simulation. Although his sim-
ulation is half-bisimulation, his proof does not employ co-induction. In contrast our
region type system is a flow-insensitive calculus. However our syntactic restriction on
intermediate code has a similar role as the flow-sensitive deallocation effect. Our type
system is similar to SafeJava’s type system of Boyapati et al. [5], but in addition we sup-
port the region subtyping principle [13]. However SafeJavadoes not provide a formal
proof for its region type system.
Outline. The paper is organized as follows. Section 2 introduces the syntax of our re-
gion calculus. Section 3 presents our region type system, while Section 4 defines the
dynamic semantics of our region calculus. Section 5 extendsthe static semantics to in-
termediate expressions, while Section 6 presents the soundness theorems. A brief con-
clusion is given. The technical report [11] contains the details of our inductive proofs.

2 Region Calculus

Our region calculus is designed by annotating with regions aJava-like object-oriented
language, named Core-Java [10]. The full syntax of the region-annotated Core-Java
language is given in Fig. 2. Core-Java is designed in the sameminimalist spirit as the
pure functional calculus Featherweight Java [16]. Despiteits expression-oriented syn-
tax, Core-Java supports imperative features.



Each class definition is parameterized with one or more regions to form aregion
type. For instance, a region typecn〈r1, ..., rn〉 is a class namecn annotated with region
parametersr1...rn. Parameterization allows us to obtain a region-polymorphic type for
each class whose fields can be allocated in different regions. The first region parameter
r1 is special: it refers to the region in which the instance object of this class is allocated.
The fields of the objects, if any, are allocated in the other regionsr2...rn which should
outlivethe region of the object. This is expressed by the constraint

∧n

i=2
(ri � r1), which

captures the property that the regions of the fields (inr2...rn) should have lifetimes no
shorter than the lifetime of the region (namelyr1) of the object that refers to them. This
condition, calledno-dangling requirement, prevents dangling references completely, as
it guarantees that each object never references another object in a younger region. In
general the class invariant,ϕ, of a class consists of the no-dangling requirement for
the region type of the current class, the no-dangling requirements for the fields’ region
types, and the class invariant of the parent class We do not require region parameters
for primitive types, since primitive values can be copied and stored directly on the stack
or they are part of an object. In order to keep the same notation, we useprim〈〉 to denote
a region annotated primitive type. Although null values areof object type, they are
regarded as primitive values. The type of a null value is denoted by⊥.

[RegSub]

ϕ=(x1�x̂1) ∧
∧n

i=2
(xi=x̂i)

⊢cn〈x1..n〉<:cn〈x̂1..n〉, ϕ

[SubClass]

classcn〈r1..n〉 extendscn′〈r1..m〉.. ∈ P′

n≥m≥p ⊢ cn′〈x1..m〉<:cn′′〈x′

1..p〉, ϕ

⊢ cn〈x1..n〉<:cn′′〈x′

1..p〉, ϕ

[Null]

⊢ ⊥<:cn〈x1..n〉, true

Fig. 3.Region Subtyping Rules

The region subtyping principleallows
an object from a region with longer life-
time to be assigned to a location where a
region with a shorter lifetime is expected.
This principle is illustrated by the subtyp-
ing rule [RegSub] of Fig. 3. This rule relies
on the fact that once an object is allocated
in a particular region, it stays within the
same region and never migrates to another
region. This property allows us to apply co-
variant subtyping to the region of the cur-
rent object. However, the object fields are
mutable (in general) and must therefore use
invariant subtyping to ensure the soundness
of subsumption. The other two rules, [SubClass] and [Null] from Fig. 3 denote the class
subtyping and the fact that a null value can be assigned to anyobject, respectively.

Every method is decorated with zero or more region parameters; these parameters
capture the regions used by each method’s parameters (includingthis) and result. For
simplicity, no other externally defined regions are made available for a method. Thus,
all regions used in a method either are mapped to these regionparameters or are lo-
calised byletreg in the method body. Each method also has a method precondition,ϕ
expressed as a region lifetime constraint that is consistent with the operations performed
in the method body. The method precondition also contains the class invariants of its
parameters including the receiver and its result. The instance methods of a subclass can
override the instance methods of the superclass.

Consider thePair class in Fig. 4. As there are two fields in this class, a distinct
region is introduced for each of them,r2 for fst field andr3 for snd field. ThePair



object is placed in the regionr1. To ensure that everyPair instance satisfies the no-
dangling requirement, the region lifetime constraintr2�r1∧r3�r1 is added to the
class invariant.

class Pair〈r1,r2,r3〉 extends Object〈r1〉
where r2�r1 ∧ r3�r1 {
Object〈r2〉 fst;
Object〈r3〉 snd;

void setSnd〈r1,r2,r3,r4〉(Object〈r4〉 o)
where r4�r3∧r2�r1∧r3�r1
{snd=o;}

void swap〈r1,r2,r3〉() where r2=r3∧r2�r1
{ Object〈r2〉 tmp=fst;fst=snd;snd=tmp}

Pair〈r5,r6,r7〉 exalloc〈r1,r2,r3,r5,r6,r7〉()
where r7�r5∧r6�r5∧r2�r1∧r3�r1

{letreg r in {
Pair〈r7,r7,r7〉 p4;
Pair〈r,r,r〉 p3;
Pair〈r5,r6,r7〉 p2;
Pair〈r,r,r〉 p1;
p4 = new Pair〈r7,r7,r7〉(null,null);
p3 = new Pair〈r,r,r〉(p4,null);
p2 = new Pair〈r5,r6,r7〉(null,p4);
p1 = new Pair〈r,r,r〉(p2,null);
p1.setSnd〈r,r,r,r〉(p3); p2} }

}

Fig. 4.Region-Annotated Core-Java Program

Consider thesetSnd,
swap, and exalloc meth-
ods of thePair class. A
set of distinct region param-
eters are introduced for the
methods’ parameters, and
the results, as shown in
Fig. 4. The receiver regions
are taken from the class def-
inition. Moreover, the meth-
ods’ region lifetime con-
straints are based on the
possible operations of the
respective methods. For ex-
ample, due to an assign-
ment operation and region
subtyping, we haver4�r3
for setSnd, while r2=r3

is present due to the swap-
ping operation on the re-
ceiver object in theswap
method. Though theswap
method’s region constraint
is exclusively on the regions
of the current object, we as-

sociate the constraint with the method. In this way, only those objects that might call
the method are required to satisfy this constraint. The class invariants of methods’ pa-
rameters (including the receiver and their result) are alsoadded to the methods’ region
constraints. Theexalloc method’s body introduces a local regionr usingletreg.
Since thep1 andp3 objects do not escape from theexalloc method’s body, they are
stored in the local regionr. Thep2 andp4 objects escape through the method result,
therefore they are stored in the method result’s regionsr5 andr7, respectively.

