
Frameworks for logically classifying

polynomial-time optimisation problems

James Gate and Iain A. Stewart

School of Engineering and Computing Sciences,

Durham University, Science Labs,

South Road, Durham DH1 3LE, U.K.

e-mail: j.s.gate/i.a.stewart@durham.ac.uk

November 19, 2009

Abstract

We show that a logical framework, based around a fragment of exis-

tential second-order logic formerly proposed by others so as to capture

the class of polynomially-bounded P-optimisation problems, cannot hope

to do so, under the assumption that P 6= NP. We do this by exhibit-

ing polynomially-bounded maximisation and minimisation problems that

can be expressed in the framework but whose decision versions are NP-

complete. We propose an alternative logical framework, based around

inflationary fixed-point logic, and show that we can capture the above

classes of optimisation problems. We use the inductive depth of an infla-

tionary fixed-point as a means to describe the objective functions of the

instances of our optimisation problems.

keywords: finite model theory; descriptive complexity; optimisation prob-

lems.

1 Introduction

The theory of computational complexity is primarily concerned with the classi-
fication of decision problems, and although many (NP-complete) decision prob-
lems are actually decision versions of more natural optimisation problems, the
classification of optimisation problems does not fit naturally into many of the
available standard classification frameworks. Whilst there do exist criteria
against which we can classify optimisation problems, such as according to their
approximation properties [11], it was not until Papadimitriou and Yannakakis
[18] proposed the use of existential second-order logic as a means for classifica-
tion that a natural and robust framework became available. The classification
of optimisation problems within this logical framework was subsequently signif-
icantly clarified by Panconesi and Ranjan [17] and Kolaitis and Thakur [13, 14]
(we briefly explain Kolaitis and Thakur’s work later).

1

The optimisation problems considered in the papers above are (polynomially-
bounded) NP-optimisation problems. The class of (polynomially-bounded) P-
optimisation problems is an important sub-class of optimisation problems. Typ-
ical of P-optimisation problems are the maximum unit flow problem, the maxi-
mum 2-satisfiability problem, the minimum shortest-path problem and the min-
imum cut problem. In [16], Manyem attempted to logically capture the class
of polynomially-bounded P-optimisation problems by utilizing a fragment of
existential second-order logic (where the first-order part of any formula is a
universally-quantified Horn formula) which is known to capture the class of de-
cision problems P (on ordered structures; this characterization was due to Grädel
[6]). As we demonstrate here, proceeding as Manyem suggests results in failure
(assuming that P 6= NP), for there are polynomially-bounded optimisation prob-
lems that can be expressed within his logical framework but whose associated
decision problems are NP-complete (by definition, an NP-optimisation problem
is a P-optimisation problem if its associated decision problem is in P). However,
we present a new framework based around inflationary fixed-point logic and
where we use the inductive depth of an inflationary fixed-point as a mechanism
by which to compute the values of the objective functions of the instances of
our optimisation problems. We show that the classes of polynomially-bounded
P-maximisation problems and polynomially-bounded P-minimisation problems
can be captured within our framework.

In the next section we give definitions as regards optimisation problems rele-
vant to this paper, we explain Kolaitis and Thakur’s logical frameworks and their
main results, and we present Manyem’s logical framework for the attempted
characterization of classes of polynomially-bounded P-optimisation problems.
In Section 3, we prove that Manyem’s logical framework does not yield log-
ical characterizations of the classes of polynomially-bounded P-maximisation
and polynomially-bounded P-minimisation problems, before presenting a new
logical framework in Section 4 which enables us to logically characterize these
classes of optimisation problems. Our conclusions and directions for further
research are presented in Section 5.

2 A framework for classification

In this section, we define classes of (non-deterministic polynomial-time) opti-
misation problems and provide logical frameworks for the classification of such
problems. These classes and frameworks come from [13, 14, 17, 18]. Further-
more, we present some classification results from [13, 14]. In addition, we refine
definitions and notions from [1, 16]. In particular, we define classes of (deter-
ministic) polynomial-time optimisation problems and we explain how the logical
framework presented in [1, 16], together with the subsequent analysis, was some-
what incongruous.

2

2.1 P-optimisation problems

We begin by defining what we mean by a polynomial-time optimisation problem,
or P-optimisation problem for short.

Definition 1 A maximisation problem (resp. minimisation problem) Q is a
4-tuple (I,F , f, opt) where:

1. I is the set of instances of Q, with I recognisable in polynomial-time;

2. F is the set of feasible solutions to some instance of I, where we denote
by F(I) the set of feasible solutions to instance I;

3. f : I × F → N ∪ {⊥} is the objective function, and is such that:

• f(I, J) = ⊥ if, and only if, J 6∈ F(I);

• there is a polynomial pf such that f(I, J) is computable in time
pf (|I|);

4. for any instance I ∈ I, if F(I) is non-empty then opt(I) = max{f(I, J) :
J ∈ F(I)} (resp. opt(I) = min{f(I, J) : J ∈ F(I)}), and if F(I) is empty
then opt(I) = ⊥.

The class of optimisation problems consists of the class of maximisation problems
in union with the class of minimisation problems. The maximisation (resp.
minimisation) problem Q is a P-maximisation problem (resp. P-minimisation

problem) if:

5. the problem of deciding whether a given instance I ∈ I and a given
integer m are such that there exists a feasible solution J ∈ F(I) such that
f(I, J) ≥ m (resp. f(I, J) ≤ m) can be solved in polynomial-time.

The class of P-optimisation problems Popt is the class of P-maximisation prob-
lems Pmax in union with the class of P-minimisation problems Pmin. The classes
of NP-optimisation problems NPopt, NP-maximisation problems NPmax, and
NP-minimisation problems NPmin are defined analogously except that in condi-
tion 5 ‘non-deterministic polynomial-time’ replaces ‘polynomial-time’. We refer
to the problem in condition 5 as the decision version of Q.

Importantly, for us the solution of an optimisation problem Q = (I,F , f, opt)
is an algorithm that given any instance I of the problem, produces as output
the value opt(I) and not (necessarily) an optimal feasible solution from F(I) (if
there is one). In fact, this algorithm need not even work with representations of
feasible solutions; all it has to do is to come up with the optimal value. Note that
all problems Q = (I,F , f, opt) in Popt can be solved in polynomial-time, for:
given any instance I of size n and any feasible solution J ∈ F(I), by definition
f(I, J) is O(2p(n)), where p is some polynomial; and repeating the algorithm in
condition 5 in tandem with a binary search yields a polynomial-time algorithm
that computes opt(I).

We have three remarks.

3

Remark 2 Note that Definition 1 implies that all feasible solutions to some
instance can be taken to have size bounded by some polynomial in the size of
the instance. Given that our notion of a solution of an optimisation problem
is such that a numeric value should be found and not a witnessing feasible
solution, there is no real need to discuss the computational nature of a set of
feasible solutions corresponding to some instance. In particular, Definition 1
says nothing about the complexity of deciding whether some potential feasible
solution is indeed an actual feasible solution to some instance. It turns out that
most (instances of) natural optimisation problems have easily recognizable sets
of feasible solutions.

