Comparing Stochastic Design Decision Belief
Models. Pointwise versus Interval Probabilities

Peter C Matthews
School of Engineering and Computing Sciences
Durham University, UK

Decision support systems can either directly support aymiodesigner or support
an agent operating within a multi-agent system (MAS). Sastih based decision
support systems require an underlying belief model that@es domain knowledge.
The underlying supporting belief model has traditionalgeb a probability distri-
bution function (PDF) which uses pointwise probabilitiesdll possible outcomes.
This can present a challenge during the knowledge elioitgirocess. To overcome
this, it is proposed to test the performance of a credal detflmeodel. Credal sets
(sometimes also referred to as p-boxes) use interval pilidiebrather than point-
wise probabilities and therefore are more easier to eliosinfdomain experts. The
PDF and credal set belief models are compared using a desigaid MAS which
is able to learn, and thereby refine, the belief model baseits@xperience. The
outcome of the experiment illustrates that there is no it difference between
the PDF based and credal set based belief models in the parfice of the MAS.

I ntroduction

Modern trends in product development and production has aeshift from prod-

ucts being fully developed in-house to products being dges in collaboration
with ever increasing numbers of external partners. Alonth wiis shift, there has
been the need to complement the change in design with a climtige enterprise
structure. Where product development previously could etaken by a small
co-located team generating a design that would be manuéatto-house, it is now
more common to see large disperse teams being composed fultiplenorgan-
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isations along with the manufacture of the product beingeutadten in a similar
multi-site manner [1, 2].

The complexity of modern design and manufacturing intregua new source
of uncertainty [3]. A component of this uncertainty is howlWaotential partners
are able to work together. For example, two organisastianshave a very good
(tacit) understanding of their mutual capabilities andstaaints and therefore are
able to work well together. On the other hand, another pgisfrorganisations could
completely lack this mutual understanding and place uisteablemands on each
other resulting in poor collaboration. It is this abilityittentify suitable partners for
collaborative work that this paper addresses. There hage efforts on selecting
partners through capability profiling [4], however therenegn issues on how the
individual capability scores are determined. These cdipabcores are subjective
to the capability supplier rather than to the purchaserrdlgetherefore a need to
devise capability metrics that are subjective to the puseha

The challenge is how can an agent determine if a collabaeratith be success-
ful. To address this, there are a number of assumptionst ($)riot appropriate
to represent capability by a point score, rather a distidbdbased representation
should be used; (2) for the purposes of simulation basedriexpets, an abstract
measure of success should be used; and (3) the actors withiexperiment can
be modeled using agents, and the interaction between thadseanodeled using a
Multi-Agent System (MAS). The experiments will test how Wible agents are able
to ‘learn’ suitable probability distribution functionsiFs) for ‘potential successful
interaction’.

An important problem in learning PDFs is the uncertaintywdtibe accuracy of
the PDF. Specifically, how accurate is the probability thaegain outcome will
occur? To address this, two approaches for representiagtihchastic information
will be compared. The first will be the well known PDF represdénn, where prob-
abilities for all the outcomes are represented by pointwédees. The second will
be the use of credal sets [5] where the probabilities of oueare represented
by a probability interval. The rationale behind this is ttiad PDF provides a well
known benchmark, with classic learning algorithms and sénspmmary statistics
to be used for decision making. The credal set approachges\greater flexibility
and supports a richer representation of an agent’s undeistaof outcome proba-
bilities. For the credal set approach, similar learningpathms and decision algo-
rithms will be required. The credal set approach would atsmbée the knowledge
elicitation process to work with interval probabilitiegirar than pointwise, which
are easier to elicit from a domain expert. For example, disata have been used to
design a pressure vessel with a new material (represemicgrtain design condi-
tions). In this pressure vessel design case, it was shownvtiere the imprecision
is large, the credal sets outperformed the classic poiatpisbability distribution
representation method [6].

The remainder of this paper is structured as follows: The sestion introduces
the mathematical concepts and representations requireaptement both a PDF
and credal set belief model. The following section deseribe learning algorithm
implemented for both belief models. This is followed by thregentation of how
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these models are implemented in a multi agent system. Netibealescribes the
empirical trial environment. Finally, the results are preed and discussed.

Stochastic representations

Stochastic decision support requires a stochastic domantemThis paper sets
out to compare two different approaches for implementirggdtochastic domain
model. The first will be the well understood probability distition function (PDF).
The PDF will be used as a benchmark to compare the credal getagh. Both of
these approaches are expanded on in this section.

