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Abstract

We develop a widely applicable algorithm to solve the fault diagnosis problem in
certain distributed-memory multiprocessor systems in which there are a limited number
of faulty processors. In particular, we prove that if the underlying graph G = (V,E)
forming the interconnection network has connectivity no less than its diagnosability δ

and can be partitioned into enough connected components of large enough size then
given a syndrome of test results under the comparison diagnosis model resulting from
some set of faulty nodes of size at most δ, we can find the actual set of faulty nodes
with time complexity O(∆N), where ∆ is the maximal degree of any node of the graph
and N is the number of nodes.

1 Introduction

There has been a considerable amount of research undertaken as to designing interconnec-
tion networks with application to parallel computing. There can be no specific family of
interconnection networks that is better than all of the others, for the quality of a family of
interconnection networks depends upon the properties that happen to be of most relevance
to a particular application. What is more, a whole range of properties of interconnection
networks have proven to be of relevance to a whole range of applications. These properties
include having low degree and high connectivity, being node- or edge-symmetric, having sim-
ple and efficient routing and broadcast algorithms, and possessing embedded Hamiltonian
cycles or paths and cycles of a whole variety of lengths.

Not only should interconnection networks possess desirable properties such as those above
but they should be able to tolerate a (limited) number of node or edge failures (more precisely,
the machines whose processors are joined according to the interconnection network should
be able to tolerate processor or link failures). This expectation has provoked much research
on not just the sustainability of specific properties in the presence of faults but also the
detection of the actual faults. It is with this latter research direction that we are concerned
in this paper.

Imagine the situation. A distributed multiprocessor system is known to possess some
faulty nodes but it is not known as to which nodes are faulty. The problem is to detect the
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faulty nodes; that is, to diagnose the set of faulty nodes. Crucial to this diagnosis is the
observation that we can use the nodes of the system to do this; that is, we can undertake a
self-diagnosis. As to how this is done depends upon the model adopted. A popular model
is the comparison diagnosis model (also called the MM model), advocated by Malek and
Maeng [18, 19]. In this model, a node can send a message to any two of its neighbours who
then send replies back to the node. On receipt of these two replies, the node compares them
and proclaims that at least one of the two neighbours is faulty if the replies are different or
that both neighbours are fault-free if the replies are identical. However, if the node itself is
faulty then no reliance can be placed on this proclamation. The goal is to use these tests
made by various nodes in order to deduce exactly which are the faulty nodes.

Obviously there are limits as to what can be done under this model. For example, if
all nodes are faulty then there is no way that this can be detected (from any collection of
tests undertaken). For a specific interconnection network, there is a bound on the number of
faulty nodes that can necessarily be detected within this model. Work has been undertaken
on determining these bounds, or the diagnosabilities , for different interconnection networks.
For example, in [23] it was proven that when n ≥ 5, the n-dimensional hypercube has
diagnosability n; so, if there are at most n faulty nodes then these nodes can be found
given the set of all possible test results. Also, in [14] it was proven that when n ≥ 4, the
n-dimensional crossed cube has diagnosability n. In addition, in [28] it was proven that
when n ≥ 4, the n-dimensional star graph has diagnosability n− 1. However, an important,
generic result (subsuming the above results) was obtained in [6] where it was proven that if
an interconnection network is regular of degree n, has connectivity n and has at least 2n+3
nodes then it has diagnosability n.

Related to determining the diagnosability of a system is the fault diagnosis problem; that
is, the problem of actually determining the faulty nodes, given a set of test results (assuming
that one knows the diagnosability of the network and in the knowledge that the number of
faults is bounded above by the diagnosability). In [20] an algorithm was given to determine
the set of faulty nodes (in the circumstances described in the previous sentence) with time
complexity O(N5), where N is the number of nodes in the network. The time complexity was
recently improved in [26] to O(d∆3N), where d (resp. ∆) is the minimum (resp. maximum)
degree of any node in the network. In the particular case of an n-dimensional hypercube,
it was shown in [27] that the fault diagnosis problem can be solved with time complexity
O(n22n).

However, a very recent paper of Chiang and Tan [8] developed a theory of node diagnos-
ability. Here, nodes are individually diagnosed as to whether they are faulty or healthy. It
turns out that under certain circumstances the health of a node can be deduced by examin-
ing a local neighbourhood of the node. In particular, it was shown in [8] that if every node
is the root of an ‘extended star structure’ then a lower bound on its node diagnosability
can be obtained and also that this extended star structure can be utilised to solve the fault
diagnosis problem with time complexity O(∆N). The general technique was illustrated on
hypercubes and stars. (We shall discuss the content of the important papers [6,8,27] in more
detail presently.)

