
Memory Usage Verification Using Hip/Sleek

Guanhua He1, Shengchao Qin1, Chenguang Luo1, and Wei-Ngan Chin2

1 Durham University, Durham DH1 3LE, UK
2 National University of Singapore

{guanhua.he,shengchao.qin,chenguang.luo}@durham.ac.uk,
chinwn@comp.nus.edu.sg

Abstract. Embedded systems often come with constrained memory
footprints. It is therefore essential to ensure that software running on
such platforms fulfils memory usage specifications at compile-time, to
prevent memory-related software failure after deployment. Previous pro-
posals on memory usage verification are not satisfactory as they usually
can only handle restricted subsets of programs, especially when shared
mutable data structures are involved. In this paper, we propose a simple
but novel solution. We instrument programs with explicit memory op-
erations so that memory usage verification can be done along with the
verification of other properties, using an automated verification system
Hip/Sleek developed recently by Chin et al. [10,19]. The instrumen-
tation can be done automatically and is proven sound with respect to
an underlying semantics. One immediate benefit is that we do not need
to develop from scratch a specific system for memory usage verification.
Another benefit is that we can verify more programs, especially those
involving shared mutable data structures, which previous systems failed
to handle, as evidenced by our experimental results.

1 Introduction

Ubiquitous embedded systems are often supplied with limited memory and com-
putation resources due to various constraints on, e.g., product size, power con-
sumption and manufacture cost. The consequences of violating memory safety
requirements can be quite severe because of the close coupling of these systems
with the physical world; in some cases, they can put human lives at risk. The
Mars Rover’s anomaly problem was actually due to a memory leak error and it
took fifteen days to fix the problem and bring the Rover back to normal [21]. For
applications running on resource-constrained platforms, a challenging problem
would be how to make memory usage more predictable and how to ensure that
memory usage fulfils the restricted memory requirements.

To tackle this challenge, a number of proposals have been reported on mem-
ory usage analysis and verification, with most of them focused on functional
programs where data structures are mostly immutable and thus easier to han-
dle [1,2,5,7,15,23]. Memory usage verification for imperative/OO languages can
be more challenging due to mutability of states and object sharing. Existing so-
lutions to this are mainly type-based [11,12,16]. Instead of capturing all aliasing

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 166–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Memory Usage Verification Using Hip/Sleek 167

information, they impose restrictions on object mutability and sharing. There-
fore, they can only handle limited subsets of programs manipulating shared
mutable data structures.

The emergence of separation logic [17,22] promotes scalable reasoning via ex-
plicit separation of structural properties over the memory heap where recursive
data structures are dynamically allocated. Since then, dramatic advances have
been made in automated software verification via separation logic, e.g. the Small-
foot tool [3] and the Space Invader tool [6,13,24] for the analysis and verification
on pointer safety (i.e. shape properties asserting that pointers cannot go wrong),
the Hip/Sleek tool [10,18,19] for the verification of more general properties in-
volving both structural (shape) and numerical (size) information, the verification
on termination [4], and the verification for object-oriented programs [9,14,20].

Given these significant advances in the field, a research question that we post
to ourselves is: can we make use of some of these state-of-the-art verification tools
to do a better job for memory usage verification, without the need of construct-
ing a memory usage verifier from scratch? This paper addresses this question
by proposing a simple but novel mechanism to memory usage verification using
the Hip/Sleek system developed by Chin et al. [10,19]. Separation logic offers
a powerful and expressive mechanism to capture structural properties of shared
mutable data structures including aliasing information. The specification mech-
anism in Hip/Sleek leverages structural properties with numerical information
and is readily capable for the use of memory usage specification.

Approach and contributions. Memory usage occur in both the heap and stack
spaces. While heap space is used to store dynamically allocated data structures,
stack memory is used for local variables as well as return addresses of method
calls. On the specification side, we assume that two special global variables heap
and stk of type int are reserved to represent respectively the available heap
and stack memory in the pre-/post-conditions of each method. On the program
side, we instrument the program to be verified with explicit operations over vari-
ables heap and stk using rewriting rules. We call the instrumented programs
as memory-aware programs. The memory usage behaviour of the original pro-
gram is now mimicked and made explicit in its memory-aware version via the
newly introduced primitive operations over heap and stk. We also show that
the original program and its memory-aware version are observationally equiva-
lent modulo the behaviour of the latter on the special variables heap and stk
as well as a fixed memory cost for storing the two global variables. Instead of
constructing and implementing a fresh set of memory usage verification rules for
the original program, we can now pass to Hip/Sleek as inputs the correspond-
ing memory-aware program together with the expected memory specification for
automated memory usage verification.

In summary, this paper makes the following contributions:

– We propose a simple but novel solution to memory usage verification based on
a verification tool Hip/Sleek by first rewriting programs to their memory-
aware counterparts.