Two different approaches to representing stochastic imédion will be consid-
ered. The first is the classical probability distributiondtion (PDF) representation.
Let Q be the set of all possible outcomes for a random variatlé, PDF is a func-
tion, f(x) = P(X =x) from the set of outcomeg £ Q that maps onto the probability
interval[0, 1], subject to the condition that:

Z f(x) =1 1)
xeQ
For the purposes of this paper, only discrete valued outcspaees will be consid-
ered. The arguments remain valid for continuous valuedespas well, the summa-
tions simply need to be replaced by integrals.

Under the PDF approach, the probability of an outconpésisely defined. For
example, consider the outcome of a certain collaboratitwden two agents. The
possible outcomes for the collaboration are: fail, podr, é&xcellent. The probabil-
ity of each outcome can then be presentedP&S:= fail), P(C = poor), P(C = fair),
andP(C = excellenj. Each of these represents the probability that the colttoor
has the stated outcome. While the outcome of the collaborgianknown, the
PDF representation for this case is precise, e.g.:

P(C=fail) = 0.1
P(C = poor) = 0.2
P(C =fair) = 0.4

P(C = excellenj =

Given the above values for this system, an observer wouléaxp see 10% of
collaborations fail, 20% of collaborations be poor, 40% ollaborations be fair,
and 30% of collaborations be excellent. However when pateniséng this case,
there might not be such certainty on these values. For exariyd expert might not
have total confidence in the pointwise values being assitmédth outcomes. A
very simple method for overcoming this is to represent tlebabilities as intervals
rather than as points [5, 7].
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The use of intervals for probability outcomes provides aurstextension to
the pointwise approach. The length of the interval is relatethe confidence, or
certainty, of the probability value of an outcome. Specificéhe probability of an
outcome is specified as a range of values. Using the abovepéxainbecomes
possible to say(C = fair) = [0.3,0,5]: i.e. the probability that the collaboration
will be successful lies between 0.3 and 0.5.

Functional distribution representation

In classical probability, the well understood and used wetlor representing the
probability of various outcomes is the probability distitiion function (PDF). This
can be easily plotted in two dimensions for visualisatiomgishe outcome space as
the horizontal axis and the probability of each outcome oaog as the vertical axis.
Figure 1 illustrates two PDFs on the same set of axis, iistg how characteristics
(e.g. the distribution mode) can be identified from this esentation. For the scope
of this work, it is sufficient to consider the discrete caset © be the set of all
possible outcomes for some random variabléor simplicity of the mathematical
notation, it is assumed th& is an ordered set). The PDF for this random variable
is then defined as:

U=( =X) ()

spAlh

An equivalent representation is the cumulative distrifnufunction (CDF). This
is simply the sum (or integral in the continuous case) of the ih Equation 2 along
the horizontal axis, and can therefore also be visualisédandimensions. As the
PDF is bounded between 0 and 1 and sums to unity, the CDF is atorooally
increasing function from 0 to 1. The CDF is defined as:

Fx() = fx(i) (3)

i<x

Functional representation of interval probabilities

A slightly different approach is required to represent tteelsastic information in
the interval case. In the interval probability case, the GBpresentation can be
used to define the full range of possible (pointwise) distidn functions for a given
variable. By extending the concept of interval probafafitior each outcome, two
CDFs can be defined: firstly the CDF defined by all the lower pbiliy ranges,
FE (X =x) and secondly the CDF defined by all the upper probability earfg(X =
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Fig. 1 Two probability distribution functionsf; represents a distribution with a low valued mode
and f, represents a high mode.

X). These two CDFs provide the envelope for all possible CD&sdbuld represent
the distribution function for the given variable.
The p-box [8], or credal set [9], representation for undetyas based on an en-

velope that defines the range of possible cumulative digtdbs. This is bounded

by the maximal F) and minimal E) values taken by all possible distribution func-
tions for the given uncertainty. This credal set is then faliyndefined as:

M ={F :E(i) <F(i) <F(i),vie Q}

(4)
As the area within the envelope defines the range of possistiebdition func-
tions, it follows that the larger this area is the greateretguof distribution functions
that exist to represent the variable. Therefore it is pdssdbnumerically define and

measure thencertainty about the distribution for the given variable. Numerically
the uncertainty for a given credal set will be defined as:

1 — . .
und.#) == 3 (F(i)—E()) (5)
|'Q| i€
From this equation, it can be seen that where the credalaebins’ to the limit,

Unc(.#) = 0 and conversely where the credal set contains all possistiebaition
functions, Un€.#) = 1.