Remark 3 The reader will have noted that according to Definition 1, every

optimisation problem is in fact an NP-optimisation problem, and so condition
5 is redundant when defining an NP-optimisation problem. However, we have
included it as it appears in analogous definitions in [13, 14]; for in these defi-
nitions the objective function is defined to be computable in time polynomial
in the size of the input, i.e., the instance and a feasible solution, rather than
in the size of the instance. Our notion of an optimisation problem is such that
every feasible solution to some instance necessarily has size bounded by some
polynomial in the size of the instance, whereas in [13, 14] there is scope for con-
sidering optimisation problems whose instances have feasible solutions of size
exponential in the size of the instance. As far as we know, such optimisation
problems have never been considered.

Remark 4 We should point out that Manyem’s definition of a P-optimisation
problem in [16], and subsequently in [1], is slightly different from that in Defi-
nition 1, for Manyem had an extra condition, namely that:

6′. the problem of computing an optimal solution for a given instance I of Q
can be solved in time polynomial in |I|.

We have dropped this condition as we feel that the condition is not intrinsic to
our notion of the solution of an optimisation problem (for us, and as is the case
in [13, 14], we are only concerned with whether solutions of certain sizes exist
and not with actually exhibiting such solutions). We wish our P-optimisation
problems to be analogous to the NP-optimisation problems of [13, 17, 18] where
no such condition exists. Indeed, imposing such a condition in the context
of NP is somewhat problematic as not only would we be asking for a non-
deterministic polynomial-time transducer but checking optimality would provide
difficulties too. Dropping Manyem’s additional condition provides for a more
appropriate analysis. (Note that the conditions 1 – 5 and 6′, above, mirror
Manyem’s conditions (i) – (vi) in [16].)

2.2 Polynomially-bounded P-optimisation problems

The classes defined in the following definition play an important role (as we
shall explain soon).

4

Definition 5 An optimisation problem Q is polynomially-bounded if there is a
polynomial q such that for every instance I of Q, opt(I) ≤ q(|I|) (we reiterate
that in general the value opt(I) might be exponential in |I|). We denote the class
of polynomially-bounded P-optimisation problems by PPB

opt , the (sub-)class of

polynomially-bounded P-maximisation problems by PPB
max, and the (sub-)class of

polynomially-bounded P-minimisation problems by P
PB
min. There are analogous

definitions of NPPB
opt , NPPB

max, and NPPB
min.

We now mention some examples of optimisation problems.

Example 6 Consider the maximum flow problem MAXUNITFLOW = (I,F ,
f, opt), where:

• I is the set of triples (G, s, t), with G a digraph and s and t two distinct
vertices of G, where s has in-degree 0 and t has out-degree 0, so that all
edges are assumed to have unit capacity;

• F((G, s, t)) is the set of all possible flows for (G, s, t);

• f(I, J), for some instance I and for some feasible solution J ∈ F(I), is
the size of the flow J .

It is well-known that the decision version of MAXUNITFLOW is in P (see, e.g.,
[2]); thus, MAXUNITFLOW ∈ Pmax. In fact, MAXUNITFLOW ∈ PPB

max.

Example 7 Consider the maximum 2-satisfiability problem MAX2SAT = (I,
F , f, opt), where:

• I is the set of conjunctive normal form formulae ϕ where every clause has
2 literals;

• F(ϕ) is the set of truth assignments on the Boolean variables involved in
ϕ;

• f(I, J), for some instance I and for some feasible solution J ∈ F(I), is
the number of clauses of I made true under the truth assignment J .

It is well-known that the decision version of MAX2SAT is NP-complete (see,
e.g., [5]). Hence, MAX2SAT is in NPPB

max (and not in Pmax unless P = NP).
If we define MAXHORN2SAT just as was MAX2SAT except that all instances
are in addition Horn formulae then thanks to a result in [10] where the decision
version of MAXHORN2SAT was shown to be NP-complete, we obtain that
MAXHORN2SAT is in NPPB

max and unlikely to be in PPB
max. However, if we

define the problem MAX2SAT(≤2) by restricting instances of MAX2SAT so
that every variable appears in at most 2 clauses then as the decision version of
MAX2SAT(≤2) can be solved in linear time [19], MAX2SAT(≤2) is in PPB

max.

Example 8 Consider the minimum shortest-path problem MINSP = (I,F , f,
opt), where:

5

• I is the set of triples (G, s, t), with G a digraph and s and t two distinct
vertices of G;

• F((G, s, t)) is the set of all possible paths in G from s to t;

• f(I, J), for some instance I and for some feasible solution J ∈ F(I), is
the length of the path J .

It is well-known that the decision version of MINSP is in P (see, e.g., [2]); thus,
MINSP ∈ P

PB
min.

Henceforth, we define the maximum or the minimum of the empty set as
being ⊥.

2.3 Using logic to classify NP-optimization problems

We begin with some basic definitions. For us, a signature σ is a finite tuple
of relation symbols R1, R2, . . . , Rr, where each Ri has arity ai, and constant
symbols C1, C2, . . . , Cc. A finite structure over σ, or σ-structure, A of size n,
where n ≥ 2, consists of a domain, or universe, {0, 1, . . . , n− 1} and a relation
Ri of arity ai (resp. constant Cj), for every relation symbol Ri (resp. constant
symbol Cj) in σ (it causes no confusion that we do not differentiate between
relations and relation symbols, and constants and constant symbols). We denote
both the size and the domain of a structure A as |A| (again, this causes no
confusion). Let σ and τ be signatures with no symbols in common. Suppose
that A is a σ-structure and B is a τ -structure with |A| = |B|. The σ ∪ τ -
structure (A,B) has domain that of A (and B) with relations and constants
corresponding to symbols from σ (resp. τ) inherited from A (resp. B). If
τ = 〈S1, S2, . . . , St〉, where each Si is a relation symbol, then we sometimes
denote (A,B) by (A, S1, S2, . . . , St). A problem is an isomorphism-closed set of
finite structures over some fixed signature; so, a problem refers to a decision
problem (as opposed to an optimisation problem). Of particular interest to us
is a successor relation; that is, a binary relation over some domain of size n
where this relation is of the form

{(a0, a1), (a1, a2), . . . , (an−2, an−1) : all ai’s are distinct}.

We assume that the reader is familiar with using first-order logic FO and second-
order logic SO to define problems (we refer the reader to texts such as [3, 7, 9,
15]).