168 G. He et al.

– We demonstrate that the syntax-directed rewriting process is sound in the
sense that the memory-aware programs are observationally equivalent to their
original programs with respect to an instrumented operational semantics.

– We have integrated our solution with Hip/Sleek and conducted some initial
experiments. The experimental results confirm the viability of our solution
and show that we can verify the memory safety of more programs compared
with previous type-based approaches.

The rest of the paper is structured as follows. We introduce our programming
and specification languages in Section 2. In Section 3 we present our approach
to memory usage verification in Hip/Sleek . Section 4 defines an underlying
semantics for the programming language and formulates the soundness of our
approach w.r.t. the semantics. Experimental results are shown in Section 5,
followed by related work and concluding remarks afterwards.

2 Language and Specifications

In this section, we first introduce a core imperative language we use to demon-
strate the work, and then depict the general specification mechanism used by
Hip/Sleek and show how memory usage specifications can be incorporated in.

2.1 Programming Language

To simplify presentation, we focus on a strongly-typed C-like imperative lan-
guage in Figure 1.

A program P in our language consists of user-defined data types tdecl, global
variables gVar and method definitions meth. The notation datat stands for the
standard data type declaration used in programs, for example as below:

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right; node3 parent }

The notation spred denotes a user-defined predicate which may be recursively
defined and can specify both structural and numerical properties of data struc-
tures involved. The syntax of spred is given in Figure 2.

P ::= tdecl∗ gVar∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
τ ::= int | bool | void gVar ::= t v
meth ::= t mn (([ref] t v)∗) mspec {e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗) | free(v)

| e1; e2 | t v; e | mn(v∗) | if v then e1 else e2

Fig. 1. A Core (C-like) Imperative Language

Memory Usage Verification Using Hip/Sleek 169

Note that a parameter can be either pass-by-value or pass-by-reference, dis-
tinguished by the ref before a parameter definition. The method specification
mspec, written in our specification language in Figure 2, specifies the expected
behaviour of the method, including its memory usage behaviour. Our aim is to
verify the method body against this specification. Our language is expression-
oriented, so the body of a method is an expression composed of standard instruc-
tions and constructors of an imperative language. Note that the instructions new
and free explicitly deal with memory allocation and deallocation, respectively.
The term kτ denotes a constant value of type τ . While loops are transformed to
tail-recursive methods in a preprocessing step.

2.2 Specification Language

Our specification language is given in Figure 2. Note spred defines a new sep-
aration predicate c in terms of the formula Φ with a given pure invariant π.
Such user-specified predicates can be used in the method specifications. The
method specification requires Φpr ensures Φpo comprises a precondition Φpr and
a postcondition Φpo.

The separation formula Φ, which appears in the predicate definition spred or
in the pre-/post-conditions of a method, is in disjunctive normal form. Each
disjunct consists of a ∗-separated heap constraint κ, referred to as heap part,
and a heap-independent formula π, referred to as pure part. The pure part does
not contain any heap nodes and is restricted to pointer equality/disequality γ
and Presburger arithmetic φ. As we will see later, γ is used to capture the alias
information of pointers during the verification, and φ is to record the numerical
information of data structures, such as length of a list or height of a tree. Fur-
thermore, Δ denotes a composite formula that could always be normalized into
the Φ form [19].

The formula emp represents an empty heap. If c is a data node, the formula
p::c〈v∗〉 represents a singleton heap p �→[(f : v)∗] with f∗ as fields of data decla-
ration c. For example, p::node〈0, null〉 denotes that p points to a node structure
in the heap, whose fields have values 0 and null, respectively. If c is a (user-
specified) predicate, p::c〈v∗〉 stands for the formula c(p, v∗) which signifies that

spred ::= root::c〈v∗〉 ≡ Φ inv π
mspec ::= requires Φpr ensures Φpo

Φ ::=
∨

(∃v∗·κ∧π)∗ π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 2. The Specification Language

170 G. He et al.

the data structure pointed to by p has the shape c with parameters v∗. As an
example, one may define the following predicate for a singly linked list with
length n:

root::ll〈n〉≡(root=null∧n=0)∨(∃i,m, q · root::node〈i, q〉∗q::ll〈m〉∧n=m+1) inv n≥0

The above definition asserts that an ll list either can be empty (the base case
root=null where root is the “head pointer” pointing to the beginning of the
whole structure described by ll), or consists of a head data node (specified
by root::node〈i, q〉) and a separate tail data structure which is also an ll list
(q::ll〈m〉 saying that q points to an ll list with length m). The separation con-
junction ∗ introduced in separation logic signifies that two heap portions are
domain-disjoint. Therefore, in the inductive case of ll’s definition, the separa-
tion conjunction ensures that the head node and the tail ll reside in disjoint
heaps. A default invariant n≥0 is specified which holds for all ll lists. Existential
quantifiers are for local values and pointers in the predicate, such as i, m and q.

