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Abstract—The augmentedk-ary n-cube AQ.. x is a recently ~ cube AQ,,; however, the latter extension is more involved
proposed interconnection network that incorporates an exten-  than the former, as we now explain. The hypercupge

sion of a k-ary n-cube QF inspired by the extension of a and thek-ary n-cube QZ are spanning subgraphs of the

hypercube @, to the augmented hypercubed@,, (as developed
by Choudom and Sunitg. We extend a recent topological augmented hypercube@, and the augmented-ary n-

investigation of augmentedk-ary n-cubes by proving that any ~ cube AQ,, x, respectively. In order to build the augmented
augmented k-ary n-cube AQ., . is edge-pancyclic and that hypercube AQ,, one takes two copies of atn — 1)-

AQ2,x is panconnected. dimensional augmented cub&),,_; and as well as joining
Keywords-interconnection networks; pancyclicity; pancon-  corresponding pairs of vertices, as one does in the hypercube
nectivity; augmented k-ary n-cube; construction, one also joins pairs of vertices of Hamming
distancen — 1 (that is, vertices that are different in every
. INTRODUCTION component). In order to build the augmenteary n-cube

Hypercubes are perhaps the most well known of allAQ, x, one takes: copies of an augmentddary (n — 1)-
interconnection networks for parallel computing, given theircube AQ,,—1 » and as well as joining these copies as one
basic simplicity, their generally desirable topological andwould in order to form &-ary n-cube, one also includes two
algorithmic properties, and the extensive investigation theyther edges for every vertex one edge going to the vertex
have undergone (not just in the context of parallel computingvhose every component isless that ofv (modulo k); and
but also in discrete mathematics in general; see, for examplene edge going to the vertex whose every componeit is
[13] for some essential properties of hypercubes). Howeveplus that ofv (modulo k) (precise algebraic definitions are
a multitude of different interconnection networks have beergiven in the next section). In consequence, the augmeénted
devised and developed in a continuing search for improvedry n-cube AQ,, i iS a k-ary n-cube with additional edges.
performance, with many of these networks having hyperThe augmented-ary 2-cube is depicted in Fig. 1 (in two
cubes at their roots. Amongst these generalisations of hydifferent ways, showing different embeddings@§ within
percubes aré-ary n-cubes [4], augmented cubes [2], cube- AQ> 5).

connected cycles [12], twisted cubes [8], twistestubes 0 0

[7], crossed cubes [5], folded hypercubes [6], Mobius cubes < ) (02 (03) 0 O (02) 037 0
[3], generalised twisted cubes [1], shuffle cubes [k1$kip ©.0) 0.0)
enhanced cubes [15], twisted hypercubes [10], and Fibonacci D
L0 [ a4 o (1.0
cubes [9]. Perhaps the most popular of these generalisations al Y
are thek-ary n-cubes. Having the two parametetsand @9 @h e @D
n available allows us to regulate the degree of the nodesso O FEPREE) (3.2)
yet still incorporate large numbers of processors, alt_hough(4,0) . D @d) . D
usually at a cost to some other property such as the diameter " 12 (43 44) 40 ) 42 43)

or the connectivity.

However, recently an interconnection network has been
proposed that can be viewed as incorporating not just one Some essential properties of the augmeritedy n-cube
but two of the above generalisation techniques. In [16],AQ,, , in comparison with the:-ary n-cube Q¥ are given
generalisations ok-ary n-cubes, namelyaugmentedc-ary  in Fig. 2 (see [16] for more details). As can be seen, the
n-cubes have been proposed as interconnection networkaugmented:-ary n-cube AQ,, , compares very favourably
for parallel computing, inspired by Choudum and Sunitha’swith the k-ary n-cube Q*. Furthermore, and importantly,
generalisation of hypercubes as augmented cubes [2}. A the augmented-ary n-cube AQ,, i is ‘built on top’ of the
ary n-cube QF is extended to an augmentéeary n-cube  k-ary n-cube AQE; that is, QF is a spanning subgraph of
AQ,  In a manner analogous to the extension ofran  AQ, . Thus, all routing and broadcasting algorithms which
dimensional hypercub@,, to ann-dimensional augmented work for Q% also work forAQy, .

Figure 1. Two views of an augmenté&eary 2-cube.