Henceforth, all instances of some optimisation problem are finite structures
A over some fixed signature, σ say, and we say that such an optimisation prob-
lem is over σ. We make no assumptions as regards the feasible solutions of
some instance although in practice they tend to be structures over some (fixed)
signature. Such a framework fully captures all of the optimisation problems
from the previous section, for if one formally considers instances of optimisation
problems as strings of symbols (as one must if one is to classify the solution of

6

optimisation problems using a device like a Turing machine) then strings over
an alphabet consisting of m symbols, say, can be considered as finite structures
over a signature consisting of m unary relation symbols and a binary relation
symbol where the corresponding binary relation of any structure is a successor
relation, detailing an ordering of the elements of the structure, and for every
element in the domain of the structure, exactly one of the unary relations holds.
However, adopting our logical framework allows us to consider optimisation
problems via a more natural representation than strings; for example, an op-
timisation problem whose instances are digraphs is more naturally described
using a binary relation encoding adjacency matrices than as a string denoting
the concatenation of the rows of adjacency matrices.

In [13], Kolaitis and Thakur characterized the classes of polynomially-bound-
ed NP-maximization problems NP

PB
max and polynomially-bounded NP-minimiz-

ation problems NPPB
min.

Theorem 9 (Kolaitis and Thakur [13]) Let Q = (I,F , f, opt) be a max-
imisation problem over σ. The following are equivalent.

1. Q is a polynomially-bounded NP-maximization problem, i.e., Q ∈ NP
PB
max.

2. There exists a signature τ , consisting solely of relation symbols and disjoint
from σ, and a first-order formula ϕ(x) over σ ∪ τ , where x is a k-tuple of
variables, for some k, such that for every instance A ∈ I:

opt(A) = max
B

{|{u ∈ |A|k : (A,B) |= ϕ(u)}|},

where B ranges over all τ -structures of size |A|.

Moreover, if one of the above conditions holds then the formula ϕ, above, can
be taken to be a Π2-formula.

Theorem 10 (Kolaitis and Thakur [13]) Let Q = (I,F , f, opt) be a min-
imisation problem over σ. The following are equivalent.

1. Q is a polynomially-bounded NP-minimization problem, i.e., Q ∈ NP
PB
min.

2. There exists a signature τ , consisting solely of relation symbols and disjoint
from σ, and a first-order formula ϕ(x) over σ ∪ τ , where x is a k-tuple of
variables, for some k, such that for every instance A ∈ I:

opt(A) = min
B

{|{u ∈ |A|k : (A,B) |= ϕ(u)}|},

where B ranges over all τ -structures of size |A|.

Moreover, if one of the above conditions holds then the formula ϕ, above, can
be taken to be a Σ2-formula.

7

Note that in Theorems 9 and 10 a τ -structure B (of size |A|) need not correspond
to a feasible solution of A as is defined in Q.

The class of (logically-defined) maximisation problems defined in Theorem 9
is called MAX Π2 and the class of minimisation problems defined in Theorem 10
is called MIN Σ2, with the notation derived from the syntax of the defining
first-order formula. By imposing suitable restrictions upon the formula ϕ in
Theorems 9 and 10, one obtains classes such as MAX Πi, MAX Σi, MIN Πi,
and MIN Σi, for i ≥ 0. Obviously, NP

PB
max = MAX Π2 = MAX Πi and NP

PB
min =

MIN Σ2 = MIN Σi, for all i ≥ 2. In fact, Kolaitis and Thakur also proved the
following result.

Theorem 11 (Kolaitis and Thakur [13])

• MAX Σ0 ⊂ MAX Σ1 ⊂ MAX Π1 = MAX Σ2 ⊂ MAX Π2 = NP
PB
max.

• MIN Σ0 = MIN Σ1 ⊂ MIN Π1 = MIN Σ2 = MIN Π2 = NP
PB
min.

Kolaitis and Thakur observed in [14] that many natural optimisation problems
are such that a feasible solution to an instance is a finite set of relations satisfying
a first-order sentence and that the objective function is the cardinality of one of
these relations. Consequently, Kolaitis and Thakur went on in [14] to vary their
logical framework slightly. They defined the following classes of optimisation
problems. Note that for a relation X , we write |X | to denote the number of
tuples in X .

Definition 12 Let Q = (I,F , f, opt) be a maximisation problem over σ and
let i ≥ 1. The optimisation problem Q is in MAX FΠi if, and only if, there
exists a Πi (first-order) sentence ϕ over σ ∪ τ , where τ = 〈S1, S2, . . . , St〉 and
where each Sj is a relation symbol not appearing in σ, with the property that
for every instance A of I:

opt(A) = max
B

{|S1| : (A,B) |= ϕ},

where B ranges over all τ -structures of size |A|.

The classes MAX FΣi, MIN FΠi, and MIN FΣi, for i ≥ 1, are defined analo-
gously.

Kolaitis and Thakur [14] showed that these new classes of optimisation prob-
lems are closely related to the classes discussed earlier.

Theorem 13 (Kolaitis and Thakur [14])

MAX Σ0

MAX FΣ1

}

⊂ MAX Σ1 ⊂ MAX Π1 = MAX FΠ1 = MAX Σ2

= MAX FΣ2 ⊂ MAX Π2 = MAX FΠ2 = NP
PB
max.

MIN Σ0 = MIN Σ1 = MIN FΠ1

MIN FΣ1

}

⊂ MIN FΣ2 ⊂ MIN FΠ2 = MIN Π1

= MIN Σ2 = MIN Π2 = NP
PB
min.

The bracketing used in the statement of Theorem 13 is to denote that the classes
are incomparable.

8

2.4 Manyem’s framework for P-optimization problems

Inspired by the work of Kolaitis and Thakur, in [16] Manyem (and subse-
quently with Bueno in [1]) attempted to provide a suitable logical framework
to characterize the classes of polynomially-bounded P-maximisation problems
and polynomially-bounded P-minimisation problems. Whereas Kolaitis and
Thakur’s logical framework had been derived from Fagin’s seminal characteri-
zation of NP as the class of problems definable in existential second-order logic
[4], Bueno and Manyem tried to take Grädel’s characterization of P [6] as the
class of problems definable in a particular fragment of existential second-order
logic as their inspiration. We shall now describe Grädel’s result.

We say that a quantifier-free first-order formula over σ ∪ τ , where τ consists
entirely of relation symbols and is disjoint from σ, is a Horn formula over

(σ, τ) if it is a conjunction of clauses where each clause contains at most one
positive atom involving a symbol from τ . The logic ∃SO-Horn is the fragment
of existential second-order logic consisting of all formulae over some signature
σ of the form:

∃S1∃S2 . . .∃St∀y1∀y2 . . .∀ymϕ,

where each Si is a relation symbol not in the underlying signature σ, each
yj is a (first-order) variable, and ϕ is a Horn formula over (σ, τ), where τ =
〈S1, S2, . . . , St〉. We say that a logic L describes , or captures , a class of (deci-
sion) problems C in the presence of a built-in successor relation, or on ordered

structures , if the following are equivalent:

• the problem Ω, over the signature σ, is in C;

• there is a sentence Φ of L over the signature σ ∪ 〈succ,min,max〉, where
succ is a binary relation symbol not in σ and min and max are constant
symbols not in σ, such that:

– for every σ-structure A, as to whether the expansion of A by a suc-
cessor relation succ and constants min and max, so that min (resp.
max) is the minimal (resp. maximal) element of the linear order de-
scribed by succ, satisfies Φ is independent of the particular successor
relation chosen (that is, Φ is order invariant);

– for every σ-structure A, A ∈ Ω if, and only if, the expansion of A by
some successor relation succ and corresponding constants min and
max satisfies Φ.