In this paper, we establish a generic result that is applicable to a wide range of families of
interconnection networks prevalent in parallel computing. In particular, we prove that under
certain conditions (relating to the connectivity of the network and its intrinsic structure),
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which hold within numerous interconnection networks, we can obtain algorithms for the fault
diagnosis problem. The time complexity of all our algorithms is O(∆N), where N is the
number of nodes in the network and ∆ is the maximal degree of any node. Our algorithms
are either the fastest such algorithm known for the particular interconnection network or
match the time complexity of the fastest known algorithm. The conditions under which we
can apply our techniques are significantly less demanding than the conditions under which
Chiang and Tan can apply their approach and, unlike Chiang and Tan, we do not require
the whole of the syndrome table to be computed; that is, we dispense with the computation
of redundant data. We illustrate the efficacy of our approach by applying it to hypercubes,
crossed cubes, twisted cubes, folded hypercubes, enhanced hypercubes, augmented cubes,
shuffle cubes, twisted N -cubes, k-ary n-cubes, augmented k-ary n-cubes, (n, k)-stars, stars,
pancake graphs and arrangement graphs.

We present the comparison diagnosis model in more detail in the next section before we
discuss the papers [8] and [27] in Section 3. In Section 4, we present our generic algorithm
before we apply it in a wide range of interconnection networks in Section 5. We compare our
algorithms with those resulting from applying the techniques of Chiang and Tan in Section 6
and also present directions for further research.

2 The comparison diagnosis model

In this section, we detail the basic definitions and the essential notions and results relating to
the comparison diagnosis model. In actuality, we perform fault diagnosis for a distributed-
memory multiprocessor whose processors are connected via an interconnection network and
according to some topology. However, throughout we adopt a graph-theoretic terminology
and abstract our multiprocessor as an undirected graph G consisting of nodes V and edges
E (as opposed to processors and links).

The comparison diagnosis model is as follows. Given a graph G = (V, E) within which
there may be faulty nodes, every node u of V tests every pair v and w of its neighbours
by sending a test message to both neighbours and receiving replies. We assume that: all
faults are permanent; and a faulty node always produces an incorrect response to any test
message, so that two faulty nodes do not produce identical responses to any test messages.
Suppose that u is a healthy node (that is, it is not faulty). If the replies from v and w are
identical then the test result su(v, w) is set at 0 (signalling that both v and w are healthy),
otherwise su(v, w) is set at 1 (signalling that at least one of v and w is faulty). However,
if u is a faulty node then the test result su(v, w) can be arbitrarily 0 or 1 with no reliance
placed upon this result. The set of all test results for every node and its pairs of neighbours
is called a syndrome. The general fault diagnosis problem is: given a graph G = (V, E) and
a syndrome, can we use the data therein to obtain exactly the set of faulty nodes and, if so,
to find these faulty nodes?

Note that the same syndrome could arise from different sets of faulty nodes; that is,
there might be more than one set of faulty nodes consistent with the syndrome. A graph
G = (V, E) is said to be δ-diagnosible if given a syndrome s resulting from a set of at most δ

faulty nodes, there is exactly one set of faulty nodes consistent with s. The maximum number
δ for which a graph G = (V, E) is δ-diagnosable is the diagnosability of G. Sengupta and
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Dahbura [20] were the first to provide structural conditions upon G for it to be δ-diagnosible.
One remark we have is that the diagnosability of any graph G = (V, E) is bounded above by
the minimal degree of any vertex of V . So see this, suppose that u is some vertex of minimal
degree in G and consider the following two sets of faulty nodes: the first fault set consists of
all u’s neighbours; and the second of all u’s neighbours as well as u. It is not difficult to see
that there is a syndrome that both of these sets of faults are consistent with.

Henceforth, the fault diagnosis problem for a graph G = (V, E) is defined as follows:
given a syndrome for a set of faults F ⊆ V of size at most the diagnosability of G, we require
an algorithm that outputs exactly the set of faults F .

3 Related work

In this section we overview work related to solving the fault diagnosis problem. Of direct
relevance to our research is the work of Yang [27] and Chiang and Tan [8].

The roots of our approach to determining the faulty nodes of a graph lie in [27] where
an algorithm specific to hypercubes was developed. It is worthwhile reviewing this algo-
rithm in order to introduce our techniques and also to point out some deficiencies of the
algorithm (which we shall remedy). In [27], Yang utilized various cycle decompositions of
the n-dimensional hypercube Qn. If one fixes some components of the bit-strings of length
n describing the nodes of Qn then one obtains a subgraph isomorphic to Qm, for some
m < n, and it has long been known that Qm is Hamiltonian. Furthermore, the set of 2n−m