A slightly more complicated shape, a doubly linked-list with length n, is de-
scribed by:

root::dll〈p, n〉≡(root=null∧n=0)∨(root::node2〈 , p, q〉∗q::dll〈root, n−1〉) inv n≥0

The dll predicate has a parameter p to represent the prev field of the root
node of the doubly linked list. This shape includes node root and all the nodes
reachable through the next field starting from root, but not the ones reachable
through prev from root. Here we also can see some shortcuts that underscore
denotes an anonymous variable, and non-parameter variables in the right hand
side of the shape definition, such as q, are implicitly existentially quantified.

As can be seen from the above, we can use κ to express the shape of heap
and φ to express numerical information of data structures, such as length. This
allows us to specify data structures with sophisticated invariants. For example,
we may define a non-empty sorted list as below:

root::sortl〈n, min〉 ≡ (root::node〈min, null〉∧n=1 ∨
(root::node〈min, q〉∗q::sortl〈m, k〉∧n=m+1∧min≤k) inv n≥0

The sortedness property is captured with the help of an additional parameter min
denoting the minimum value stored in the list. The formula min≤k ensures the
sortedness. With the aforesaid predicates, we can now specify the insertion-sort
algorithm as follows:

node insert(node x, node vn)

requires x::sortl〈n, min〉 ∗ vn::node〈v, 〉
ensures res::sortl〈n+1, min(v, min)〉;

{· · · }

node insertion sort(node y)

requires y::ll〈n〉 ∧ n>0

ensures res::sortl〈n, 〉;
{· · · }

where a special identifier res is used in the postcondition to denote the result
of a method. The postcondition of insertion sort shows that the output list
is sorted and has the same number of nodes. We can also specify that the input

Memory Usage Verification Using Hip/Sleek 171

and output lists contain the same set of values by adding another parameter to
the sortl predicate to capture the bag of values stored in the list [10].

The semantics of our specification formula is similar to the model given for
separation logic [22] except that we have extensions to handle user-defined shape
predicates. We assume sets Loc of memory locations, Val of primitive values, with
0 ∈ Val denoting null, Var of variables (program and logical variables), and
ObjVal of object values stored in the heap, with c[f1 �→ν1, .., fn �→νn] denoting an
object value of data type c where ν1, .., νn are current values of the corresponding
fields f1, .., fn. Let s, h |= Φ denote the model relation, i.e. the stack s and heap
h satisfy Φ, with h, s from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal s ∈ Stacks =df Var → Val∪Loc

Note that each heap h is a finite partial mapping while each stack s is a total
mapping, as in the classical separation logic [17,22]. The detailed definitions of
the model relation can be found in Chin et al. [10].

2.3 Memory Usage Specification

To incorporate memory usage into the specification mechanism of Hip/Sleek,
we employ two global variables heap and stk to represent the available heap
and stack memory (in bytes). The memory requirement of a method can then
be specified as a pure constraint over heap and stk in the precondition of the
method. The remaining memory space upon the return from a method call can
also be exhibited using a pure formula over heap′ and stk′ in the postcondition.1

Due to perfect recovery of stack space upon return from a method call, stk′ in
a method’s postcondition will always be the same as its initial value stk. As an
example, the method new list(int n), which creates a singly linked list with
length n, is given as follows together with its memory usage specification:

node new list(int n)

requires heap≥8 ∗ n ∧ n≥0 ∧ stk≥12 ∗ n+4

ensures res::ll〈n〉 ∧ heap′=heap−8 ∗ n ∧ stk′=stk

{ node r := null; if (n>0) { r := new list(n−1); r := new node(n, r)}; r }

where the node was declared earlier in Sec 2.1. We assume that we use a 32-bit
architecture; therefore, one node requires 8 bytes of memory. This assumption
can be easily changed for a different architecture. The precondition specifies
that the method requires at least 8 ∗ n bytes of heap space and 12 ∗ n + 4 stack
space before each execution with n denoting the size of the input.2 After method
1 A primed variable x′ in a specification formula denotes the latest value of variable
x, with x representing its initial value.

2 When a new local variable r is declared, 4 bytes of stack memory is consumed. Later
when the method new list is invoked recursively, its parameters, return address
and local variables are all placed on top of the stack. This is why it requires at least
12 ∗ n+4 bytes of stack space.

172 G. He et al.

execution, 8 ∗ n bytes of heap memory is consumed by the returned list, but
the stack space is fully recovered. This is reflected by the formula (heap′ =
heap− 8 ∗ n ∧ stk′ = stk) in the postcondition.

As another example, the following method free list deallocates a list:

void free list(node2 x)

requires x::dll〈n〉 ∧ heap≥0 ∧ stk≥12 ∗ n
ensures emp ∧ heap′=heap+12 ∗ n ∧ stk′=stk

{ if (x �= null) { node t := x; x := x.next; free(t); free list(x) } }

We can see that 12 ∗ n bytes of heap space is expected to be claimed back
by the method as signified in the postcondition. Notice here the stack and heap
memory are specified in terms of the logical variable n denoting the length of the
list x, showing the possible close relation between the separation (shape and size)
specification and the memory specification. Next we will show how to rewrite
the program to its memory-aware version by using the two global variables heap
and stk to mimic the memory behaviour, so that Hip/Sleek can step in for
memory usage verification.