For more on built-in successor relations, we refer the reader to [3, 7, 9, 15].
One bit of notational convenience we use is that when we talk of a sentence of
some logic over some signature σ in the presence of a built-in successor relation,
we suppress mention of the binary relation symbol succ and the two constant
symbols min and max even though they are present and need to be instantiated
with some successor relation and two constants in order for us to interpret the
sentence in some σ-structure. Also, when we say that a (quantifier-free first-
order) formula is a Horn formula over (σ, τ) then we impose no conditions as

9

regards the occurrence of atoms involving the relation symbol succ and the
constant symbols min and max (unless min or max appears in some atom
involving a relation symbol from τ).

Theorem 14 (Grädel [6]) A problem is in P if, and only if, it can be defined
by a sentence of ∃SO-Horn in the presence of a built-in successor relation.

In [16], Manyem gave a definition of a P-optimisation problem and a logical
framework within which to try and capture the classes of polynomially-bounded
P-maximisation problems and polynomially-bounded P-minimisation problems.
As we have already mentioned, his definition of a P-optimisation problem was
at variance with the definition to be expected should one proceed analogously to
related research on (NP) optimisation problems, mentioned above. In Theorem
3 of [16] he claims that every polynomially-bounded P-maximisation problem
Q = (I,F , f, opt) over σ (according to his definition) is such that there exists a
signature τ consisting of only relation symbols and disjoint from σ and a Horn
formula ϕ(y) over (σ, τ), where y is the tuple of free variables of ϕ, such that
for every instance A ∈ I:

opt(A) = max
B

|{u : (A,B,u) |= ∀x1∀x2 . . .∀xkϕ(y)}|,

with B ranging over all τ -structures with domain |A| and u detailing values
for the variables of y. Manyem made a similar claim relating to polynomially-
bounded P-minimisation problems in Theorem 10 of [16]. Manyem allowed for
the use of a built-in successor relation in the formula ϕ, above, but did not
explain how ϕ(y) might be order-invariant; consequently, he left open the pos-
sibility that |{u : (A,B,u) |= ∀x1∀x2 . . .∀xkϕ(y)}| might vary depending upon
the particular successor relation chosen. Manyem made no claims as regards
the converse direction; that is, whether optimisation problems definable in the
above logical form are necessarily polynomially-bounded P-optimisation prob-
lems. Manyem attempted to demonstrate the efficacy of his framework by defin-
ing within it the problems MAXUNITFLOW and MINSP (see Examples 2.1.2
and 2.2.1 of [16])). Unfortunately there were errors in both definitions (with
reference to [16]: the original formula in (25) is not equivalent to a universally
quantified set of Horn clauses; nor is the formula ϕ5 at the bottom of page 17).
In the next section, we show how Manyem’s framework cannot hope to be used to
logically capture the class of polynomially-bounded P-maximisation problems
or the class of polynomially-bounded P-minimization problems (in an analo-
gous fashion to the characterizations of the classes of polynomially-bounded
NP-maximisation and polynomially-bounded NP-minimisation problems as ob-
tained by Kolaitis and Thakur).

3 The failure of Manyem’s framework

We show how any framework defined in accordance with that proposed by
Manyem will not suffice to characterize the classes of polynomially-bounded

10

P-maximisation problems and polynomially-bounded P-minimisation problems.
We remind the reader of the maximisation problem MAXHORN2SAT of NPPB

max:
an instance of MAXHORN2SAT consists of a set of clauses where each clause is
a Horn clause involving at most 2 literals; a feasible solution to such an instance
is a truth assignment on the underlying Boolean variables; and the objective
function is the number of clauses of the instance satisfied by the given truth as-
signment. The decision version of the maximisation problem MAXHORN2SAT
was proven to be NP-complete in [10].

Theorem 15 There exists a polynomially-bounded maximisation problem Q =
(I,F , f, opt) such that:

• Q is over σ = 〈H,Z〉, where H is a relation symbol of arity 4 and Z is a
constant symbol, with I the set of σ-structures;

• τ = 〈P, T 〉, where P and T are both relation symbols of arity 1, so that
the set of feasible solutions F(A) to some instance A ∈ I is the set of
τ -structures with domain |A|;

• ϕ is a Horn formula over (σ, τ) with free variables x1, x2, x3, y, so that
given some instance A ∈ I and some feasible solution B ∈ F(I),

f(A,B) = |{u : (A,B, u) |= ∀x1∀x2∀x3ϕ(y)}|;

• the decision version of Q is NP-complete.

Proof Let I be an instance of the decision version of MAXHORN2SAT of
size n; so, w.l.o.g. I involves clauses C1, C2, . . . , Cn and Boolean variables
X1, X2, . . . , Xn. Every clause is of one of the following forms:

(i) Xi ⇒ Xj

(ii) Xi ∧Xj ⇒ false

(iii) true ⇒ Xi

(iv) Xi ⇒ false.

Define the signature σ = 〈H,Z〉, where H is a relation symbol of arity 4 and
Z is a constant symbol, and the signature τ = 〈P, T 〉, where P and T are
both relation symbols of arity 1. Let Φ(I) be the σ-structure with domain
{0, 1, . . . , n}, with the constant Z = 0 and with the relationH defined as follows:

(i) if clause Ck of I is of the form Xi ⇒ Xj then (i, 0, j, k) ∈ H ;

(ii) if clause Ck of I is of the form Xi ∧Xj ⇒ false then (i, j, 0, k) ∈ H ;

(iii) if clause Ck of I is of the form true ⇒ Xi then (0, 0, i, k) ∈ H ;

(iv) if clause Ck of I is of the form Xi ⇒ false then (i, 0, 0, k) ∈ H .

11

This completely defines H .
Define the formula Ψ′ over σ ∪ τ as

∀x1∀x2∀x3(

((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(x2, Z, x3, x1) ∧ P (x2) ∧ ¬P (x3))

⇒ ¬T (x1))

∧ ((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(x2, x3, Z, x1) ∧ P (x2) ∧ P (x3))

⇒ ¬T (x1))

∧ ((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(Z,Z, x2, x1) ∧ ¬P (x2)) ⇒ ¬T (x1))

∧ ((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(x2, Z, Z, x1) ∧ P (x2)) ⇒ ¬T (x1))

∧ ¬T (Z)).

Note that the matrix of Ψ′ is a Horn formula over (σ, τ).
We claim that there exists a truth assignment on X1, X2, . . . , Xn making at

least m clauses of I true if, and only if, there exist unary relations P and T over
{0, 1, . . . , n} such that (Φ(I), P, T) |= Ψ′ and |T | ≥ m.