(Hamiltonian) cycles resulting from varying the values of the chosen fixed components are
‘well connected’ to one another in that the cycles are connected in the ‘shape’ of the hyper-
cube Qn−m, via additional matchings; that is, by a set of node-disjoint edges where every
node of the two cycles involved is incident with exactly one edge. (In Fig. 1 we illustrate
4 cycles, with ‘dotted’ edges, joined using matchings in the shape of a cycle of length 4.)
Thus, Qn is the union of a collection of node-disjoint cycles, interconnected in the shape
of a hypercube. Yang observed that if the cycles are ‘long enough’ and ‘plentiful enough’
(that is, the number of components in the bit-strings of length n chosen to be fixed is not
too large and not too small) then there must be enough cycles which can be deduced to
consist entirely of healthy nodes and which can then be used to determine exactly where
the faulty nodes lie within the rest of the hypercube. For example, let s be some syndrome.
If some cycle is such that sx(y, z) = 0 for every triple (y, x, z) of consecutive nodes on the
cycle and the cycle has length greater than n (that is, the diagnosability of Qn [23] and so
an upper bound on the number of faulty nodes) then necessarily all nodes on this cycle must
be healthy. Also, if this cycle is ‘connected’ to another cycle, by an additional matching,
then the healthy cycle can be used to find the faulty nodes in the potentially faulty cycle,
with this process subsequently iterated. What results is an algorithm for finding the faulty
nodes in an n-dimensional hypercube that has time complexity O(n22n).

However, as we show momentarily, the focus in [27] on decompositions into cycles is
unnecessary and also adds an additional complexity-theoretic burden on the algorithm (this
burden was not considered in [27]). As regards this latter point, note that in order to apply
Yang’s algorithm one needs to be able to actually construct Hamiltonian cycles in hypercubes.
Whilst it is stated in [27] that such cycles can ‘easily be constructed recursively’, there is

4



Fig. 1. Four cycles connected in the shape of a cycle.

more to it than this. The construction of cyclic Gray codes (for that is what an Hamiltonian
cycle in a hypercube is) has been a longstanding topic of interest in computer science and
discrete mathematics (see, for example, [4] for an account of the status of the problem some
30 years ago). There now exist numerous efficient algorithms for the generation of cyclic Gray
codes (though note that the standard recursive algorithm is somewhat unsatisfactory in that
it uses exponential space). Nevertheless, the actual computation of the Hamiltonian cycles
is ignored in [27]. On the other hand, if the construction of the Hamiltonian cycles is to be
done by a distributed algorithm implemented on the parallel machine whose interconnection
network is the (faulty) hypercube then this becomes more problematic, for now it is not
so straightforward to construct these cycles efficiently (that is, in time polynomial in the
dimension of the hypercube) and when some of the processors may be faulty. The reader is
referred to [21] and the references therein for the consideration of distributed algorithms to
construct Hamiltonian cycles in faulty hypercubes. Of course, given that with our method
we no longer need to rely on (Hamiltonian) cycle decompositions such as those utilized by
Yang, this whole problem disappears with our approach and we obtain a widely-applicable
algorithm (that is not restricted to just hypercubes). An additional drawback of Yang’s
algorithm is that when applied to Qn its time complexity of O(n22n) does not compare
favourably with the algorithm due to Chiang and Tan [8], discussed in the next paragraph,
which has time complexity O(n2n).

In [8], Chiang and Tan adopt a different approach to solving the fault diagnosis problem.
They develop an algorithm that is applied at each and every node in order to ascertain
whether that particular node is healthy or faulty. Their ingenious algorithm only requires
that syndrome tests involving nodes in a particular neighbourhood around the actual node
x be studied, where this neighbourhood is an extended star , rooted at x, as illustrated in
Fig. 2 (in this figure, only tests undertaken by the black nodes and involving only the nodes
and edges of the extended star need be considered in order to deduce whether x is healthy
or faulty). They show that if a graph is such that every node is the root of an extended star
where there are n branches in this extended star then not only is the diagnosability of the
graph at least n but there is an algorithm that solves the fault diagnosis problem that has
time complexity O(∆N), where N is the size of the input graph and ∆ is the maximal degree
of any node. Consequently, their algorithm is quite widely applicable. However, they make a
crucial assumption that an extended star can be efficiently computed at any node and do not
include the time or intellectual effort required to actually compute these extended stars in
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their complexity analysis. They go on to illustrate methods for finding these extended stars
in hypercubes and star graphs. In actuality, the additional time required to find extended
stars in hypercubes and star graphs does not add to the time complexity (as it is subsumed
by the ‘big-O’ notation) but, nevertheless, it will still be consumed in any computation.
Also, it is not always clear as to how one constructs extended stars (or even whether they
exist) in many other graphs prevalent as interconnection networks.

x

...

...

...

Fig. 2. An extended star rooted at x.