3 Region Type System: Static Semantics

Our region type system guarantees that region-annotated Core-Java programs never cre-
ate dangling references. To avoid variable name duplication, we assume that the local
variables of the blocks and the arguments of the functions are uniquely renamed in a
preprocessing phase. A part of region type checking rules are depicted in Fig. 5, with
some auxiliary rules in Fig. 6 (a complete description of region type system is given
in [11]). Judgments of the following forms are employed:

– ⊢ P denoting that a programP is well-typed.



[RC−PROG]
WFClasses(P)

P = def1 .. defn
FieldsOnce(defi) i = 1..n

MethodsOnce(defi) i = 1..n
P ⊢ InheritanceOK(defi) i = 1..n

P ⊢def defi i = 1..n

⊢ P

[RC−CLASS]
def= classcn〈r1..n〉extendsc〈r1..m〉

whereϕ {field1..p meth1..q}
r1 6∈

⋃p

i=1
reg(fieldi)

ϕ⇒ri � r1 i = 2..n R = {r1, . . . , rn}
P; {this : cn〈r1..n〉}; R; ϕ ⊢meth methi i = 1..q

P; R; ϕ ⊢field fieldi i = 1..p

P ⊢def def

[RC−METH]
Γ ′ = Γ + (vj : tj)j:1..p R′ = R∪ {r1, . . . , rm}

ϕ′ = ϕ ∧ ϕ0 P; R′; ϕ′ ⊢type tj , j = 0..p
P; Γ ′; R′; ϕ′ ⊢ e : t′0 P; R′; ϕ′ ⊢ t′0 <: t0

P; Γ ; R; ϕ ⊢meth t0 mn〈r1..m〉((tj vj)j:1..p)whereϕ0 {e}

[RC−EB]
P; R; ϕ ⊢type t′

Γ ′ = Γ + (v : t′)
P; Γ ′; R; ϕ ⊢ e : t

P; Γ ; R; ϕ ⊢ {(t′ v) e} : t

[RC−VAR]
(v : t) ∈ Γ

P; Γ ; R; ϕ ⊢ v : t

[RC−NEW]
P; R; ϕ ⊢type cn〈r1..n〉 fieldlist(cn〈r1..n〉) = (ti fi)i:1..p

(vi : t′i) ∈ Γ P; R; ϕ ⊢ t′i <: ti i = 1..p

P; Γ ; R; ϕ ⊢ newcn〈r1..n〉(v1, .., vp) : cn〈r1..n〉

[RC−INVOKE]
(v0 : cn〈a+〉) ∈ Γ P; R; ϕ ⊢type cn〈a+〉

(t mn〈a+r′+〉((ti vi)i:1..n)whereϕ0 {e}) ∈ cn〈a+〉
(v′

i : t′i)i:1..n ∈ Γ a′+∈R ρ = [r′+ 7→a′+]
ϕ⇒ρ ϕ0 P; R; ϕ ⊢ t′i<:ρ ti i = 1..n

P; Γ ; R; ϕ ⊢ v0.mn〈a+a′+〉(v′

1..v
′
n) : ρ t

[RC−LETR]
a = fresh()

ϕ′ = ϕ ∧
∧

r′∈R(r
′�a)

P; Γ ; R∪{a}; ϕ′ ⊢ [r 7→a]e : t
reg(t) ⊆ R

P; Γ ; R; ϕ ⊢ letreg r in e : t

ρt, ρϕ, ρe region substitution on a type, a constraint, and an expression
fresh() returns one or more new/unused region names

Fig. 5. Region Type Checking Rules

– P ⊢def defdenoting that a class declarationdef is well-formed.
– P;Γ ;R;ϕ ⊢meth methdenoting that a methodmethis well-defined with respect to the

programP, the type environmentΓ , the set of live regionsR, and the region con-
straintϕ.

– P;Γ ;R;ϕ⊢e:t denoting that an expressione is well-typed with respect to the program
P, the type environmentΓ , the set of live regionsR, and the region constraintϕ.

– P; R; ϕ ⊢type t denoting that a typet is well-formed, namely, the regions of the typet
are from the set of the live regionsR, and the invariant of the typet is satisfied by
the constraint contextϕ.

– P; R⊢constr t, ϕ denoting that the regions of the typet are from the set of the live
regionsR, while ϕ is the invariant of the typet.

– P; R; ϕ ⊢field field denoting that the type of a fieldfield is well-formed with respect to
⊢type judgment.

– P; R; ϕ ⊢ t<:t′ denoting that the typet is a subtype of the typet′, namely both types
are well-formed and the region constraint of the subtyping relation (defined in
Fig. 3) is satisfied by the constraint contextϕ.