Suppose that π is a truth assignment on X1, X2, . . . , Xn making at least m
clauses of I true. Define

P = {i : 1 ≤ i ≤ n, π(Xi) = true}

and
T = {k : 1 ≤ k ≤ n, π makes clause Ck of I true}.

There are 4 cases to consider.

(i) Suppose that Ck is of the form Xi ⇒ Xj and that π makes Ck false ; so,
π(Xi) = true and π(Xj) = false . Hence, P (i) and ¬P (j) hold. Conse-
quently, H(i, 0, j, k)∧ P (i)∧ ¬P (j) holds. Furthermore, ¬T (k) holds and
so

(H(i, 0, j, k) ∧ P (i) ∧ ¬P (j)) ⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = false or π(Xj) = true, and so at least
one of ¬P (i) and P (j) holds with the consequence that

(H(i, 0, j, k) ∧ P (i) ∧ ¬P (j)) ⇒ ¬T (k) holds.

(ii) Suppose that Ck is of the form Xi ∧ Xj ⇒ false and that π makes Ck

false ; so, π(Xi) = true and π(Xj) = true. Hence, P (i) and P (j) hold.
Consequently, H(i, j, 0, k)∧ P (i) ∧ P (j) holds. Furthermore, ¬T (k) holds
and so

(H(i, j, 0, k) ∧ P (i) ∧ P (j)) ⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = false or π(Xj) = false, and so at least
one of ¬P (i) and ¬P (j) holds with the consequence that

(H(i, j, 0, k) ∧ P (i) ∧ P (j)) ⇒ ¬T (k) holds.

12

(iii) Suppose that Ck is of the form true ⇒ Xi and that π makes Ck false; so,
π(Xi) = false . Hence, ¬P (i) holds. Consequently, H(0, 0, i, k) ∧ ¬P (i)
holds. Furthermore, ¬T (k) holds and so

(H(0, 0, i, k) ∧ ¬P (i)) ⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = true, and so P (i) holds with the conse-
quence that

(H(0, 0, i, k) ∧ ¬P (i)) ⇒ ¬T (k) holds.

(iv) Suppose that Ck is of the form Xi ⇒ false and that π makes Ck false; so,
π(Xi) = true. Hence, P (i) holds. Consequently, H(i, 0, 0, k)∧P (i) holds.
Furthermore, ¬T (k) holds and so

(H(i, 0, 0, k) ∧ P (i)) ⇒ ¬T (k) holds.

If π makes Ck true then π(Xi) = false , and so ¬P (i) holds with the
consequence that

(H(i, 0, 0, k) ∧ P (i)) ⇒ ¬T (k) holds.

Consequently, |T | ≥ m and by definition of H , (Φ(I), P, T) |= Ψ′.
Conversely, suppose that there exist unary relations P and T over {0, 1, . . . ,

n} such that (Φ(I), P, T) |= Ψ′ and |T | ≥ m (note that ¬T (0) holds). Define
the truth assignment π on X1, X2, . . . , Xn via

π(Xi) = true if, and only if, P (i) holds,

for all i = 1, 2, . . . , n. Consider the clause Ck of I. Again, there are 4 cases.

(i) Suppose that T (k) holds and that Ck is of the form Xi ⇒ Xj ; thus,
H(i, 0, j, k) holds in Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that
¬P (i) ∨ P (j) holds. Thus, π(Xi) = false or π(Xj) = true and we have
that clause Ck of I is true under π.

(ii) Suppose that T (k) holds and that Ck is of the form Xi ∧ Xj ⇒ false ;
thus, H(i, j, 0, k) holds in Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that
¬P (i) ∨ ¬P (j) holds. Thus, π(Xi) = false or π(Xj) = false and we have
that clause Ck of I is true under π.

(iii) Suppose that T (k) holds and that Ck is of the form true ⇒ Xi; thus,
H(0, 0, i, k) holds in Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that P (i)
holds. Thus, π(Xi) = true and we have that clause Ck of I is true under
π.

(iv) Suppose that T (k) holds and that Ck is of the form Xi ⇒ false; thus,
H(i, 0, 0, k) holds in Φ(I). As (Φ(I), P, T) |= Ψ′, we must have that ¬P (i)
holds. Thus, π(Xi) = false and we have that clause Ck of I is true under
π.

13

Consequently, the truth assignment π makes at least m clauses of I true.
Define Ψ as Ψ′ ∧ T (y), where y is a new variable. Define the maximisation

problem Q = (I,F , f, opt) as follows:

• an instance of I is a σ-structure;

• a feasible solution to an instance A ∈ I is a τ -structure whose domain is
|A|;

• the objective function f(A,B), where A ∈ I and B ∈ F(A), is given by
|{u : (A,B, u) |= Ψ(y)}|.

We can clearly construct the instance Φ(I) of the decision version of Q from
the instance I of the decision version of MAXHORN2SAT in polynomial-time.
Hence, using the result from [10] that the decision version of MAXHORN2SAT
is NP-complete, we obtain that the decision version of Q is NP-complete too,
and our result follows.

The minimisation problem MINHORN2SAT from [12] (where it was called
2-MINSAT) is defined exactly as was MAXHORN2SAT except that instead
of trying to maximise the number of clauses satisfied, we try to minimise the
number of clauses satisfied. It was proven in [12] that the decision version of
MINHORN2SAT is NP-complete.

Theorem 16 There exists a polynomially-bounded minimisation problem Q =
(I,F , f, opt) such that:

• Q is over σ = 〈H,Z〉, where H is a relation symbol of arity 4 and Z is a
constant symbol, with I the set of σ-structures;

• τ = 〈P, T 〉, where P and T are both relation symbols of arity 1, so that
the set of feasible solutions F(A) to some instance A ∈ I is the set of
τ -structures with domain |A|;

• ϕ is a Horn formula over (σ, τ) with free variables x1, x2, x3, y, so that
given some instance A ∈ I and some feasible solution B ∈ F(I),

f(A,B) = |{u : (A,B, u) |= ∀x1∀x2∀x3ϕ(y)}|;

• the decision version of Q is NP-complete.

Proof Our proof is very similar to that of Theorem 15 and so we only highlight
the essential differences. Adopting the nomenclature of the proof of Theorem 15,
we proceed exactly as we did in that proof except that instead of defining Ψ′

14

we define the formula Ψ′′ as

∀x1∀x2∀x3(

((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(x2, Z, x3, x1) ∧ (¬P (x2) ∨ P (x3)))

⇒ ¬T (x1))

∧ ((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(x2, x3, Z, x1) ∧ (¬P (x2) ∨ ¬P (x3)))

⇒ ¬T (x1))

∧ ((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(Z,Z, x2, x1) ∧ P (x2)) ⇒ ¬T (x1))

∧ ((x1 6= Z ∧ x2 6= Z ∧ x3 6= Z ∧H(x2, Z, Z, x1) ∧ ¬P (x2)) ⇒ ¬T (x1))

∧ T (Z)).