Qn AQn k o for somei such that2 < i <mn, v; = u; — 1,v;_1 =
vertices/edges k"/nk™ k™l(2n —1)k™ Wiy —1,...,01 =u; — 1 (resp.v; = u; + 1,01 =
vertex-/edge- | yeslyes yes/no unless = 2 w1 +1,...,01 = uj +1), andv; = u;, for all j > i.
C;%:ZT,{?\}S; on An — 9 The augmented-ary n-cube AQ, ; can also be recur-

. . & sively defined as it was in the Introduction (the proof of
wide-diameter) n|3] +1 < maz{(n — 1)k this fact is a simple induction) and the essential properties
.(nz .3) i —(n=2),k+7} of AQ,  have already been given in Fig. 2. Note that

wide-diameter| 2|3 ] +1 <k we can partitionAQ),, , recursively as follows: we refer to
_(" =2) & k the subgraph ofAQ,, ;, induced by the vertices whose first
diameter nl3] Skz(?H' 1) (f even) component isi, for some fixedi € {0,1,...,k — 1}, as
(n=3) . < Z(”: 1) +kZ_1(k odd) AQ' ., and this subgraph is clearly a copy 4£),, 1 ;.
diameter 2[31 3]+ 1571 A graphG = (V, E) is pancyclic(resp.m-pancyclig if
(”_: 2)_ it contains a cycle of every length betwegrfresp.m) and
routing time O(nk) O(nk) |V| (inclusive). If a graphG = (V, E) is such that given any

Figure 2. A comparison betweep® and AQ,, . edgee, it contains a cycle passing througlof every length

_ _ _ ) betweerB and|V| then we say that is edge-pancyclicLet

In this paper, we further investigate the topological ProP-4.,(u,v) denote the length of a shortest pathGhjoining
erties of augmentekkary n-cubes; in particular, pancyclicity ertex, and vertexv. A graph ispanconnectedresp.m-
and panconnectivity. Path and cycle networks are fu”damerﬂianconnecte):iif for every pair of distinct vertices: and v

tal in parallel computing; for not only is there a multitude of ¢ 1/ tnereis a path of every length betwegs(u, v) (resp.
algorithms specifically designed for linear arrays of Proces;;) and|V| — 1 joining u andw. ’

sors and cycles of processors but paths and cycles appearpg regards thek-ary n-cube, panconnectivity and pan-

as dha_lta strllf]ctures in many more algorithms c];O'r parallely cjicity “issues have only recently been resolved, as we
machines whose processors are inter-connected in a varief,, “oxoiain. The situation fot)* is confused as when

of topologies. For example, having a collection of Processors, s aven, Q* is bipartite and consequently cannot be

connected in a cycle rpea_ms tha; gll-t’o-all message paSSirL%\ncyclic nor panconnected. For bipartite graphs, the notions
can be undertgken by da|sy-<_:ha|n|ng me_ssage_s_ground thg bipancyclicity and bipannconnectivity are more relevant,
cycle. In Section 2, we provide the basic definitions and,hqre 4 bipartite grapl = (V, E) is bipancyclicif it

concepts relating to this paper. Our main results are proveg,«ains a cycle of every even length betweeand |V],
in Sections 3 and 4. In particular, in Section 3 we prove

) , and bipannconnected for every distinct pair of vertices
that any augmentek-ary n-cube AQ,, i is edge-pancyclic,

_ _ : : andv of V, there is a path of every even length between
and in Section 4 tha#l(): i is panconnected. In Section 5, de:(u, v) and|V|— 1 joining u andv (although the notions of

we present our conclusions and discuss panconnectivity igjancyclicity and bipannconnectivity are primarily designed
AQn,x whenn > 3. for bipartite graphs, they are still relevant for non-bipartite
Il. BASIC DEFINITIONS graphs). In [14] it was shown th&” is bipanconnected and

. . [ i > >
We assume throughout that arithmetic on tuple eIementglpancyC“C’ whenk > 3 andn > 2, a”dnéi'ﬁ%ﬂifg’”‘aenz
2 1

k i _ _
is modulok, and we denote tuples of elements by bold type.IS 0dd, @, is m-panconnected, fom =