As regards diagnosability, it is worth comparing the results in [6] and [8]. The main result
from [6] is that if a graph is regular of degree n, has connectivity n and has at least 2n + 3
nodes then it has diagnosability n, whereas the main result (on diagnosability) from [8] is
that a graph has diagnosability at least n if every node x is the root of an extended star with
n branches. In fact, Chiang and Tan’s result is a corollary of Chang, Lai, Tan and Hsu’s
for graphs that have connectivity n, are regular of degree n and for which for every node x

there exists a node y such that the distance between x and y is at least 5 (as, by Menger’s
Theorem, there exist n node-disjoint paths joining any two nodes x and y with each of these
paths of length at least 5). Both results are powerful and widely-applicable; indeed, all the
graphs discussed in Section 5 satisfy the common hypothesis.

4 A general algorithm

Let G = (V, E) be a connected graph of diagnosability δ ≥ 1 and let F ⊆ V be a set of
faulty nodes of size at most δ. Let s be a syndrome under the set of faulty nodes F . In
what follows, if we write sx(y, z) = 0 or sx(y, z) = 1 then it is implicit that (x, y) and (x, z)
are in E. In this section, we describe a general algorithmic procedure that solves the fault
diagnosis problem for a wide variety of graphs G (that is, given a syndrome s, can be used
to determine the faulty nodes of F so long as |F | is no greater than the diagnosability of G).
We go on to apply this procedure to a number of graph families prevalent as interconnection
networks for parallel processing.

4.1 Looking for healthy components

We shall show how to modify Yang’s approach so as to obtain a simpler, faster and more
generally applicable algorithm to solve the fault diagnosis problem. We detail here our core
algorithm.
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We fix an ordering of the nodes of V . Also, fix u0 ∈ V and let s be some syndrome. We
begin by initializing U0 = {u0} and U1 as

{u0} ∪ {v : (u0, v) ∈ E and there exists w ∈ V \ {v} such

that (u0, w) ∈ E and su0
(v, w) = 0}.

For every v ∈ U1 \ {u0}, we set t(v) = u0. We define Ui, for i ≥ 2, iteratively as

Ui−1 ∪ {v : v 6∈ Ui−1 and (u, v) ∈ E for some

u ∈ Ui−1 \ Ui−2 with su(v, t(u)) = 0}.

For every v ∈ Ui \ Ui−1, where i ≥ 2, we define t(v) to be the least (w.r.t. our fixed
ordering) node u ∈ Ui−1 \ Ui−2 for which su(v, t(u)) = 0. We say that the nodes of the set
Ci = {t(v) : v ∈ Ui \Ui−1} contribute to the construction of Ui, for i ≥ 1. Note that no node
contributes to the construction of both Ui and Ui′ , where i 6= i′.

Let r be the least r such that Ur = Ur+1. The function t : Ur \ {u0} → Ur describes
a tree T with root u0 via: if t(v) = u then u is the parent of v in T . W.r.t. the tree T ,
the internal nodes are exactly those nodes which contribute to some Ui; in fact, the internal
nodes at depth i in T (where the root has depth 0) constitute the set Ci+1. Note that if T

does not consist of the single node u0 then the root node u0 has degree at least 2.
Clearly we have that if u0 is healthy then all nodes of U1 are healthy. In fact, a simple

induction yields that if u0 is healthy then all nodes of Ui are healthy, for every i ≥ 1.
Alternatively, if some node u of some Ci is faulty (that is, some internal node of T ) then:

its parent t(u) (if it exists) is faulty, as st(u)(u, v) = 0, for some node v (with v = t(t(u)),
if t(u) is not the root, and v equal to some child of u0, otherwise); and all of its children v

that are themselves internal nodes are faulty, as sv(w, t(v) = u) = 0, for all children w of v.
Consequently, if any internal node of T is faulty then so are all internal nodes of T .

The above observations can be allied to the fact that we have an upper bound on the
number of faulty nodes in F . In particular, as we construct the Ui’s, if ever the size of the
set C1 ∪ C2 ∪ . . . ∪ Ci becomes greater than δ then we know for sure that every node of T

will be healthy.
The following algorithm Set Builder(u0), whose input is: a graph G = (V, E), of diag-

nosability δ; a node u0 ∈ V ; and a syndrome s, implements the above discussion.

Set Builder(u0)
set U0 := {u0}, all healthy := false, finished := false and i := 1
while finished = false do

build Ui

if Ui = Ui−1 then

finished := true and i := i - 1
else

if |C1 ∪ C2 ∪ . . . ∪ Ci| > d then

all healthy := true

i := i + 1
return (all healthy, Ui)
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Let r be the value of the variable i on termination (and so Ur−1 ⊂ Ur = Ur+1, if r ≥ 1, and T

is the tree associated with Ur). The truth of the variable all healthy on termination signals
that we have proven that all nodes in Ur are healthy. Of course, if all healthy is false then
the nodes of Ur might all be healthy but we cannot as yet say for sure.