To illustrate the credal set, consider again the randomabbeC representing
the success of a collaboration between two agents. Now,rtftpilities of each
outcome is represented by an interval.

P(C = fail) = [0.0,0.2]
P(C = poor) = [0.1,0.3]

P(C = fair) = [0.3,0.5]
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P(C = excellenj = [0.1,0.4]

These intervals define the range of distribution functidrs tepresent the prob-
abilities for each possible outcome, subject to the prditigisi summing to unity.
Within this range there are infinitely many possible disttibn functions. The
credal set has the property that for any two distributiokertiafrom the credal set
sayF; andFR,, all linear combinations of the forrmF; + (1 — a)R,, for a € [0, 1]
will also be a member of the credal set.

Agent learning

The agents within this system learn (gain experience) tiflranteraction and ob-

servation. The learning is based on a pair of agents imitjadi collaboration. This

collaboration will have some measurable degree of suceessthis evidence is

used by the agents to learn about their mutual ability tcabaltate. Specifically, the
learning process modifies the agent’s stochastic infoonditeld about the observed
variable (in this case the ability to successfully collaie}. If the current stochas-
tic belief is given byF and the observed evidence is givenbythen the updated

stochastic belief is determined as follows:

F'= (1= y)F +)E ©)

wherey € [0,1] is the learning rate. Whene= 0, no learning takes place and at the
other extremey = 1, the updated stochastic belief is completely determineithiée
last piece of evidence seen.

This abstract learning function requires further detabhath the PDF and credal
set cases. This is developed below.

PDF updating

In the PDF case, the evidence must be transformed into a PREIBT he evidence
will have been the observation of a single event, xayn the discrete event case,
this evidence PDF can be encoded as:

0:X#Xe
= 7
0 ={ 3l @
Then the updated PDF that is used by the agent for futureidaeaisaking is given
by:

(%) = (1= y) F(x) +ve(x) (8)
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It is worth noting that the constraiit f (X) = 1 remains satisfied after applying this
learning function.

Credal set updating

In a similar manner to the PDF approach, in this case the vbd@vidence must be
transformed into a CDF. Again, if the observed evidencevsmbyxe, the evidence
CDF can be encoded by:

e {255

This produces a step-function, with the step rising at thdence point. Note that
this is simply the integral of the PDF version (Equation 7).

In the credal set case, there are now two CDFs that need tortsédeoed, the
lower and upper bounds of the credal set. In a similar apprahae learning algo-
rithm is simply applied to both boundaries. The rationaletfis is that if the same
piece of evidence (or observation) was presented at eaafirigacycle, the credal
set must converge to this evidence function.

!

T

=1

Y)F (X) + YE(X) (10)
‘() =Q1-yE

Y)E(X) +YE(X) (11)

Note that the updated functions are a linear weighted coatioim of two other
CDFs and therefore they are also CDFs. Hence, these pragefihe a credal set.

M

Agent Implementation

Agents are used to model a set of individuals observing atidgawithin an envi-
ronment. Ultimately, the aim is to test how well they are ablédentify, through
evidence based learning, suitable other agents for colidibg on a given task. For
the purposes of this paper, the aim will be the slightly senpask of learning to
identify which other agents within the system an agent shptgfer to collaborate
with through forming a direct network link with.

Each agent forms a view (or belief) of the characteristicalbthe other agents
within the system. This belief is updated with evidence abvalnen it is observed by
the agent. The agent uses the belief of the other agentsdeaistic to determine
which is most appropriate to interact with. If there &teagents within the MAS,
then the data structure for each ageist given by (%1, %o, ..., %in), whereZ;;
is agent’s belief of agentj’s characteristic distribution. The belief component can
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Fig. 2 Rule structure for the conceptual car domain [10].

be either a PDF or a credal set, and these will be comparee iarttpirical section
of this paper.

To compare the PDF and credal set belief models, the UCI Cagnielatabase
is used as a design domain model [10]. Here, each desigrbiaisadetermined by
an agent, and the agents need to identify suitable agentgt@ct with in order to
complete a car design.