3 Memory Usage Verification

In this section, we first present the instrumentation process which converts pro-
grams to be verified to memory-aware programs. We then briefly introduce the
automated verification process in Hip/Sleek.

3.1 The Instrumentation Process

The instrumentation process makes use of primitive operations over the global
variables heap and stk to simulate the memory usage behaviour of the original
program. It is conducted via the rewriting rules given in Figure 3.

These rewriting rules form a transformer M which takes in a program and re-
turns its memory-aware version. Note that M conducts identical rewriting except
for the following four cases: (1) heap allocation new c(v∗); (2) heap deallocation
free(v); (3) local block {t v; e}; (4) method declaration t0 mn(t1 v1, .., tn vn){e}.

M(E) ::= E where E ∈ {null, kτ , v, v.f, v1.f :=v2, mn(v∗)}
M(new c(v∗)) ::= dec hp(ssizeof(c)); new c(v∗)
M(free(v)) ::= free(v); inc hp(ssizeof(type(v)))
M({t v; e}) ::= dec stk(sizeof(t)); {t v; M(e)}; inc stk(sizeof(t))
M(v:=e) ::= v:=M(e)
M(e1; e2) ::= M(e1);M(e2)
M(if v then e1 else e2) ::= if v then M(e1) else M(e2)
M(t0 mn(t1 v1, .., tn vn){e}) ::= t0 mn(t1 v1, .., tn vn){

dec stk(sizeof(t0, t1, .., tn)+4);M(e); inc stk(sizeof(t0, t1, .., tn)+4)}

Fig. 3. Rewriting Rules for Instrumentation

Memory Usage Verification Using Hip/Sleek 173

To simulate the memory effect of new c(v∗), we employ a primitive method
over variable heap, called dec hp, which is subject to the specification:

void dec hp(int n) requires heap≥n ∧ n≥0 ensures heap
′=heap−n

To successfully call dec hp(n), the variable heap must hold a value no less than
the non-negative integer n at the call site. Upon return, the value of heap is
decreased by n.

To simulate the memory effect of free(v), we employ a primitive method over
heap, called inc hp:

void inc hp(int n) requires n≥0 ensures heap
′=heap+n

The memory effect of local blocks and method bodies can be simulated in a similar
way, and the difference is that they count on the stack instead of heap. For code
blocks, we employ dec stk to check the stack space is sufficient for the local variable
to be declared, and decrease the stack space; meanwhile, at the end of the block, we
recover such space by inc stk due to the popping out of the local variables. As for
method body, stack space is initially acquired (and later recovered) for method
parameters and return address (four bytes), as the last rewriting rule suggests.
The specifications for these two primitive methods are as follows:

void dec stk(int n) requires stk≥n ∧ n≥0 ensures stk′=stk−n

void inc stk(int n) requires n≥0 ensures stk′=stk+n

Note that two different functions sizeof and ssizeof are used in the rewriting rules:
sizeof is applied to both primitive and reference types, while ssizeof is applied
to (user-defined) data types, by summing up the sizes of all declared fields’
types obtained via sizeof. For example, sizeof(int) = 4, sizeof(node) = 4, and
ssizeof(node) = 8, since the node data structure (defined in Section 2) contains
an int field and a reference to another node. We also abuse these functions by
applying them to a list of types, expecting them to return the sum of the results
when applied to each type.

We present below the memory-aware versions for the two examples given in
Section 2.

node new list(int n)
requires emp ∧ heap≥8 ∗ n∧

n≥0 ∧ stk≥12 ∗ n + 4

ensures res::ll〈n〉 ∧ stk′=stk∧
heap′=heap−8 ∗ n;

{ dec stk(4);
node r := null;
if (n > 0) {
dec stk(8); r := new list(n−1);
inc stk(8); dec hp(8);
r := new node(n, r) };

inc stk(4); r }

Fig. 4. Example 1

void free list(node2 x)
requires x::dll〈p, n〉 ∧ heap≥0∧

stk≥12 ∗ n
ensures emp ∧ stk′=stk ∧

heap′=heap+12 ∗ n;
{ if (x �= null) {

dec stk(4);
node2 t := x; x := x.next;
free(t); inc hp(12);
dec stk(8); free list(x);
inc stk(8); inc stk(4) }

}

Fig. 5. Example 2

174 G. He et al.

Note that thememory effect is simulated via explicit calls to the afore-mentioned
four primitive methods over heap and stk, which are highlighted in bold.