Recall the definition of thé-ary n-cubeQF: the vertex set (k — 1)-pancyclic (these bounds are optimal).
V(QF) is {(an,an—1,...,a1) : 0 < a; < k — 1}; and the We shall use a specific technique whilst building our

edge SetE(QF) is {(W,v) : W = (tn, tn_1,. .. 1),V = paths and cycles. Suppose thatis some path or cycle
(Un,vn—h--.:lm), eith’erui — v 1 or’ui T ’Ui n pl,yg,...,vm,for somem (where there is an edde,,, v1)
1, for somei, andu; = v;, for all i # j}. We regard all if pis a cycle). We sa}y that can beprog_ressn_/ely shortened
graphs defined in this paper as undirected. to a path of Iengthn_ , say, if we can |terat|v_ely replac_e a
An augmentedk-ary n-cube is defined as follows. sub-pattw, y, 2, say, inp with the edger, z until we obtain

li
Definition 1: Let n > 1 and & > 3 be integers. The a path or cy(?Ie of length'. .
augmentedi-ary n-cube AQ,, , has k™ vertices, each la- The following lemma from [16] will prove useful.

belled by amn-bit string (., an_1,. .., a1), with 0 < a; < Lemma 2:The following are automorphisms of@,, ;. :
kE—1, for 1 < i < n. There is an edge joining vertex (@) the mapping taking the vertef,,v, 1,...,v1) to
u = (Un,Up—1,...,u1) to vertexv = (v, vp—_1,...,01) if, (U — Ay Up—1—ap_1,...,v1 —ay), where(a,, a,_1,
and only if ...,a1) €{0,1,...,k— 1} is fixed
e v; =u; — 1 (resp.v; = u; + 1), for somei such that  (P) the mapping taking the vertek,,v,—1,...,v1) t0
1 <i<mn, andv; = uj, for all j such thatl < j <n (€Un, €vp—1, ..., €v1), Wheree € {+1, -1} is fixed.

andj #i; or The following are automorphisms ofQ)s i :



(c) the mapping taking the vertdX, j) to the vertex(j — w (0,2)(03) -
i,7), if i < j, and the vertexi, j) to the vertex(k —
(i = 5).4), if i > j;

(d) the mapping taking the vertdx, j) to the vertex(j, i).

[1l. PANCYCLICITY OF AQp k

We prove in this section that whem > 2 and k > 3,
AQ,, 1, is edge-pancyclic. We begin witHQs .

Proposition 3: Letu = (0,0), v = (1,1), andw = (0,1)
be vertices ofAQ: i, wherek > 3. There is a Hamiltonian
cycleC in AQ-  that contains the edgés, v) and(u, w) (@) k is even.
and that we can progressively shorten until we obtain the
cycleu, v, w.

Proof: We break our proof into two cases, depending

upon the parity ofk.

Case 1k is even.
Consider the following Hamiltonian cycl€ of AQs x:

w (0,2)(0,3) -

v,(2,2),...,(k—1,k—1),(k—1,0), (k—1,1),
(k= 1,k—2), (k—2,k—3),(k— 2,k — 4),
,( —2k—1),(k—3,k—2),...,(2,3),
(1,2),( 3),...,(1,0),(0,k—1),(0,k —2),

- (0,2),w

3

(b) & is odd.

Fig. 3. A Hamiltonian cycle inAQz k.

)

See Fig. 3(a) for a visualization of the above cycle. We carhancyclic too (though not edge-pancyclic; for just consider
progressively shorten the cycle by first shortening the cyclghe edge(v, w) in Fig. 3).

as it runs through zond and then as it runs through zone  Now for the general case. We begin with a useful lemma.
B, so that we finally obtain the cycle, v, w. Lemma 5:Letn > 2 andk > 3. If (u,v) is an edge of
Case 2k is odd. AQ., i then there are paths of lengthsnd3 joining u and

V.