Suppose that all nodes of Ur are, in fact, healthy, and that r ≥ 1 (if r = 0 then Ur = {u0}).
Let N be the set of nodes adjacent to some node of Ur in G. If x ∈ N then it is adjacent to
some node y ∈ Ur which in turn is adjacent to z = t(y) ∈ Ur, if y 6= u0, or some child z of u0

in T , if y = u0. In both cases, sy(x, z) = 1 as otherwise x would have been placed in some
Ui and hence Ur. As y and z are healthy, we must have that x is faulty. Hence, all nodes
of N are faulty. Also, either N forms an articulation set for G (that is, the removal of the
nodes of N and their incident edges from G results in a disconnected graph) or V = Ur ∪N .
We shall use this observation subsequently.

4.2 Time complexity

Consider the (sequential) time complexity of Set Builder(u0). Building U1 takes O(∆2) time,
where ∆ is the maximal degree of any node in G (we assume an adjacency list representation
of G). Building Ui, for i ≥ 2, takes O(∆pi−1) time, where pi−1 = |Ui−1 \ Ui−2|. The first
test in the body of the while-loop of Set Builder takes constant time as does the second
test, as counting the number of nodes in Ci can be built into the construction of Ui at no
extra cost (note that we only need to count up to δ and that δ ≤ ∆). Hence, if there are r

iterations of the while-loop then Set Builder(u0) has time complexity O(∆|Ur|). Note also
that every time a node is added to Ui, either the node contributing to this addition is already
adjacent to at least 2 nodes of Ui or it becomes adjacent to at least 2 nodes of Ui. Thus, if
Set Builder(u0) terminates with all healthy set at false then r is at most δ + 1.

The discussion above immediately yields the following result which we shall apply in a
variety of graphs in the next section.

Theorem 1 Let G = (V, E) be a connected graph of diagnosability δ ≥ 1 and connectivity

κ ≥ δ, and where the maximal degree of any node in V is ∆. Suppose that the algorithm

Set Builder(u0), for some u0 ∈ V , takes as input a description of the graph G and a

syndrome for some faulty set of nodes F ⊆ V of size at most δ, and outputs the set of nodes

Ur, where |Ur| > 1 and all nodes of Ur are healthy. The set N of nodes adjacent to a node

of Ur is the set of faults F and the time taken by Set Builder(u0) is O(∆|Ur|).

Note that in order to apply the above theorem to solve the fault diagnosis problem in graphs
whose connectivity is at least their diagnosability, all we need to do is to ensure that the
number of internal nodes of the output tree T (whose node set is Ur) is greater than the
diagosability.

5 Applications

In this section, we apply the general algorithm of the previous section to some specific families
of graphs that have been studied as interconnection networks. We refer the reader to the
specific references given for definitions of these graphs.
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5.1 Hypercubes and their variants

Let Qn be an n-dimensional hypercube, where n ≥ 7. It is known that the diagnosability of
Qn is n [23]. Let F be a set of at most n faulty nodes in Qn. Let m be the minimal integer
such that m > log2(n). Fixing the first n − m components of the nodes of a hypercube
at some tuple in v ∈ {0, 1}n−m results in a copy of Qm, denoted Qm(v), within Qn (we
often denote the nodes of some ‘dimensional’ graph in bold type). Since 2m > n, Qm(v)
has more than n nodes. Also, as n ≥ 7, there are 2n−m > n node-disjoint copies of Qm

within Qn. Consequently, at least one of these copies contains no faulty nodes; call this copy
Qm(w). If we start the algorithm Set Builder at the node u0 = (w, 0, 0, . . . , 0) of Qn then
the resulting set of nodes Ur consists entirely of healthy nodes (as it must contain all 2m

nodes of Qm(w)). The set of nodes N adjacent to Ur consists entirely of faulty nodes and
is either an articulation set of Qn or it consists of all faulty nodes in Qn. However, as any
articulation set of Qn contains at least n nodes [24], we must have that N contains exactly
the faulty nodes in Qn.

The above presupposes that we can find the subgraph Qm(w) of Qn within which there
are no faulty nodes. In our search for this subgraph Qm(w), we need to ensure that we do
not waste too much time exploring other subgraphs that may not be suitable. Given an
arbitrary graph G, we denote by Set Builder(u0, H) the algorithm Set Builder applied to
G at the node u0 of the subgraph H of G but where the adjacency relation is restricted to
the subgraph H ; that is, Set Builder(u0, H) starts from u0 and only adds nodes of H to the
sets it builds. This gives rise to the following algorithm.

Faults in Hypercubes

v := 0n−m and u := (v, 0m)
(all healthy, U) := Set Builder(u, Qm(v))
while all healthy = false do

v := nextn−m(v) and u := (v, 0m)
(all healthy, U) := Set Builder(u, Qm(v))

(all healthy, U) := Set Builder(u)
N := set of neighbours of U

output N

The function nextn−m(v) delivers the next node after the node v of Qn−m according to some
fixed listing of all nodes. Note that there is no need for there to be edges between consecutive
nodes; any listing of the nodes of Qn−m will do. In fact, all we need is a list of n + 1 nodes
starting from 0n−m as executing Set Builder starting from at least one of the n+1 resulting
nodes will result in the provision of a set of healthy nodes as required.