As one more example, we show in Figure 6 a program with more complicated
memory usage behaviour. The program translates a doubly linked list (node2)
into a singly linked list (node), by deallocating node2 x and then creating a
singly linked list with the same length and content. A heap memory of 4 ∗ n
bytes is reclaimed back since each node2 object has one more field (which takes
4 bytes) than a node object.

node dl2sl(node2 x)
requires x::dll〈 , n〉 ∧ stk≥20∗n ∧ heap≥0

ensures res::ll〈n〉 ∧ stk′=stk ∧ heap′=heap+4∗n;
{ dec stk(4); node r := null;
if (x �= null) { dec stk(4); int v := x.val; dec stk(4);

node2 t := x; x := x.next; free(t); inc hp(12);
dec stk(8); r := dl2sl(x); inc stk(8);
dec hp(8); r := new node(v, r); inc stk(4); inc stk(4) };

inc stk(4); r }
Fig. 6. Example 3

The instrumented programs are then passed to Hip/Sleek for automated
verification.

3.2 The Hip/Sleek Automated Verification System

HIP: Hoare-style
Forward Verifier

SLEEK: Entailment
Prover

Program
Code

User Supplied Items

Automated Verification System

Pre/Post
Shape

Predicates

Fig. 7. The Hip/Sleek Verification System

An overview of the
Hip/Sleek auto-
mated verification
system is given
in Figure 7. The
front-end of the sys-
tem is a standard
Hoare-style forward
verifier Hip, which
invokes the entail-
ment prover Sleek.
The Hip verifier
comprises a set of forward verification rules to systematically check that the
precondition is satisfied at each call site, and that the declared postcondition
is successfully verified (assuming the given precondition) for each method
definition. The forward verification rules are of the form � {Δ1} e {Δ2} which
expect the symbolic abstract state Δ1 to be given before computing Δ2. Given
two separation formulas Δ1 and Δ2, the entailment prover Sleek attempts
to prove that Δ1 entails Δ2; if it succeeds, it returns a frame R such that
Δ1 � Δ2 ∗ R. More details of the Hip and Sleek provers can be found in Chin
et al. [10].

Memory Usage Verification Using Hip/Sleek 175

4 Soundness

This section presents the soundness of our approach with respect to an underly-
ing operational semantics given in Figure 8. Note that we instrument the state
with memory size information, so a program state is represented by 〈s, h, σ, μ, e〉,
where s, h denote respectively the current stack and heap state as mentioned ear-
lier, σ (μ) represents current available stack (heap) memory in bytes, and e is
the program code to be executed. If the execution leads to an error, we denote
the error state as er1 if it is due to memory inadequacy, or as er2 for all other
errors (e.g. null pointer dereference). Note also that an intermediate construct
ret(v∗, e) is introduced to denote the return value of call invocation and local
blocks as in Chin et al. [10]. Later, we use ↪→∗ to denote the composition of any
non-negative number of transitions, and ↑ for program divergence.

〈s, h, σ, μ, v〉↪→〈s, h, σ, μ, s(v)〉 〈s, h, σ, μ, k〉↪→〈s, h, σ, μ, k〉
〈s, h, σ, μ, v:=k〉↪→〈s[v �→k], h, σ, μ, ()〉 〈s, h, σ, μ, (); e〉↪→〈s, h, σ, μ, e〉

s(v) ∈ dom(h)

〈s, h, σ, μ, v.f〉↪→〈s, h, σ, μ, h(s(v))(f)〉
s(v) /∈ dom(h)

〈s, h, σ, μ, v.f〉↪→er2

〈s, h, σ, μ, e1〉↪→〈s1, h1, σ1, μ1, e3〉
〈s, h, σ, μ, e1; e2〉↪→〈s1, h1, σ1, μ1, e3; e2〉

〈s, h, σ, μ, e〉↪→〈s1, h1, σ1, μ1, e1〉
〈s, h, σ, μ, v:=e〉↪→〈s1, h1, σ1, μ1, v:=e1〉

s(v)=true

〈s, h, σ, μ, if v then e1 else e2〉↪→〈s, h, σ, μ, e1〉
s(v)=false

〈s, h, σ, μ, if v then e1 else e2〉↪→〈s, h, σ, μ, e2〉
s(v1) ∈ dom(h) r = h(s(v1))[f �→s(v2)] h1 = h[s(v1)�→r]

〈s, h, σ, μ, v1.f := v2〉↪→〈s, h1, σ, μ, ()〉
s(v1) /∈ dom(h)

〈s, h, σ, μ, v1.f := v2〉↪→er2

s(v)�→l ∈ h h1=h\[s(v)�→l] μ1=μ+ssizeof(type(v))

〈s, h, σ, μ, free(v)〉↪→〈s, h1, σ, μ1, ()〉
s(v) /∈ dom(h)

〈s, h, σ, μ, free(v)〉↪→er2

data c {t1 f1, .., tn fn}∈P ι/∈dom(h)
μ≥ssizeof(c) μ1=μ−ssizeof(c) r=c[fi �→s(vi)]

n
i=1

〈s, h, σ, μ, new c(v∗)〉↪→〈s, h+[ι �→ r], σ, μ1, ι〉
μ<ssizeof(c)