Consider the following Hamiltonian cycl€ of AQs x:
Proof: By Lemma 2, we may assume w.l.0.g. that=

( —10)( =2,0),(k=1,1),...,(k — 2,k — 4), Case &): v = (0,...,0,1,0,...,0), where all components
-1,k-3 —-1,k—-2),(k—2,k—3 are(0 except for theith, which is1, andi # 1.
(k ), (k ) (k—2, ) p
(k—3,k—4),(k—3,k—5),...,(k—3,k—2), Definew = (0,...,0,1,1,...,1); that is, thejth compo-
,(2,3),(1,2),(1,3), (1 0) 0,k —1) nent is0, if j > 4, with all other components. Define

0 k—9 ’ 0.9 ’ ’ ’ x = (0,...,0,0,1,...,1); that is, thejth component i),
0,k -2),...,(0,2),w. if 5 >4, with all other components$. Definey = w.

See Fig. 3(b) for a visualization of the above cycle. We carcase b): v = (0,...,0,1), where all components ar@

progressively shorten the cycle by shortening the cycle as éxcept for the first, which ig.
runs through zonel and then as it runs through zof® so Definew — (0,...,0,1,1); that is, all components afeex-

that we finally obtain the cycle, v, w. u cept for the first two which aré. Definex = (0,...,0,1,0);

An |mmed|ate corollary of Proposmon 3is t_haQZ’“ S that is, the second componentiswith all other components
pancyclic. However, aslQ); ; is edge-symmetric [16], it is 0. Definey = w.
trivially also edge-pancyclic.
Corollary 4: AQ,,, is edge-pancyclic. Case €¢): v=(0,...,0,1,1,...,1), wherei > 1 and where
Note that we could define an ‘augmented grid’ by omittingthe jth Component id (resp.0) if, and only if, i > j (resp.
the ‘wrap-around’ edges ialQ-  (this augmented grid is * < 7)-
actually the network visualized in Fig 3). As can be seenDefinew = (0,...,0,0,1,...,1); that is, w is identical
from the proof of Proposition 3, this augmented grid isto v in every component except that thith component




of w is 0. Definex = (0,...,0,1); that is, the first
component isl, with all other component8. Definey =
0,...,0,1,1,...,2); that is, thejth component isl, if
1 < j < 4, with all other component® except for the
first component which i2.

In each caseu,w,v is a path inAQ, x, as isu,x,y,v.
The result follows as by Lemma 2, all other cases pr
are isomorphic to one of the above cases. ]

We now consider pancyclicity itdQ, .

Theorem 6:Let u = (0,0,...,0) be a vertex ofAQ,, .
wheren > 2 andk > 3. Letv be any neighbour ofi. There
exists a neighbouw of u, different fromv, such that for
everym such thats < m < k", there is a cycle of length
m in AQ,, containing the edgéu, v) as well as the edge
(u,w).

Proof: Let v = (v, vp—1,...,v1). We will prove the
theorem by induction om. The base case, when = 2,
is given by Proposition 3 and Lemma 2. Fix > 2
and considerAQ,, r, wherek > 3. Partition AQ,, ;; into
AQY_y 4, AQL 4, ... AQRTY by fixing the first com-
ponent of every vertex aflQ;,_, , ati; for ease of notation,
denote eacMQ;, _, , by AQ".

Case §): v, = 0; thus, v = (vn—1,Un-2,...
neighbour ofu’ = (0,0,...,0) in AQ,—1 .

,01) IS a

neighbouring vertexw’ = (w1, wp—2,...,wy) of u’ in
AQn -1, different fromv’, such that for everyn for which
5 < m < k™!, there is a cycleC,, of length m in
AQn—1,, containing both of the edggs’, v') and(u’, w’).
For ease of notation, define the following verticesdi@,, r,
for eachi € {0,1,...,k —1}: u’ = (4,0,0,...,0); v\ =
(i, Vn—1,Vn—2,-..,01); andw® = (i, w,_1,Wn_2,...,w1)
(in particular,u = u® andv = v9).

For eachi € {0,1,...,k— 1} and for eachn for which

5 < m < k"1, denote byC?, the natural embedding of following vertices ofAQ,, x, for eachi € {0,1,. ..

the cycleC,, in AQ" (and so, in particularC?, contains
the edgequ’, v?) and (u’, w?)). Fix j € {1,2,...,k — 1}.
For each0 < i < j, choose the cycl€,, in AQ’, where
5 <m; < k™ 1. Join these cycles together as follows:

« remove the edgéu’, w) from C?, ;

« remove the edgeéu’, w') and (ui,ovi) from C¢,, for
1<i<j—-1

« if j is even then remove the edge’, v/) from C7,
and if j is odd then remove the edde’, w’) from

j .
Ci,;

both of the edgegu’, v®) and (u°, u'); that is, the edges
(u,v) and (u,u'). A typical cycle can be visualized as
in Fig. 4 (where we have assumed that odd).