The rule[RC−PROG] denotes that a region-annotated program is well-typed if all
declared classes are well-typed. The predicates in the premise are used to capture the



standard well-formedness conditions for the object-oriented programs such as no dupli-
cate definitions of classes and no cycle in the class hierarchy; no duplicate definitions
of fields; no duplicate definitions of methods; and soundnessof class subtyping and
method overriding.

reg({})=def{} reg({v:τ 〈r∗〉}∪Γ )=def{r
∗}∪reg(Γ )

reg(τ 〈r∗〉)=def{r
∗} reg((τ 〈r∗〉 f))=def{r

∗}

reg(r1�r2)=def{r1, r2} reg(r1=r2)=def{r1, r2}

reg(true)=def{} reg(ϕ1∧ϕ2)=defreg(ϕ1)∪reg(ϕ2)

fieldlist(Object〈r〉)=def[ ]

classcn1〈r1..n〉 extendscn2〈r1..m〉..{(ti fi)i:1..p..}∈P′

ℓ=fieldlist(ρ cn2〈r1..m〉) ρ=[ri 7→xi]
n
i=1

fieldlist(cn1〈x1..n〉)=defℓ++[(ρ ti) fi]
p
i=1

Fig. 6.Auxiliary Region Checking Rules

The rule[RC−CLASS] in-
dicates that a class is well-
formed if all its fields and
methods are well-formed, and
the class invariant ensures the
necessary lifetime relations
among class region parame-
ters. In addition, the rule does
not allow the first region of
the class to be used by the re-
gion types of the fields. Us-
ing the first region on a field
would break the object (re-
gion) subtyping (rule [RegSub] of Fig. 3). Functionreg(fieldi) returns the region vari-
ables of a field type (see Fig. 6).

The rule [RC−METH] checks the well-formedness of a method declaration. Each
region type is checked to be well-formed, that means its regions are in the current set of
live regions and its invariant is satisfied by the current constraint context. The method
body is checked using the type relation for expressions suchthat the gathered type has
to be a subtype of the declared type.

Our type relation for expressions is defined in a syntax-directed fashion. Take note
that region constraints of the variables are not checked at their uses ([RC−VAR]), but
at their declaration sites ([RC−EB]). The region invariant of an object is also checked
when that object is created ([RC−NEW]). In the rule for object creation ([RC−NEW]), the
functionfieldlist(cn〈x1..n〉) returns a list comprising all declared and inherited fields of
the classcn〈x1..n〉 and their region types according to the regionsx1..xn of the classcn
(see Fig. 6). They are organized in an order determined by theconstructor function.

The rule[RC−INVOKE] is used to check a method call. It ensures that the method re-
gion parameters are live regions and the method precondition is satisfied by the current
constraint context asϕ⇒ρϕ0. A substitutionρ is computed for the method’s formal re-
gion parameters. The current arguments are also checked to be subtypes of the method’s
formal parameters.

The rule[RC−LETR] is used to check a local region declaration. The local expression
is checked with an extra live regiona (that is a fresh region), and an extra constraint
∧

r′∈R(r
′�a) that ensures that newly introduced region is on the top of theregion stack.

The rule uses a region substitution on the expressions. Notethat the region substitutions
on expressions, constraints and types are defined as expected. The gathered region type
of the local expression is checked to contain only live regions (fromR exceptinga).
This guarantees that the localized regiona does not escape. Functionreg(t) returns all
region variables oft (see Fig. 6).



4 Dynamic Semantics

In this section we define the dynamic semantics of our region calculus. Our dynamic
semantics rules use runtime checks to throw an error and to abort the execution, when-
ever the evaluation of a region-annotated Core-Java program tries to create a dangling
reference. In Section 6 we prove that those runtime checks are redundant for well-typed
programs, namely the evaluation of a well-typed region-annotated Core-Java program
never creates a dangling reference. The dynamic semantics is defined as a small-step
rewriting relation from machine states to machine states. Amachine state is of the form
〈̟, Π〉[e], where̟ is the heap organized as a stack of regions,Π is the variable en-
vironment, ande is the current program. Our dynamic semantics was inspired by the
previous work on abstract models of memory management [18] and region-based mem-
ory management [9, 13]. The following notations are used:

Region Variables: r, a ∈ RegVar

Offset: o ∈ Offset

Locations: ℓ or (r, o) ∈ Location=RegVar×Offset

Primitive Values: k | null ∈ Prim

Values: δ ∈ Value= Prim⊎ Location

Variable Environment: Π ∈ VEnv= Var ⇀fin Value

Field Environment: V ∈ FEnv= FieldName⇀fin Value

Object Values: cn〈r∗〉(V) ∈ ObjVal = ClassName× (RegVar)n × FEnv

Store: ̟ ∈ Store= [ ]|[r 7→Rgn]Store

Runtime Regions: Rgn∈ Region= Offset⇀fin ObjVal

Regions are identified by region variables. We assume a denumerably infinite set of
region variables,RegVar. The store̟ is organized as a stack, that defines an ordered
map from region variables,r to runtime regionsRgn. The notation[r 7→Rgn]̟ denotes a
stack with the regionr on the top, while[ ] denotes an empty store. The store can only
be extended with new region variables. A runtime regionRgnis an unordered finite map
from offsets to object values. We assume a denumerably infinite set of offsets,Offsetfor
each runtime regionRgn.

The set of values that can be assigned to variables and fields is denoted byValue.
Such a value is either a primitive value (a constant or a null value) or it is a location in
the store. A location consists of a pair of a region variable and an offset.

An object value consists of a region typecn〈r∗〉, and a field environmentV mapping
field names to values.V is not really an environment since it can only be updated, never
extended. An update of fieldf with valueδ is written asV +{f 7→δ}.

The variable environmentΠ is a mappingVar ⇀fin Value, while the type environment
Γ that corresponds to the runtime variable environment is also a mappingVar ⇀fin Type.
To avoid variable name duplication, we assume that the localvariables of the blocks
and the arguments of the functions are uniquely renamed in a preprocessing phase.

Notation f : A ⇀fin B denotes a partial function fromA to B with a finite domain,
written A = dom(f). We write f+{a 7→ b} for the function likef but mappinga to b (if
a∈dom(f) andf(a)=c then(f+{a 7→ b})(a)=b). The notation{} (or ∅) stands for an un-
defined function. Given a functionf : A ⇀fin B , the notationf−C denotes the function
f1 : (A−C ) ⇀fin B such that∀x∈(A−C )·f1(x)=f(x).