As for the complexity of our algorithm Faults in Hypercubes, an execution of the al-
gorithm Set Builder(u, Qm(v)) takes O(n2m) = O(n2) time. Thus, the time complexity of
Faults in Hypercubes is dominated by the final execution of Set Builder and this execution
takes O(n2n) time.

Theorem 2 Let F be a set of at most n faulty nodes in an n-dimensional hypercube. There

is an algorithm running in O(n2n) time that takes as input a syndrome for F and returns

the actual set F of faulty nodes.
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Note that the key property of hypercubes that results in Theorem 2 is that the nodes
of Qn can be partitioned into 2 sets, depending upon the first component of the bit-string
of length n naming a node, so that the induced subgraphs on these two sets of nodes are
both isomorphic to Qn−1. This results in an ability to partition Qn into disjoint sets of
nodes (the subgraphs Qm(v), above) so that a list of representative nodes in each set can
be easily generated (the nodes (v, 0m), above). Hypercubes are not alone in having such
decompositions.

• For n ≥ 1, the 2n nodes of a crossed cube CQn can be partitioned into 2 sets, by fixing
the first component in the bit-strings of length n naming the nodes at 0 and at 1, so
that each set of nodes induces a copy of CQn−1 [12]. Also, CQn is regular of degree n

and has connectivity n [16]; thus, by [6], CQn has diagnosability n, when n ≥ 4.

• For n ≥ 2, the 2n nodes of a twisted cube TQn can be partitioned into 2 sets, by fixing
the first two components in the bit-strings of length n naming the nodes at either (0, 0)
or (1, 0) and at either (0, 1) or (1, 1), so that each of these subsets induces a copy of
TQn−1 [15]. Also, TQn is regular of degree n and has connectivity n [7]; thus, by [6],
TQn has diagnosability n, when n ≥ 4.

• For n ≥ 1, the folded hypercube FQn and the enhanced hypercube Qn,m contain the
hypercube Qn as a spanning subgraph, and are both regular of degree n + 1 and have
connectivity n + 1 [3, 22]; thus, by [6], both FQn and Qn,m have diagnosability n + 1,
when n ≥ 4.

• For n ≥ 1, the 2n nodes of an augmented cube AQn can be partitioned into 2 sets, by
fixing the first component in the bit-strings of length n naming the nodes at 0 and at
1, so that each of these subsets induces a copy of AQn−1 [10]. Also, AQn is regular of
degree 2n − 1 and has connectivity 2n − 1 [10]; thus, by [6], AQn has diagnosability
2n − 1, when n ≥ 5.

• For n = 4k +2, with k ≥ 0, the 2n nodes of a shuffle-cube SQn can be partitioned into
16 sets, by fixing the first four components at some tuple from {0, 1}4, so that each of
these subsets induces a copy of SQn−4 [17]. Also, SQn is regular of degree n and has
connectivity n [17]; thus, by [6], SQn has diagnosability n, when n ≥ 4.

• For n ≥ 2, the 2n nodes of a twisted N -cube TQ′

n can be partitioned into 2 sets, by
fixing the first component in the bit-strings of length n naming the nodes at 0 and
at 1, so that one of these sets induces a copy of Qn−1 and other induces a copy of
TQ′

n−1 [13]. Also, TQ′

n is regular of degree n and has connectivity n [13]; thus, by [6],
TQ′

n has diagnosability n, when n ≥ 4.

Consequently, be proceeding as we did for the hypercube, we immediately obtain the follow-
ing result.

Theorem 3 Let G be CQn, TQn, FQn, Qn,m, AQn, SQn or TQ′

n and let F be a set of at

most δ faulty nodes, where δ is the diagnosability of G. There is an algorithm running in

O(n2n) time that takes as input a syndrome for F and returns the actual set F of faulty

nodes.
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5.2 Other interconnection networks

Let k ≥ 3 and n ≥ 2, and let Qk
n be a k-ary n-cube. However, suppose further that

(k, n) 6∈ {(3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (5, 2)}. By [6], the diagnosability of Qk
n is 2n. Let

F be a set of at most 2n faulty nodes in Qk
n. Let m be the minimal integer such that

km > 2n; that is, such that m > logk(2n). Fixing the first n − m components of a k-ary
n-cube at some tuple in v ∈ {0, 1, . . . , k − 1}n−m results in a copy of Qk

m, denoted Qk
m(v),

within Qk
n. Since km > 2n, Qk

m(v) has more than 2n nodes. Also, because of our restrictions
on k and n, there are kn−m > 2n node-disjoint copies of Qk

m within Qk
n. Consequently, at

least one of these copies contains no faulty nodes; call this copy Qk
m(w). If we start the

algorithm Set Builder at the node u0 = (w, 0, 0, . . . , 0) of Qk
n then the resulting set of nodes

Ur consists entirely of healthy nodes (as it must contain all km nodes of Qk
m(w)). The set of

nodes N adjacent to Ur consists entirely of faulty nodes and is either an articulation set of
Qk

n or it consists of all faulty nodes in Qk
n. However, as any articulation set of Qk

n contains
at least 2n nodes [5], we must have that N contains exactly the faulty nodes in Qk

n. We can
clearly construct an algorithm just as we did for hypercubes and obtain the following result.