403 A0

40! 402

400

Fig. 4. A typical cycle inAQ,, k.

All that remains to do is to find cycles of lengthsand6
containing the edgeéu,v) and (u,u'). There is a cycle
u,v,vl,u' of length 4, and Lemma 5 yields cycles of
lengths5 and 6 containing(u,v) and (u,u') (we simply
replace the edgéu’, v!) with paths of length2 and3 in
AQY).

Case b): v, =
(1,1,...,1).

1 and v = (vp-1,Un-2,...,01) =

We assume, as our induction hypothesis, that there is a
We assume, as our induction hypothesis, that there is @eighbouring vertexw’ = (w,_1,w, 2, ..

. ,wl) of u =
(0,0,...,0) in AQ,—1, different fromv’, such that for
every m for which 5 < m < k*~!, there is a cycleC,,
of lengthm in AQ,,—1 x containing both edge@r’, v’) and
(u’,w’). By applying a suitable automorphism to eatf*
(via Lemma 2), we may assume that for eaahsuch that
5<m < k", we can find a cycl€’, of lengthm in AQ*
that contains the edgééi, i,4,...,7), (i, +1,i+1,...,i+
1) and ((i,4,4,...,4), (i, Wy_1 4+ i, W2 +14,..., w1 +1))
(with arithmetic modulck). For ease of notation, define the
Sk —1}:
u = (4,4,4,...,4); v: = (4,i+ 1,i+1,...,4+ 1); and
w' = (i,wp_1 + i, Wy_2 +4,..., w1 + i) (in particular,
u=u’ andv =u').

We now proceed exactly as we did in Caaggnd obtain
that for everym such thats < m < k", there is a cycle of
lengthm in AQ,, . containing both of the edgea’, u')
and (u’, v0); that is, the edgeéu, v) and (u,v?).
Case€): v, = 1 and v’ = (vp_1,Up-2,...
(0,0,...,0).

Define the vertexx =

7v1) =

(0,0,...,0,1) in AQ,; that

« if 0<i<j—1andiis even then include the edges is, the first component ok is 1, with all other compo-

(uf, utl) and (wi, with);

nents 0. Also, define the vertex’ = (0,0,...,0,1) of

« if 0 <4 <j—1andiis odd then include the edges AQ, _,, similarly. We assume, as our induction hypothesis,

(uf,u**!) and (vi, vitl).
The resulting cycle has lengthvg + m; + ... + m; and
contains the edggsi®, v) and(u®, u'). By choosingj and
the m;’s appropriately, for everyn such thatr < m < k™,
we can obtain a cycle of lengtlu in AQ, , containing

that there is a neighbouw’ = (w,—1,wp_2,...,w;) Of
u = (0,0,...,0) in AQ,—_1%, different from x’, such
that for everym for which 5 < m < k™!, there is a
cycle C,, of lengthm in AQ,_1  containing both of the
edges(u’,x’) and (u’, w’). For ease of notation, define the



following vertices ofAQ,, i, for eachi € {0,1,...,k—1}:
u' = (i,0,0,...,0); vi = (4,0,0,...,0,1); and w' =
(i, Wp—1,Wn—2, ..., wz,w) (N particular,u = u, v = ul,

andx = v0). o
We now proceed exactly as we did in Caagdnd obtain @:é=0.

that for everym such thats < m < k", there is a cycle of
lengthm in AQ,, , containing both of the edgem’, u')
and (u’, v); that is, the edgeéu,v) and (u, x).

The result follows by induction as every other case for
. L. . (b)i=1,v#(1,1).
the neighbourv of u is isomorphic to one of the cases

considered above. [ |
Lemmas 2 and 5 and Theorem 6 yield the main result of
this section.