UCI Car Design Database

The UCI Car design database [10] provides a simplified regmtasion of an au-
tomotive design domain. This domain consists of ten vaegblith a known hi-
erarchical rule structure (see Figure 2). The design viesatan be categorised as
design parameters (controlled by the designer, shown iag)ax design character-
istics (function of the design variables, shown in ovals3.acorollary, the design
parameters are the nodes of the rule structure. The databatans all the 1728
possible (legal) designs within this domain.

In this work, each variable was ‘assigned’ to a unique agerg.agents were not
provided with any prior information about the rule struetuand therefore prior to
any learning were completely unbiased to which agents tleaydprefer to collab-
orate with. Each agent was given a utility function that neppariable state with
‘cost’ of moving to that state. These utility functions weret part of the original
database, but needed as part of the MAS bidding system.

The database was used to generate design tasks. This waspdisbed by ran-
domly selecting a design from the database, thereby emsarlagitimate design,
and then transforming it into a design task. The design taskareated by randomly
blanking out a preset number of the design variables. Thairény set variables
(four were left set for these simulations) representeddiesign task’. The aim for
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the MAS was to then complete this design, i.e. define the leldmut design vari-
ables. Itis possible that for any given design task, themeweiltiple possible com-
plete satisfying designs, and so the aim was not to recrbateriginal randomly
sampled design.

The design process was undertaken by a set of agents. Eatthage control’
over a single design variable. The agents were able to absarch other through
a blackboard approach [11]. The design task provided a btpded for the MAS.
Within this, local goals were set for the individual agemtghe form of the target
variable setting for each agent. Individual agents musabotate to be able to set or
modify their own variable. Initially, the agents are giveminformation on the de-
sign variable structure and therefore must learn this tiinaction and observation.
When a pair of agents attempt to collaborate (i.e. changevhgable settings), the
overall success of this collaboration is used to update ¢lieftof success for future
collaborations.

The success of an agent-agent collaboration was meastingdamsabstract qual-
ity metric. For any collaboration, there were four possitmlgcomes, ranging from
most successful to least: (1) the collaboration is a totatess — both agents are
able to move to the new variable setting; (2) the initiatiggrt is successful, the
supporting agent is not; (3) the supporting agent is subdeske initiating agent
is not; and (4) neither agent is successful in changing.staiethis collaboration
outcome that is used to update an agent’s belief in its owtalsility to collaborate
with the other agent.

To reflect the logistical challenges that are inherent tespfay design, each agent
was augmented with a cost function. These cost functions imeividually tailored
for each agent and effectively represented the difficultydio agent to achieve a
specified variable state.

Each individual design task can be measured against a sedtdte These met-
rics were used specifically to measure how well the MAS waslag as a result of
the interactions involved in each design task. The metreew

Cost each design task incurred a cost as a result of the sum ofritezaictions’
that occurred between the agents during the design;

Score each agent interaction was scored based on the degree afjechathe
design, ranging from 0 (no change) to 1 (both agents suadbsshanged state)
and provides a measure of ‘quality of collaboration’;

Task completion was the number of design variables set. As the MAS was not
able to backtrack the design process (for example by clganieviously set de-
sign variables) it could therefore find itself in a ‘dead erdnce this provided a
measure of how successful the MAS was in completing desa;

Number of agent interactions any individual interaction was not necessarily go-
ing to be successful in modifying the design, and therefoestdtal number of
interactions for a given design task measured how efficientaen design pro-
cess was.

In addition to these basic metrics, two further metrics wagved:
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Mean cost per variableset this is the average cost incurred in determining each
design variable for a given design and

Mean interactions per variableset this is the average number of interactions re-
quired to set each design variable.

The mean cost metric is important due to the MAS not being @biecktrack. It is

therefore possible that design cost reduces as a resublottanpletion reducing.
By measuring the mean cost per variable set, this is ableigtrite if this is indeed
the case. Note that it is not necessary to measure mean cantgraction, as this
is determined by utility function, and therefore will be egkndent of any learning
and constant throughout the simulation.

The mean number of interactions per variable provides &natteasure to how
efficient (in terms of ‘effort’ due to collaboration) the MAS at any point. This
basically measure how often an agent on average attempés godesign variable
before succeeding.