We require some intermediate expressions for the small-step dynamic semantics to
follow through. The intermediate expressions help our proof to use simpler induction
techniques rather than a more elaborate co-induction machinery. The syntax of inter-
mediate expressions is thus extended from the original expression syntax, as follows:

e ::= . . . | (r, o) | ret(v, e) | retr(r, e)

The expressionret(v, e) is used to capture the result of evaluating a local block, or the
result of a method invocation. The variable associated withret denotes either a block
local variable or a method receiver or a method parameter. This variable is popped from
the variable environment at the end of the block’s evaluation. In the case of a method
invocation there are multiple nestedrets which pop off the receiver and the method
parameters from the variable environment at the end of the method’s evaluation. The
expressionretr(r, e) is used to pop off the top region,r of the store stack at the end of
expressione evaluation.

Dynamic semantics rules of region annotated Core-Java are shown in Fig. 7 and
Fig. 8. The evaluation judgment is of the form:

〈̟, Π〉[e]→֒〈̟′, Π ′〉[e′]

where̟ (̟′) denotes the store before (after) evaluation, whileΠ (Π ′) denotes the vari-
able environment before (after) evaluation. The store̟ organized as a stack establishes
the outlive relations among regions at runtime. The function ord(̟) returns the outlive
relations for a given store. The functiondom(̟) returns the set of the store regions,
while the functionlocation dom(̟) returns the set of all locations from the store. They
are defined as follows:

ord([r1 7→Rgn1][r2 7→Rgn2]̟)=def(r2�r1)∧ord([r2 7→Rgn2]̟)
ord([r 7→Rgn]) =def true ord([ ]) =def true
dom([r 7→Rgn]̟)=def{r}∪dom(̟) dom([r 7→∅]̟)=def{r}∪dom(̟) dom([ ])=def∅
location dom(̟)=def{(r, o) | ̟=̟1[r 7→Rgn]̟2 ∧ Rgn6=∅ ∧ o∈dom(Rgn)}

Notation̟(r)(o) denotes an access into the regionr at the offseto, as follows:

̟(r)(o)=defRgn(o) where ̟=̟1[r 7→Rgn]̟2

We define the meaning ofno-dangling referencesproperty at runtime. The property
refers to two kinds of references: (1) references from variable environment to store
locations, and (2) references from store locations to otherstore locations. Note that the
notion ofno-dangling referenceswas introduced in Fig. 1, and a reference is formalized
as a location(r, o).

Definition 1. (live location) A location(r, o) is live with respect to a store̟ , if r ∈

dom(̟).

Definition 2. (no-dangling)

1. A variable environmentΠ is no-danglingwith respect to a store̟ if for all v
∈ dom(Π),Π(v) is either a primitive value, or a live location(r, o) with respect
to ̟.

2. A runtime store̟ is no-danglingif each regionr1 ∈ dom(̟) contains only ref-
erences to regions older than itself, that means that for each location (r1, o) ∈

location dom(̟) containing an object value̟ (r1)(o)=cn〈r1..n〉(V), that object value
satisfies thenon-dangling requirement for a class, such thatord(̟)⇒

∧
i:2..n

(ri�r1)



[D−VAR]

v ∈ dom(Π)

〈̟, Π〉[v]→֒〈̟, Π〉[Π(v)]

[D−FD]

Π(v)=(r, o) ̟=̟1[r 7→Rgn]̟2 Rgn(o)=cn〈a+〉(V)

〈̟, Π〉[v.f]→֒〈̟, Π〉[V (f)]

[D−ASSGN1]

lhs = v | v.f
〈̟, Π〉[e]→֒〈̟′, Π ′〉[e′]

〈̟,Π〉[lhs = e]→֒〈̟′, Π ′〉[lhs = e′]

[D−ASSGN2]

v∈dom(Π) Π ′=Π+{v7→δ}
δ=(r1, o1) ∧ r1∈dom(̟)

〈̟,Π〉[v = δ]→֒〈̟, Π ′〉[()]

[D−ASSGN2−DANGLERR]

v ∈ dom(Π)
δ=(r1, o1) ∧ r1 6∈dom(̟)

〈̟, Π〉[v=δ]→֒danglingerr

[D−ASSGN3]

Π(v)=(a, o) ̟=̟1[a 7→Rgn]̟2 Rgn(o)=cn〈a+〉(V)
Rgn′=Rgn+{o7→cn〈a+〉(V+{f 7→δ})} ̟′=̟1[a 7→Rgn′]̟2

δ=(r1, o1) ∧ ord(̟)⇒(r1�fieldregion(cn〈a+〉, f))

〈̟, Π〉[v.f = δ]→֒〈̟′, Π〉[()]

[D−ASSGN3−DANGLERR]

Π(v)=(a, o) ̟=̟1[a 7→Rgn]̟2 Rgn(o)=cn〈a+〉(V)
δ=(r1, o1) ∧ ¬ (ord(̟)⇒(r1�fieldregion(cn〈a+〉, f)))

〈̟, Π〉[v.f = δ]→֒danglingerr

[D−NEW]

classcn〈r1..n〉 extendsc〈...〉 whereϕinv {...} ∈ P ord(̟)⇒ϕinv

̟=̟1[r1 7→Rgn]̟2 V ={f1 7→Π(v1), ..., fp 7→Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p

if Π(vi)=(r′i, o
′

i) thenord(̟)⇒(r′i�fieldregion(cn〈r1..n〉, fi)) i=1..p
o/∈dom(Rgn) Rgn′=Rgn+{o7→cn〈r1..n〉(V)} ̟′=̟1[r1 7→Rgn′]̟2

〈̟, Π〉[newcn〈r1..n〉(v1..p)]→֒〈̟′, Π〉[(r1, o)]

[D−NEW−DANGLERR]

classcn〈r1..n〉 extendsc〈...〉 whereϕinv {...} ∈ P
V ={f1 7→Π(v1), ..., fp 7→Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p