Corollary 7: Forn > 2 and k > 3, AQ, is edge- N W),
pancyclic. ©@i=1v=(

IV. PANCONNECTIVITY IN AQa. Fig. 5. Hamiltonian paths iB3 wheni = 0, 1.

In this section, we show that wheh > 3, AQ. is

panconnected. Just as we did before, p_artitimgykﬂinto
AQ°, AQY, ..., AQ*! by fixing the first component of
every vertex ofAQ* ats (so, eachAQ’ is a cycle of length

k). To prove thatdQ)s ;, is panconnected, we work in vertex- @i=2 v£(22).
induced subgraphs ofQ- .., namely the graph®; induced h

by the vertices ofAQ", AQl, ..., AQ', where3 < i < k—1.
Throughout,u and v are two arbitrary, distinct vertices
of AQs . Let d be the length of a shortest path A() j

joining u and v. We will show that there are paths of all

lengths betweer and k? — 1 joining u andv in AQs . (b)i=2v=(22)
By Lemma 2, w.l.o.g. we may suppose that= (0,0) and Fig. 6. Hamiltonian paths itB; wheni = 2.
thatv = (7, j), wherei < j. Let us begin by supposing that

v € Bs. We shall describe a Hamiltonian path framto v

in Bs. There are various cases to consider, depending upo&ase 2i—1

the vertexv. _ _ ) )
A Hamiltonian path fromu to v in By is depicted in

case 1i =0 o Fig. ().
ﬁiglﬂgr(r;)lfonlan path fromu to v in Bs is depicted in  ~ o3, 9

] A Hamiltonian path fromu to v in B, is depicted in
Case 2: =1. Fig. 7(c).

A Hamiltonian path fromu to v in B; whenv # (1,1) i cgge 44 — 3.

depicted in Fig. 5(b), and one fromto (1,1) in Fig. 5(c). A Hamiltonian path fromu to v in By whenv % (4, 4) is

Case 37 = 2. depicted in Fig. 8(a), and one fromto (4,4) in Fig. 8(b).
A Hamiltonian path fromu to v in B; whenv # (2,2) is Again, it is trivial to verify that all of the paths constructed
depicted in Fig. 6(a), and one fromto (2,2) in Fig. 6(b).  apove can be progressively shortened until they have length

It is trivial to verify that all of the paths constructed j.
above can be progressively shortened until they have length We now extend the constructions above inductively. Sup-
j (remember;j < j). pose that for somg < r < k—3, given any vertex = (i, j)

Let us now suppose that € B4. We shall describe a in B, (different from (0,0) and withi < j), we can find
Hamiltonian path fromu to v in B,. There are various a Hamiltonian pathp in B, joining (0,0) and (3, ;) that
cases to consider, depending upon the vertex can be progressively shortened until the path has lesgth
Case 1i — 0. moreover, we assume that there is at least one edge of
L lying in AQ" (this is certainly true for all paths constructed
above inB3 and B4). Now letu = (0,0) andv = (4, j),
wherev lies in B, andi < j.

A Hamiltonian path fromu to v in By is depicted in
Fig. 7(a).



% % % (a) A simple extension.
(b) i =1.

% % % (b) Extending toAQ" .

(c)i=2.

Fig. 7. Hamiltonian paths iB; wheni =0, 1, 2.

2L

% % % (C) EXtending tOAQT+2'

(@i=3,v#4,4). Fig. 9. Extending Hamiltonian paths.
Fig. 9(b) (note that ifi = j = r + 1 then we use the edge
((r,r), (r 4+ 1,7))). The new Hamiltonian path i@, > can
clearly be progressively shortened until we obtain a path of
(b)i=3,v=(4,4). length ;.

Fig. 8. Hamiltonian paths i, wheni = 3. Case 3 (i, j) lies in AQ2 (80,i =7 +2).

Letw = (r,j — 2); so,i — 2 < j — 2. By the induction
hypothesis, then is a Hamiltonian pathn B, from u to w

that can be progressively shortened until we obtain a path of
lengthj —2. The pathp can be extended as in Fig. 9(c). The
By the induction hypothesis, there is a Hamiltonian pathnew Hamiltonian path iB,,» can clearly be progressively

p in B, joining (0,0) and (i, j) that can be progressively shortened until we obtain a path of length
shortened until the path has lengthTake any edge of the

form ((r,a), (r,a+1)) (with addition moduldk) that lies on
the pathp (such an edge exists by assumption). Extend t
path p as in Fig. 9(a). The new Hamiltonian path s}, o