Empirical trials

The empirical trials seek to compare the MAS performanceacteristics using
a PDF belief model against the credal set belief model. Tamparison will be
undertaken using the UCI Car design domain. Due to the sstich@ature of these
experiments, each individual trial must be repeated sktieras to get meaningful
results.

The UCI Car domain has added complexity to reflect the conitdexthat are
involved in real product design. The goal is to identify athgents that are suitable
collaborators based on observed past performance. Thesgvabions arise as a
result of attempted collaborations.

For each experiment, there is a small set of parameteripally, these param-
eters set the learning ratg)(and the duration or the complexity of the tas$k)(
For the Car design domain this is determined by the numbeardlivies that were
specified prior to the design task, and therefore the laxgehe fewer free design
variable are left to be determined by the MAS.

The hypothesis that will be tested is:

Ho There is either no significant difference between using tieelal set belief
model over the PDF belief model;

Hy The credal set belief model and the PDF belief model are fsignitly differ-
ent.

The car design experiments used a series of tasks. Eachpasikied the same
number of design variables, but the exact variables andttaagues were randomly
sampled. Each design task requested that the MAS identisayad solution with
certain design variables set to given values. Each dessffnias generated by ran-
domly selecting a design from the car database and thenmapdelecting a subset
of design variables.
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Each agent has a belief of how well it is able to collaboraté wach and every
other agent. As there are 10 agents in the car design donaa&im agent has 9 belief
models. An agent will use their belief models to determinécWwiother agent is the
most likely to result in a successful collaboration. A cbbeation is initiated by
one agent who wishes to achieve a given result and a collabgr@gent who will
offer to help the initiating agent in obtaining that resilfter an initiating agent has
selected a collaborator and attempted to collaborate Withagent, it is able to see
the result of this collaboration. There are four possibleomnes of the collaboration
(in descending order of overall quality of outcome): (1)tbagents successfully
change; (2) the initiating agent is able to change, but netctillaborator; (3) the
collaborator is able to change, but not the initiator; arjdhélther agent successfully
changes. This outcome is mapped onto a numerical ‘qualitpldiboration’ score
which is in turn used as evidence for the initiating agenttdaie their belief model.

The key experimental variable was the belief model learmatg, y. The key
experimental outcomes that were measured were: (1) thegeaost of setting
each variable, (2) the average number of interactions péabla set, and (3) the
average task completion level. In terms of ‘optimal’ outesnlower is better for
cost and number of interactions while higher is better fek tompletion.

For this experiment, each independent design trial was ouri20 iterations.
This run allowed the agents to refine their belief modelshHgaal was repeated 30
times, and the average value is reported.

Results

Figures 3 to 9 represent how the car design MAS performs sgtie three met-

rics asy ranges from 0.0 to 1.0 in increments of 0.1. These graphslgleaggest

that for most values of (the learning rate), there is little difference in performoa

of the car design MAS. Ay = 0, both systems undertake no learning and there-
fore this effectively represents the performance of the M#\Bs initial state. From

the graphs it can be seen that its performs poorly in term®osf and number of
interactions. Oddly, this case has the best (highest) tasiptetion of all. For the
remaining values of, there is little trend to be seen, and the systems appear to be
stable for ally values.

Figure 3 compares the convergence of the average cost jpnlesset of the PDF
and credal set belief models. Initially, the credal setebaselief model performs
worse than the PDF-based belief model, but by iteration #8 bpproaches have
converged in terms of this metric. Further, they both cargito perform at this
level for the remainder of the learning process, suggestiagboth systems have
stabilised. This learning run was performed at the MAS dgpanameter settings.

In a similar vein, Figure 4 compares the average number efantion each agent
performs per variable set. Under this metric, both the POicaedal set-based sys-
tems initially perform at the same level. From iteration &@jvergence is seen with
the credal set-based system performing worse, howeveaphisars to be temporary.
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Fig. 3 Comparing convergence between the PDF and credal set retsesndf the average cost
per variable set as learning progresses:(0.2).
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Fig. 4 Comparing convergence between the PDF and credal set re@sesitof the average
number of interactions per variable set as learning progregse$Q).
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Itis also worth noting that the difference between thesedystems is small: at the
greatest divergence (ca iteration 80), the difference éetvthem is 3 interactions.

8.5
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Fig. 5 Task completion as learning progressgs-=(0.2).