〈s, h, σ, μ, new c(v∗)〉↪→er1

〈s, h, σ, μ, ret(v1, .., vn, k)〉↪→〈s−{v1, .., vn}, h, σ+sizeof(type(v1), .., type(vn)), μ, k〉
〈s, h, σ, μ, e〉↪→〈s1, h1, σ1, μ1, e1〉

〈s, h, σ, μ, ret(v∗, e)〉↪→〈s1, h1, σ1, μ1, ret(v
∗, e1)〉

σ≥sizeof(t) σ1=σ−sizeof(t)

〈s, h, σ, μ, {t v; e}〉↪→〈s+[v �→⊥], h, σ1, μ, ret(v, e)〉
σ<sizeof(t)

〈s, h, σ, μ, {t v; e}〉↪→er1

s1=s+[wi �→s(vi)]
n
i=m

σ≥Σn
i=msizeof(ti) σ1=σ−Σn

i=msizeof(ti)
t0 mn((ref ti wi)

m−1
i=1 , (ti wi)

n
i=m) {e}

〈s, h, σ, μ, mn(v1, .., vn)〉 ↪→
〈s1, h, σ1, μ, ret({wi}n

i=m, [vi/wi]
m−1
i=1 e)〉

σ<Σn
i=msizeof(ti)

〈s, h, σ, μ, mn(v∗)〉↪→er1

Fig. 8. Underlying Semantics

176 G. He et al.

As shown in the transition rule, a successful execution of free(v) increases
the heap size μ by ssizeof(type(v)). Note that we use h \ [s(v)�→l] to erase s(v)
from h’s domain. The execution of new c(v∗) first checks if the current heap
space is sufficient for the allocation; if it succeeds, the heap size is decreased by
ssizeof(c). Here we adds ι �→ r into h by the notation h + [ι �→ r].

The stack space may be changed when the program enters into or exits from
a local block {t v; e}, or invokes a method, or returns from a method call.
Upon exit from a block or a method call, all local variables are popped out
from the stack (s − {v1, .., vn}) and the corresponding stack space is recov-
ered (σ+sizeof(type(v1), .., type(vn))). Conversely, entering a block or invoking
a method may require some stack space to store newly declared local variables
or returning address of the method. So the relevant semantic rule first checks
whether the stack space is sufficient to cater for a new block or a method invo-
cation, if so, the program state is transformed. Otherwise a memory inadequacy
error is reported.

Due to the recording of memory size information in program state, we need
an extended model to link the underlying semantics with the separation formula,
which is defined as follows:

s, h, σ, μ |= Φ =def s, h |= [σ/stk′, μ/heap′]Φ

where s, h |= Φ was defined in Chin et al. [10].
Next, we show that the instrumented program M(e) is observationally equiv-

alent to the original program e w.r.t. the semantics in Figure 8.

Theorem 1 (Observational Equivalence). For any stack s, heap h, stack
size σ, heap size μ, and program e and its instrumented version M(e), one and
only one of the following cases holds:

1. ∃s1, h1, σ1, μ1 · 〈s, h, σ, μ, e〉 ↪→∗ 〈s1, h1, σ1, μ1, ν〉 ⇐⇒ 〈s[stk�→σ, heap �→μ],
h, σ, μ,M(e)〉 ↪→∗ 〈s1[stk�→σ1, heap�→μ1], h1, σ1, μ1, ν〉 where value ν is the
evaluation result of e;

2. 〈s, h, σ, μ, e〉 ↪→∗ er1 ⇐⇒ 〈s[stk�→σ, heap�→μ], h, σ, μ,M(e)〉 ↪→∗ er1;
3. 〈s, h, σ, μ, e〉 ↪→∗ er2 ⇐⇒ 〈s[stk�→σ, heap�→μ], h, σ, μ,M(e)〉 ↪→∗ er2;
4. 〈s, h, σ, μ, e〉 ↑ ⇐⇒ 〈s[stk�→σ, heap�→μ], h, σ, μ,M(e)〉 ↑.

Note that the stack mapping s[stk�→σ, heap�→μ] is the same as s except that it
maps stk to σ and heap to μ.

Proof. By structural induction over e. �

We assume that the global variables, such as heap and stk, reside in the top
frame of the run-time stack when a program starts to run. Note that invoca-
tions of the four primitive methods, namely inc hp(·), inc stk(·), dec hp(·) and
dec stk(·), modify only the values of heap and stk, but not the rest of the stack.
Each invocation of these methods requires eight bytes of stack space, which is
immediately recovered after the invocation.3

3 Because of this, a memory-aware program may require an additional stack space of
8 bytes. For simplicity, we assume this has been taken into account implicitly.