can clearly be progressively shortened to obtain a path

length.. o , Thus, in order to prove that @), ; is panconnected, all we
Case 2 (i, j) lies in AQ,11 (S0, = +1). have to do is to show that there are paths joining (0, 0)
Letw=(i—1,7—1);s0,i—1 < j—1. By the induction andv = (i,j) (where: < j) of all lengths ranging from the
hypothesis, there is a Hamiltonian pathin B, from u  length of a shortest path joinimg andv up toj — 1. With

to w that can be progressively shortened until we obtairregard to candidate paths for shortest paths joiningnd

a path of lengthj — 1. The pathp can be extended as in v, the situation can be visualized in Fig. 10. An immediate

Case 1 (i,j) lies in B,.

Thus, by induction, we have the following result.
he Theorem 8:We can find a Hamiltonian pathin AQ i
joining the vertex(0, 0) to any different verteXi, j), where
k< that can be progressively shortened until the path
has lengthj.



observation is that if there is a shortest path frano v « If a shortest path passes throughhen it has length
that leaves the grey area (consisting of the subgraph induced k—j+1¢, and any such path can clearly be progressively
by the vertices of{(z,y) : 0 < z,y < k— 1,z < y}) lengthened until it has length (if £k —j + 1 < j).

then there is an analogous shortest path that does not leave. If a shortest path passes throughthen it has length
the grey area. This observation can be easily verified by &k — 4, and any such path can clearly be progressively
examining the different configurations oénd; with a view lengthened until it has length (if £ —i < 7).

to finding a shortest path joining andv. Depending upon Thys, irrespective of the lengthof a shortest path fronn

the relative values of andj (with respect to each other and tg v, there exists a path from to v of all lengths between
with respect tok and0 also), a shortest path from to v 4 and k2 — 1 (inclusive).

will be constructed in one of the following three ways: Consequently, we have the following result.

« the first component will be increased frointo j and Theorem 9:AQ)- ;. iS panconnected.
the second component will be increased froro i;

« the first component will be decreased framo j and V. CoNCLUSION

the second component will be increased froro ; In this paper, we have shown tha@,, is edge-
« the first component will be decreased frémo j and  pancyclic, whenn > 2 and £ > 3, and thatAQ: is
the second component will be decreased fi®ho 4. panconnected. With regard to pancyclicity, the situation for

Note that becausé < j, a shortest path fromu to v AQn.k is improved in comparison to the-ary n-cubeq;.
need not be constructed by increasing the first componef/ith regard to panconnectivity, the 5|tuat|(1n fdQ 1, is
from 0 to j and decreasing the second component fronfMProved in comparison to thee-ary 2-cube@;. Of course,

0 to 4; for we can obtain a shortest path (of the samethe obvious question remaining to be asked is whether
length) by decreasing the first component fronto j and ~ A@n.k iS panconnected when > 3. This question is
decreasing the second component frénto i via a path made more complicated due to the lack of a complete
(0,0),(k—1,k—1),...,(j,7), G — 1,5),...,(i,7) which picture as regards the diameter 4y, , whenn > 3,
resides wholly within the grey area. The criteria in each ofand more generally as regards the length of a shortest path
the three constructions above can be met by shortest patffdning two arbitrary vertices ofAQ), . As can be seen
residing wholly within the grey area and so we may confineT™®m [16], at present only an upper bound is known as
ourselves to shortest paths residing wholly within the grey€gards the diameter ol@,, . and (as remarked in [16])

area (see Fig. 10 for some illustrative paths). de_rivin_g _the diameter e>_(actly appears to bg co_mbinatoriglly
quite difficult. However, in preliminary investigations on this

guestion we have tentatively obtained-panconnectivity
results forAQ,, , wherem is n(g] (that is, the diameter of
QF). We shall continue this investigation in future.

Another topic for further research is the tolerance of
AQy, 1 to faults; for example, is it the case that),, ; re-
mains pancyclic when a limited number of vertices or edges
are removed from the network (mimicking fault processors
or links in an inter-connection network based upé®.,, 1)?

We observe thatl() , can tolerate at least one faulty vertex
and remain pancyclic (simply remove the vertein Fig. 3).
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Fig. 10. Possible shortest paths joiningandv.
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