¬(ord(̟)⇒ϕinv) ∨ (∃i∈{1..p} · Π(vi)=(r′i, o
′

i) ∧
¬(ord(̟)⇒(r′i�fieldregion(cn〈r1..n〉, fi)))

〈̟, Π〉[newcn〈r1..n〉(v1..p)]→֒danglingerr

[D−INVOKE]

{a+, a′+}⊂dom(̟)
Π(v′0) = (a1, o) ̟(a1)(o) = cn〈a+〉(V)

(t0 mn〈a+r′+〉((t v)1..p)whereϕ {e}) ∈ cn〈a+〉
ni=fresh() i = 0..p ρ=[r′+ 7→a′+] Π ′=Π+{ni 7→Π(v′i)i:0..p}

e′=ret(n0,ret(n1, ..ret(np, [this7→n0][vi 7→ni]
p
i:1ρe)))

〈̟,Π〉[v′0.mn〈a+a′+〉(v′1..p)]→֒〈̟,Π ′〉[e′]

[D−INVOKE−DANGLERR]

¬(r+∈dom(̟))

〈̟,Π〉[v.mn〈r+〉(v∗)]→֒danglingerr

Fig. 7.Dynamic Semantics for Region-Annotated Core-Java: Part I



[D−EB]

n=fresh() Π ′=Π+{(n7→init (t))} e′=ret(n, e)
〈̟,Π〉[{(t v) e}]→֒〈̟,Π ′〉[e′]

[D−RET1]

〈̟, Π〉[e]→֒〈̟′, Π ′〉[e′]
〈̟,Π〉[ret(v, e)]→֒〈̟′, Π ′〉[ret(v, e′)]

[D−RET2]

〈̟,Π〉[ret(v, δ)]→֒〈̟, Π−{v}〉[δ]

[D−LETR]

a=fresh()
〈̟,Π〉[letreg r in e]→֒〈[a7→∅]̟, Π〉[retr(a, [r 7→a]e)]

[D−RETR1]

〈̟, Π〉[e]→֒〈̟′, Π ′〉[e′]
〈̟,Π〉[retr(a, e)]→֒〈̟′, Π ′〉[retr(a, e′)]

[D−RETR2]

(δ=(r, o))⇒(r∈dom(̟))
∀v∈Π · (Π(v)=(r, o))⇒(r∈dom(̟))

∀(r1, o)∈location dom(̟) · (̟(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom(̟)∧
∀f ∈ dom(V) . V(f)=(rf , of ) ∧ rf∈dom(̟))

〈[a7→Rgn]̟, Π〉[retr(a, δ)]→֒〈̟, Π〉[δ]

[D−RETR2−DANGLERR]

¬(a=a1)∨
¬((δ=(r, o))⇒(r∈dom(̟))) ∨ ¬((∀v∈Π · (Π(v)=(r, o))⇒(r∈dom(̟))))
∨¬(∀(r1, o)∈location dom(̟) · (̟(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom(̟)∧

∀f ∈ dom(V) . V(f)=(rf , of ) ∧ rf∈dom(̟)))

〈[a7→Rgn]̟, Π〉[retr(a1, δ)]→֒danglingerr

[D−IF1]

Π(v)=true
〈̟, Π〉[if v thene1 elsee2]→֒〈̟,Π〉[e1]

[D−IF2]

Π(v)=false
〈̟,Π〉[if v thene1 elsee2]→֒〈̟, Π〉[e2]

[D−LOOP1]

Π(v)=true
〈̟, Π〉[while v e]→֒〈̟, Π〉[e; while v e]

[D−LOOP2]

Π(v)=false
〈̟, Π〉[while v e]→֒〈̟, Π〉[()]

[D−SEQ1]

〈̟, Π〉[e1]→֒〈̟′, Π ′〉[e′1]
〈̟,Π〉[e1 ; e2]→֒〈̟′, Π ′〉[e′1 ; e2]

[D−SEQ2]

〈̟,Π〉[δ1 ; e2]→֒〈̟, Π〉[e2]

[D−NULLERR1]

Π(v)=null
〈̟,Π〉[v.f]→֒nullerr

[D−NULLERR2]

Π(v)=null
〈̟,Π〉[v.f = δ]→֒nullerr

[D−NULLERR3]

Π(v)=null
〈̟, Π〉[v.mn〈a∗〉(u∗)]→֒nullerr

Fig. 8. Dynamic Semantics for Region-Annotated Core-Java: Part II



and the current values of the fields are either primitives or references to regions
older than those expected by the region typecn〈r1..n〉, as follows:

∀f ∈ dom(V) . V(f)=(rf , of ) ord(̟)⇒rf�fieldregion(cn〈r1..n〉, f)
Functionfieldregion(cn〈r1..n〉, f) computes the region type of the class fieldf and then
returns its first region where the field is expected to be stored.

The dynamic semantics evaluation rules may yield two possible runtime errors, namely:

Error ::= nullerr | danglingerr

The first errornullerr is due to null pointers (by accessing fields or methods of null
objects). The second errordanglingerr is reported when a store updating operation
or a variable environment updating operation creates a dangling reference. Our dynamic
semantics rules use runtime checks to guarantee that adanglingerr error is reported
(and the execution is aborted) whenever the program evaluation tries to create a dan-
gling reference. There are five situations that require no-dangling reference checks at
runtime:

– Creation of a new object value.Rule [D−NEW] checks whether the class invariant
holds,ord(̟)⇒ϕinv (mainly whether the fields regionsri:2..n outlive the regionr1

of the object). The initial value of a field is also checked to be stored in a region that
outlives the expected region of that fieldr′i�fieldregion(cn〈r1..n〉, fi). The function
fieldlist(cn〈r1..n〉) is defined in Fig. 6.

– Updating of an object’s field.Rule [D−ASSGN3] checks whether the regionr1 of
the new locationδ=(r1, o1) outlives the expected region for the object fieldf ,
r1�fieldregion(cn〈a+〉, f).

– Updating a variable from the variable environment.Rule[D−ASSGN2] checks whether
the new locationδ=(r1, o1) assigned to a variable is live, namely its region is in the
current store,r1∈dom(̟).