Note that the matrix of Ψ′′ can easily be converted to an equivalent Horn formula
over (σ, τ).

We claim that there exists a truth assignment on X1, X2, . . . , Xn making at
most m clauses of I true if, and only if, there exist unary relations P and T
over {0, 1, . . . , n} such that (Φ(I), P, T) |= Ψ′′ and |T | ≥ n+ 1 −m.

Suppose that π is a truth assignment on X1, X2, . . . , Xn making at most m
clauses of I true. Define

P = {i : 1 ≤ i ≤ n, π(Xi) = true}

and
T = {k : 1 ≤ k ≤ n, π makes clause Ck of I false} ∪ {0}.

Suppose that Ck is of the form Xi ⇒ Xj and that π makes Ck true. So,
π(Xi) = false or π(Xj) = true, and ¬P (i) or P (j) holds. Thus, H(i, 0, j, k) ∧
(¬P (i) ∨ P (j)) holds. Also, ¬T (k) holds and so

(H(i, 0, j, k) ∧ (¬P (i) ∨ P (j))) ⇒ ¬T (k) holds.

If π makes Ck false then π(Xi) = true and π(Xj) = false, and P (i) and ¬P (j)
hold. Thus,

(H(i, 0, j, k) ∧ (¬P (i) ∨ P (j))) ⇒ ¬T (k) holds.

The same reasoning applies in each of the other 3 cases (corresponding to the dif-
ferent forms of Ck). Hence, if there exists a truth assignment on X1, X2, . . . , Xn

making at most m clauses of I true then there exist unary relations P and T
over {0, 1, . . . , n} such that (Φ(I), P, T) |= Ψ′′ and |T | ≥ n+ 1 −m.

Conversely, suppose that there exist relations P and T over {0, 1, . . . , n}
such that (Φ(I), P, T) |= Ψ′′ and |T | ≥ n+ 1 −m. Define the truth assignment
π on X1, X2, . . . , Xn via

π(Xi) = true if, and only if, P (i) holds.

Suppose that T (k) holds and that Ck is of the form Xi ⇒ Xj ; so, H(i, 0, j, k)
holds in Φ(I). As (Φ(I), P, T) |= Ψ′′, we must have that P (i) ∧ ¬P (j) holds.

15

Thus, π(Xi) = true and π(Xj) = false, with π making Ck false . The same
reasoning applies in each of the other 3 cases. Hence, if there exist unary
relations P and T over {0, 1, . . . , n} such that (Φ(I), P, T) |= Ψ′′ and |T | ≥
n+1−m then there exists a truth assignment onX1, X2, . . . , Xn making at most
m clauses of I true (note that T (Z) holds). Thus, there exists a truth assignment
on X1, X2, . . . , Xn making at most m clauses of I true if, and only if, there
exist unary relations P and T over {0, 1, . . . , n} such that (Φ(I), P, T) |= Ψ′′

and |¬T | ≤ m, where ¬T = {u : ¬T (u) holds}.
By defining Ψ as Ψ′′ ∧ ¬T (y) and the minimisation problem Q just as we

defined the maximisation problem Q in the proof of Theorem 15, reasoning as
in the proof of Theorem 15, except using the NP-completeness of the decision
version of the problem MINHORN2SAT, yields the result.

An immediate consequence of Theorems 15 and 16 is that any framework
based around Grädel’s characterisation of P using restricted (Horn) formulae of
existential second-order logic (as advocated by Manyem) will not characterize
the class of polynomially-bounded P-maximisation problems nor the class of
polynomially-bounded P-minimisation problems (assuming that P 6= NP).

Note also that when working with polynomially-bounded P-minimisation
problems, there is a pronounced difference between the original framework pro-
posed by Kolaitis and Thakur [13], where in order to obtain the objective
function value we count the number of elements satisfying some formula, and
the amended one [14], where we count the cardinality of a witnessing relation
(Manyem chose to adopt the former framework when he strove for a logical
classification of P-optimisation problems in [16]). Whilst MIN FΠ1 ⊂ MINΠ1,
with MIN FΠ1 still containing NP-hard optimisation problems (like VERTEX
COVER), if we have some optimisation problem Q = (I,F , f, opt), over σ,
where for every instance A ∈ I for which F(A) is non-empty,

opt(A) = max
B

{|B0| : (A,B) |= ∀x1∀x2 . . .∀xkϕ},

with ϕ a Horn sentence over (σ, τ), B ranging over all τ -structures with domain
|A| and B0 a specific relation from B, then Q is indeed a polynomially-bounded
P-optimisation problem. To see this, simply ‘expand’ the sentence ϕ in any
instance A in order to obtain a collection of Horn formulae. If there exists a
witnessing set of relations B then there is a unique ‘minimal’ set of relations B,
computable in polynomial-time. The cardinality of the relation B0 from this set
of relations B yields the value opt(A). Thus, if we were to adopt the amended
framework from [14] and Manyem’s approach to obtaining a logical characteri-
zation of polynomially-bounded P-minimisation problems then it is feasible that
we might be able to do so (though we would have to ensure that all defining for-
mulae were order-invariant, as we explained at the end of Section 2.4). Even this
revised framework would fail for polynomially-bounded P-maximisation prob-
lems, though, as is demonstrated by the proof of Theorem 15 (as always, we
assume that P 6= NP).

16

4 Logically capturing P
PB
max and P

PB
min

In this section we provide logical characterizations of the classes of polynomially-
bounded P-maximisation problems and polynomially-bounded P-minimisation
problems. The logic we use is not a fragment of existential second-order logic
but the well-known inflationary fixed-point logic FO(IFP). We use the induc-
tive process of building fixed-points in order to provide values for the objective
functions of our optimisation problems.

4.1 Inflationary fixed-point logic

Let us begin by reminding the reader as to the definition of the logic FO(IFP)
(we only provide brief definitions here and refer the reader to any of [3, 7, 9, 15]
for more substantive details).

Let σ be some signature and let R be a k-ary relation symbol not in σ.
Suppose that ϕ(R,x) is some formula of some logic over σ ∪ 〈R〉 whose free
variables are those of the k-tuple x. Let A be some σ-structure. We build the
inflationary fixed-point of ϕ(R,x) in A as follows. We define (the k-ary relation)
R0 over |A| as being the empty set. For i ≥ 1, we define

Ri = {u ∈ |A|k : Ri−1(u) holds or ϕ(Ri−1,u) holds in A}.

The inflationary fixed-point of ϕ(R,x) in A is defined as Ri, where i is the
least integer for which Ri = Ri+1, and the inductive depth of this inflationary
fixed-point is i.