Theorem 4 Let F be a set of at most 2n faulty nodes in a k-ary n-cube. There is an

algorithm running in O(nkn) time that takes a syndrome for F and returns the actual set F

of faulty nodes.

A graph called the augmented k-ary n-cube AQn,k was recently defined in [25] and is an
extension of the k-ary n-cube in a manner analogous to the extension of an n-dimensional
hypercube to an n-dimensional augmented cube. It was proven in [25] that AQn,k is regular
of degree 4n − 2 and has connectivity 4n − 2. Thus, by [6], so long as (n, k) 6= (2, 3), AQn,k

has diagnosability 4n − 2. As AQn,k contains a k-ary n-cube as a spanning subgraph, an
immediate corollary of the above discussion is that there is an algorithm running in O(nkn)
time that takes a syndrome for a set F of at most 4n− 2 faulty nodes in AQn,k and returns
the actual set F of faulty nodes.

Let n ≥ 2 and 2 ≤ k ≤ n− 1, and let Sn,k be the (n, k)-star graph. The (n, k)-star graph
is regular of degree n − 1 and has connectivity n − 1 [9]. The (n, k)-star graph has n!

(n−k)!

nodes, and so if (k, n) 6= (2, 3) then Sn,k has diagnosability n−1 [6]. Let F be a set of at most
n− 1 faulty nodes in Sn,k. By fixing the kth component of the bit-strings naming the nodes
of Sn,k, we obtain that Sn,k is partitioned into n copies of Sn−1,k−1, each of which contains
more than n − 1 nodes (as k 6= 1). Thus, at least one of these copies must consist entirely
of healthy nodes. Hence, we can apply Set Builder to obtain our set of faulty nodes, just
as we have done above.

Theorem 5 Let F be a set of at most n − 1 faulty nodes in an (n, k)-star Sn,k, where

2 ≤ k ≤ n − 1. There is an algorithm running in O( n!n
(n−k)!

) time that takes a syndrome for

F and returns the actual set F of faulty nodes.

Of course, Sn,n−1 is isomorphic to the star graph Sn [1] and so Theorem 5 applies to star
graphs too. Note that if k = 1 then Sn,1 is a clique on n nodes.

Let n ≥ 2 and let Pn be the n-dimensional pancake graph. The n-dimensional pancake
graph is regular of degree n − 1 and has connectivity n − 1 [2]. The n-dimensional pancake
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graph has n! nodes, and so if n ≥ 4 then Pn has diagnosability n − 1 [6]. Let F be a set of
at most n − 1 faulty nodes in Pn. By fixing the kth component of the bit-strings naming
the nodes of Sn,k, we obtain that Sn,k is partitioned into n copies of Sn−1,k−1, each of which
contains more than n − 1 nodes (as k 6= 1). Thus, at least one of these copies must consist
entirely of healthy nodes. Hence, we can apply Set Builder to obtain our set of faulty nodes,
just as we have done above.

Theorem 6 Let F be a set of at most n−1 faulty nodes in a pancake graph Pn, where n ≥ 4.
There is an algorithm running in O(n!n) time that takes a syndrome for F and returns the

actual set F of faulty nodes.

Let n ≥ 4 and 2 ≤ k ≤ n, and let An,k be the arrangement graph [11]. The arrangement
graph An,k is regular of degree k(n−k) and has connectivity k(n−k) [11]. The arrangement
graph An,k has n!

(n−k)!
nodes and so has diagnosability k(n− k) [6]. Let F be a set of at most

k(n−k) faulty nodes in An,k. By fixing some component of the bit-strings naming the nodes
of Pn, we obtain that Pn is partitioned into n copies of Pn−1, each of which contains more
than n − 1 nodes. Thus, at least one of these copies must consist entirely of healthy nodes.
Hence, we can apply Set Builder to obtain our set of faulty nodes, just as we have done
above.

Theorem 7 Let F be a set of at most n − 1 faulty nodes in an arrangement graph An,k,

where n ≥ 4 and 2 ≤ k ≤ n. There is an algorithm running in O(n!k(n−k)
(n−k)!

) time that takes a

syndrome for F and returns the actual set F of faulty nodes.