– Deallocation of a region.Rule [D−RETR2] checks whether the regiona is on the
top of the store stack. Then it checks whether a reference toa does not escape
neither through the value resultδ, nor through the program variable environment
Π, nor through the object values of the store̟. Note that when a new region is
allocated, in rule[D−LETR], a fresh region name is used in order to avoid region
name duplication in the store.

– Calling a method.Rule [D−INVOKE] checks whether the method’s region argu-
ments are in the current store and then prepares the variableenvironment for the
method’s body execution.

The corresponding rules[D−NEW−DANGLERR], [D−ASSGN3−DANGLERR], [D−ASSGN2

−DANGLERR], [D−RETR2−DANGLERR], and[D−INVOKE−DANGLERR] generate a
danglingerr error due to the failure of their runtime checks. In the rules[D−ASSGN2],
[D−ASSGN3], and[D−LOOP2] the result() denotes the singleton value of typevoid. Note
that the typevoid is assumed to be isomorphic to typeunit . In rule [D−EB], the locally
declared variable is assigned, with the help of the functioninit , an initial value according
to its type as follows:

init (t) =def caset of
boolean → false
int → 0
cn〈r1..n〉 → null



5 Extended Static Semantics

In this section we extend our static semantics rules from Section 3 to include the new in-
termediate constructions introduced by the small-step dynamic semantics rules in Sec-
tion 4.

First we define avalid programusing a novel syntactic conditionvalid(e), that re-
stricts the places where the intermediate constructions may occur in a program.

Definition 3. (valid program)

1. A program is avalid programif all the program’s classes are valid classes.
2. A class is avalid classif all the class’s methods are valid methods.
3. A method is avalid methodif the method’s bodye is a valid block expression such

that retvars(e)=∅ andretregs(e)=∅.
4. Expressione is a valid expressionif the predicatevalid(e) holds, wherevalid(e) is

defined as follows:

valid(e) =def case e of
{(t v) e} → retvars(e)=∅ ∧ retregs(e)=∅
lhs = e → retvars(e)∩vars(lhs)=∅ ∧ valid(e)
e1 ; e2 → retregs(e2)=∅ ∧ retvars(e2)=∅ ∧ valid(e1)

∧retvars(e1)∩vars(e2)=∅ ∧ retregs(e1)∩regs(e2)=∅
if v then e1 elsee2 → retregs(e1)=∅ ∧ retvars(e1)=∅

∧retregs(e2)=∅ ∧ retvars(e2)=∅
while v e | letreg r in e → retregs(e)=∅ ∧ retvars(e)=∅
ret(v, e) → v 6∈ retvars(e) ∧ valid(e)
retr(r, e) → r 6∈ retregs(e) ∧ valid(e)
otherwise → true

This condition does not restrict source-level region calculus, since intermediate con-
structions are generated during the program evaluation. A source language Core-Java
program is by default a valid program since it does not contain any intermediate ex-
pression. The above condition is based on the functionsvars(e), retvars(e), regs(e), and
retregs(e) which are defined as follows:

Definition 4. 1. The functionvars(e) computes the set of all program variables which
occur in the expressione, excepting those variables introduced by e’s block subex-
pressions, as follows:

vars(e) =def case e of
ret(v, e) → {v} ∪ vars(e)
{(t v) e} → vars(e) \ {v}
retr(r, e) | letreg r in e → vars(e)
v.f = e | v = e | while v e → {v} ∪ vars(e)
v.f | v → {v}
if v then e1 elsee2 → {v} ∪ vars(e1) ∪ vars(e2)
e1 ; e2 → vars(e1) ∪ vars(e2)
newcn〈r+〉(v∗) → {v∗}
v.mn〈v∗〉(v∗) → {v} ∪ {v∗}
otherwise → ∅



2. The functionretvars(e) computes the set of all program variables which occur in the
ret subexpressions of the expressione, as follows:

retvars(e) =def case e of
ret(v, e) → {v} ∪ retvars(e)
retr(r, e) | v.f = e | v = e | {(t v) e} → retvars(e)
while v e | letreg r in e → retvars(e)
e1 ; e2 | if v then e1 elsee2 → retvars(e1) ∪ retvars(e2)
otherwise → ∅

3. The functionregs(e) computes the set of all region variables which occur in the
expressione, excepting those regions introduced by e’s letreg subexpressions, as
follows:

regs(e) =def case e of
{(t v) e} → reg(t) ∪ regs(e)
retr(r, e) → {r} ∪ regs(e)
letreg r in e → regs(e) \ {r}
ret(v, e) | v.f = e | v = e | while v e → regs(e)
(r, o) → {r}
if v then e1 elsee2 | e1 ; e2 → regs(e1) ∪ regs(e2)
newcn〈r+〉(v∗) | v.mn〈r+〉(v∗) → {r+}
otherwise → ∅

where reg(t) is defined in the Figure 6.
4. The functionretregs(e) computes the set of all region variables which occur in the

retr subexpressions of the expressione, as follows:
retregs(e) =def case e of
retr(r, e) → {r} ∪ retregs(e)
ret(v, e) | v.f = e | v = e | {(t v) e} → retregs(e)
while v e | letreg r in e → retregs(e)
e1 ; e2 | if v then e1 elsee2 → retregs(e1) ∪ retregs(e2)
otherwise → ∅

In order to describe the type of each location, we introduce astore typing. This
ensures that objects created in the store during run-time are type-wise consistent with
those captured by the static semantics. Store typing is conventionally used to link static
and dynamic semantics [20]. In our case, it is denoted byΣ, as follows:

Σ ∈ StoreType= RegVar⇀finOffset⇀fin Type

The judgments of static semantics are extended with store typing, as follows:
P; Γ ; R; ϕ; Σ ⊢ e : t