Memory Usage Verification Using Hip/Sleek 177

Finally, the following theorem ensures the soundness of our memory usage
verification:

Theorem 2. For any method t mn (([ref] t v)∗) requires Φpr ensures Φpo {e},
if we can verify M(e) against specification (Φpr, Φpo), then we have ∀s, h, σ, μ ·
(s, h, σ, μ |= Φpr ∧ 〈s, h, σ, μ, e〉↪→∗〈s1, h1, σ1, μ1, ν〉) =⇒ s1, h1, σ1, μ1 |= Φpo.

Proof. It follows from Theorem 1 and the soundness of the Hip/Sleek veri-
fication process given in Chin et al. [10]. �

5 Experimental Results

We have implemented our proposal and integrated it with the Hip/Sleek sys-
tem to support memory usage verification. We have evaluated the system using
a number of benchmarks, by first converting them to memory-aware programs
and then passing them to the Hip/Sleek system for memory usage verification
(which is done as one pass along with the verification of other safety properties).
One set of programs that we have tested are taken from Nguyen et al. [19]. De-
spite of small-size, these programs are composed of methods manipulating shared
mutable data structures, such as (doubly) linked lists, cyclic linked lists, binary
search trees, most of which cannot be handled by previous type-based memory
usage verifiers. Another set of programs that we have tested are taken from the
Olden Benchmark Suite [8]. These programs are of medium-size and quite of-
ten contain sophisticated memory usage behaviour. For all programs, we have
manually supplied their memory specifications which are precise when validated
through some sample runs. The initial experimental results have shown that the
memory usage specification is expressive and the memory usage verification via
Hip/Sleek is powerful, especially in dealing with mutable data structures with
sophisticated sharing.

Programs Code (lines) Verified Methods Verification (in sec.)

Benchmark programs from Nguyen et al. [19]

singly linked list 72 4/4 0.42

doubly linked list 104 4/4 1.20

binary search tree 62 2/2 0.32

cyclic linked list 78 2/2 0.48

Olden Benchmark suite

treeadd 195 4/4 0.58

bisort 340 6/6 2.80

em3d 462 20/20 1.52

mst 473 22/22 1.64

tsp 545 9/9 3.44

health 562 15/15 7.35

power 765 19/19 5.17

Fig. 9. Experiment Results

178 G. He et al.

Figure 9 summarises some statistics obtained during the experimental study.
The statistics shows that our approach is general enough to handle many inter-
esting data structures such as single linked lists, double linked lists, trees and
cyclic linked lists. Column 4 shows the CPU times used (in seconds) for the ver-
ification. Our experiments were done under Linux platform on Intel Core Quad
2.66 GHz with 8 GB main memory. All programs take under 10 seconds to verify,
even for medium-sized programs with sophisticated memory usage behaviour.

6 Related Work

Previous research on memory usage analysis and verification [1,2,5,7,15] mainly
focuses on functional programs where data structures are mostly immutable
and easier to deal with. Amadio et al. [1] define a simple stack machine for a
first-order functional language and discuss the performance of type, size and
termination verifications at bytecode level of the machine. Their contribution is
to verify a system of annotations for the bytecode at loading time, and ensure
both time and space resource bound required by its execution. Their work only
takes into account stack bounds but not heap memory. Another related work
is the research in the MRG (Mobile Resource Guarantees) project [2,5], which
focuses on building a proof-carrying code system to guarantee that bytecode
programs are free from run-time violations of resource bounds. The analysis
is developed for a linearly typed bytecode language which is compiled from a
first-order functional language, where the bounds are restricted to a linear form.

Hofmann and Jost [15] present a mechanism to obtain linear bounds on the
heap space usage of first-order functional programs. It uses an amortised analysis
by assigning hypothetical amounts of free space to data structures in proportion
to their sizes. The analysis relies on a type system with resource annotations, and
takes space reuse by explicit deallocation. With this approach, memory recovery
can be supported within each function, but not across functions unless the dead
objects are explicitly passed. Their analysis does not consider stack usage and
is limited to a linear form without disjunction. Recently, Campbell [7] gives a
type-based approach to stack space analysis. It uses the depth of data structures
and adds extra structures to typing contexts to describe the form of the bounds.
Heap memory is not considered in his work.

Previous works on memory usage verification [11,12,16] for imperative/OO
programming languages mainly use type-based approaches. Chin et al. [12] pro-
pose a modular memory usage verification system for object-oriented programs.
The system can check whether a certain amount of memory is adequate for safe
execution of a given program. However, the verification framework requires alias
control mechanism to overcome the mutability and sharing problems. Therefore,
it can only handle restricted subsets of programs manipulating shared mutable
data structures. Recently, Chin et al. [11] propose a memory bound analysis sys-
tem for low-level programs. The system tries to infer both stack and heap space
bounds, using fixpoint analyses for recursive methods and loops. However, the
system does not handle shared objects. Hofmann and Jost [16] propose a type-
based heap space analysis for Java style OO programs with explicit deallocation.