6 Conclusions and further research

As we have just demonstrated, we have developed a widely applicable technique that results
in an algorithm to solve the fault diagnosis problem in a range of graphs used as inter-
connection networks in parallel computing. The time complexities of our algorithms match
those of the algorithms due to Chiang and Tan. However, the conditions required for us to
apply our algorithms are much less severe than the conditions required by Chiang and Tan.
Apart from a relationship between the connectivity and the diagnosability of the graph in
question, all that we need is that the input graph can be partitioned into enough sizeable
connected subgraphs, whereas Chiang and Tan require not only that every node is the root
of an extended star but also that this extended star can be actually computed, for every node
of the graph. Indeed, as can be seen from [8], quite a bit of work still has to be done in the
case of hypercubes and stars for Chiang and Tan’s technique to be applied whereas, as we
have demonstrated in this section, our technique can be easily applied to a range of graphs.
Note that once we have satisfied ourselves that our condition holds for some graph, we are
done; for unlike Chiang and Tan, we do not need to rely on any additional computational
aspects of our condition in the subsequent computation of the faulty set of nodes. Note also
that if the set of faulty nodes is not an articulation set then a by-product of our algorithm
is that we obtain a tree spanning the set of healthy nodes of the graph which could possibly
be utilised in some other context.
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However, there are more improved aspects of our algorithms when compared with those
of Chiang and Tan. We have hitherto assumed that all fault diagnosis algorithms are simply
given the syndrome as input; that is, that the syndrome has already been obtained (presum-
ably by every node testing pairs of its neighbours in the distributed-memory multiprocessor
within which it lies). The cost of actually obtaining the syndrome has been ignored. It
could well be that performing the actual tests is expensive and that we wish to minimize
the number of tests performed. Any expense might be exacerbated depending upon the
message-passing model adopted; for it might be that any node can only send one message
at any time and thus that at least d time units are required in order for a node to send a
message to each of its neighbours (with different nodes having to synchronize their messages
to avoid conflicts). Alternatively, actually consulting the syndrome table could well be ex-
pensive, and so we may wish to minimize the number of test results needing to be read from
the table.

We note that regardless of whether we wish to minimize the number of tests performed
or the number of syndrome table look-ups, our algorithm Set Builder(u0) does not need
to build or consult the whole of the syndrome table (in order to calculate Ur). We assume
for simplicity that we are trying to minimize the number of syndrome table look-ups. The
number of test results due to the node u0 that need to be consulted is at most ∆(∆−1)

2
. We

consult at most ∆ − 1 test results due to any node of U1 \ {u0}; we consult at most ∆ − 1
test results due to any node of U2 \U1; and so on. Hence, the number of test results from the
syndrome table needing to be consulted is (∆ − 1)(∆

2
+ |Ur| − 1), which is far less than the

number of test results in the complete syndrome table. On the other hand, Chiang and Tan’s
algorithms need to consult all of the test results in the syndrome table. Indeed, if the whole
of the syndrome table cannot be stored in memory then it is non-trivial to implement Chiang
and Tan’s algorithms so that the same test results do not need to be repeatedly consulted.
The upshot is that our algorithms will consult markedly fewer test results from the syndrome
table than the algorithms of Chiang and Tan as we minimise unnecessary consultations.

As a direction for further research, we suggest the following. The whole essence of
finding the faults in a distributed multiprocessor system is that this should be undertaken
through self-diagnosis; that is, the nodes of the system should collect the data from which
the actual faulty nodes can be discovered. Hitherto, this discovery has been performed via
a centralised sequential algorithm. For ‘dimensional’ networks such as hypercubes, crossed
cubes, k-ary n-cubes, and so on, the resulting algorithm takes time exponential in the actual
dimension. It would, of course, be preferable to have a time complexity that is polynomial in
the actual dimension; however, in a centralized context this does not make sense given that
there is generally an exponential (in the dimension) number of processors in the network.
Surprisingly, given the focus on self-diagnosis, no attention has been paid to the system

itself undertaking the computation enabling the discovery of the faulty nodes; that is, no
attention has been paid to the distributed complexity of such a task. One might think that
an immediate obstacle to the system itself finding the faulty nodes is that some of these nodes
are themselves faulty. However, the diagnosis of faults in the context of models such as the
comparison diagnosis model is that it is the nodes (that is, the main processors) where faults
arise and not the relatively less complex communication links within the interconnection
network nor the system which governs inter-node communication. That is, it is entirely
realistic to assume that the communication network is intact and fault-free, and that the
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communication system can perform (simple) computations in order to diagnose the faulty
nodes. Indeed, when collecting the data to build a syndrome it is implicitly assumed that
any processor can send a message to any of its neighbours and that the interconnection
network is fault-free. It would be of practical interest to study the distributed complexity of
solving the fault diagnosis problem in this setting and it is something we intend to pursue
in future. Preliminary results show that a distributed implementation of our algorithm in
hypercubes has a significantly improved time complexity when compared to a distributed
implementation of Chiang and Tan’s algorithm.
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