For a store typingΣ : R⇀finO⇀finType, a regionr, a location(r, o), and a typet we also
introduce the following notations:
dom(Σ)=R Σ(r)(o)=f(o), where f=Σ(r)
location dom(Σ)=def{(r, o) | r∈dom(Σ) ∧ f=Σ(r) ∧ f 6=∅ ∧ o∈dom(f)}
Σ−r=defΣ1 such that Σ1 : (R−{r})⇀finO⇀finType∧ ∀r′∈(R−r) · Σ1(r

′)=Σ(r′)
Σ+r=defΣ2 such that Σ2 : (R∪{r})⇀finO⇀finType∧ Σ2(r)=∅ ∧ ∀r′∈R · Σ2(r

′)=Σ(r′)
Σ−(r, o)=defΣ3 such that Σ3 : R⇀finO⇀finType

∧r∈R ∧ Σ3(r)=Σ(r)−{o} ∧ ∀r′∈(R−r) · Σ3(r
′)=Σ(r′)

Σ+((r, o) : t)=defΣ4 such that Σ4 : R⇀finO⇀finType
∧r∈R ∧ Σ4(r)=Σ(r)+{o7→t} ∧ ∀r′∈(R−r) · Σ4(r

′)=Σ(r′)



[RC−LOCATION]

r∈R Σ(r)(o) = t

P; Γ ; R; ϕ; Σ ⊢ (r, o) : t

[RC−ObjVal]
P; R; ϕ ⊢type cn〈r1..n〉 fieldlist(cn〈r1..n〉) = (ti fi)i:1..p

P; Γ ; R; ϕ; Σ ⊢ V(fi) : t′i P; R; ϕ ⊢ t′i <: ti i=1..p

P; Γ ; R; ϕ; Σ ⊢ cn〈r1..n〉(V) : cn〈r1..n〉

[RC−RET]
v∈Γ P; Γ ; R; ϕ; Σ ⊢ e : t

P; Γ ; R; ϕ; Σ ⊢ ret(v, e) : t

[SUBSUMPTION]
P; Γ ; R; ϕ; Σ ⊢ e : t′ P; R; ϕ ⊢ t′ <: t

P; Γ ; R; ϕ; Σ ⊢ e : t

[RC−RETR]
a∈R Rt=R−lreg(e)−{a} ϕ⇒

∧
r∈Rt

(r�a)
reg(t)⊆Rt reg(Γ−lvar(e)) ⊆ Rt P; Γ ; R; ϕ; Σ ⊢ e : t

P; Γ ; R; ϕ; Σ ⊢ retr(a, e) : t

Fig. 9. Region Type Checking Rules for Valid Intermediate Expressions

The judgments of the new intermediate expressions are presented in Fig. 9. They
assume that the expressions are valid with respect to the Definition 3. The first two
rules[RC−LOCATION] and[RC−ObjVal] are used to type the store, either a location or an
object value (i.e. a location’s content). Rule[RC−ObjVal] preserves the same invariants
as those of the rule[RC−NEW]. Rule [RC−RET] ensures that the variable to be popped
off, v is in the current environmentΓ . The subsumption rule[SUBSUMPTION] simplifies
the next theorems and their proofs.

Rule [RC−RETR] is similar to rule[RC−LETR], but it takes into account the evalu-
ation of the expressionretr(r, e). The first check ensures that the region to be deallo-
cated,a is in R. TheRt denotes the regions fromR which are different thana and are
not younger thana. Note thatlreg(e) denotes the regions which are younger thana. The
second check ensures that our type system uses only lexically scoped regions such that
the region to be deallocated,a is always on the top of the regions stack. The third and
the fourth check ensure that the regiona and the regions younger thana do not escape
either through the result or through the live variables of the type environment. Note that
lvar(e) denotes the local variables of the expressione which are deallocated from the
variable environment during the evaluation ofe.

The rules from Fig. 9 are using the functionslvar(e), lreg(e), andlloc(e) which are
defined as follows:

Definition 5. Using the evaluation rules from Fig. 7 and Fig. 8

1. The functionlvar(e) estimates the set of variables which may be popped off from the
variable environmentΠ during the evaluation of the valid expressione (note that
onlyret(v, e) may affectΠ), as follows:

lvar(e) =def case e of
ret(v, e) → {v} ∪ lvar(e)
retr(r, e) | lhs = e | e; e1 → lvar(e)
otherwise → ∅



2. The functionlreg(e) estimates the set of regions which may be popped off from the
store̟ during the evaluation of the valid expressione (note that onlyretr(r, e)
may affect̟ ), as follows:

lreg(e) =def case e of
retr(r, e) → {r} ∪ lreg(e)
ret(v, e) | lhs = e | e; e1 → lreg(e)
otherwise → ∅

3. The functionlloc(e) estimates the new location which may be created into an exist-
ing region during one evaluation step of the valid expression e (note that onlynew
may create a new location), as follows:

lloc(e) =def case e of
newcn〈r1, .., rn〉(v∗) → {(r1, o)}
ret(v, e) | retr(r, e) | lhs = e | e; e1 → lloc(e)
otherwise → ∅

where the offseto of the regionr is the offset where the next allocation inr is done.

6 Soundness Theorems

In this section we prove the soundness of our region calculus, namely that a valid pro-
gram well-typed by our type system never creates dangling references. We use a syn-
tactic proof method [25], based on a subject reduction theorem and a progress theorem.

First we define the consistency relationship between the static and dynamic seman-
tics, namely a relationship between what we can estimate at compile-time and what can
happen during run-time execution.

Definition 6. (consistency relationship)
A run-time environment(̟, Π) is consistentwith a static environment(Γ, R, ϕ, Σ),

written Γ, R, ϕ, Σ � 〈̟, Π〉, if the following judgment holds:
dom(Γ )=dom(Π) ∀v ∈ dom(Π) · P; Γ ; R; ϕ; Σ ⊢ Π(v) : Γ (v) reg(Γ )⊆R

location dom(Σ)=location dom(̟) dom(Σ)=dom(̟) R=dom(̟)
ord(̟)⇒ϕ ∀(r, o)∈location dom(̟) · P; Γ ; R; ϕ; Σ ⊢ ̟(r)(o) : Σ(r)(o)

Note that̟ (r)(o) returns an object valuecn〈r∗〉(V) whose type iscn〈r∗〉. In our instru-
mented operational semantics an object value and its type are stored together.