Inflationary fixed-point logic FO(LFP) is built using the usual first-order
constructs as well as the IFP operator, which allows us to construct inflationary
fixed-points. The IFP operator is applied as follows. Suppose that ϕ is a formula
of FO(IFP) over σ that involves an additional k-ary relation symbol R (not in
σ) and has free variables those of the k-tuple x and those of the m-tuple y. The
formula [IFPR,xϕ](z) is a formula of FO(IFP), where z is a tuple of variables
and constant symbols, and the free variables are those of the tuple y together
with any variables appearing in z (in particular, the occurrences of the variables
of x in ϕ are bound by the application of IFP). Note that ϕ might simply be a
first-order formula or it might already involve applications of the IFP operator.

Let A be a σ-structure. Assuming that u is a tuple of elements of |A|
providing values for the free variables of [IFPR,xϕ](z), we say that [IFPR,xϕ](z)
holds in (A,u) if (the interpretation of) z lies in the inflationary fixed-point
of ϕ(R,x) in (A,u). We write depth(A,u)([IFPR,xϕ]) to denote the inductive
depth of the inflationary fixed-point of ϕ(R,x) in (A,u).

Inflationary fixed-point logic has been extensively studied within finite model
theory. Pertinent to this paper is the following result where we denote the logic
FO(IFP) in the presence of a built-in successor relation by FOs(IFP).

Theorem 17 (Immerman [8], Vardi [20]) A problem is in P if, and only
if, it can be defined by a sentence of FOs(IFP). Moreover, any sentence of
FOs(IFP) is logically equivalent to one of the form [IFPR,xϕ](max), where ϕ is

17

quantifier-free first-order and max is a tuple every component of which is the
constant symbol max.

4.2 Our logical characterisations

We now use the inflationary fixed-point logic FOs(IFP) to provide logical char-
acterisations of the classes of polynomially-bounded P-maximisation problems
PPB

max and polynomially-bounded P-minimisation problems PPB
min. However, be-

fore we do so we need another definition relating to formulae of FOs(IFP). Let ϕ
be a formula of FOs(IFP) over the signature σ∪〈R〉, where R is a k-ary relation
symbol, so that the free variables of ϕ are those of the k-tuple of variables x.
We say that ϕ(R,x) is depth-invariant if the inductive depth of the inflationary
fixed-point of ϕ(R,x) in any σ-structure is independent of the actual underlying
successor relation.

Theorem 18 Let Q = (I,F , f, opt) be a maximisation problem over σ. The
following are equivalent.

1. Q is a polynomially-bounded P-maximisation problem (i.e., Q ∈ PPB
max).

2. There exists some depth-invariant formula ϕ(R,x) of FOs(IFP) over σ ∪
〈R〉, where R is a k-ary relation symbol and the free variables of ϕ are
those of the k-tuple x, such that for any A ∈ I:

• if F(A) is non-empty then A |= [IFPR,xϕ](min) and the optimal
value opt(A) is given by depthA([IFPR,xϕ]) − 1;

• if F(A) is empty then A 6|= [IFPR,xϕ](min).

Proof Suppose that Q ∈ PPB
max and let k be such that opt(A) < |A|k, for all

structures A ∈ I for which F(A) is non-empty. Let R be a new k-ary relation
symbol (that is not in σ). By definition, the decision problem Q′ over σ ∪ 〈R〉
defined as

{(A, R) : A ∈ I, R ⊆ |A|k and there is a feasible solution

B ∈ F(A) s.t. f(A,B) ≥ |R|}

is in P. By Theorem 17, there exists some sentence [IFPS,yψ(R,S,y)](max) of
the logic FOs(IFP) for which

(A, R) ∈ Q′ if, and only if, (A, R) |= [IFPS,yψ(R,S,y)](max),

where S /∈ σ is some m-ary relation symbol (and hence y is an m-tuple of
variables), and where ψ is quantifier-free first-order over σ ∪ 〈R,S〉 and has
free variables those of the tuple y (note that it is not necessarily the case that
m = k).

Now, define the formula ϕmax(R,x) as:

[IFPS,yψ(R,S,y)](max) ∧ (x = min ∨ ∃z(x = z + 1 ∧R(z)))

18

(we write: x = z+1, for example, as short-hand for the quantifier-free first-order
formula that expresses that x is the successor of z in the lexicographic order on
k-tuples induced by the built-in successor relation; x = min, for example, as
short-hand for x1 = min ∧ x2 = min ∧ . . . ∧ xk = min; and ∃z, for example,
as short-hand for ∃z1∃z2 . . .∃zk). The formula ϕmax(R,x) is clearly depth-
invariant. We claim that for any σ-structure A ∈ I for which F(A) is non-
empty,

opt(A) = depthA([IFPR,xϕmax]) − 1.

Suppose that A ∈ I with the set of feasible solutions F(I) non-empty;
consequently, if R0 is the empty relation then (A, R0) ∈ Q′; that is, (A, R0) |=
[IFPS,yψ(R,S,y)](max). Suppose that Ri is the relation constructed after the
ith iteration of the IFP operator and that:

• (A, Ri) |= [IFPS,yψ(R,S,y)](max)

• Ri consists of the i smallest k-tuples from |A|k (w.r.t. the lexicographic
ordering induced by the built-in successor relation).

Thus, Ri+1 consists of Ri plus the (i+1)th smallest k-tuple from |A|k. By induc-
tion, if Ri is the inflationary fixed-point of ϕmax(R,x) in A then: |Ri| = i and
i = depthA([IFPR,xϕmax]; and opt(A) = i− 1. Also, A |= [IFPR,xϕmax](min).
Alternatively, suppose that the set of feasible solutions F(I) is empty. So, if
R0 is the empty relation then (A, R0) 6|= [IFPS,yψ(R,S,y)](max) and A 6|=
[IFPR,xϕmax](min).

Conversely, suppose that Q satisfies the hypothesis in 2. in the statement
of the theorem. As opt(A) is bounded above by |A|k, for any instance A ∈ I,
in order to show that Q is in P

PB
max we simply need to show that the decision

problem consisting of deciding whether for any given instance A ∈ I and any
given integer m, opt(A) ≥ m, is solvable in polynomial-time. However, as
the canonical algorithm computing the inflationary fixed-point of the formula
[IFPR,xϕ] in some instance A ∈ I runs in time polynomial in |A|, we can
easily augment this algorithm with a clock in order to count the number of
iterative steps, and thus the inductive depth of this inflationary fixed-point, in
polynomial-time too. Thus, Q ∈ PPB

max as required.

Theorem 19 Let Q = (I,F , f, opt) be a minimisation problem over σ. The
following are equivalent.

1. Q is a polynomially-bounded P-minimisation problem (i.e., Q ∈ PPB
min).

2. There exists some depth-invariant formula ϕ(R,x) of FOs(IFP) over σ ∪
〈R〉, where R is a k-ary relation symbol and the free variables of ϕ are
those of the k-tuple x, such that for any A ∈ I:

• if F(A) is non-empty then A |= [IFPR,xϕ](min) and the optimal
value opt(A) is given by |A|k − depthA([IFPR,xϕ]) + 1;

• if F(A) is empty then A 6|= [IFPR,xϕ](min).