Memory Usage Verification Using Hip/Sleek 179

It uses an amortised analysis, and a potential is assigned to each datum accord-
ing to its size and layout. Heap memory usage is calculated by an LP-solver
based on function inputs during the type inference.

Different from previous works which try to build a memory usage verification
system, we re-use a general-purpose verification system Hip/Sleek for mem-
ory usage verification, where shape, size and alias information can be readily
obtained from the specifications given in separation logic. With this tool, we
can verify quite a number of programs that can not be handled by previous
approaches, such as doubly linked lists, cyclic linked lists and binary trees.

7 Conclusion

In this paper we have proposed an approach to memory usage verification, by
resorting to a general-purpose verification system Hip/Sleek based on separa-
tion logic, where memory usage specifications can be depicted using two special
variables heap and stk. Given a program to verify against its memory usage
specifications, instead of constructing and implementing verification rules to
conduct the verification, we rewrite the program to its memory-aware version
where memory usage behaviours are mimicked by explicit operations over vari-
ables heap and stk. The obtained memory-aware program can then be passed to
Hip/Sleek for automated verification. Due to the fact that the memory-aware
program is observationally equivalent to its original program, the memory safety
for the original program follows directly from the memory safety proof of the
instrumented program. We have implemented the rewriting process and inte-
grated it with Hip/Sleek. Our initial experimental study shows that we can
verify quite a number of programs which can not be handled by previous mem-
ory usage verification systems mainly due to the manipulation of sophisticated
shared mutable data structures.

As for future work, we aim to automatically infer memory usage specifications,
where possible, to reduce the burden on users and also improve the level of
automation for memory usage verification. We have just started another EPSRC-
funded project aiming to automatically infer method specifications and loop
invariants in a combined separation and numerical domain, which would benefit
our memory usage analysis and verification.

Acknowledgement. This work was supported in part by the EPSRC projects
[EP/E021948/1, EP/G042322/1] and the A*STAR grant R-252-000-233-305.

References

1. Amadio, R.M., Coupet-Grimal, S., Dal Zilio, S., Jakubiec, L.: A Functional Sce-
nario for Bytecode Verification of Resource Bounds. In: Marcinkowski, J., Tarlecki,
A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 265–279. Springer, Heidelberg (2004)

180 G. He et al.

2. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile resource
guarantees for smart devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.,
Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 1–26. Springer, Heidelberg
(2005)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

4. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

5. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certifica-
tion of heap consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS
(LNAI), vol. 3452, pp. 347–362. Springer, Heidelberg (2005)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: ACM POPL, pp. 289–300 (2009)

7. Campbell, B.: Amortised memory analysis using the depth of data structures. In:
ESOP. LNCS, vol. 5502, pp. 190–204. Springer, Heidelberg (2009)

8. Carlisle, M.C., Rogers, A.: Software caching and computation migration in Olden.
ACM SIGPLAN Notices 30(8), 29–38 (1995)

9. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular oo verification
with separation logic. In: ACM POPL, pp. 87–99 (2008)

10. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification
of shape, size and bag properties via user-defined predicates in separation
logic. Under Consideration by Science of Computer Programming (2009),
http://www.dur.ac.uk/shengchao.qin/papers/SCP-draft.pdf

11. Chin, W.-N., Nguyen, H.H., Popeea, C., Qin, S.: Analysing memory resource
bounds for low-level programs. In: International Symposium on Memory Man-
agement (ISMM), pp. 151–160. ACM Press, New York (2008)

12. Chin, W.-N., Nguyen, H.H., Qin, S., Rinard, M.: Memory usage verification for
oo Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672,
pp. 70–86. Springer, Heidelberg (2005)

13. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

14. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
ACM OOPSLA, pp. 213–226 (2008)

15. Hofmann, M., Jost, S.: Static prediction of heap space usage for first order func-
tional programs. In: ACM POPL, January 2003, pp. 185–197 (2003)

16. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

17. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: ACM POPL, January 2001, pp. 14–26 (2001)

18. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

19. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

20. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
ACM POPL, pp. 75–86 (2008)

http://www.dur.ac.uk/shengchao.qin/papers/SCP-draft.pdf

Memory Usage Verification Using Hip/Sleek 181

21. Reeves, G., Neilson, T., Litwin, T.: Mars exploration rover spirit vehicle anomaly
report. Jet Propulsion Laboratory Document No. D-22919 (July 2004)

22. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE
LICS, July 2002, pp. 55–74 (2002)

23. Xi, H.: Imperative programming with dependent types. In: IEEE LICS, June 2000,
pp. 375–387 (2000)

24. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

	Memory Usage Verification Using Hip/Sleek
	Introduction
	Language and Specifications
	Programming Language
	Specification Language
	Memory Usage Specification

	Memory Usage Verification
	The Instrumentation Process
	The Hip/Sleek Automated Verification System

	Soundness
	Experimental Results
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