A similar result is seen in Figure 5, the level that the deségis have been com-
pleted as learning progresses. Both systems perform siynieth the credal set
system completing about one more design variable than tiresiyEtem throughout
the learning process.
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Fig. 6 Comparing average cost per variable set after learning faréifity values: PDF v Credal.
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The following set of results compare the performance of the $ystems as a
function of the learning ratey. Within these results, it is worth noting that at the
one extremey = 0, no learning occurs, whereas at the other extrgme,1, the
learning is completely based on the previous iteration'seokation. In both these
extremes, the two systems will perform identically.

The first of these results, Figure 6 compares the averageotastting each
design variable against the learning rate. On average rduakbased system per-
forms slightly worse. However it is more consistent thromgihthe learning rate
range, whereas the PDF based system rises again in the rofdtikey range.

75

4>

Task completion

45 I I I I
0 0.2 0.4 0.6 0.8 1
gamma

Fig. 7 Task completion against learning rag.(

Figure 7 illustrates the task completion level for both eyst against the learning
rate. Similar characteristics are again seen, with botkesys converging for the
middle of they range. Towards either extreme, the PDF based system ddesper
slightly better than the credal set system.

The final set of empirical trials were to compare how the twatesys responded
to different design task settings. These are independdhibtrated for the PDF
case (Figure 8) and the credal set case (Figure 9). ThreesvafiN, the number
of design variables that are predetermined (or how manybbas are set as part of
the design ‘specification’), were tested. In both cases (RFcredal set) it can be
noted that the performance, in terms of average cost pexhlarset, decreases as
there are fewer design variables to set. Again, in both ¢castls systems converge
to similar performance levels for the same task complexity.
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Fig. 8 Average cost per interaction as learning progresses for éiffetesign task complexities
given byN, the number of variables that have been predetermined (PDFycas&?).
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Fig. 9 Average cost per interaction as learning progresses for éiffetesign task complexities
given byN, the number of variables that have been predetermined (Csetlahsey = 0.2).
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Discussion

The empirical work compared how a PDF based belief modebpaed against a
credal set based belief model. The key metrics that weretodsase the comparison
on were: (1) how well the design MAS could complete the desagk, (2) the
mean cost for setting each design variable, and (3) the m&aber of interactions
required to set each design variable.

The experiments were based on the assumption that thereovpamnknowledge
to initialise the belief model. Therefore, in both casestirbef models were ini-
tialised uniformly. In the PDF case, this meant a uniformiriistion model across
all outcomes. On the other hand, in the credal set case, tied im@dels were ini-
tialised to be the full interval for all outcomes. Both caseed a similar learning
algorithm, where evidence was used to modify the belief nstieincrease the
probability of the recently seen evidence.

The key conclusion that can be drawn from this comparisohdsa stochasti-
cally based decision support algorithm can use either tHed@redal set represen-
tation of belief. In terms of the hypothesis presented ey would be accepted.
Specifically, it means that where a PDF representation hexs lged in the past, this
is able to be replaced by a credal set representation. Aslsets are more readily
elicited from domain experts than PDF [7], this representsrgortant advance in
decision support systems instantiation.

Conclusion

The key question this paper set out to investigate was to acertpe effectiveness of
pointwise versus interval probabilities in a collaboratangineering design process.
To tackle this question, an abstract design environmentsad themed on a multi-
agent car design process. The car design was divided intalrsmmber of loosely
coupled sub-design tasks, and each of these tasks wasaketeby an independent
agent. These agents needed to collaborate to be able tossfidbecomplete the
design.

The design agents were initially given no information as toal other agents
within the system they could collaborate with. Throughiiatgion with each other,
the agents could gather evidence and learn which other &ijeay most success-
fully were able to collaborate with. Specifically, the evide was used to update the
agents’ belief models of each others’ capabilities.

The belief models were implemented using the two stochasficesentations:
pointwise and interval (credal set) probabilities. The patational experiments
demonstrated that the credal set approach performed ncewas the (classic)
pointwise representation. Given the benefits to be gained fusing a credal set
approach, such as ease of elicitation from domain expedanitherefore be argued
that there is a call to replace the use of pointwise stoahastidels with credal sets
in engineering contexts.
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Further work is required to determine how sensitive the aréeélief model is
to the interval size given for each outcome. Clearly, astierval of the credal set
narrows, the credal set in the limit converges into the PDeré&fore, it is important
to know what the lower interval limit for an effective credaits is. This will support
the belief elicitation process in providing guidance asdw imuch information is
required.
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