The subject reduction theorem ensures that the region type is preserved during the
execution of a valid program, as follows:

Theorem 1. (Subject Reduction): If
valid(e) P; Γ ; R; ϕ; Σ ⊢ e : t

Γ, R, ϕ, Σ � 〈̟, Π〉
〈̟, Π〉[e] →֒ 〈̟′, Π ′〉[e′]

then there existΣ′, Γ ′, R′, andϕ′, such that

(Σ′−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′))
Γ ′−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′))
R′−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′))
ϕ′−(lreg(e′)−lreg(e)) ⇒ ϕ−(lreg(e)−lreg(e′))

Γ ′, R′, ϕ′, Σ′
� 〈̟′, Π ′〉

valid(e′) P; Γ ′; R′; ϕ′; Σ′ ⊢ e′ : t.



Proof: By structural induction one. The detailed proof is in [11].

Although the hypothesis of the above theorem contains an evaluation relation, the proof
does not use the run-time checks associated with the evaluation rules to prove that
the result of the evaluation (result and dynamic environment) is well-typed, valid and
consistent.

The progress theorem guarantees that the execution of a valid program cannot gen-
eratedanglingerr errors, by proving that those run-time checks are redundantfor a
well-typed valid program (the run-time checks are proved bythe static semantics).

Theorem 2. (Progress) If

valid(e) P; Γ ; R; ϕ; Σ ⊢ e : t
Γ, R, ϕ, Σ � 〈̟, Π〉

then either

• e is a value, or
• 〈̟, Π〉[e]→֒nullerr or
• there exist̟ ′, Π ′, e′ such that〈̟, Π〉[e] →֒ 〈̟′, Π ′〉[e′].

Proof: By induction over the depth of the type derivation for expressione. The detailed
proof is in [11].

We conclude with the following soundness theorem for regionannotated Core-Java.
The theorem states that if a valid program is well-typed and is evaluated in a run-time
environment consistent with the static environment, the result of a finite number of
reduction steps (denoted by→֒∗) is (1) either an error different from a dangling error,
(2) or a value, (3) or that the program diverges (namely aftera finite number of reduction
steps there still exists one more reduction step). The evaluation never reports dangling
errors, namely the program never creates dangling references.

Theorem 3. (Soundness) Given a well-typed valid Core-Java programP=def∗ and the
main function(voidmain(void){e0})∈P, wheree0 is a well-typed valid closed term (with-
out free regions and free variables), such thatretvars(e0)=∅ ∧ retregs(e0)=∅ andP; Γ0;
R0; ϕ0; Σ0 ⊢ e0 : void, whereΓ0=∅, R0=∅, ϕ0=true, andΣ0=∅ . Starting from the initial
run-time environment〈̟0, Π0〉, where̟0=[ ], Π0=∅, such that
Γ0, R0, ϕ0, Σ0 � 〈̟0, Π0〉. Then either

(1) 〈̟0, Π0〉[e0] →֒
∗ nullerr

or there exist a store̟ , a variable environmentΠ, a valueδ, a type environmentΓ , a
set of regionsR, a region constraintϕ, a store typingΣ such that

(2) 〈̟0, Π0〉[e0] →֒
∗ 〈̟,Π〉[δ] Γ, R, ϕ, Σ � 〈̟, Π〉 P; Γ ; R; ϕ; Σ ⊢ δ : void

or for a store̟, a variable environmentΠ, a valid expressione, a type environmentΓ ,
a set of regionsR, a region constraintϕ, a store typingΣ such that

〈̟0, Π0〉[e0] →֒
∗ 〈̟, Π〉[e] Γ, R, ϕ, Σ � 〈̟, Π〉 P; Γ ; R; ϕ; Σ ⊢ e : void valid(e)



there exist a store̟ ′, a variable environmentΠ ′, an expressione′, a type environment
Γ ′, a set of regionsR′, a region constraintϕ′, a store typingΣ′ such that

(3) 〈̟,Π〉[e] →֒ 〈̟′, Π ′〉[e′] Γ ′,R′,ϕ′,Σ′
� 〈̟′, Π ′〉 P;Γ ′;R′;ϕ′;Σ′⊢e′:void valid(e′)

Proof: The proof is an induction on the number of the reduction steps. We can repeat-
edly use the progress theorem (Theorem 2) to prove that thereis a reduction step and
then the preservation theorem (Theorem 1) to prove that the run-time environment after
evaluation is still well-typed and the evaluation result isvalid.

7 Conclusion

We have considered a region calculus consisting of an object-oriented core language
annotated with regions. We have defined the dynamic semantics for our region calculus
based on a simpler small-step rewriting relation. Some of the region calculus construc-
tions (e.g.letreg) are firstly evaluated to intermediate constructions. Therefore the
static semantics must also be extended to include these new intermediate constructions.
We have used a novel syntactic condition (valid(e)) to restrict the places where the
intermediate constructions may occur in a program. This condition does not restrict
source-level region calculus, since intermediate constructions are generated during the
program evaluation. Our dynamic semantics is instrumentedwith runtime checks to
guarantee that a specialdanglingerr error is reported whenever the program eval-
uation tries to create a dangling reference. We have defined an important consistency
relationship between the static and dynamic semantics. A store typing technique is used
to ensure that objects created in the store during run-time are type-wise consistent with
those captured by the static semantics. We have proven the soundness of the region cal-
culus by using a syntactic proof method [25], based on subject reduction and progress.
The subject reduction theorem ensures that the region type of a valid program is pre-
served during the evaluation. The progress theorem guarantees that the evaluation of a
valid program cannot generatedanglingerr errors (namely those runtime checks are
redundant for a well-typed valid program). We have proven both theorems in a modular
fashion using just a simple induction. This simple soundness proof adds confidence to
our region-based memory inference and execution systems.
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