19

Proof The proof is similar to that of Theorem 18 and so we only include brief
details. We adopt the nomenclature of the proof of Theorem 18 throughout.

Suppose that Q ∈ PPB
min and let k be such that opt(A) < |A|k, for all

structures A ∈ I for which F(A) is non-empty. Let R be a new k-ary relation
symbol. Define the decision problem Q′ over σ ∪ 〈R〉 as

{(A, R) : A ∈ I, R ⊆ |A|k and there is a feasible solution

B ∈ F(A) s.t. f(A,B) ≤ |R|}.

As Q′ ∈ P, by Theorem 17 there exists some sentence [IFPS,yψ
′(R,S,y)](max)

of the logic FOs(IFP) for which

(A, R) ∈ Q′ if, and only if, (A, R) |= [IFPS,yψ
′(R,S,y)](max),

where S /∈ σ is some m-ary relation symbol, y is some m-tuple of variables, and
ψ′ is quantifier-free first-order over σ ∪ 〈R,S〉 with free variables those of the
tuple y.

Define the formula ϕmin(R,x) as:

[IFPS,yψ(R,S,y)](max) ∧ (x = min ∨ ∃z(x = z + 1 ∧R(z))),

where ψ is ψ′ with every occurrence of an atom involving R replaced with its
negation. By reasoning as in the proof of Theorem 18, for any σ-structure A ∈ I
for which F(A) is non-empty, we have that

opt(A) = |A|k − depthA([IFPR,xϕmin]) + 1

and the result follows.

Note that the actual numeric formulae giving the value of an optimal solu-
tion in Theorems 18 and 19 in terms of the depth of a fixed-point construction
are to some extent unimportant. All that matters is that they are efficiently
computable, which both formulae are. In consequence, we obtain logical char-
acterizations of the classes PPB

max and PPB
min.

5 Conclusions

In this paper we have clarified the applicability of logical frameworks in relation
to capturing classes of polynomially-bounded NP-optimisation problems. We
have seen: that Manyem’s framework does not (and will not) suffice; that there
are additional differences between the two frameworks proposed by Kolaitis
and Thakur when one restricts so as to consider P-optimisation problems; and
that there does exist an alternative logical framework capturing polynomially-
bounded P-optimisation problems.

We suggest the following as directions for further research. Whilst Manyem’s
attempt to capture classes of polynomial-time optimisation problems using frag-
ments of existential second-order logic with the first-order quantifier-free part

20

restricted to be a conjunction of Horn clauses has gone awry, it would be in-
teresting to continue this investigation in relation to the hierarchy results from
Theorem 13. That is, what happens at the lower end of this hierarchy when
we restrict the first-order quantifier-free part of formulae to be a conjunction
of Horn clauses, or even Krom clauses (a Krom clause is a clause with exactly
2 literals)? In order to work with the full class of P-optimisation problems,
we need some way of sensibly incorporating the built-in successor relation into
any framework. We surmise that this should be possible but will require some
technical consideration. Of course, there is always the question of the relation-
ships between restricted logically defined classes in the absence of any built-in
relations.

Kolaitis and Thakur have shown that there are optimisation problems in
MIN Π1 that are not in MIN FΠ1, and that both classes contain NP-hard min-
imisation problems. We have shown that restricting MIN FΠ1 by enforcing that
the quantifier-free part of formulae should be a conjugation of Horn clauses
yields only P-minimisation problems, whereas doing likewise with MIN Π1 can
yield NP-hard minimisation problems. It would be interesting to better under-
stand the relationship between the restricted versions of MIN Π1 and MIN FΠ1

(and between the restricted versions of MAX Π1 and MAX FΠ1, for that mat-
ter).

Finally, there is no doubt that polynomial-time optimisation problems are
not as abundant as NP-optimisation problems, nor do they straddle the P versus
NP divide as do NP-optimisation problems. Nevertheless, a more wide-ranging
investigation as to the relationship between, for example, P-optimisation prob-
lems and optimisation problems that can be solved in NC or NL and into alter-
native means of logically defining P-optimisation problems is warranted.

Acknowledgement The authors are indebted to Prabhu Manyem for many
clarifying conversations as regards his work, undertaken whilst he spent a sab-
batical stay in Durham.

References

[1] Orestes Bueno and Prabhu Manyem. Polynomial-time maximisation
classes: syntactic hierarchy. Fundamenta Informaticae, 84(1):111–133,
2008.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-

tion to Algorithms. MIT Press, 1990.

[3] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Mono-
graphs in Mathematics. Springer, 1999.

[4] Ronald Fagin. Generalized first-order spectra and polynomial-time recog-
nizable sets. In Complexity and Computation, volume 7 of SIAM-AMS

Proceedings, pages 43–73, 1974.

21

[5] Michael R. Garey and David S. Johnson. Computers and Intractability, A

Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[6] Erich Grädel. Capturing complexity classes by fragments of second-order
logic. Theoretical Computer Science, 101(1):35–57, 1992.

[7] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Martin Marx, Joel
Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein. Finite

Model Theory and Its Applications. Texts in Theoretical Computer Sci-
ence. Springer, 2007.

[8] Neil Immerman. Relational queries computable in polynomial time. Infor-

mation and Control, 68(1-3):86–104, 1986.

[9] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer
Science. Springer, 1999.

[10] Brigitte Jaumard and Bruno Simeone. On the complexity of the maximum
satisfiability problem for horn formulas. Information Processing Letters,
26(1):1–4, 1987.

[11] David Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256–278, 1974.

[12] Rajeev Kohli, Ramesh Krishnamurti, and Prakash Mirchandani. The
minimum satisfiability problem. SIAM Journal of Discrete Mathematics,
7(2):275–283, 1994.

[13] Phokion G. Kolaitis and Madhukar N. Thakur. Logical definability of
NP optimization problems. Information and Computation, 115(2):321–353,
1994.

[14] Phokion G. Kolaitis and Madhukar N. Thakur. Approximation properties
of NP minimization classes. Journal of Computer and System Sciences,
50(3):391–411, 1995.

[15] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical
Computer Science. Springer, 2004.

[16] Prabhu Manyem. Syntactic characterizations of polynomial time optimiza-
tion classes. Chicago Journal of Theoretical Computer Science, 2008(3):1–
23, May 2008.

[17] Alessandro Panconesi and Desh Ranjan. Quantifiers and approximation.
Theoretical Computer Science, 107(1):145–163, 1993.

[18] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxi-
mation, and complexity classes. Journal of Computer and System Sciences,
43(3):425–440, 1991.

22

[19] Venkatesh Raman, Bala Ravikumar, and S. Srinivasa Rao. A simplified NP-
complete MAXSAT problem. Information Processing Letters, 65(1):163–
168, 1998.

[20] Moshe Y. Vardi. The complexity of relational query languages. In Pro-

ceedings of 14th ACM Ann. Symp. on the Theory of Computing, pages
137–146, 1982.

23

